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Abstract

As welding processes become faster and components consist of many more
welds compared to previous applications, there is a need for fast but still pre-
cise quality inspection. The aim of this paper is to compare already exist-
ing approaches, namely single-sensor systems (SSS) and multi-sensor sys-
tems (MSS) with a proposed cascaded system (CS). The introduced CS is
characterized by the fact that not all available data are analyzed, but only
cleverly selected ones. The different approaches consisting of neural networks
are compared in terms of their accuracy and computational effort. The data are
recorded from scratch and include two common sensor systems for quality
control, namely a photodiode (PD) and a high-speed camera (HSC). As a
result, when the CS makes half of the final decisions based on a SSS with
PD signals and the other half based on a SSS with HSC images, the estimated
computational effort is reduced by almost 50% compared to the SSS with HSC
images as input. At the same time, the accuracy decreases only by 0.25% to
95.96%. Additionally, based on the CS, a general cascaded system (GCS) for
quality inspection is proposed.
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1 Introduction

Laser welding is widely used in automotive, aerospace or shipbuilding indus-
tries and is considered a key technology in manufacturing [1, 2, 3]. Advan-
tageous compared to other joining techniques is its ability for precise and
fast welding. Unfortunately, laser welding, in which a workpiece is melted,
vaporized and solidified, often is a challenging process [4] and, hence, welding
defects occur. Especially in the electric drive train, some components consist
of several hundred laser-welded elements, and a single welding defect can lead
to the failure of the entire component. In order to detect defective elements in
time, there is a desire in the industry for quality monitoring.

The most important sensor methods for examining weld quality include photo-
diodes (PD) [5, 6, 7] or spectrometers [8, 9] due to their simple structure and
low cost. Other methods to provide information about spatter, keyhole, weld
pool or plasma are ultraviolet sensors [10], X-rays [11, 12], microscopy, optical
coherent tomography (OCT) [13] or high-speed cameras (HSC) [14, 15, 16,
17]. Accordingly, compared to typical quality monitoring in resistance welding
[18] or ultrasonic welding [19], there are more potential input variables in laser
welding.

The signals acquired by the different sensors are analyzed using signal or im-
age processing algorithms. Thereby, data-driven process monitoring has been
implemented by applying machine learning methods such as support vector
machines (SVM) [20], decision trees [21], random forest algorithms [22] or
Bayes classifiers [23]. Recently, deep learning has achieved great success in
image recognition and classification [24] and thus has been applied to weld
defect inspection, especially convolutional neural networks (CNN).

Some researchers use a single sensor type to study a specific mechanism of the
welding process: In [6] the optical intensity captured by a PD when welding
defects occur is analyzed. [17] does quality assessment of welds based on
HSC or OCT data using deep neural networks like Inception-v3 [25]. Different
CNNs like AlexNet, VGG-16 or MobileNetV3-Large [26] are used in [27] for
automated optical inspection of laser welding.
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However, information captured by one sensor is not sufficient for holistic qual-
ity assessment [28]. A combination of different sensor types, on the other
hand, provides a more comprehensive description of the welding process [11].
In [29] different sensor types are used, including an ultraviolet-visible band
visual sensor system, a spectrometer or a PD in order to detect three different
weld defects during high power disk laser welding using neural networks. In
[30] also several sensors in order to predict the welding quality are applied
using machine learning methods.

A quality-monitoring system whose processing time is not longer than its cyclic
time would be optimal. Yet, complex multi-sensor systems and processing
algorithms can result in quality-monitoring systems that are not used in produc-
tion due to long evaluation times. For this reason, the present paper proposes a
cascaded system (CS) with the aim of fast but still precise quality inspection.
The system follows a multi-stage structure: The first level of inspection has
time series as input, with the advantage of a high clock rate as well as low
memory requirements. This stage already safely classifies some welds; in areas
of uncertainty, on the other hand, the next more complex stage with image data
as input takes over in order to make a final decision. Quality control based
on two-stages has already been applied to other use cases [23, 31, 32, 33]. In
[23] a two-stage classifier for solder joint inspection has been proposed. After
feature selection based on the algorithm of Bayes, each solder joint is classified
by its qualification. If the solder joint fails in a qualification test, it is classified
based on a SVM. Moreover, in [33] an inspection system for ball bonding is
incorporated using CNNs or SVMs, where human judgment is only used when
the detection uncertainty is below a threshold. The present paper deals with a
cascaded system for quality control. Thereby, it links to already existing ideas
of two-stage process monitoring in the literature. To show the added value of
the system presented in this paper, it is compared to a single-sensor and multi-
sensor systems. It lays the foundation for further cascaded decision-making
systems in quality control.
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2 Data Set

Since public data sets are usually not available for industrial research, espe-
cially for welding applications, the data used in this paper were acquired from
scratch in the laboratory. Photodiode signals and associated high-speed camera
images captured during the welding of 60 pairs of metal plates are considered.
Subsequently, the recorded data were preprocessed so that they can be used by
the various quality monitoring approaches considered in this paper.

2.1 Experimental Setup

In the considered laser welding process, two metal plates with a thickness of
75 µm were welded together with a power of 250 W in a commercial setup. The
plates were placed on top of each other, clamped and welded in a rectangular
geometry. Figure 1a illustrates the welding process of the two metal plates
in cross-section. Figure 1b shows the rectangular welding path. The metal
plate pair is viewed from above, which means that the plates are on top of each
other in the image plane. Different anomalies such as spatters or gaps were
manually inserted into the welding process. Of 60 welded plates, anomalies
were inserted in 51, whereas 9 were welded under reference conditions. The
dashed line indicates the position of anomalies. The initial position of the laser
beam was (x,y) = (0,0). It was then deflected to position (xon,yon) where the
laser starts to weld the geometry and ends in position (xoff,yoff). Finally, the
laser beam returned to its initial position and was ready for the next weld. In
total, the welding process for a pair of metal plates took 338 ms.

Figure 2 shows the experimental setup. The laser optics were located above
the metal plates at (x,y,z) = (0,0,40cm) and directed the laser beam to the
rectangular path using two mirrors. A photodiode (PD) measured light with a
wavelength of about 300–950 nm obtained during the welding process in the
area of the weld pool. Accordingly, at each sampling time, the voltage of the
PD amplifier was recorded. Furthermore, HSC images were taken during the
process. The PD had a sampling rate of 250 kHz, whereas the HSC had one
of 20 kHz. The advantage of the PD is the higher sampling rate as this allows
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Figure 1: Laser welding process. (a) shows the two metal plates in cross-section during the welding
process. There are three areas: 1 solidified melt, 2 weld pool and 3 unwelded metal
plates. In (b) the rectangular welding path is indicated. Dashed lines indicate where
anomalies were introduced in the laboratory experiment. Arrows indicate the welding
direction.
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Figure 2: Experimental setup of the laser welding process of two metal plates. The two used
sensors for data acquisition are a photodiode (PD) and a high-speed camera (HSC).

the detection of shorter anomalies compared to the HSC. Moreover, faster data
processing is possible due to the smaller amount of raw data compared to the
HSC. However, the HSC images provide information which is not available in
the PD signals, e.g. information about the current geometry of the interaction
zone. Figure 3 illustrates the sampling rates and the data of both sensors. The
gray lines on the x-axis correspond to the sampling times of the PD and have a
distance of 4 µs each. The black larger lines on the axis indicate the sampling
times of the HSC, which are 50 µs apart. Every 12.5 samples of the PD are
followed by a HSC gray scale image. In addition to the sampling rates, the PD
and HSC data are visualized. In the range from 500–700 µs data of reference
welds are shown. At t = 250000 µs an anomaly occurs, more precisely, the
process spatters. On closer inspection, a slightly different interaction zone
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Figure 3: Illustration of the PD and HSC data and sampling rates.

geometry and a splash on the left side can be seen compared to the reference
HSC images.

2.2 Preprocessing

For the quality-monitoring approaches considered in this paper, 13 samples of
the PD were assigned to each image of the HSC. The assignment of the PD
samples to the corresponding HSC image is visualized in Figure 3 by the gray
background. Besides, the gray scale HSC images were cropped to a section of
100 × 100 pixels and scaled to a value range of [0,1].

A label was manually assigned to each image with the corresponding 13 PD
samples, distinguishing between reference and anomaly. By section-wise la-
beling of the weld seams, a localization of reference and anomaly on the weld-
ing path is possible. This would not be possible when labeling a pair of
plates as a whole. An anomaly refers to those locations, where an abnormality
like a gap or spatters have been introduced. Reference is defined as those
places where neither an abnormality is provoked nor is visible in the recorded
PD signals or in the HSC images. There are places, where no intentional
defects were introduced, but abnormalities are visible in the signal. One cause
is sporadically occurring errors. Moreover, micrograph analyses show that
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Table 1: Number of samples of the recorded data set. During training, data from 48 metal plates
(80%) is used; during testing, data from 12 plates (20%) is used. The number of samples
nDA generated by data augmentation (DA) is also given. The values given indicate the
average sample numbers over the 5 folds of the used cross-validation.

Label ntrain ntest ntotal nDA

Reference 148425 37106 185531 1576738
Anomaly 152777 38194 190971 1623262
Total 301202 75300 376502 3200000

anomalies may be present in the weld at that places. These positions are left
out in the following because the correct label cannot be determined and would
therefore confuse the process monitoring systems. Of the 60 metal plate units,
the proportion of such identified locations is 7.19%.

Table 1 shows the number of samples of the data set used in this paper. During
training, data from 48 metal plates were used and during testing, data from
12. For the evaluation of the models, a 5-fold cross-validation was applied.
Thereby, in every fold the data of 12 metal plates were left out. Since different
numbers of samples were left out on each metal plate, the number of samples
varied in every fold. The average number of training samples over the 5 folds
is given by ntrain; the average number of test samples by ntest and both together
as ntotal. In order to teach the models invariances and robustness properties, a
data augmentation on the PD signals as well as on the HSC images was used.
The PD signals were reflected horizontally. The HSC images were rotated and
reflected. This data augmentation is essential for the HSC images since, as
shown in Figure 1b, anomalies were only inserted on one side of the welded
geometry. If not applying this data augmentation, the classification algorithms
could learn, that anomalies only take place in one direction, which is not the
case in real processes.
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3 Different Approaches for Quality Monitoring

Three different approaches, namely single-sensor systems (SSS), multi-sensor
systems (MSS) and cascaded systems (CS) are considered. Before the ap-
proaches are introduced, the formal definitions of the analyzed data are de-
fined:

For each sample, the time series of the PD signal corresponding to a HSC
image is defined as

XPD,i = (xi,1 xi,2 . . . xi,13), (1)

where i ∈ {1, . . . ,376502} indicates the considered sample number. The im-
ages of the HSC are defined as

XHSC,i =




xi,1,1 xi,1,2 · · · xi,1,100

xi,2,1 xi,2,2 · · · xi,2,100
...

...
. . .

...
xi,100,1 xi,100,2 · · · xi,100,100



. (2)

With the label Yi ∈ {0, 1}, where 0 stands for anomaly and 1 for reference, the
data set S consists of 376502 triples according to

S = {(XPD,1,XHSC,1,Y1), . . . ,(XPD,376502,XHSC,376502,Y376502)}. (3)

3.1 Single-Sensor and Multi-Sensor System

A single-sensor system (SSS) performs process monitoring based on data com-
ing from one sensor. This can be represented by the function

fSSS : Ra×b→{0,1} : Xi 7→ Yi, a,b ∈ R. (4)

Figure 4 illustrates SSSs based on PD signals or HSC images, where f̂SSS indi-
cates an optimized model. It could be any classical machine learning algorithm

38 Proc. 32. Workshop Computational Intelligence, Berlin, 01.-02.12.2022



XPD,i ∈ R1×13

YPD,i ∈ {0,1}

f̂SSS,PD

Feature Extraction PD

Classification PD

XHSC,i ∈ R100×100

YHSC,i ∈ {0,1}

f̂SSS,HSC

Feature Extraction HSC

Classification HSC

Figure 4: Two single-sensor systems (SSS). Thereby, f̂SSS,PD and f̂SSS,HSC are the prediction
models based on PD samples XPD,i or HSC samples XHSC,i as input. YPD,i and YHSC,i
are the predicted labels, which deviate from Yi in case of misclassification.

XPD,i ∈ R1×13

f̂MSS

Feature Extraction PD

XHSC,i ∈ R100×100

YPD HSC,i ∈ {0,1}

Feature Extraction HSC

Classification

Figure 5: Multi-sensor system (MSS). The prediction model f̂MSS has PD samples XPD,i and HSC
samples XHSC,i as input and predicts YPD HSC,i.

or a neural network with convolutional layers for feature extraction and fully-
connected layers for decision-making. In the case of a neural network, the
output is first a real number, which is then binarized for the final decision.
Those predicted labels differ from Yi in the case of misclassification.

A multi-sensor system (MSS) uses data from multiple sensors for process
monitoring. A MSS consisting of PD signals and HSC images as inputs can be
expressed as

fMSS : R1×13×R100×100→{0,1} : XPD,i×XHSC,i 7→ Yi. (5)
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f̂CS

Feature Extraction PD
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Feature Extraction HSC

Classification PD

p > 1− r
p < r or

yes

YHSC,i ∈ {0,1}
Figure 6: Cascaded system (CS). Depending on p, the prediction model f̂CS decides either for YPD,i

or YHSC,i.

Figure 5 represents a MSS based on PD signals and HSC images. The advan-
tage of a MSS compared to a SSS is a more holistic quality control. However,
the computational effort of the MSS is greater than of the SSS, which is disad-
vantageous for industrial quality monitoring of fast laser processes.

3.2 Cascaded System

A cascaded system (CS) offers the possibility to use several sensors as a MSS
does. In contrast to MSS, on the other hand, it is characterized by the fact
that not all available data are analyzed to get the quality-weld condition; only
cleverly selected data are evaluated. Figure 6 shows the two-stage CS used
in this paper. Let p ∈ [0,1] be the output of a classifier which makes quality
assessment based on PD signals. For p < 0.5 the classifier chooses anomaly;
for p ≥ 0.5 reference. The closer p is to 0 or 1, the more confident the
classifier’s decision is considered to be. Let r ∈ (0,0.5) be a fixed threshold. A
decision of the classifier is evaluated as certain if p < r or p > 1− r. If the first
condition is satisfied, the classifier is sure that it is an anomaly; if the second
is satisfied, it is certain that it is a reference. If the classifier is sure, the result
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is accepted; if not, a final quality decision is made in a next step based on the
HSC data. Formally, this can be expressed by

fCS :

{
fSSS,PD, if p < r or p > 1− r

fSSS,HSC, otherwise.
(6)

4 Network Structures and Training Details

The four considered prediction models f̂SSS,PD, f̂SSS,HSC, f̂MSS and f̂CS were
built by combining four blocks, namely Feature Extraction PD, Feature Ex-
traction HSC, Classification PD and Classification HSC. The blocks consist
of neural network architectures, which are described in detail later. Building
the four models based on the same blocks provides the advantage of better
performance comparison. f̂SSS,PD and f̂SSS,HSC use the combination of two
blocks each according to Figure 4. f̂MSS was constructed according to Figure 5
using Classification HSC as classification block. f̂CS uses the combination of
the four neural network blocks according to Figure 6.

The Feature Extraction PD block is based on [34], where different deep neural
networks for time-series classification are proposed. It consists of four 1D
convolution layers with 8, 16, 16 and 8 filters respectively and a kernel size of
3. Each convolution layer is followed by batch normalization and a ReLU as
activation function. The Feature Extraction HSC block is based on MobileNet
[35]. It consists of the MobileNet architecture until the last depthwise separable
convolution layer. Pretrained weights based on ImageNet were used. The Clas-
sification PD block has three fully-connected layers with 16, 8 and 4 neurons
followed by the single output gained with a sigmoid activation function for
classification. Every fully-connected layer has a ReLU as activation function
followed by a dropout layer with a rate of 0.5. The Classification HSC block
consists of the same structure as Classification PD but with the fully-connected
layers having 256, 256 and 128 neurons each.

During training of the models, the binary cross-entropy was used as loss func-
tion. An Adam optimizer with a learning rate lr = 5 ·10−5 and the regularizers
β1 = 0.9 and β2 = 0.99 were used. The models were trained with a batch
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size of 32 with 100 steps per epoch for 1000 epochs. All models were trained
with the same seed, meaning that every model is trained with the exact same
augmented images or time series respectively in the exact same order for better
performance comparison. Additionally, 5-fold cross-validation was used to get
the final results. The models were implemented in Python using Keras and
Tensorflow. The training processes ran on a NVIDIA A40 GPU card.

5 Results and Discussion

In the following, the performances of the four models f̂SSS,PD, f̂SSS,HSC, f̂MSS

and f̂CS are compared with respect to the accuracy and the number of parame-
ters as a rough indicator for the computational effort. Let nm be the number of
samples where the output of f̂SSS,PD before binarization is greater than 1− r or
smaller than r, thus being the number of samples, where f̂SSS,PD is certain. Let
nm be the number of all remaining samples, thus the number of samples, where
f̂SSS,HSC decides. ASSS,PDm and ASSS,HSCm give the proportion of correctly
classified samples, respectively. The accuracy ACS of the cascaded system (CS)
over all samples depending on the previously introduced threshold r ∈ (0,0.5)
is thereby calculated by

ACS(r) =
nm(r) ·ASSS,PDm(r)+nm(r) ·ASSS,HSCm(r)

nm(r)+nm(r)
. (7)

The accuracies ASSS,PD, ASSS,HSC, AMSS and ACS of the four models gained
through 5-fold cross-validation are shown as black lines in Figure 7. Compar-
ison of the accuracies of the four systems indicates that the SSS with the PD
signals as input has the lowest. This is not surprising since in comparison to
the SSS with the HSC images as input, only 13 samples of a time series are
available at any time. The MSS having the highest accuracy can be explained
by the fact that data of two sensors are analyzed simultaneously, and therefore
a more holistic quality assessment is possible than with a single sensor. Thus,
it can be inferred that there is information in the PD signal that is not captured
by the HSC images.
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Figure 7: Accuracies. Black lines show the accuracies of the four models. The concrete accuracies
of the models which are independent of r are ASSS,PD = 88.70%, ASSS,HSC = 96.21% and
AMSS = 96.72%. At r = 0.053, ACS has its maximum of 96.31%. Gray lines indicate the
accuracies ASSS,PDm and ASSS,HSCm (cf. Equation 7).

In addition to the accuracies of the four models, the accuracies ASSS,PDm and
ASSS,HSCm are shown as gray lines in Figure 7. ASSS,PDm indicates the accuracy,
that f̂SSS,PD decides right regarding samples where it is certain. If r→ 0.5 it
converges to the accuracy ASSS,PD as all decisions are made by the SSS with PD
samples as input. If r→ 0 it converges to 100%. This makes sense, since only
those samples are considered for which the model is 100% sure. However, it is
not self-evident as a 100% certain model can also decide wrongly. ASSS,HSCm

indicates the accuracy of f̂SSS,HSC for the samples, where the SSS of the PD is
uncertain. The accuracy of these samples given by f̂SSS,PD has to be below
ASSS,PD as ASSS,PDm always is above. The graph of ASSS,HSCm shows that
f̂SSS,HSC is already correct for over 93%, except for r near 0.5, of the samples
for which f̂SSS,PD is uncertain and has an accuracy less than ASSS,PD = 88.70%.
If r→ 0, then ASSS,HSCm→ ASSS,HSC.

ACS indicates the accuracy of the cascaded system. If r→ 0.5, the accuracy
converges to the accuracy of the SSS with PD signals as input since that system
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Figure 8: Final decisions. Shown are the percentages of the decisions in the cascaded system made
by f̂SSS,PD or f̂SSS,HSC as a function of r.

makes all decisions; if r→ 0, ACS converges to the accuracy of the SSS with
HSC images as input, since then that system makes all decisions. With de-
creasing r, ACS first follows ASSS,PDm and then approaches ASSS,HSC. Thereby,
with ASSS,PDm being the accuracy of samples using only the first classifier and
ASSS,HSCm being the accuracy of the remaining samples resulting from the SSS
of the HSC images, ACS has to be in between of both (cf. Equation 7). At
r = 0.053, ACS has its maximum of 96.31%, which is greater than ASSS,HSC.

Figure 8 shows what percentage of decisions in the CS are made by the respec-
tive system depending on r, where r→ 0 means that all decisions are made by
the SSS with HSC images as input and r→ 0.5 that all decisions are made by
the SSS with PD signals as input. For r near 0, an abrupt increase or decrease
can be seen in the graphs. This is due to the distribution certainties of the SSS
with the PD signals as input. This classifier is able to detect many anomalies
with certainties near 100% as anomaly. For references, on the other hand, very
few samples are classified with certainties near 100%. An explanation why
the neural network learns in that way is the following: In the considered data
some anomalies are clearly recognizable because they differ from the reference
data. Hence, they are easily recognizable by the network. However, there are
anomalies that look similar to reference data and are therefore very difficult
to distinguish from references. Thus, the classifier does not often decide with
certainties near 100% for a reference.

The number of parameters PSSS,PD, PSSS,HSC, PMSS and PCS in the inference of
the systems, which is a rough indication for how long it takes the models to
process data, are shown in Figure 9. Thereby, the MSS has the most parame-
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Figure 9: Number of parameters in the inference of the systems as measure for the computational
effort. The concrete number of parameters are PSSS,PD = 3657, PSSS,HSC = 5687233 and
PMSS = 5877961.

ters, the SSS with the HSC images as input the second most and the SSS with
the PD signals the least. The estimated computational effort of the CS results
proportionally to how many samples are subjected to the first classifier only
and how many are subjected to the first and second. If the decision is made
by the SSS with the PD signals only, the estimated computational effort of
the CS is equal to that of the SSS. With decreasing r the computational effort
becomes larger. If r→ 0, than PCS→ PSSS,PD +PSSS,HSC. If the CS has half of
the final decisions made by the SSS with PD signals and the other half by the
SSS with the HSC images, the estimated computational effort is reduced by
49.94% leading to an accuracy of 95.96%. Of interest is the region where the
accuracy of the CS exceeds that of the SSS with the HSC images as input. At
the point where ACS is at its maximum and higher than ASSS,HSC, the estimated
computational effort is reduced by 34.46% compared to the SSS with HSC
images.

6 General Cascaded System

The two-stage cascaded system proposed in this paper can be generalized. The
structure of a general cascaded system (GCS) is shown in Figure 10. In contrast
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Figure 10: General cascaded system (GCS). The model fGCS has X1,X2, ...,XN as inputs leading to
a quality assessment Y .

to the two-staged cascaded system limited to two inputs, the GCS consists
of N different inputs X1,X2, ...,XN , which are (partially) processed together
leading to a quality assessment Y . By that, the inputs do not necessarily
have to come from different sensors, e.g. one sensor could provide several
features as different inputs. Besides, possible inputs could also be metadata.
The following structures of a cascaded system are possible, for example:

In contrast to the two-stage CS, the different input data X1,X2, ...,XN do not
have to be divided into equal time periods. For example, considering the
data used in this paper, input X1 could make a decision for each entire weld
seam. Further inputs can then work with smaller time periods in order to locate
anomalies more precisely.

Unlike the proposed two-stage CS, which at uncertainty of a first classifier
activates a second classifier, a GCS could exchange further information like
learned features or certainties between classifiers. In doing so, the information
flow does not have to be unidirectional. For example, speaking of a CS with
two inputs, after making a first uncertain decision, the second classifier may re-
turn learned information to the first one in order to improve the first classifier’s
upcoming decision-making.

If there are several inputs, the system can decide which data X2, ...,XN should
be processed further depending on the results of the first input X1. For ex-
ample, if a first result supposes a specific anomaly among several, the next
step evaluates exactly those inputs, that provide further information about that
anomaly. The same principle can also be applied when choosing the initial
inputs: Instead of using a fixed number of inputs in the first step, based on the
decision of the previous step, initial inputs are selected. For example, if certain
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anomalies are known to take a certain time, it could be useful to give attention
to the inputs that can deal with the anomaly during that time period.

7 Summary and Outlook

Four different models for quality inspection of metal plates welds, namely two
single-sensor system (SSS), a multi-sensor system (MSS) and a cascaded sys-
tem (CS) have been considered. The CS presented in this paper is characterized
by the fact that not all available data are analyzed to get the quality weld; only
cleverly selected data are evaluated. The different models consisting of neural
networks are compared in terms of their accuracy and estimated computational
effort since fast but still precise quality inspection is needed in today’s quality
monitoring of welds. The data acquisition was done from scratch in the labo-
ratory since no public data sets are available, whereat different anomalies such
as spatters or gaps were inserted. Thereby, two common sensor methods for
examining weld quality, namely a photodiode (PD) and a high-speed camera
(HSC) have been used.

Among the four considered models, the SSS with PD signals as input has the
fewest parameter but also the lowest accuracy. In contrast, the MSS has the
highest accuracy but also the most parameters. If the CS has half of the final
decisions made by the SSS with PD signals and the other half by the SSS with
the HSC images, the estimated computational effort is reduced by almost 50%
compared to the SSS with the HSC images as input. By that, the accuracy is
only reduced by 0.25% from 96.21% to 95.96%.

Based on the CS, a generalized cascaded system (GCS) for quality inspection
is proposed, which arbitrarily combines any number of sensors in order to get
a quality assessment. Further work can deal with the possibilities that the GCS
proposes, like the extension to more than two sensors or the incorporation
of process knowledge. In addition to the used neural network architectures
within the different models for feature extraction and classification, future
work could include other architectures or methods based on classical machine
learning. Furthermore, a more detailed analysis of the computational effort
including other variables besides the number of parameters should be realized.
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Moreover, the system can be extended to distinguish not only between anomaly
and reference, but also between different anomalies.
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