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STRICHARTZ ESTIMATES FOR MAXWELL EQUATIONS ON
DOMAINS WITH PERFECTLY CONDUCTING BOUNDARY
CONDITIONS

NICOLAS BURQ AND ROBERT SCHIPPA

ABSTRACT. We consider Maxwell equations on a smooth domain with per-
fectly conducting boundary conditions in isotropic media in two and three
dimensions. In the charge-free case we recover Strichartz estimates up to end-
points due to Blair-Smith—Sogge for wave equations on domains. For the
proof we suitably extend Maxwell equations over the boundary, which intro-
duces coefficients on the full space with codimension-1 Lipschitz singularity.
We diagonalize this system to half-wave equations amenable to the results of
Blair—-Smith—Sogge. In case of non-vanishing charges, we quantify the defect
to Strichartz estimates for wave equations on domains in terms of the charges.

1. INTRODUCTION

We discuss dispersive properties for Maxwell equations on bounded domains
Q C R? with compact boundary 9Q € C’O‘ﬂ The system couples electric and
displacement field (£,D) : R x Q — R x R3 to magnetic and magnetizing field
(B,H) : R x Q — R? x R3. The system of equations reads

W 0D =VxH-JT., (tz)eRxQ,
OB =-VxE V-D=p, V-B=0

with initial conditions (£(0), H(0)) = (Eo, Ho). Je : RxQ — R? denotes the electric
current, which is regarded as source term. We supplement the Maxwell system with
pointwise time-independent material laws for isotropic media

(2) D(t,z) = e(x)E(t, ), B(t,z) = p(x)H(t, z)

with e, u € C*(Q;Rs0) denoting permittivity and permeability, which satisfy the
uniform ellipticity conditions

(3) AINA>0:VeeQ: A <e(z),u(r) <A
We further suppose that for some large N > 2E| that
(4) g, 0¢,..0NccCQ), wou ..., 0NueCQ).

Maxwell equations in media describe the electromagnetism of matter and are
of great physical importance. We refer to the physics’ literature for a detailed
explanation (cf. [8, [14]). We also refer to the lecture notes surveying basic results
by Schnaubelt [19].

1Certainly, the present arguments extend to dQ € CN for N large enough corresponding to
a generalization of the results due to Blair-Smith-Sogge [3] to the CV-category. We are not
attempting to minimize the required regularity.
2This constant is the regularity required for the metric such that the results of Blair-Smith—
Sogge hold true. It is conceivable that N = 2 suffices, but this is currently unclear.
1



2 NICOLAS BURQ AND ROBERT SCHIPPA

Let v € C>(99Q, R3) denote the outer unit normal. Here we consider the perfectly
conducting boundary conditions

(5) [€ X V]zean =0, [B - v]zean = 0.

The boundary conditions of the perfect electric conductor are among the physi-
cally most relevant ones (cf. [22, [19]). We define surface charge and current by
complementary boundary values of D and H (cf. [I9, Eq. (2.3)]):

(6) [D : V]a:ESQ = Pz, [fH X V]xe@ﬂ =Js.

Furthermore, we require the normal component of 7, to vanish at the boundary,
which is physically sensible:

<7) [je . V]Q:EBQ =0.

The Maxwell equations satisfy finite speed of propagation (see [22 Chapter 6]).
Hence, in the interior of the domain we can use previously established results on
the whole space for local-in-time results (see previous works by Dumas—Sueur [7]
and the second author [T, [15]). Thus, it suffices to work close to the boundary, at
which we resolve the Maxwell system in geodesic normal coordinates; see Section [2]
At the boundary, we write the equation in geodesic normal coordinates to localize
to the half-space R3, = {z € R? : z3 > 0}. The cometric is given by

gl g2 0
g =g ¢ 0
0 0 1

As short-hand notation, we write (/g := y/detg. This effectively gives rise to
anisotropic permittivity \/§g_15 and permeability \/§g_1 e

() i(\/gg7'e€) =V xH, (t,z) e RxR3,
O (Vg9 'uH) =-Vx&  (Exes)lu=0=0, (H-e3)lzy=0 =0

with the divergence conditions now reading

V- (V99 'e€) = Vape, V- (/a9 'eH) = 0.
It is important to note that the boundary conditions are respected by g~ 1.

Note that taking time derivatives in and plugging in yields compatibility
conditions. In order to maintain a less technical Introduction, we postpone the dis-
cussion of compatibility conditions to Section [2| after we have localised Maxwell’s
equations to (8]). The second compatibility condition simplifies under the assump-
tion

(9) Opt|zean = 0.

Spitz [23), 24] showed existence and local well-posedness in H3(£2) (also in the
quasilinear case) provided that the compatibility conditions up to second order are
satisfied. These are precisely the conditions, which are meaningful in the sense of
traces. First, we tend to homogeneous solutions with 7, = 0. Accordingly, we let

H3(Q) = {(&0, Ho) € H3(Q)? : (&, Ho) satisfies homogeneous

compatibility conditions up to second order }.
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With the solutions existing, we can show Strichartz estimates for homogeneous
solutions

(10) 16 H)ll g pe S 1(E0, Ho)llarv @y + oe () s g5
for certain 2 < p,q < 00, ¢ < oo with v determined by scaling, and ¢ > (E| such
that

1 1 1 3

11 y=3(z—=-)——, 6<-—.

(1D (2 q) P q

All Strichartz estimates established in this paper are local in time. For 0 < T' < oo,
we write LE.LL(Q) = LY ([0, T, LY(%)).

is proved in two steps: First, we show

1€, H) Lz Loy S 1EH) Lo rvrsy + [l pe(0)]

Then it suffices to prove energy estimates for homogeneous solutions for 0 < s < 3:

(&, H)llLse s S 1(E0s Ho) |-

Linearity and boundedness allows us to extend the linear solution mapping from
the subspace H3(2) of H(f2) to its closure in the H”-norm:

(12) H’Y(Q) :Hg(Q)””H’Y(Q)

We denote Sobolev spaces (of real-valued functions) on Q with Dirichlet boundary
condition with H}(€); the Sobolev spaces with Neumann boundary conditions are
denoted by H}, ().

Since we shall estimate the regularity of (€, o) only in H” for v < 3, the
compatibility conditions involving derivatives are not relevant. This means we
actually only require the Dirichlet conditions for H?, v < % We shall then recover
inhomogeneous estimates by Duhamel’s formula. Roughly speaking, H7(2) is the
Sobolev space with relevant compatibility conditions; see Proposition [2.1] For
v < %, this means there are no boundary conditions. For % << %, we only
have Dirichlet conditions. For % << g, we have to take into account first order

compatibility conditions, which imply Neumann boundary conditions for H X v.

“itlys, -
@)

On the full space, Maxwell equations with rough coefficients and also quasi-
linear Maxwell equations were considered in [I7] (the two-dimensional case) and
the partially anisotropic case in three dimensions was analyzed in [I5]. The fully
anisotropic case in three dimensions was covered in [I8]. In these works, it was
pointed out how Maxwell equations (at least in the case of isotropic media) ad-
mit diagonalization to two degenerate half-wave equations and four non-degenerate
half-wave equations. The contribution of the degenerate components, i.e., station-
ary solutions, is quantified by the charges. Here we extend Maxwell equations
over the boundary via suitable reflections to carry out the diagonalization after-
wards. Since the coefficients of the cometric and the permittivity and permeability
are extended evenly, the extension introduces a codimension-1 Lipschitz singular-
ity. After paradifferential decomposition, we can still carry out the diagonalization
to half-wave equations similar to the more regular case covered in [15] (see [I7]
for the previously established two-dimensional case). After diagonalization, we can

3Note that § is chosen small enough such that boundary conditions are not relevant for the

_ 1
Sobolev space H” 349,
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apply the Strichartz estimates for wave equations with structured Lipschitz singu-
larity due to Blair-Smith—Sogge [3]. We find local-in-time Strichartz estimates for
inhomogeneous Maxwell equations by Duhamel’s formula:

1€, H)lLeqo.11,20(02)) ST I1(EH)(O0) |3+ ) + 1 Tellro,7:200+5 9))

+ ”Pe(O)HH«/—H%M( ) +V- je||L}H771+%+5 .

Q ()

The use of Duhamel’s formula in H?*? requires us to impose Dirichlet boundary
conditions on 7.

We digress for a moment to recall Strichartz estimates for the wave equation
on domains: Strichartz estimates for wave equations on (general) manifolds with
boundary for Dirichlet as well as Neumann boundary conditions were first investi-
gated by Burq et al. [4, [5] and Blair-Smith—Sogge [3] based on the seminal con-
tribution by Smith—Sogge [21] regarding spectral cluster estimates. Notably, there
are more refined results and counterexamples on special domains due to Ivanovici
et al. |11} 10, 12 [13]. For exterior convex domains, Smith-Sogge [20] recovered the
Euclidean Strichartz estimates (local-in-time) much earlier by the Melrose-Taylor
parametrix.

For Maxwell equations with perfectly conducting boundary conditions, we prove
the following theorem:

Theorem 1.1. Let Q C R? be a smooth domain with compact boundary and e,
1€ C(R3;Rxo) satisfy (). Let 2 < p,q < oo, and let (E,H) : R x @ — R? x R3
denote solutions to with material laws , which satisfy the perfectly conducting

boundary conditions (). Then (13) holds with v and § given by (L1|) provided that
2
(14) 3 +- <1
p q

Recall that the boundary conditions are indistinguishable at low regularities.
We have H3, () = H*(Q) for s < 1/2 and H () = H*(Q2) for s < 2. Since we
estimate J. in Sobolev spaces with boundary conditions, we have to require

[\7@}1689 =0

for v > % Note that because v — 1+ % +i< % the boundary condition of p. is not
relevant.

‘We shall also discuss the two-dimensional case:

(15) {@(55) =V.iH - T, (t,z) € RxQ,
8t(u7-l) :—(ng)gz—(alé’g—ag&), V(Eg) = Pe

with V| = (02, —01). Here Q C R? denotes a smooth domain in R? with compact
boundary, and £ : Rx Q2 = R2, 7. : RxQ = R H:RxQ — R. We let
g, € C*(Q). We require € : @ — R and g : Q@ — R to satisfy

(16) INA>0:VeeQ: A <e(z),u(r) <A

Like above, we require uniform bounds for finitely many derivatives up to the
boundary for large N > 2:

(17) £,0e,...,0Ne € C(Q), p,0u,...,0Npu e C(Q).
The perfectly conducting boundary condition for is given by
(18) [€ AV]zean = 0.
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Spitz’s local well-posedness in three dimensions descends to the two dimensional
case. In the following we take into account boundary and compatibility conditions
in H3(Q) as we did in the three-dimensional case. We abuse notation and define
H(Q) as closure of H3(2) in the H?(2)-topology like in (12). We prove the
following:

Theorem 1.2. Let Q C R? be a smooth domain with compact boundary, 2 < p,q <
o0, and suppose that

3 1 1 1 1 1 1

i<z =2(=-=)-= -
(19) p+q_2’ g<oo, 7 2(2 p) L 0<6<2
Suppose that e € C®(;R), u € C®(Q;R) be like above and satisfy and ,

Then the following estimate holds for solutions to with initial data (Ey, Ho) €

H(Q) satisfying boundary conditions (18):

1€ )l z.La) S 1€, Ho)llw+s + 1 Tell Ly 2er+s

+ ||Pe(0)||Hw—1+%+s(Q) + V- jeHLlTHw—H%M(Q)-

Outline of the paper. In Section 2] we write Maxwell’s equations with differential
forms to facilitate change of variables. We use this to formulate Maxwell equations
on the half-space. We reduce Strichartz estimates to homogeneous estimates for
the reflected solutions. A key ingredient to conclude the proof are energy estimates.
However, these we prove on the level of the original equations posed on domains
in Section [3] In Section [@] we collect facts on pseudo-differential operators. In
Section [5] we diagonalize three-dimensional Maxwell equations after localization to
the half-space, in Section [6] we diagonalize two-dimensional Maxwell equations.

2. MAXWELL EQUATIONS ON MANIFOLDS

To investigate the behavior of Maxwell equations under coordinate transforma-
tions, we set up Maxwell’s equations on smooth Riemannian manifolds with bound-
ary (M, g). In this context, the fields are given at any time ¢ € R as covectorfields
X(t): M - T*M, X € {£,D,H,B,T.}, ie., sections of the cotangential bun-
dle. Permittivity and permeability are given by x(t) : M — Sym(T*M — T*M),
k € {e,u}, and pe(t) : M — R. Let x,d : AT*M — AT*M denote the Hodge
dual and exterior derivative. We localize Maxwell equations to the half-space via
geodesic normal coordinates. This facilitates to find compatibility conditions. This
in turn allows us to find suitable extensions of the fields from the half-space to the
full space. The extension respects the Sobolev regularity 0 < v < 2, which suffices
for the presently considered Strichartz estimates, and the extended fields moreover
satisfy Maxwell equations on the full space, albeit with coefficients with Lipschitz
singularity. We first consider the more involved three-dimensional case and then
shall be brief for the two-dimensional case.

2.1. 3d manifolds. With the aid of Hodge dual and the exterior derivative, we
can write for the curl and divergence of vectorfields F : Q — R3:
V x F = *dF, V-F=xdxF.
Consequently, the Maxwell system of equations reads

{@(65) =xdH — J., *dx*(££) = pe,

(20) O(uH) =—xdE,  (t.z) € R x M.
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Let #: TM — T*M and b : T*M — TM denote the musical isomorphisms. The
boundary conditions are given by

(21) [(E)Jecors =0, [(B”) 1)ueon =0

We define surface current Jx and surface charges ps on the boundary by
(22) [(H")Jecorr = [Tslzeons and [(D°)1]sconm = ps.

2.1.1. Finite speed of propagation. In this section, we show how we can reduce the
local-in-time analysis to charts. We recall the notion of finite speed of propagation.
Let (£,H) denote homogeneous solutions to

O(e€) =V xH, (t,x)eRxQ,
O(pH) =-V x& [ExV|zean =0, [H V]zeon =0.
For X C Q let M. (X) = {z € Q : dist(z,X) < r}. By Maxwell equations

having finite speed of propagation, we mean that there is 0 < ¢ < oo such that for
0 <t < o0 it holds

Supp, ((87 H) (t)) C Net (supp,, (50’ Ho)).

We refer to [22] Theorem 6.1] for a more precise statement in terms of the backwards
light cone.

Let d :  — Ry, d(x) = dist(z,09Q) denote the distance function away from
the boundary, and H, = d~!(7) denote corresponding level sets. By the implicit
function theorem, H. is a smooth hypersurface with metric g, and we can write

g=dr’+g, for 0<t<é.

By compactness of 9, finitely many geodesics charts suffice to cover a set {z €
Q2 :d(z) < e} close to the boundary. Shrinking the charts allows us to restrict to
local-in-time solutions, which do not leave the geodesic chart.

Regarding the interior part, we find T' small enough such that (€, H)(t) within
Q" = {z € Q:d(x) > ¢/2} only depends on Q™ = {z € Q : d(x) > /4}, and the
solution does not reach the boundary for times t < T'. This means we have

1€, H) | Lz Laaimey < (€0, Ho)llme(e)-

2.1.2. Geodesic normal coordinates. Let g = (g;;) denote the metric tensor and
g~ ' = (g¥) the cometric. In this work, we only consider isotropic e and p on
the original domain (Q2,%). We endow a chart in (€,0%) with geodesic normal
coordinates derived from the height function:
g = da3 + r(a’, x3, (dz')?).
The Hodge dual transforms by
*(daz“ Ao A dxi"') = igilj1 .. .gikjkejl,,_j dzI 1 AN di
(n—k)! "
Above €5, _;, denotes the n-Levi-Civita tensor, i.e.,
1, (j1...Jn) is an even permutation,

€jrojn = 4 —1, (J1.-.Jn) is an odd permutation,

0, (J1---Jn) is no permutation.
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and (g*) denotes the inverse metric. Recall that we let \/g = v/det g. Consequently,
we find in geodesic normal coordinates

xgdA = \/gad(g~")V x A, kgd g A = \}EV (Vg™ (£)).

In the above display ad(B) denotes the adjugate matrix, i.e.,

ad(B) = ((=1)"*Bji)i,
with Bj; denoting the (j,7)-minor of B. By Cramer’s rule, Maxwell equations
become on the half-space (t,z) € R x R? :

(e(x)E) = (\/ﬁ)‘lglv xH — T, V- (Vg tuH) =0,
Oupla)H) = —(y5) "9V x &, LV (g ieE) =l

In a sense, \/gg’ls now plays the role of ¢ and \/ggfl/i the role of \/nglp. Also,

we redefine p/, = V- (\/§g*155 ), which does not effect regularity questions because
/9 is smooth. Moreover, we write J. := \/§g_1Je’. Below we shall see that this is
consistent with the compatibility conditions. We rearrange the equations to

{ 0(Vag ey =V xH - T, V-(/gg uH) =0,
(g9 'uH') =-Vx&, V- (Vag~te€) = pl.

2.1.3. Compatibility conditions. On the half-space = € Rio, the boundary condi-
tions are given as follows:
(23) [E1]zs=0 = [E2)as=0 = [H3]zs=0 = 0.
We call a relation

tr(F(0°E,0°H)) = 0,
which follows from by taking k time derivatives a compatibility condition of
order k. Hence, are of order zero. For , the tangential derivatives are J;,
01, and 0o, which allows for explicitly expressing the compatibitility conditions.

It is important to observe that the (possibly non-diagonal) metrical tensor only
mixes the first and second component:

1 g g2 0
g =g ¢2 0
0 0 1

We give the first order compatibility conditions in the homogeneous case: Applying
tangential derivatives 9y, J2 to Hg gives

[01H3]25=0 = [O2H3]z5=0 = 0.
The equation for the first and second component of the equation
(V99 'e€E) =V x H

yields
[05H1]25—0 = [03H2]z3—0 = 0.
Moreover, tangential derivatives 01, Jo applied to & and & and the charge
condition yields

[01&1)23=0 = [02E2)uy—0 = 0 and [V - (e/gg™ " E)]uy—0 = tr(p).
Let € = ,/ge. The above display becomes
[03(6€3)]z=0 = tr(p) < [(038)E3]as=0 + [E03E3]wy=0 = tr(p).
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This yields a Robin boundary condition for & in terms of tr(p) and ps. If these
are vanishing, we have Neumann boundary conditions for &;.

We extend the equations to the full space as follows: Reflect ¢, u1, and g™ evenly.
Let

R(z1, 22, 73) = {H(xhx%xg)v c k€ {e 97}
k(21,x9, —23), w3 <0,

On the other hand, &, &, and Hg3 are reflected oddly, and H1, Ha, and &3 are re-

flected evenly. J.1, Jeo are reflected oddly and J.3 evenly. Note that the boundary

condition [Je.V]zco0 = 0 would rather suggest odd extension, but for the considered

regularity v < % this is not relevant. p. is reflected oddly. Denoting the reflected

quantities with X of the original quantity X and /g = 1/det g the following system
of equations holds on R3:

(24) { 8 (V3G'EE) =V xH-T., V-(Vdetgg 'iH) =0,

(V3G iH) = -V xE, V- (VdetggTee) = pe.
We give the compatibility conditions under assumptions @:
(25) (€0 X V]zean =0, [Ho-V]zeon =0,
(26) [athang]wE()Q = 07
(27) [vtangau(g-’/)]:ceaﬁ =0.

We find the second compatibility condition by taking two time derivatives before
changing to geodesic normal coordinates:

(28) X&) =V x (- iv X E) = 00V x &) + %(AS —V(V-E)).

Recall that we required @
Oplzean =0

to simplify the compatibility conditions. Hence, when taking the tangential trace
in , the first expression vanishes. For the analysis of the second, we change to
geodesic normal coordinates normalized to find

2
AE =Y 0ig"0;E + B3,
i,j=1

vtang<v . 5) = Vtang(vtang . (ggtang)) + 6353)~

It turns out that the tangential part of the first expression is vanishing any-
way, which follows from the local expansion into Dirichlet eigenfunctions. Since
[Viang(Viang * (G€)tang] = 0, we find that it suffices to require that £.v satisfies
Neumann boundary conditions. As a consequence, the second compatibility condi-
tion will be satisfied.

Proposition 2.1. Let 0 < v < 3 and HY () be defined by and suppose that
@[) holds. Then, we have the following characterization:

¢ 07y <3 H(Q)=H(Q),

o L <y <3 HQ) = {(E, Ho) € H'(Q) . 25) holds},

o 2 <y <3 HY(Q) ={(&,Ho) € HV(Q) and (26) hold},
o 3 <y <3 H(Q) ={(&,Ho) € H'() . @7 hold}.



MAXWELL EQUATIONS ON DOMAINS 9

For the proof we shall change to geodesic normal coordinates. In a chart endowed
with geodesic coordinates, i.e., for Maxwell equations localized to the half-space,
we have

(29) [E1)2s=0 = [E2)as=0 = [H3]as=0 = 0,
(30) [03H1]23—0 = [03H2]2,—0 = 0,
(31) [0103E3]25=0 = [0203E3]45—0 = 0.

Proof of Proposition 2.1. Let (£, ¢;)i=1,...n denote a finite covering of a neigh-
bourhood of the boundary with geodesic charts and (Qg, ¢o = i¢d) the trivial chart
of the interior. We decompose ug € H?(2) with a smooth partition of unity sub-
ordinate to (€;);=0,...n, 1 = Y iy i + 1o and write

n
uo = Y Wit + Youo.
i=1

It suffices to show the claim for any uéz). Within Q; we can endow 2 with geodesic
normal coordinates and it is enough to prove the claim for the transformed fields
by invariance of Sobolev spaces under changes of coordinates. For () this is trivial
because there is no boundary. Within {2; we can use geodesic normal coordinates.

Note that with
HP(RL,) = {(€0, Ho) € H*(RZ()? : (29) — (BT) holds},

we now have to show that

b

77

{(&0,Ho) € H*(R%,)}, 0<s<3
WR?;O)H-HHS (RS, = {(&,Ho) € H*(R3,) : (29) holds}, 1<s< g

{(&0,Ho) € H*(R%,) : (29), (30) hold}, 3<s<

{(&0,Ho) € H*(R3,) : 29) — BI) hold }, 2 <s<3.

The limiting cases s € N + %, n € Ny are excluded for the sake of simplicity. The
inclusion

S
H3(RY,) C H(Ry)
follows from the continuity of the trace. To show the reverse inclusion,
o (RY,) CHIRE)
we have to approximate elements in (&), Ho) € H*(R3) with elements in H3. For

0<s< %, we extend (g, Ho) to the full space by reflecting &1, €2, H3 oddly and &3,

Hi, Ho evenly. Let (g, Ho) denote the extended datum. Recall the following: Since
odd reflection is an extension for functions with vanishing boundary conditions, we
find continuity of

extp : Hy(R%,) — H*(R®)
ffo
with

r f(.l?), r3 > 0;
7f(717), x3 < 0.
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Likewise even reflection yields a continuous operator for Neumann functions for
0<s<2:
exty : Hy(R2 ) — H*(R?)
fefe
with
7 f x), r3 > 07
Folay = 4119
f(=x), x3 < 0.
Hence, (£y,Ho) € H*(R3). We regularize the components as follows: Let f, =
f* o8 oy with

(f * 03) (21, 22, 23) = / Far, @225 — 9)ol (y)dy

and ¢ (y) = ny(ny), ¥ € C°, symmetric 1 > 0, and fR1/1(y)dy =1.
Secondly,

(g e)aranan) = [ gler = v.s = a)etlu)dy
R
and ¢, (y) = n(ny1 ) (ny2). We denote the component-wise regularized exten-

sion by (£, Ho),,. Clearly, (€y,Ho),, € H*(R?) and moreover,
?Onl(xth;O) :?OnQ(xlax27O) :Hi()n(ajthao) :05

O3Hos(x1,22,0) = d3Hos(w1,22,0) =0,
83503(%1,1’2,0) =0.

Thus, for the restricted function (£o, Ho),, |r2 | we find that the boundary conditions

— are fulfilled. Since
l(€0, Ho),, — (€0, Ho)ll s rsy — O,

we infer that

(€0, Ho),, Rz , — (€0, Ho)ll = w2 ) = O

This yields the claim for 0 < s < 3, 2 <s < 2, 2 <5 <2 Fors e (2,3\{5/2},
the preceding argument still yields

(€0, Ho), ez, — (€0, Ho)ll 2wz ) — 0.
To conclude the proof, it suffices to show that
(32) [A((Eo, Ho),lrz ) — A€o, Ho)llgs—2rs ) — 0.
By the explicit form of our regularization, we have for i =1,2,3
92[(E0, Ho) * @5 * a] = (97 (0, Ho)) * @5 * ¢l
Hence, follows from applying the preceding argument to 92(€y, Ho): We find

||8i2(50, Ho)n — ({91-2(507%0)”]{5—2(]1@3) —0

from continuity of the extensions in H§3_2, noting that two derivatives preserve the
>0

boundary conditions, which implies
102(E0, o),y lrs , — 0 (€0, Ho)ll o2z ) — O-

The proof is complete. O
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2.1.4. Reductions for smooth coefficients. As main step in the proof of Theorem
[1.1] we show the following:

Proposition 2.2. Let u = (5,7:[), and €, i, g be like in , Then the following
estimates hold:

(33) Ml zrze S Nl mes + 1 Tellz s + L T

forp,g > 2, q < oo, d >0 satisfying the following
3 2
-+-<1, y=3=z—-)— -, o< —.
P oq (2 q) p q
Remark 2.3. Recall that p is reflected oddly. The Dirichlet condition is irrelevant
for s < %, which is ensured with the condition on §.
We conclude the section with the following:

Proposition 2.4. Suppose that Proposition[2.3 holds true and the energy estimate
(34) lull Loern (@) STl @)
is valid for homogeneous solutions u = (E,H) to . Then, Theoremfollows.

Proof. First, we prove Theorem for homogeneous solutions u = (£,H) with
Je = 0. By virtue of the energy estimate , it suffices to show:

(35) lwll Lo o,m,za ) S Nullsern + ||Pe(0)||H%1+%+5(Q)-

But for homogeneous solutions u = (£,H) to (20), the transformed and extended
solutions @ = (&€,H) are likewise homogeneous and satisfy the following estimates
by hypothesis:

(36) [@llrre S llallnge s + PO o -1v1ss-
But clearly, ||u|lLrre S ||@]lLpre and

150 157 + 1O 11 gy S [0 0 + 12O o3 g

This reduces Theorem [I.1] to Proposition [2.2] for homogeneous solutions. Inhomoge-
neous solutions are covered by the energy estimate and superposition. Indeed,
suppose that holds true. Let (U(t))icr be the Cy-group of the Maxwell evo-
lution in L2(Q)° (cf. [9, Section 3.2]). Then, we can write the general solution by
Duhamel’s formula

u(t) =U(t)ug + /0 U(t — s)(Pu)(s)ds.

~ 8,5 —871VX
P = (/LIVX 3t ) ’
Changing to P is necessary as Duhamel’s formula has to be applied in conservative

form. By smoothness of the coefficients, this is admissible. The proof is complete.
O

We denote
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2.2. 2d manifolds. It is also useful to treat the two-dimensional case geometri-
cally. In this case we rewrite (|15)) as

(37) O(e(x)E) =xdH — T, *d % (€€) = pe,
O(p(x)H) = —=*dE, (t,z) eRx M
with €, J.(t) : M — T*M covectorfields and H(t) : M — R a zero-form. In
we have like above M = (£2,%). The boundary condition is given by
[(£”))]ecors = 0.
In the two-dimensional context, geodesic normal coordinates are given by
97 = "' (x1, 22)da? + da?.
Computing *d and *dx in these coordinates, we find
{ Ou(e(@)E) = (Vo) gViH =T, 5V (Vag 'el') = pe,
QM) = —(a) @8~ E)). (tw) € R x B,

Above R2, = {(z1,22) € R? : 23 > 0} denotes the two-dimensional half-plane and
V1 = (02,—01). The boundary condition reads

[€1]2=0 = 0.
We rewrite the system by redefining 7, := \/§g’1[7€, Pe = \/Gpe as

o9 'e€E) =V.iH—-T., V(99 €)= pe,
O (VIuH) = (01€ — D2&1),  (t,2) € R x RZ,.

Note that the components of J, and £ are respected by ¢g—!, which is diagonal.
Let ¢’ = \/Eg*% for brevity. &; is endowed with Dirichlet boundary conditions, we
endow H with Neumann boundary conditions, which is a first order compatibility
condition:

[05H] 0,0 = 0.

For £ we obtain from [91&1]4,—0 = 0 the following Robin boundary condition by
considering the traces of the charges:

D1(e11&1) + Da(eha8a) = pe = [(D2€2)Ea] + [£9202E2] = tr(pe).

With v < % in the two-dimensional case, we choose even reflection for £ such

that the Robin condition is not relevant. In coordinate-free notation, we find the
following compatibility conditions in the two-dimensional case:

(38) [5 A\ V]zeé)ﬂ =0,
(39) [0, H]zeo0 =0,
(40) [Otang0y (E.V)]zecan = 0.

Proposition 2.5. Let 0 <~ <3 and H?(QY) be defined by HY(Q) = H3(Q) and, if
v>3 5, we suppose that @ holds. Then, we have the following characterization:

e 0<y< i () =H (),

o L <y <3 HQ) = {(E, Ho) € H'(Q) . holds },

o 3 <y <3 HQ) ={(E, Ho) € H’Y(Q) and (B9) hold },
o 3 <y <3: 1Y) ={(&,Ho) € H'(Q) : . ({0) hold }.



MAXWELL EQUATIONS ON DOMAINS 13

The proof is omitted because it is essentially a special case of the proof of Propo-

sition 211

We extend the equations to the plane similar to the three-dimensional case: ¢, p,
and g¥ are reflected evenly; £, and p, are reflected oddly corresponding to Dirichlet
boundary conditions; £ and H are reflected evenly. [J; is reflected like &;. The
extended functions are denoted with a ~. We find the following equations on R?:

(41) { 0(EVGGIE) =ViH—TJe V- (V35 'EE) = pe,
8t(ﬂ\/§7'[) = —(8152 — 8251), (t,.’l?) € R x R2.

For the proof of Theorem [I.2] it suffices to prove the following:

Proposition 2.6. Let @ = (g,’}:[), and (£, f1,9) like in . Then the following
estimate holds:

Hﬂ”L”Lq < HQHL%’HW‘; + ||j6HL§HW+5 + ”/je”L%OHw—H%M

forp,q > 2, q < oo, satisfying the following
3 1 1 1
24 <z = S 0<do<—.
p a2 7 S q) p’ =053
We omit the proof of the following, which is analogous to Proposition
Proposition 2.7. Suppose that Proposition[2.3 holds true and the energy estimate
(42) l[ull Lge 20 () S 1[w(0) 207 (0)-

is valid for homogeneous solutions uw = (€, H) to . Then, Theoremfollows,

3. ENERGY ESTIMATES

This section is devoted to the proof of energy estimates, i.e., a priori estimates
for the Sobolev norm

(43) 1€ H) e s () S (€, H)(O)] s ()

for homogeneous solutions to Maxwell equations on domains with perfectly con-
ducting boundary conditions. For the existence of sufficiently smooth solutions,
which make the integration by parts argument licit, we again refer to Spitz’s pre-
vious works [23] 24], 22] relying on the energy method. We stress that the a priori
estimates in low regularity do not depend on the norms of the solution in high
regularity.

It turns out that the L?-norm of the solutions is approximately conserved and
also in the quasilinear case we obtain a suitable quantification for a Grgnwall argu-
ment. To estimate higher regularities, we differentiate the equation in time to see
that the time-derivatives still satisfy a Maxwell-like equation. By comparing time
and spatial derivatives via the equation, we see that the L2-estimate for the time
derivatives can be compared to a Sobolev regularity in space of the same order.
Although the strategy is always the same, the arguments are slightly different in
each instance, so we opt to give the proofs.
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3.1. The two-dimensional case. We begin with the two-dimensional case:

(44) 8t(€g) =V_.H, SIS COQ(Q;R>0), [V/\g]xeag =0,
W(pH) =—(Vx&)3, V(€)= pe.

€, w satisfy the uniform ellipticity condition . We prove the following;:

Proposition 3.1. Let (£,H) be H3-solutions to . Then, for s € [0,2], we find
to hold.

In the proof of Proposition [3:1] we need the following Helmholtz decomposi-
tion: As further preliminary, we prove the following Helmholtz decomposition on
two-dimensional domains for vector fields with certain boundary conditions. For
bounded domains this is [6, Proposition 6’, Chapter IX, §1]:

Lemma 3.2. Let Q C R? be a smooth domain with compact boundary. Let € €
H3(Q;R?) be a vectorfield, which satisfies the boundary conditions:

[El]lzcon = 0 and [0,€] |zco0 = 0.
Then we have the equivalence of norms:
(45) 1€l ) ~ IV X E)sllr2(0) + IV - EllL2(a) + [1€] 20
Proof. Note that the following estimate is immediate:
[(V x E)sllrz) + IV - EllLz) + €llL2@) S NI€l 1 ()

We turn to the reverse estimate. We resolve ) in geodesic coordinates g=' =

g1dx? + godx3 to the upper half-plane R2 with g1go = 1 such that (V x &)3 =
01E — 02&1 and V - € = 01(g1&1) + 02(g2€2). We compute for the rotation

1V x )32 = /RZ (01€2 — 0261)(01E2 — D2€4)

>0
/

and we find for the divergence

(6152)2d$ + / (6251)2 —2 62818152,

2 2 2
>0 R>0 R>0

IV €l = [, @r(0181) + Oa(0282)@r(1E1) + Da(gE2))

>0
I

For the third term we find

01(91€1)02(g2&2) = / 01E10:E5> + O(DE.E)
R,

(&@&W+/

2
R>0

(02(g2E2))* + 2/R2 01(91£1)02(g2E2).

2
>0

R%,
and

81518252 = 32818152

2 2
R>O R>D

by integration by parts. The tangential derivative J; causes no boundary term, and
the boundary term for the normal derivative d; vanishes because &1|z,—0 = 0.
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By ellipticity of the metric and an application of Young’s inequality, we find for
some ¢, C' > 0 (depending only on ellipticity of g and ||0g|| e ):

2
IV x E)3l1320y + IV - ElFagqy = € D 10:E51% = ClIEN3,

ij=1

which yields .

We are ready for the proof of the a priori estimates:

Proof of Proposition[3.1 Let
M(t) = / D.E+H.Bdx
with D = &€ and B = pH. We compué)e
O M(t) = 2/QVJ_H.(€ dr — 2 /Q H(01E2 — 0281) d.

By form invariance as argued in Section [2, we can suppose that @ = R2,, v = es.
An integration by parts, using the boundary condition for the normal derivative
0o, gives O, M(t) = 0.

The immediate consequence is an L2-a priori estimate:
(46) 1E,H) D)2 S (€, H)(O0)[|L2(0)-

For higher regularities, we consider time derivatives of . We denote 9,4 = A
and 97 A = A for A € {€,H}. Taking one time derivative of yields

{ 9(c€) =V, . V() = 0,
O (pH) = —(h& — 0:61), [VAElzeon = 0.
Hence, (5 , ’H) solves , and we have the a priori estimates:
||(<‘j77'.l)(t)\|1:2(9) N H(gvl;'k)(o)”Lz(Q)-
Note that (again from and ellipticity of € and p), we have
IEH) ()220 ~ IHE 10y + IED 1000 (52)-
To estimate the full Hl-norm, we observe that ||(€,H)(¢)||1> was estimated in the
previous step and for ||E(t)| g,,, we find from the condition on the charges
eV-E+ (Ve)€ = pe.
The charges are conserved for homogeneous solutions and by we find
€@ Harui2) S NE@D)[L2(0) + [lPe(B)][L2(2) S NEO)Iz2(0) + e (0) |2 (0)-
This yields
1€, H) ) 1@ S I(E 1)) 11 (0)-
Taking a second time derivative in , we find
(oeh vl e = o
Oh(pH) = —(01& — &), [VAElzean = 0.
We use L2-conservation to find

IEH)O)lz2 S 1EFH)(O)] L2
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Clearly, from iterating (44)), we have
1, H)(0)]| 2 S I(E, H)(0)] 2
Secondly, we find
IED |20 ~ IVLHE)| L2 with ViH = O(0p~")(01E3—0:61)+u (AE-V(V-E)).

This gives by the conservation of ||(£,H)(t)| 12, the previous a priori estimate for
the H'-norm and conservation of charges:

IAEDz2 S IVLHD L2 +lpe®) |+ H) Ol ms ~ IE@] L2+ (€, H)(O) ]+ 9 (0) a2
For two time derivatives of ‘H we find
pH = eTPAH + O(9e OH).
It follows from the conservation of ||(€,#))(t)||z> and the previously established a
priori estimate for the H'-norm:
IAH@®)] 22 S IHE 2 + HOmr S I(EH)(O)]] sz
O

3.2. The three-dimensional case. Next, we extend the arguments to the three-
dimensional case:

(47)

0;(e€) =V xH, (t,x)eRxQ; V-(e€) =pe; V-B=0;

Oy(pH) =-VxE&, [ExV]zean=0; [v-Blrean =0; &, u € CF(R0).
Moreover, we suppose that , holds for € and . Local existence of H3-solutions
was discussed in [23] [24]. We need the following Helmholtz decomposition. See
again [6, Proposition 6’, Chapter IX, §1] for bounded domains.

Lemma 3.3. Let Q C R? be a smooth domain with compact boundary. Let £ €
H3(;R3) be a vector field with € € Heypr () N Hai (). Suppose that either
the tangential components satisfy Dirichlet boundary conditions and the normal
component satisfies Neumann boundary conditions or vice versa. Then

(48) 1€l @) ~ € Heri (@) + 1€l Ha2) + 1€]lL2()-
Proof. By density considerations we can suppose that £ € C?(2;R?). Note that

clearly
1€l @) 2 NEN i) T 1€l o) + [€]IL2()-
For the reverse inequality, we shall prove that
1€, ., + 1€l E,, + ClENT20) = cll€lFn (o)

for some ¢,C > 0.
To this end, we use integration by parts for the curl-operator:

/(qu).vda::/u.(va)dx+/ u X vdS
Q Q 19]9)

provided that u,v € C*(Q;R3). This is based on V- (u x v) = (V x u).v —u.(V x v)
and the divergence theorem. Hence, we obtain

/(V x E).(V x E)dx = / E(V XV x&dx +/ (€ x (V x&)).vdS.
) Q 09
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The boundary term is of lower order, for which we have:

(49) Ex(Vx&EwdS= [ 0,62 —E&,(V-E&)dS.
o0 o0

We find geodesic coordinates

9,62 — / D5(€, g~ 1E)dS.
o0 ORZ

Since ¢! separates tangential and normal components and by the assumed bound-

ary conditions, we find that

/ 05(6, 971 €)dS = / (Eramgs (939~ Erang)dS.
R,

OR?
We estimate this by the Cauchy-Schwarz inequality, continuity of tr : Bi/lg(ﬂ) —
L?(09Q) (see [1, Theorem 7.4.3] and [I, Remark 7.4.5]), and that B;{f(ﬂ) is an
interpolation space between L?(Q2) and H*(Q) (|2, Theorem 6.4.5)):
|EsangllF2(a0) < ||5||?3;(12(Q) S €Lz 1€ (-
Finally, by applying Young’s inequality, we find

o 8,E2dS < e€ll7n () + Cell€lT2(0)-

This suffices.

It turns out that by the assumed boundary conditions the second boundary term
in is always vanishing:

£,(V - €)dS = 0.
o

This is clear if the normal component satisfies Dirichlet boundary conditions. If
this is not the case, we can rewrite in geodesic coordinates

[v . g]wE@Q = [vtanggtang]meé’() + [8353]z€6§2~

The normal derivative of the normal component vanishes by Neumann conditions.
The first expression vanishes since the derivatives are tangential, and we have
Dirichlet boundary conditions on the tangential components.

We turn to the integral

/ E(VXVxE)dr= —/ E.NEdx +/ EV(V - E)dx.
Q Q Q
By the similar argument as for the boundary term handled above, we find
/ EV(V - E)dr = — / (V- €)da = — €],
Q Q

It remains to prove up to lower order terms:

3
_/ ENE> Z/ \VE|2dx + O(EDE).
Q /e
The lower order terms are handled like above:

/ E.0Edx < e||&||3 + C-||€]3:.
RY
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For this reason, we can neglect this contribution.
We resolve in geodesic coordinates:

f/E.Ade: f/ (971, A E)dx.
Q R

3
>0

For the normal component we find

— 53Ag(€3 = — 5381-gij8j€3dx = 81'539ij8j53 Z C/ |V€3|2
R3 R3 R3 R3
>0 >0 >0 >0
by the vanishing boundary term for the normal derivative and ellipticity of g.
We integrate by parts the tangential components to find up to lower order terms

0(£0€):
/ g Etg 8 (A
R3, gE + 9728 ) T\ —AgE
= /3 9V EN + g (V&2 V&) + g1 V&1, V) + g% |V Eal*dx + O(EDE).
R>0

Here we use the notation (VE;, g 'VE;) = (V,&;, V,E)).
By positive definiteness of g7!, g'' and ¢g?? must be positive. Hence,

/3 9 V& + g2 (V2 V1) + 621 V&1, Vo) + 47|V ol *da + O(EDE)
R

>0

TaN (o, ) (198
> . dx + O(EIE).
= / (veet) (i 2 ) (928 e 0teoe

g

Since the matrix § is still positive definite, we conclude by ellipticity of g:

‘vggl‘ ~ |Vg51| 2 2
/}R3 < <v952 .g V&l >dx >c » IVg&il* + V&l da
>0 >0

> c’/ IVE? + |VE 2.
3
>0

The proof is complete. O
We can now prove a priori estimates in the time-independent case:

Proposition 3.4. For s € [0,2] we find the following estimate to hold for H?3-
solutions to :

(50) 1€ H) oo o) S II(E,H)(O0) |z 2)-

Proof. We follow the argument from the two-dimensional case and begin with L2-
estimates. Let M(t) = [, D.£ + H.Bdx. We have

M:2/<€.V><’;'-lal:1372/’;'-[.Vx(i'd:c:()

with the ultimate equality a consequence of the boundary conditions (after resolving
on R2 ). This yields [|(&,H) )|z ~ [[(E,H)(0)] 12, which is for s = 0.

To prove for s = 1, we consider one time derivative to find that (€,H) sat-
isfies ([47)). Consequently, ||(€,H)(t)|[r2 ~ [|(€,H)(0)| 22 which yields by that
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IV xENVXH)t)|p2 ~ [[(VXxE,V xH)O0)| L. By the Helmholtz decomposition,
the defect to H' is precisely ||[(V - &,V - H)(t)| 2.
Here we use the divergence conditions:
V-(€€)=(Ve)E+e(V-E) =pe, V-(uH)=(Vu)H+puV-H)=0.

Since p, is a conserved quantity, and we have already an a priori estimate for the
L?-norm, we have

IV-E@)llz> S NE@ 22 + llpe(B)ll L2 S NEO) L2 + [lpe(0)]| 2

For ||| m,,, we can argue likewise. We obtain

1E 1) D S (1€, H)O) |1

For the proof of with s = 2, we use that (c‘,'7 ’H) solves . We have

1 1 1
OPE(t) = -V % OH(t) = -V x (;v x &)

1 1
;Ag +O([[€][ 1) = =V(V - &),
u ep

and from the divergence condition, we find
V(V-E)t) = (Ve™)pe(t) + 7 Vpe(t) + O(IEW) | ar1).-

This implies the estimate by conservation of charge and previously established a
priori estimates

IED g2 SNFED L2 + NED 2 + IV(V - E)(#)] 2
S N@2E, 07H1)(0) 2 + 1€, H)(O) Lz + [1pe(0) |-

Similarly,
PPH(t) = — 2V x 9,6(t) = -V x (LV x #)
I I £
_ iAH - iwv H) + O([H ).
so that
IO 2 S NOFH )22 + IHE) 12
Similarly,

10FHE) 122 < IH O = + 1H @) -
The proof of is complete for s = 2. For non-integer s, we prove the claim by
interpolation. O

4. PRELIMINARIES

In this section we collect facts on pseudo-differential operators, which we rely on
in the remainder of the paper. We denote derivatives by

0% = 051022 .92 and D = 9¢ /(i1 for o € Ny

xr ] T2

Recall the Hormander class of symbols:

;Té = {a, € COO(Rm % R™ - ‘858?@(%5” Sa,ﬁ <€>m—|5|p+\a|5}
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with m € R, 0 < ¢ < p < 1. The LP-boundedness of symbols a € S7 5,0 < < p <
1, is well-known. We use the following quantization:

a@ D)f = 2m) " [ EalwOf©d (e SRM)
We recall the composition of pseudo-differential operators.
Proposition 4.1 (|25, Prop. 0.3C]). Given P(x,§) € S::fdl, Q(x,€) € Sg;isg,
suppose that

0 <83 < p <1 with p=min(py, p2).
Then, (P o Q)(z,D) € OP.S'Z‘(;‘*""2 with 6 = max(d1,02), and P(z,D) o Q(x, D)

satisfies the asymptotic expansion
1 [} (03
(PoQ)(w, D)= Y ~ (D¢ POIQ)(x, D) + R

where R : 8" — C is a smoothing operator.
The following lemma will be useful:

Lemma 4.2 ([I7, Lemma 2.3]). Let1 < p,q < 00, s >0, and a € C3C°(R™ xR™)
with a(x,&) =0 for € ¢ B(0,2). Suppose that

sup g | D¢ a(z, )||L§ <C.
.,L-GR’"L
0<|a|<m+1

Then the following estimate holds:
la(@, D) fllrra < Ol fllLora-

5. DIAGONALIZING REFLECTED MAXWELL EQUATIONS

5.1. Lipschitz coefficients. The purpose of this section is to reduce the proof
of Proposition to Strichartz estimates for half-wave equations with metric %.

Here e, p,g% € C"X’(R%O) are extended evenly to the full space, introducing a
Lipschitz-singularity of co-dimension 1. The following is due to Blair-Smith—Sogge
[3]:

Theorem 5.1. Let d > 2 and (¢")1<i j<a C COO(R‘éO) be uniformly elliptic. Let
u:[0,1] x R — C. Then the following estimate holds:
lull e o re @y S llwllpse mvrsy + 1(i0: + Dg)ull L1 g

with G denoting the even extension of ¢* and

g 1
Dy = Op(g7&¢&;))*?
provided that 2 < p,q < oo and 7y satisfy
3 2 1 1 1
-+-<1, g<oo, 7:3(7—7)—7.
P oq 2 q¢ p

The reduction to the above proceeds via diagonalization with pseudo-differential
operators. However, the symbols are very rough, so extra care is required.
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5.1.1. Littlewood-Paley decomposition and frequency truncation. We begin with a
paradifferential decomposition. Recall that

p_ (\/gglsat —Vx >
B Vx V99~ o)

In the following we denote u = (£,H) : Rx R3 — R3 x R3 and omit the tilde for the
reflected quantities to lighten the notation. Let (S))ycono denote a family of inho-
mogeneous Littlewood-Paley projections for space-time frequencies and (S4) g2,
(S7)xe2vo Projections for spatial or temporal frequencies, respectively. We define

r_ -1 ’r_ -1 _ <€/<)\8t -V
€ =V99 e W =Vg9 1 7’<A—<v>< )
through spatial frequency truncation: k. = ZMS/\/lﬁ Sk for k€ {',p'}.

For the proof of Proposition it suffices to prove the following estimate for
frequency localized functions for 280 5 X\ > 1: We can suppose that A > 1 because
low frequencies are easily estimated by Bernstein’s inequality. Let 0 < § < 3.

(51) ISgirimieryellzrne S 1600 2ull g 2 + [0 Pull 2,
_1 _1

(52) I1Srisienulirre S 100072 ull gz + (072 Pullz_,
_1 _1

(53) I1Sqiri<ienulizrre S (D)2 ull 2+ 11(85) 7~ ull 2

1

KDY HPuly + el o rego
In the following we implicitly consider u compactly supported in [0, 7]. This is
strictly speaking not conserved by Sy, but for A > 1 up to Schwartz tails, which
are neglected in the following. Sy|-|~j¢/|} denotes a space-time frequency projec-
tion to temporal frequencies comparable to spatial frequencies, S| |/} @ space-
time frequency projection to temporal frequencies {|7| = 1} and spatial frequencies
{I¢'] < |7]}. Correspondingly, S{je/s|-3 denotes a projection for spatial frequen-
cies dominating temporal frequencies. Estimates and crucially rely on
ellipticity of components of P after diagonalization. Since we can achieve estimates
with regularity v — % < 1, the commutator estimates for Lipschitz functions are
applicable. We give the proof of (52)) shortly using the ellipticity away from the
characteristic surface. The proof is more involved and requires the use of
the Strichartz estimates due to Blair-Smith-Sogge. However, if {|7] ~ |¢'| ~ 1},
we can trade temporal for spatial frequencies.

Lemma 5.2. Let 2Y 5 A > 1, 2 < p,q < 0o, and 6 > 0. The estimate

(54) 1S3S5ullzere S AT(ISXSAull o r2 + [P<xSXSiullzz )
implies
(55) IS 1rmferimnytillLone S 1100 ull oo r2 + [(0e)"Pullrz -

Proof. Littlewood-Paley decomposition and Minkowski’s inequality give for 2 <
P, g <00

1
lullzozs S (D ISaullzors)®

A>1
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which we can further decompose almost orthogonally into spatial and temporal
frequencies. Summation of [[(0) u| p=r2 is clear. Note that the lack of almost
orthogonality in L$° L2 leads to the d-loss in derivatives. Now we write

P<,\SS\U = SS\P<,\'U + [7)<)\, SS\}’U

and note that
[SX[P<xs SO ull 2 | < 1SX(0) Tull 2

because ||[k<x, S3]lz2r2 S A™! by a kernel estimate for x € {¢’, i’}
We write

S1SAP<rv = STS Pv — S1S4Psav — S{SAPurv.
Clearly,
1S5S4 Pnvlzz . S IS50ls.
and similarly, by a fixed-time estimate,
15595 (55 560055 \0) 22, S Allezalle 1530l S 0l 1530l ,
which estimates the second term. We remain with S7S4P(0;)”u and conclude
ISXP<xSX (0 ullz S ISTSAP(O) ullpz , + 1SX(00) ull Lz -

This is the commutator argument for the Maxwell operator. After summing the
Littlewood-Paley blocks, we obtain . O

Similarly, for it suffices to prove a frequency localized estimate.
Lemma 5.3. Let \,v € 2%, A < v. Let 2 < p,q < co. The estimate

(56) 1S, SFullora S v~ 21S,S5P<vullz, + 175 (b g1z + ol Lo 22)
with
Py = SLE Pl = 1o SUH
implies
(57)
I1Sgri<ciernullzoze S DNV ull e+ 10007 ull gz + (D)2 Pul|z
+ ||Pe||L?OHw—1+%+6 + ||Pm||Lthv—1+%+5
for d > 0.

Proof. We have to carry out the summation

_1 _ 1
> VISP S ull AT (kg nz + ol r2)-
v>1,

15w
For the Maxwell operator, we use that v — % < 1. First, we note that
SiP<vS,u =S, SiP,S,u.

Above and in the following 5’1’, denotes a mildly enlarged spatial frequency projector.
By P =Pcx+ Pur+ Psy and S, Ps.,, S, =0, we can write

||S§P<VSLU||L3$ < |‘S§§L7)SLU||L§Z + ||S§'§LP~VSLU||L§I~
The latter term is clearly estimated by

1S58, PasSiull e S 1SLullsz -
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For the first term, we write
(58)
VIR ||STS, PSLull s S v TENISTSLIE, Shlullps 4+ v T ENISTS, I, S Jull s
+ (D)2 858, Pull 2 |
Furthermore,

(59)
1S55,1e" Sulullyz . = 15590, S,180ull e +IS5SLIE", S8 ull e +ISTSLIE SIS ull -

The estimate of the first term in is straight-forward by the fixed-time commu-

tator estimate [|[e", S} ]||p2 2 S p '

ST v TENISISE SISl £ S0 T ENTYSull e S D) TE e
v>1, v>1, . :
1<Aakr 1<Akv

For the second term in we note that
o v ERAISESLE, SISl S D v EAEL, ST Sk ullrs

U1, v>1,

1< 1SAkr
s > l/’y_%)\HaEHLO"HS;\—uHLiz

v>1,

1SAKy

_1
S N10ellee 1006~ ull 2 -
For the third term in we obtain similarly
_1 e 1 .
Z vy 2/\||S)\Sl//[€/aSI//]S/>>VU’||L§$ /S Z vy 2A||S)\€/>>VS/>>V’U’HL3$

v>1, v>1,
15Ky 15w

< 19l e 100 H+ull s .
Clearly, the second commutator in can be handled likewise.

We turn to the charges: Recall that p, = V - (¢/€) with & = \/gjg’le. Since we
are working in geodesic normal coordinates, we have

5/11 5’12 0
e =|¢eh e O
0 0 &by
To carry out the commutator argument, we separate
Pl = 01(c'L, 8,61 +€2,8,6) + 0a('2, )61 + €%, 8,6) + 03(e'2,, S, E5)
= (012 )G & + (016" 2) S Ex + (026"2)SLEL + (82622 S Ex + (036" )E3
&'l 01SLE + 12015 8y + &2 0551 + 70,560 + €2 055 E

D+ D,

)

We can estimate terms with derivative acting on €’ collected in o/,

Lipschitz continuity. For example,

— 1 _1_
v’ 1+p||31€I<VS;51||Lf°Li, Sy 6||5L5||L§OL§E,~

directly by
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(2)

The terms with derivative acting on & collected in p’;, are amenable to a commu-

tator argument. Note that
TS|y SLE e = 1T IS0 SLE |
: Qr 111 or _ :
Since 5,55, = 0, we can write

— 1.~ _ 1, =~
VFY 1+p||SL5/<1,11815{,51”L2 <U'Y 143 ||Sl /11815L51||L§+V’y 1+P||S{/8111815;51||L§.

l/'\/l/

The first expression is estimaetd by

e 1+ HS/ lllaISIgIHLQ < ||8E/11|| o 1+7||S/51||L2

VNV

which is more than enough. For v — 1 + % > (0, we obtain by the Coifman—Meyer
estimate for the second term:

Z” ’Y 1+”Sl lllals/gl ‘LQ < Z 75H ’Y 142 +5S/[ /111 Sl}alglnll2
v>1 v>1
+ D)8 12)
_ 1 _ 1
SIDYTHR L + (D) TR M08 | 2

Let
pé(Q) = 5/118151 + 5/128152 + 5/218251 + 5/226252 + 6/336353.

We obtain by the previous arguments:

1 —1+1446 —14+14s
ST ol re S D) T E ez + (D) T | e gz
v
The first term is acceptable. We estimate the second term by oddness of the function

p/e(Q) switching to the half-space:

— 1
(D)5 0| ez gy S (D) 0| e 1 g

1 ;) —1+145
S D) Tt Pellpgerz sy + (D YT EllLpora(ry)-
For the ultimate estimate we used smoothness of the coefficients and invariance of
Sobolev functions under multiplication with smooth functions. We remark that the

estimate is easier for v — 1 + % < 0 because it is not necessary to switch between

half-space and full space. The estimate for p,, follows along the above lines. After
summation of the Littlewood-Paley blocks, we obtain . (Il

We turn to the proof of (52)), which does not make use of the diagonalization of
P.

Proof of . Let 1 < p < A and
~S 8t 5/_1v><
P= (—u’_1V>< 6t ’

If {\ ~ |7| > |¢/| ~ pu}, the operator P, (obtained from frequency truncation
of ¢/~! and p/~1) is elliptic and gains one derivative. We estimate by Bernstein’s
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inequality and ellipticity of P u (note that P u has Lipschitz coefficients):

1S5S ullree S A G 8) sT sl

~

[N

_1 1_ 1
58 P85Sl s
TE 3 |SUDY RS, Pyl e -

Above and in the following S’L denotes a mildly enlarged frequency projection

around frequencies of size u. Now we write again P = 75<# + Py + P>y and
note that

15 5 _1 _1
ISX(D") ™28, PrpSpull ez, S 172 1Spullzz, S I1STD) ™2 Shullzz -

Like above, S’ 77>>#S = 0 by impossible frequency interaction. Summation over p
and A\ gives the acceptable contribution

1
< @) F 0l
For P we use the estimate
1R Sz, e, S ™
We have
WSS SV x Al
S TE|STSLR, SL1SL, Y x All s+ w072 (|S5SL [, S5,V < Al s
_1 _1 &
<0 HIST Al + 00 ST, (K S,V X A2 .
The first term is already acceptable. The second term is rewritten as
S, (H>>HS,>>/L85 ) Sl a(H>>uS/>>uS>\A) - S//J(a’{/»usl»us;\rA)'
For the first term we find
150.0(r% 5% W SA A 2z, S pllsss ulles 155,98 Allzz |, S 10 e 15X Allzz -
This yields an acceptable contribution after summation over 1 < A and A. Clearly,
155, (085,85, S5 Allz , < 10K [[ L= (1S Allzz -

This is likewise acceptable.
We summarize

_1 _1
(60) I1S{ris ez ullizrre S 10072 ull gz + 11072 Pul| 2 .

This completes the proof.
O

With the estimates for different regions in phase space at hand, we can finish
the proof of Proposition

Conclusion of the Proof of Proposition[2.2 Taking (51} . together, we find
lullzrre S (D) ullperz + 1600 ull Lo 2
+ (0 Pullz , + (D) Pul| 2
+ [lpell

il
Loog? Mt
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By applying the estimate to homogeneous solutions, we obtain

lullrre S D) ullpgerz + 14007 ull 2, + 1ell oo vt 34

For homogeneous solutions, we can trade the time derivatives for spatial derivatives
and by the energy estimates of Section [3] we obtain

< NnNy+9
lellrza S D u(O)lzz +lleel oo pyrmrsgvs:

The conclusion follows from Duhamel’s formula. O

The proofs of and make use of the diagonalization of P via pseudo-

differential operators. This is carried out in the following. Let h = (det(gij))l/2
and denote C(&');; = —&;;1€),. The principal symbol (with rough coefficients) is
given by
(&ohg~e  —C(&) >
z,8) =1 Z .
ple:¢) ( C(&)  hg'uo

We consider as truncated operator Py the following: Let g=! = AA* denote the
factorization into Jacobians (which we also extend such that these are Lipschitz
along the boundary). Let Ay denote the truncation of spatial frequencies of A to
frequencies less than \/8. Let h.y = det(A<)). We define

PA _ <h<)\A<,\At<>\E<,\at —VX )
Vx haxAoxALpcx0:)”

Observe that ||(P — Px)Sxullrz < ||Saul| 2. Note that in p), we can truncate h, A,
A!, and ¢ in frequencies because we can write the difference as a telescoping sum

||S)\(v . (hAAté“E)) — S)\v . (h<)\A<)\At<)\€<)\5)HL2
=[|S\V - (h>,\AAt€5 + hAs A€ + .. Izz-
For instance,
ISAV - (hoa AA€E) |12 S Mllhsallzoe | Allzoe [|A |z [lel 2o [1E]] 2

After these reductions, we are dealing with symbols in Sll,l, which is a borderline
case for symbol composition. But the considered symbols a € S} ; actually satisfy

(61) |0za] S 1

because the reflected Jacobians and coefficients are Lipschitz. This suffices for
symbol composition to hold to first order. Accordingly, we make the following
definition:

Definition 5.4. Let k € Ny. We define the symbol class
St1={a € ORI xRY) : 1070 a(x,)| S ()F1PHIel=D+y,
We have the following:

Lemma 5.5. Letm,n € R, a € gffl, be Sf‘,l. Then, we find the following estimate
to hold:
a(x, D) ob(xz, D) = (ab)(xz,D) + FE
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5.1.2. Diagonalizing the principal symbol. In the following we carry out the formal
computation to find suitable conjugation matrices for the operator Py. The aim is
to prove the following proposition:

Proposition 5.6. Let 2N 5 X\ > \q. There is a decomposition of phase space by
projections
S48y = Sa1 + Sxa + Sas

such that for every i € {1,2,3} there are M} € OPS‘?J, Ni € OPSY?J, and
Di € OPS'll,1 such that

PrSri = Mé\ Z\Nf\s,\z + Ei\
with || B} |l2—2 < 1 with implicit constant independent of \.

Before we turn to the technical details, we carry out a formal diagonalization of

_ - (harAaALenbo —-C(¢) )
PW,E)Z( 0(5) haxAaALpaxéo)

The symbol is in 5’111 We diagonalize the principal symbol as follows:
p(x, §m(x, &) = m(z, )d(z, En(z, &) (z, &)

with m,n € S?,l and d € gil, and 7 € 5?71 denoting a projection to a region in
phase space to be determined. In the first step, we write

(h<AA</\At<>\5<>\§0 -C(¢) )
c(g) haxAcxAL \penéo

_ (A<)\ 0 ) ( h<)\€<)\£0 _A<§\C(£/)(At<)\)l) (At<A 0 >
0 Axx) \AZJC(E)(AL) ™! haap<xéo 0 AL, )"

We recall the following:

Lemma 5.7. Let B € C3*3. The following identity holds:

(62) B'C(¢)B =C(adB - ¢).

In the above display adB denotes the adjugate matriz, i.e.,
adA = ((—1)"7 A;i)i,

with Aj; denoting the (j,1)-minor of A.

This yields by the definition of the adjugate matrix, h-), and using Cramer’s
rule

AZO(ENAL) ™! = Clharn ALE).
We write

( hoxe<xéo A;§C(§')(A;A)1>
AT C(EN)(AL) hexpaxéo

_ < e<aéo —C(Ai,\gl)) <h</\ 0 >
O(Aixgl) p<&o 0 hax

_ ALLE 1
= (5 A 2 ) Afto ¢ C((6<AN<A) ) (EiA 9 ) (h<>\ 0 )
i) \C(Z2557) g NIV

1
(e<apan)?

O AN
[N
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Hence, we have reduced to diagonalizing

(63) 2= (o) ‘iﬁé’)) |

This reflects invariance of pseudo-differential operators under change of coordi-
nates. Since the symbols are very rough, we prefer to carry out the computation
directly.

In [I5 [16] the symbol was diagonalized in the more difficult case of partially
anisotropic €, i.e., € having possibly two different eigenvalues. In this case, the
resulting expressions are fairly complicated. We take the opportunity to point
out a simplification for isotropic e and u. Write & = (&1,&2,&3). We begin with
computing the characteristic polynomial of p/i using the block matrix structure:

y—& C§)
-C) y—¢&
Hence, we have reduced to computing the eigenvalues of C%(¢’). Note that
E+& —&&  —&&s

C*’E) = | -&a& G+ L& | =1EPa -tk
—&1& =& E48

q(y) =

= |(y — &)*13x3 + C*(&)].

It follows that
r(A€) = det(Alaxz — C*(€)) = (A = [I€]1*)*\.
This gives for the characteristic polynomial ¢
g(n) = (A = &)*[(A = (& = IE'1D)* (A = (o + 1€'1)%]-

We conclude that the diagonalization is given by

(64) d($7£) = i(£03607€0 - ||€lHa€0 + ||£/||7§0 - Hé-/||7§0 + ||§/||)
In the following let & = H%H for ¢+ = 1,2, 3. Eigenvectors of &y are clearly given by
& 0
13 0
1 0
0~ &
0 &
0 &3

Eigenvectors of &, — [|¢'||: We use the block matrix structure of p(z,§). Let
v = (v1,v2)" denote an eigenvector. We find the system of equations:

(-6 G60) () -0

Iterating the above in the non-trivial case & = 0 yields the eigenvector equation for
vy

I€'l[*v1 + C*(€")vr = 0.
For this we find the zero-homogeneous eigenvectors:

0 &3 =&
(65) INE 0 I, 31
3 =& 0
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The system of equations from above yields

c(e)
Vo = V1.
1€/]l
This gives for vy:
52+ ¢35 GG —£163
_gikg; ) ik + 5; ) _2555;; 9
—§1&3 —£383 17+&

Eigenvectors of & + [|']|: Again, we use the block matrix structure of p(x,¢),
and let v = (v1,v2)" denote an eigenvector. This yields the system of equations:

(& Se) () =0

C*(&)v1 + [1€']Pv1 =0,

We find again for vy

and for vy
C(€)un
€71l

Conjugation matrices: We choose conjugation matrices depending on a non-
vanishing direction of . In the following suppose that |£5| = 1. One choice of
conjugation matrices according to is given by choosing the first eigenvector in

(63):

Vg = —

(66)
§ 00 0 & g
2 T
3 2 2 sl —S1
MO0 g gt —@trgh) g ge
0 & —§& g6 (@8 @+
0§ -qg a8 88 88

We have the following:
Lemma 5.8. Let mg be given as in . Then,
(67) det mg(x, &) = £5°.

Proof. By elementary column operations, that is adding and subtracting the third
and fourth and fifth and sixth eigenvector, we compute the determinant to be

g o 00 g 0
& 0 - 0 0 0
G 0 g 0 g 0
det ms = . " « .ok
0G0 gtegt 0 g6
0.& 0 —gg 0 (& +g"
0§ 0 g 0 &8
0 gllgtret &0 g
=6 & 0| -gg g - +a))
306 bl e 8 gy
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The ultimate line follows from permuting the columns and using block matrix
structure. Then, it is straight-forward

& 0 & , , ,
& -G 0| =G+87G+8676=6.
& & -4
Again by &% 4+ &2 + €2 = 1, we find
2 +8° & 313 1-¢2 & 313
—68 0 & (PN =48 & P+ 8Y)
—£183 & 313 —§1& & 313
1 & & & & 313
=0 & —E*+8Y)|-&16 & —E@+8?
0 & §&3 & & 1313
=&
This finishes the proof. (I

Likewise, we define m; and mg by choosing the non-trivial eigenvectors for |£]] 2
1, which leads us to conjugation matrices with determinant

det m;(z,§) = &2,

X2

By elementary column operations, that is adding and subtracting the third and
fourth and fifth and sixth eigenvector, the determinant is computed to be

det ms(z, ) = €57

We shall see that for |£5] 2 1, we can choose the eigenvectors as an orthonormalbasis
through linear combinations of the above. Let

0 3
—& 0
& —&1
w s w3 = * ok
1 52 + €§2 3 _25152 ,
SIS 1 +&
SIS 383

We have |Jwy|? = 2( §2+£§2), |ws]|? = 2(¢32 +§§2), and normalize w] = w; /||w;]|.
We compute

/ A _gikgék(l + (5;)2)
(wf, ws) 2 52 +5:9:2)%( T2+£§2)%‘

: O / / / /.
Now we consider wg = w} — (W}, ws)wi:

& 0
0 —&3
By = L 6| (b &
V2(E + &57) 5*—23%*2 V2T + &) | & s
1 3 152

13 —£1&3
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Clearly, ||wsll2 2 1 for |£5| 2 1. Hence, by renormalizing (and not changing nota-
tions for sake of brevity), we find

- w3
w3 ' = ——=——-
@32
Similarly, consider
0 &3
—&3 0
3 —&1
w = ) w. = * ¢k
N AR ! §&
£ -7 +&57)
§183 —£183
We compute
*2 %2 *2 *2
lwall3 = 2(65° +€57),  llwall3 =2(&° + &),

which allows for renormalization w, = w;/||w;||2. Now we consider w4 = wj —
(wh, wh)wh, which yields after an additional renormalization eigenvectors of &y +
l€’]]. We conclude that the matrix

ﬁ%g(x,f):(ul (5] 11)1 ’152 ’LZ)g U~)4)

consists of orthonormal eigenvectors to d as in for |€5| 2 1. We summarize the
accomplished diagonalization:

p(l’7§> = (ASA Ai)\) (8(%)\ ‘ugk> mz($7£0,g/)d(l‘7fo7g/)

1

5 t /
-t oy (€2n 0 ) (AL, 0O om o ALE
sz(x)€07£)< N 1 > < 0 AL, with ¢ = .

1 T
12y (e<abicr)?
in the phase space region |£4| > 1. Note that there is always 7 € {1,2,3} such that
€ 2 1.
We define phase-space projection operators by the function
7T3(.’II,§) = X(A_lf)X(A_l(AZ/\EI)?))?

with x, x € C2° suitable bump functions. The corresponding projections are de-
noted by SxSy3. We let

N3z, €) = ik, €0, €') (65@ % )(‘428(”3) Agi)(x))><<A‘1£’>>~<<A-1<A2A§'>3>,

0 pZy(2)
and
D3(x,€) = d(z, £, )x(A )R (ALLE)s),
and
_ (Ax(2) 0 i(z) 0 = —LenNo(y—17 At ¢
M3<x,e>—( 5 Adm) (’5; Mg)mz(x,ox(x €)X (ALLE)s).

The corresponding operators are defined by

M?))\(an) = Op(M3($7§))’ Di(an) = Op(Dg({E,E)), N):\))(va) = Op(NS(:L',f))
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By symbol composition, we can harmlessly insert frequency projectors after every
factor. This makes the single factors bounded with symbols in S ,, i € {0,1}. By
Lemma [£.2] the claim follows, and the proof of Proposition [5.6] is complete. O

5.1.3. Conclusion of frequency localized estimate. We have shown in Subsection
that after appropriate localization in phase space, the Maxwell system can
be diagonalized to two degenerate and four non-degenerate half-wave equations.
The degenerate equations correspond to stationary solutions, possibly induced by
charges. We use this to finish the proof of Proposition 2.2 by showing the following
estimates:

(68) 1S5 Shullore S N (IS3Shullng=r2 + [ P<aS3Shullzz ),
(69) 1S, S5ullrra S V72 |1S,SE Pz,

_ 1
+ (Hp;VHLfOLfE + Hp{muHLt‘x’Li)'

To use the diagonalization, we need the following:

Lemma 5.9. Fori€ {1,2,3} and A > 1, we find the following estimates to hold:
ISxiullpora S INESxiullLora + X% Syl 2,
[1Sxiullzrre S [IM3Sxiul L2

Proof. For the proof of the first estimate, we observe for the composed symbols of

M and Ni:

A : ; 17 3
(% 2 ( . )mi“‘““m“”’&’“

1
<A2

N CN (A;A 0 >:<5<AA<AA’5<A 0 >
0 uz,)\ 0 AL 0 pAANAL

Hence, we find

MANES,, =
ATEAPA ( 0 prax A Al

> SM’ + Rl(va)

with ||R;(x, D)|| 22 < A71. This allows us to estimate

3 ,\A<>\At 0
S JUllLrLa < < <A S JUllLrLa
ISl < (A0 ) Sl

S ||M§\N>Z;SMU||LPLq + ||Ri(x,D)SMu||Lqu
; _1
S INASaiul| rne + A7 2| Sxiul| L2

by Minkowski’s inequality and Sobolev embedding.
For the proof of the second estimate, we argue similarly

[Sxiullzz , S 11+ Ri)Sxiullrz |, = ||N§Mf\SAiu||L3w S ”M&SMUHLf,w-

The proof is complete. O

We can finally show and :
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Proof of (68). We split STSiu = 37, S{Sxiu with SSy;u being amenable to the
diagonalization of P provided by M} and N}. We write

HS;\-S)(L'UHLPLQ < ||S% f\J\/,('S,\iuHLqu + ||S;R($7D/)Sf\uHLqu.
Since R(z, D’) is smoothing of order —1, we can use Sobolev embedding to find
1S5 R, D) Shulloee S AFEA0 D st
SATEID) Shullzz
which is acceptable. By Lemma [5.9] we have
ISTMANISxiullors S [ISTNXShiul Lo o

We estimate the components ||[STNiSx;ul;| Lrrs separately. The degenerate com-
ponents [D,];;, j = 1,2, are elliptic. This yields by Sobolev embedding the esti-
mate:

INVASTShulllzpes € AP NRSTShuliles
<A ITDANKSE Sl 2
SNSIDANSSxiull 2 -
Another application of Lemma [5.9) and Proposition [5.6] yields
N[ISTDANRS it 2 | S AT[[STMEDANZ Sl 2
< XS5 Pxullz +NIISullzs
The non-degenerate components j = 3,...,6 are estimated by [3} Eq. (2.1)]:
ISINASxiullLrre S N (ISTNAS it gz + [|S{PAN A Sxiul 2 )-
By another application of Lemma and Proposition we find
ISINASxiullrre S N (1S3S5ullpgerz + 1STPAS ull L2 )-

We passed from S); to S} above by first order symbol composition. This finishes
the proof. O

Proof of (69). If {|7| < |¢/|} and {|¢/| Z 1}, we see that after diagonalization, the
operator P is elliptic up to the charges. Let A ~ |7| < |¢| ~ v. We make an
additional localization in phase space: S,u =), Sy;u.

||S;\—SV7;U||LPLQ S ||SZ\—M,7;N;SV1U||LPL<I + ||S;:R(.T, D/)SW‘UHLPLq
with R(z, D') being smoothing of order —1, we can use Sobolev embedding to find
ISTRG, D) Siullore S A3 5m0) Y STSTull 2 < (DY SLullse
By Lemma [5.9] o 4
||S;\’M§,N£Syiu||L1’Lq 5 HS’;leS,,iuHLqu.
For [N;S,;u]; and j = 1,2 we can use Sobolev embedding and definition of charges.

For this purpose, recall the symbol of Ni. With ¢ = AL &', we find for v € CP,
v = (v1,v9)t, with v; € C3:

) (2, 0\ /AL, o o
[mf(xafo,fl) <€<V i > ( SV At ) 'U]l = ;(57)14<1/At<z/l/1.
0 py <v nZ 1€l
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Moreover,

) (2, 0\ /AL, 0 €t

[ (2, &0, &) ( = 1 ) ( 5 At >U]2 = ;(7)A<yAt<uvz-

0 na <V e, 1€l
Consequently, we can write
- 1 1
[N;SV’U/]l = 1 V- (h<y5<VA<VAt<V5) + R1 (1'7 D)g
heve<utZ, Var|

with |Ry| 22 < v~ 1. Therefore, the estimate for the first component follows
from Sobolev embedding:

i 141
||[N;SDiu]l||Lqu < V’Y 1+p (HS';//peHLOCL2 + ||SLU||L°°L2)~

Similarly,
. 1 1
N Syiulp =
[ v U]Q 1 1 ‘Vm/ |

I I V. (h<uU<VA<VAt<uH) + Ro(z, D)H
Eiuh<lllu’iu

with ||Ra|lz2—z2 S v~ We find by definition of Py, and another Sobolev embed-
ding yields

: 1
[N SvivlallLere S V77 2||Suul 2.

~

For the components i = 3,...,6 [D,];; is elliptic:

ISTN Ll pope S w2 B8 M =501 STDE S 12

v=r
Consequently, we obtain

1_1)_1_1 Ayiot
IS5 Slone 1) 374 ()52 DN Shad s

By another application of Lemma [5.9| and Proposition we conclude the proof.
O

6. DIAGONALIZING REFLECTED MAXWELL EQUATIONS IN TWO DIMENSIONS

This section is devoted to the proof of Strichartz estimates in the two-dimensional
case. We want to reduce to previously established results for half-wave equa-
tions either with structured Lipschitz coefficients or with metrical tensor satisfying
[0zell L2 L < 1. For the diagonalization we can rely on results from [17, [16]. In-
terestingly, in the two-dimensional case, there are no symmetry assumptions on
the permittivity (the permeability is scalar anyway) required for a diagonalization
with LP-bounded multipliers to hold. Thus, we simply redenote the permittivity
and permeability decorated with the cometric and /g by € and p to arrive at the
Maxwell operator:

8t(511-) 0 *82
P = 0 615(522') 81
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The principal symbol of P with rough coefficients is given by

Eoet! 0 =&
p(x,&)=i| 0 &2 &

=& & Sop
o 0 —&/p\ [ 0 0
=1 0 o &i/w 0 &2 0
—&oenn &ie2a & 0 0 u

On the level of the equation, the above factorization corresponds to rewriting the
equation in terms of (D, B) instead of (£,H). It turns out that this facilitates to
find conjugation matrices. For the proof of Proposition [2.6] it suffices to show the
following estimate for frequency localized functions for 1 < A\ € 2No:

Proposition 6.1. The following dyadic estimate holds:
(70)
g1
”SS\S)\UHL’%L‘Z(]W) S /\V(HS/\SS\U”L%OLg + HP/\S/\Sf\UHL?T’z) AT ||P,e/\||L39L3

with ply, =V - (e<x54E).

handles the contribution of the phase space region {|7| < |¢'|}. The com-
mutator arguments to remove the frequency localization are easier than in three
dimensions because v < 1 and thus, omitted. The estimate for {|7] > |¢’|} follows
from ellipticity of P in this region in phase space and is carried out like in three
dimensions.

6.1. Diagonalizing the principal symbol. We use the diagonalization estab-
lished in [I7] (see also [16, Lemma 2.2]) to show the following:

Proposition 6.2. Let 2¥ 3 A > X\g. There are operators My € OPS’?J, N, €
OPS’?J, and Dy € OPSll)l such that

'P,\S)\Sf\ = M\DNy + E)

with || Ex||r2—r2 S 1 and implicit constant independent of X. The principal symbols
are given by

e20l] —&/n &/u
m(ma f) = €11£>2k gik//‘l‘ _gi(//u’ )

0 -1 -1
pIE TG 0\ e 00
n(x,£)= —£3e11 §ieaz _% 0 22 ,
§en —&iee 1 0 0 pu
2 2 2

d(x,§) = idiag(&o, So — [I€lle> So + [1€]]<)

with ||€]|2, = (&, p~ det(e)71eg), € = &/||€||. All coefficients in the above defini-
tions are frequency truncated at .

The diagonalization is substantially easier than in three dimensions because it
does not require an additional localization in phase space.
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6.2. Conclusion of the proof. To finish the proof of Theorem [I.2]like in Section
we have to check that the contribution of the charges is ameliorated like before:

Proposition 6.3. With the notations from Proposition[6.3, the following estimate
holds:

— 1
(71) [INaSxullprrs S AT(INaSxullzz, + IDANASxullzz ) + X 7 [lpeallnge -

Proof. Again we show componentwise. For the first component we have to use
the divergence condition: We have

I 22
[’ﬂ(fz,g)]ll — /fﬁE”E,7 [n(l’,g)]l? - ,lf2|§|€/’
[n(z,&)]13 = 0.

This gives

1
[N,\S)\u]l = M[V . (ES)\’LL)] + R1(1'7D)5

with ||Rql2—2 < A71. This yields the estimate for the first component by Sobolev
embedding:

INAS Ul oo S X5 ([[Sapellpors + [Shull o r2)-
The non-degenerate components are estimated by Theorem [5.1}
INASAulillzora S A (ISaull Lo 2 + [ DAINASAuli|2)-
The proof is complete. O

We record the corresponding result of Lemma to complete the proof of The-
orem

Lemma 6.4. For A > 1, we find the following estimates to hold:
_1
[Sxullrrs < INaSxullpprs + X772 [[Saullz

ISxulliz . S IMaSaullps -
The lemma is proved like in the previous section.
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