KIT | KIT-Bibliothek | Impressum | Datenschutz

Evaluation of Transformer Architectures for Electrical Load Time-Series Forecasting

Hertel, Matthias ORCID iD icon 1; Ott, Simon; Schäfer, Benjamin ORCID iD icon 1; Mikut, Ralf ORCID iD icon 1; Hagenmeyer, Veit ORCID iD icon 1; Neumann, Oliver 1
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Accurate forecasts of the electrical load are needed to stabilize the electrical grid and maximize the use of renewable energies. Many good forecasting methods exist, including neural networks, and we compare them to the recently developed Transformers, which are the state-of-the-art machine learning technique for many sequence-related tasks. We apply different types of Transformers, namely the Time-Series Transformer, the Convolutional Self-Attention Transformer and the Informer, to electrical load data from Baden-Württemberg. Our results show that the Transformes give up to 11% better forecasts than multi-layer perceptrons for long prediction horizons. Furthermore, we analyze the Transformers’ attention scores to get insights into the model.


Verlagsausgabe §
DOI: 10.5445/IR/1000154155
Veröffentlicht am 04.01.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2022
Sprache Englisch
Identifikator ISBN: 978-3-7315-1239-4
KITopen-ID: 1000154155
HGF-Programm 37.12.02 (POF IV, LK 01) Design,Operation & Digitalization of the Future Energy Grids
Weitere HGF-Programme 47.14.02 (POF IV, LK 01) Information Storage and Processing in the Cell Nucleus
Erschienen in Proceedings - 32. Workshop Computational Intelligence: Berlin, 1. - 2. Dezember 2022. Hrsg.: H. Schulte, F. Hoffmann; R. Mikut
Veranstaltung 32. Workshop Computational Intelligence (2022), Berlin, Deutschland, 01.12.2022 – 02.12.2022
Verlag KIT Scientific Publishing
Seiten 93-110
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page