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Abstract

Marshak waves are temperature waves which can arise from the background radiation in a material. A
core limitation in the simulation of these temperature waves is the high-dimensional phase space of the
radiation solution, which depends on time, the spatial position as well as the direction of flight. To obtain
computationally efficient methods, we propose to use dynamical low-rank approximation (DLRA) which is
a model order reduction method that dynamically determines and adapts dominant modes of the numerical
solution. This is done by projecting the original dynamics onto the tangent space of the low-rank manifold.
In this work, we investigate discontinuous Galerkin discretizations for two robust time integrators. By
performing the derivation of the DLRA evolution equations on the continuous level, we are able to apply
the needed slope limiter on the low-rank factors instead of the full solution. The efficiency of the method is
presented through computational results for a Marshak wave originating from a heated wall.

Keywords: Dynamical low-rank approximation, kinetic equations, rank adaptivity, model order
reduction

1. Introduction

Marshak waves are temperature waves which arise when radiation from a hot source enters a cold material.
Though no material transport is present, a travelling heat wave arises in the material due to the interaction
of radiation particles with the background medium: While radiation particles can heat up the medium
through absorption, the heated material can in turn emit new particles. This interplay of particles and the
medium results in a moving radiation and temperature front. Such phenomena arise in applications such
as star formations, supernova explosions, the radiation emitted from a hohlraum striking a fusion target, or
laser wakefield acceleration through pressure waves.

The dynamics of particles is described by a particle density (also called angular flux) f(t,x,Ω) which depends
on time t, position x ∈ R3, and direction Ω ∈ S2. That is, the phase space that needs to be discretized
is six-dimensional. Therefore, numerical simulations of Marshak waves are computationally costly and
exhibit a high memory footprint. To enable efficient numerical simulations, coarse discretizations of the
directional domain are chosen which results in unwanted numerical artifacts such as ray-effects [16, 22, 19]
in nodal discretizations and Gibb’s phenomenon in modal representations. To mitigate such artifacts,
numerical methods are equipped with ray-effect mitigation techniques, see e.g. [17, 21, 1, 8] as well as filters
[20, 9].

An alternative approach is to pick a finely resolved discretization in angle and space, and to resolve the issue of
limited computational and memory resources by evolving the solution as a low-rank factorization. A method
which is gaining interest in kinetic problems is dynamical low-rank approximation (DLRA) which has been
proposed in [13]. The core idea of DLRA is to evolve the solution on the low-rank manifold M by projecting
the right-hand side of the evolution equation onto the tangent plane of M. The resulting evolution equations
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can be solved robustly with the projector–splitting integrator [18] or the recently developed “unconventional”
basis update & Galerking (BUG) integrator of [4]. The core advantage of the BUG integrator for applications
in kinetic theory is the fact that unlike the projector–splitting integrator, it evolves the factorized solution
solely forward in time, which facilitates the construction of stable spatial discretizations [14]. Moreover it
allows for an extension to rank adaptivity [3]. The core idea of [3] is to augment the basis of the integrator
before performing a Galerkin update. This adds conservation properties (up to a tolerance parameter)
and can be used to preserve important moments in the Vlasov equations [7]. Further recent advances in
dynamical low-rank approximation for radiative transfer include the construction of asymptotic–preserving
schemes [5], sweeping methods [23] and collision source methods [15].

Despite recent advances in DLRA for radiative transfer, no results are available for Marshak wave problems.
Moreover, to the best of the authors knowledge, the use of high-order spatial discretizations for radiation
transport is limited to [10] and it is not clear how such spatial discretizations behave in combination with
different integrators. In this report, we document a discontinuous Galerkin discretization for Marshak wave
problems and present computational results for different integrators. Additionally, we present a strategy to
efficiently incorporate non-linear slope limiters without requiring the computation of the full solution based
on the continuous DLRA formulation [6].

This report is structured as follows: After the introduction in Section 1, we present a background on radiative
transport and dynamical low-rank approximation in Section 2. Section 3 presents a derivation of the DLRA
evolution equations for Marshak wave problems on a continuous level. In Section 4, we present a modal
discretization in direction and space. Numerical results are presented in Section 5 and we conclude this
report in Section 6.

2. Background

2.1. Recap: Radiative transfer

Marshak waves can be simulated by solving the thermal radiative transfer equation

1

c
∂tf +Ω · ∇xf = σs(ϕ− f) + σa(B − f) (1a)

cv∂tT =

∫
S2

σa(f −B) dΩ, (1b)

where for the sake of compactness of notation, we have suppressed all arguments. We are interested in
determining the angular flux f(t,x,Ω) which depends on time t, position x ∈ R3, and direction Ω ∈ S2.
The scalar flux is denoted by ϕ(t,x) = 1

4π

∫
4π

f(t,x,Ω′)dΩ′, the speed of light is given by c, the material
heat capacity is denoted as cv, and h is Planck’s constant. The material temperature is given by T (t,x).
Moreover, the Planck function for mono energetic particles reads B(T ) = acT 4. Scattering and absorption
cross sections are given by σs(x) and σa(x). The dynamics described by equation (1a) is the transport
and isotropic scattering as well as absorption of photons. Due to absorption events, the temperature of the
material can increase according to (1b). Moreover, the background medium emits blackbody radiation at
its temperature.

2.2. Recap: Dynamical low-rank approximation

Let us provide a brief summary on dynamical low-rank approximation [13] in its continuous formulation [6].
To this end, we investigate a partial differential equation of the form

∂tf(t, x, µ) = F (f(t, x, µ)) (2)

and define the continuous rank r ansatz for a general function f(t, x, µ) as

fr(t, x, µ) =

r∑
j,ℓ=1

Xj(t, x)Sjℓ(t)Wℓ(t, µ). (3)
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The domain of x, which will later be our spatial domain is denoted by Dx ⊂ R and the domain of µ, which
will later serve as the directional domain is denoted as Dµ ⊂ R. For a given time t ∈ [0, T ], we wish to
determine the orthonormal basis functions Xj(t, ·) ∈ L2(Dx),Wℓ(t, ·) ∈ L2(Dµ) as well as the coefficients
Sjℓ(t) ∈ R. When deriving evolution equations for these factors, we need to ensure that the numerical
solution fr remains in the set of rank r functions Mr. This is achieved by projecting the dynamics of the
full problem onto the tangent space of Mr at every fr(t, x, µ) denoted by Tfr(t,x,µ)Mr according to

∂tf(t, x, µ) ∈ Tfr(t,x,µ)Mr such that ∥∂fr(t, x, µ)− F (fr(t, x, µ))∥L2(Dx×Dµ)
= min. (4)

According to [13, Lemma 4.1], we can rewrite the above problem as

∂tfr(t, x, µ) = P (fr(t, x, µ))F (fr(t, x, µ)). (5)

To define the projector onto the tangent space P , we denote the integration over Dx and Dµ as ⟨·⟩x and
⟨·⟩µ as well as projections onto the basis as

PXg(t, x, µ) =

r∑
j=1

Xj(t, x)⟨Xj(t, ·)g(t, ·, µ)⟩x and PW g(t, x, µ) =

r∑
j=1

Wj(t, µ)⟨Wj(t, ·)g(t, x, ·)⟩µ.

Then P takes the form

P (g) = PX(g)− PXPW (g) + PW (g).

Using Einstein’s sum convention (here and throughout the manuscript), the evolution equations to (5) can
be determined as

Ṡji =⟨F (fr(t, x, µ))XjWi⟩xµ, (6a)

∂tXj =(1− PX)⟨F (fr(t, x, µ))Wi⟩µ(S−1)ji, (6b)

∂tWj =(1− PW )⟨F (fr(t, x, µ))Xi⟩x(S−1)ij . (6c)

Note that the inverses of the coefficient matrix S = (Sij)
r
i,j=1 ∈ Rr×r can have small singular values. I.e.,

time integration schemes for (6) will require small time step sizes ∆t. A robust integrator which does not
suffer from small singular values is the projector–splitting integrator [18]. The core idea of this integrator is
to split the projected equation (5) into three substep and note that in each substep, two of the three factors
remain constant. For an update from time t0 to t1 = t0 +∆t, let us assume to have the factored solution at
time t0 as X0, S0, V 0. Then, the integrator reads as follows

1. K-step: Update the spatial basis from t0 to t1, update the coefficients to S
1
via

∂tKi(t, x) = ⟨F
(
KℓW

0
ℓ

)
W 0

i ⟩µ
Ki(t0, x) = X0

j S
0
ji.

Determine the time updated X1
j and S1

ji with Ki(t1, x) = X1
j S

1
ji (by e.g. Gram-Schmidt).

2. S-step: Update the coefficient matrix S
1 → S̃0 according to

Ṡij(t) = −
〈
F (X1

ℓ S
1
ℓkW

0
k ))X

1
i W

0
j

〉
xµ

Sij(t0) = S
1

ij .

The updated coefficient matrix is then obtained as S̃0 = S(t0 +∆t).
3. L-step: Update the directional basis from t0 to t1, update the coefficients to S1 via

∂tLi(t, µ) =
〈
F (X1

ℓLℓ)X
1
i

〉
x

Li(t0, µ) = S̃0
ijW

0
j .

Determine the time updated W 1
j and S1

ij with Li(t1, x) = W 1
j S

1
ij (by e.g. Gram-Schmidt).
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A main disadvantage of the projector–splitting integrator for kinetic problems is that the negative sign in the
S-step can destroy stability when performing a spatial discretization [14]. A recently developed alternative
is the BUG integrator [4]. It takes the following form:

1. K-step: Update the spatial basis from t0 to t1 via

∂tKi(t, x) = ⟨F
(
KℓW

0
ℓ

)
W 0

i ⟩µ
Ki(t0, x) = X0

j S
0
ji.

Determine X1
j with Ki(t1, x) = X1

jRji (by e.g. Gram-Schmidt), store M =
(
⟨X1

i X
0
j ⟩x

)r
i,j=1

.

2. L-step: Update the directional basis from t0 to t1 via

∂tLi(t, µ) =
〈
F (X1

ℓLℓ)X
1
i

〉
x

Li(t0, µ) = S0
ijW

0
j .

Determine W 1
j with Li(t1, x) = W 1

j Rij (by e.g. Gram-Schmidt), store N =
(
⟨W 1

i W
0
j ⟩µ

)r
i,j=1

.

3. S-step: Update the coefficient matrix from t0 to t1 via

Ṡij(t) =
〈
F (X1

ℓ S
1
ℓkW

0
k ))X

1
i W

0
j

〉
xµ

Sij(t0) = MiℓS
0
ℓkNjk.

The updated coefficient matrix is then obtained as S1 = S(t0 +∆t).

Here, we can perform the K and L steps in parallel. Note that the BUG integrator can be extended to
rank-adaptivity [3]. Besides moving only forward in time, the BUG integrator shares the exactness and the
robust error bound of the projector-splitting integrator, see [4, 12].

3. Dynamical low-rank approximation for Marshak waves

In the following, we derive the evolution equations needed by both, the projector–splitting as well as the
BUG integrator. To not repeat too many formulas, we only write down the evolution equations for the
BUG integrator, since the projector–splitting counterpart only differs with respect to the minus sign in the
S step and time indices. For sake of readability, we perform the derivation for the frequency-averaged (gray)
equations in slab geometry. We start our derivation from

∂tf(t, x, µ) = −µ∂xf(t, x, µ) + σs

(
1

2

∫ 1

−1

fdµ′ − f

)
+ σa(B(T )− f) (7a)

cv∂tT = σa

∫ 1

−1

(f −B(T ))dµ, (7b)

where µ is the projected directional variable. First, let us write f as a low-rank factorization

f(t, x, µ) ≈ fr(t, x, µ) = Xi(t, x)Sij(t)Wj(t, µ)

and start by deriving the evolution equation of the K-step. Note that in the K-step, the directional basis is
kept fixed at W 0

j . Moreover, we note that with our definition of Kj(t, x) = Xi(t, x)Sij(t) we can write the

ansatz inside the K-step as fK
r (t, x, µ) := Kj(t, x)W

0
j (µ). We then plug this ansatz into (7a) and project

with respect to W 0
j (µ). The resulting equation reads

1

c
∂tKj = −⟨µW 0

j W
0
l ⟩µ∂xKl + σs

(
1

2
⟨W 0

j ⟩µ⟨W 0
l ⟩µKl −Kj

)
+ σa(B(T )⟨W 0

j ⟩µ −Kj). (8a)
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Similarly, for the L-step equation, we fix the spatial basis at X0
j . Using the definition of Li(t, µ) =

Sij(t)Wj(t, µ), we choose the ansatz inside the L-step as fL
r (t, x, µ) := Xi(t, x)Li(t, µ). Again, we plug

this ansatz into (7a) and project with respect to X0
j (x). The resulting equation reads

1

c
∂tLi = −µ⟨X0

i ∂xX
0
k⟩xLk + σs

(
1

2
⟨Li⟩µ − Li

)
+ σa(⟨B(T )X0

i ⟩x − Li), (8b)

Lastly, the S-step chooses fixed basis functions in space and direction, i.e., we pick the ansatz fS
r (t, x, µ) :=

X1
i (x)Sij(t)W

1
j (µ). Plugging this ansatz into (7a) and projecting with respect to W 1

j (µ) yields

1

c
Ṡij =− ⟨X1

i ∂xX
1
k⟩x⟨µW 1

j W
1
l ⟩µSkl + σs

(
1

2
⟨W 1

j ⟩µ⟨W 1
l ⟩µSil − Sij

)
+ σa(B(T )⟨X1

i ⟩x⟨W 1
j ⟩µ − Sij) (8c)

Since the temperature T depends on space only and therefore allows for an efficient time evolution, we do
not expand it in terms of basis functions. Note however that an expansion in terms of the spatial basis is
possible.

4. A modal discretization for dynamical low-rank approximation

In the following, we perform a modal discretization of the derived evolution equations (8) for K, L and S.
To this end, we define the normalized Legendre polynomials as pi(µ) for i ≤ N and represent the directional
basis as

Wj(t, µ) ≃ Ŵji(t)pi(µ), Lj(t, µ) ≃ L̂ji(t)pi(µ). (9)

Moreover, we write the spatial basis in terms of scaled Legendre polynomials φ
(k)
i where i ≤ P as

Xj(t, x) ≃ X̂
(k)
ji (t)φ

(k)
i (x)χIk(x), Kj(t, x) ≃ u

(k)
ji (t)φ

(k)
i (x)χIk(x). (10)

Here, we use an equidistant spatial grid with spatial cells Ik = [xk, xk+1] with Nx + 1 cell boundaries
x1 ≤ · · · ≤ xNx+1 and grid spacing ∆x. Moreover, χ denotes the indicator function. The modal basis

in space is then defined as φ
(k)
i (x) = Φi

(
x−xk

∆x

)
with Φi(x) :=

√
2pi(2x − 1)χ[0,1](x). Then, to derive the

discretized L-step equation, we choose the ansatz (9) for L and test against pk(µ). This gives

1

c
˙̂
Liℓ(t) = −⟨µpℓpm⟩µ⟨X1

i ∂xX
1
k⟩xL̂ik + σs

(
1

2
⟨pk⟩µL̂ik − L̂iℓ

)
+ σa(⟨B(T )X1

i ⟩x − L̂iℓ). (11)

The terms ⟨X1
j ∂xX

1
ℓ ⟩x can be written as

⟨X1
i ∂xX

1
k⟩x =

∑
k

X̂
(k),1
ji X̂

(k),1
ℓi′

〈
φ
(k)
i

d

dx
φ
(k)
i′

〉
Ik

. (12)

In the same manner, we obtain evolution equation equations for S. For the K-step, we need to take special
care of the stabilization. To shorten notation, let us denote the flux matrix of the K-step as A ∈ Rr×r

with entries ajl = ⟨µW 0
j W

0
l ⟩µ. Moreover, let us omit scattering and absorption terms which are trivial to

discretize and do not require a stabilization. Then, with the test functions φ̃
(k)
i (x) := 1

∆xφ
(k)
i (x), we directly

obtain at cell Ik the system

u̇i(t)⟨φiφ̃j⟩x + ⟨A∂xK(t, ·)φ̃j⟩x = 0,

where we drop the index k for simplicity of notation and collect K(t, x) = (Ki(t, x)) ∈ Rr. Using integration
by parts and orthogonality of basis and test functions, we arrive at

∂tuj(t) +AK(t, x)φ̃j(x)
∣∣xk+1

xk
− ⟨AK(t, ·)φ̃′

j⟩x = 0.
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The flux term is approximated with an upwind method

AK(t, x)φ̃(x)T
∣∣xk+1

xk
≈1

2

[
A(uT

k+1φ(x
+
k+1) + uT

kφ(x
−
k+1))− |A|(uT

k+1φ(x
+
k+1)− uT

kφ(x
−
k+1))

]
φ̃(x−

k+1)
T

− 1

2

[
A(uT

kφ(x
+
k ) + uT

k−1φ(x
−
k ))− |A|(uT

kφ(x
+
k )− uT

k−1φ(x
−
k ))

]
φ̃(x−

k )
T ,

where we use the notation φ(x−
k ) := φk−1(xk) and φ(x+

k ) := φk(xk). This can be reformulated as an
advection and a diffusion part

AK(t, x)φ̃j(x)
∣∣xk+1

xk
≈1

2
A

[
(uT

k+1φ(x
+
k+1) + uT

kφ(x
−
k+1))φ̃(x

−
k+1)

T − (uT
kφ(x

+
k ) + uT

k−1φ(x
−
k ))φ̃(x

+
k )

T
]

+
1

2
|A|

[
(uT

kφ(x
+
k )− uT

k−1φ(x
−
k ))φ̃(x

−
k )

T − (uT
k+1φ(x

+
k+1)− uT

kφ(x
−
k+1))φ̃(x

−
k+1)

T
]
,

where |A| is the absolute value of A = TDT⊤ defined as |A| = T|D|T⊤. Hence, the full semi-discrete
update equation reads

∂tu(t) =− 1

2
A

[
(uT

k+1φ(x
+
k+1) + uT

kφ(x
−
k+1))φ̃(x

−
k+1)

T − (uT
kφ(x

+
k ) + uT

k−1φ(x
−
k ))φ̃(x

+
k )

T −
〈
K

d

dx
φ̃T

〉
x

]
− 1

2
|A|

[
(uT

kφ(x
+
k )− uT

k−1φ(x
−
k ))φ̃(x

−
k )

T − (uT
k+1φ(x

+
k+1)− uT

kφ(x
−
k+1))φ̃(x

−
k+1)

T
]
.

To ensure stability, we must apply a limiter on the higher-order corrections to the mean value in cell k,
which is uk0. We define

uT
k+1φ(x

−
k+1) := uk0 + ū−

k , uT
kφ(x

+
k ) := uk0 − ū+

k .

Using the limiter function m̃ : R×R×R → R for the correction terms ū−,+
k , we get (element-wise)

˜̄u−
k,ℓ := m̃(ū−

k ,uk+1,0 − uk,0,uk,0 − uk−1,0), (13a)˜̄u+

k,ℓ := m̃(ū+
k ,uk+1,0 − uk,0,uk,0 − uk−1,0). (13b)

The limiter is constructed as

m̃(a, b, c) :=

{
a if |a| ≤ MH̄2

k

m(a, b, c) else
.

where M and H̄k are user-determined parameters. Recall that the minmod function m takes the form

m(a, b, c) :=

{
s ·min(a, b, c) if s = sign(a) = sign(b) = sign(c)

0 else
.

Then, the limited cell edge corrections are

ũT
k+1φ(x

−
k+1) := uk0 + ˜̄u−

k , ũT
kφ(x

+
k ) := uk0 − ˜̄u+

k . (14)

In order to directly define a limiter for the expansion coefficients ũk+1 instead of the cell edge corrections
alone, we need to solve the system of equations. That is, we compute the correction via (13) in cell k
and then solve (14) for ũk+1 and ũk+1. This system is uniquely solvable for orders two and three. At
higher order, one needs to pick additional degrees of freedom. Let us denote the action of the limiter as

6



L : RP×N → RP×N . Then, when for example using a forward Euler method, we get

un+1
k =ũn

k − ∆t

2
A

[
(ũn,T

k+1φ(x
+
k+1) + ũn,T

k φ(x−
k+1))φ̃(x

−
k+1)

T − (ũn,T
k φ(x+

k ) + ũn,T
k−1φ(x

−
k ))φ̃(x

+
k )

T
]

− ∆t

2
|A|

[
(ũn,T

k φ(x+
k )− ũn,T

k−1φ(x
−
k ))φ̃(x

−
k )

T − (ũn,T
k+1φ(x

+
k+1)− ũn,T

k φ(x−
k+1))φ̃(x

−
k+1)

T
]

+∆t

〈
ũn,Tφ

d

dx
φ̃T

〉
x

,

ũn+1
k =L(un+1

k ).

To bring the above scheme in a more compact form, let us write it as

un+1 =ũn +∆tDxũ
nAT +∆tDxxũ

n|A|T , (15a)

ũn+1
k =L(un+1

k ). (15b)

Here, we define

(Dxx)idx(k,i),idx(k+1,j) =
1

2
φj(x

+
k+1)φ̃i(x

−
k+1),

(Dxx)idx(k,i),idx(k−1,j) =
1

2
φj(x

−
k )φ̃i(x

+
k ),

(Dxx)idx(k,i),idx(k,j) =− 1

2
φj(x

+
k )φ̃i(x

+
k )−

1

2
φj(x

−
k+1)φ̃i(x

−
k+1).

and

(Dx)idx(k,i),idx(k+1,j) =− 1

2
φj(x

+
k+1)φ̃i(x

−
k+1),

(Dx)idx(k,i),idx(k−1,j) =
1

2
φj(x

−
k )φ̃i(x

+
k ),

(Dx)idx(k,i),idx(k,j) =
1

2
φj(x

+
k )φ̃i(x

+
k )−

1

2
φj(x

−
k+1)φ̃i(x

−
k+1) + ⟨φjφ̃

′
i⟩x.

Remark 1. It is important to point out that for our derivation it has been essential to formulate the DLRA
evolution equations on the continuous level and then discretize in space and direction in a subsequent step.
Otherwise, to apply the limiter, the full solution needs to be computed, thereby destroying the efficiency of
the method.

5. Numerical Results

The code used to generate the presented results in openly available [2]. In the following, we compute the
propagation of a Marshak wave from a heated wall of a cold domain, following [11]. In this setting, even
though the temperature equation does not include any convection terms, a temperature wave which travels
into the cold domain will form. The advection is driven by the interation of radiation particles and the
background medium. Here, the wave velocity is significantly smaller than the velocity of particles. Let us
assume a wall temperature is Twall = 80 eV, whereas the domain has a temperature of 0.02 eV. Additional
parameters are

D = [0, 0.002] spatial domain in cm
Nx = 51 number spatial cells
P = 2 expansion coefficients in space
N = 100 expansion coefficients in angle
tend = 5 · 10−12 end time in seconds
λtr = 92.6 · 10−2 transport path length in µm
ρ = 0.1 material density in g/cm3

cv = 0.831 · 105 specific heat in J/(g ·K)
σs = 0 scattering cross section in 1/µm
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Figure 1: Scalar flux profile for the full method (DG) as well as the PSI and BUG integrator. The spatial domain has been
rescaled.

The heat capacity is given by CV = ρ · cV and the opacity is σa = 1/λtr.

In the following, we investigate the presented setting with a conventional full-rank discontinuous Galerkin
(DG) method compared to the projector–splitting integrator and the BUG integrator. Both, the BUG and
projector–splitting integrator (PSI) use a fixed rank of r = 5. The resulting scalar flux can be found in
Figure 1 and the corresponding temperature profile can be found in Figure 2. It is observed that both
integrators yield an accurate representation of the Marshak wave that shows satisfactory agreement with
the full rank DG solution. The computational costs are reduced heavily from 85 seconds for the full rank
method to 5 seconds for the dynamical low-rank methods

6. Conclusion

In this report, we have derived evolution equations for dynamical low-rank formulation in Marshak wave
problems. We have presented an efficient fully modal discretization in space and angle. To be able to derive
an efficient discontinuous Galerkin discretization of the DLRA evolution equations, we first perform the
DLRA projection on the continuous level and then discretize in space and angle. We can show that the
DLRA method is able to accurately compute a Marshak wave at reduced computational costs.
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