
EasyMLServe: Easy Deployment of REST
Machine Learning Services

Oliver Neumann, Marcel Schilling, Markus Reischl, Ralf Mikut

Institute for Automation and Applied Informatics,
Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1,

76344 Eggenstein-Leopoldshafen
E-Mail: oliver.neumann@kit.edu

Abstract

Various research domains use machine learning approaches because they can
solve complex tasks by learning from data. Deploying machine learning
models, however, is not trivial and developers have to implement complete
solutions which are often installed locally and include Graphical User
Interfaces (GUIs). Distributing software to various users on-site has several
problems. Therefore, we propose a concept to deploy software in the
cloud. There are several frameworks available based on Representational
State Transfer (REST) which can be used to implement cloud-based machine
learning services. However, machine learning services for scientific users
have special requirements that state-of-the-art REST frameworks do not cover
completely. We contribute an EasyMLServe software framework to deploy
machine learning services in the cloud using REST interfaces and generic
local or web-based GUIs. Furthermore, we apply our framework on two
real-world applications, i. e., energy time-series forecasting and cell instance
segmentation. The EasyMLServe framework and the use cases are available
on GitHub.

Proc. 32. Workshop Computational Intelligence, Berlin, 01.-02.12.2022 11

1 Introduction

Machine Learning (ML) approaches are able to solve complex tasks in various
domains by learning from data, for example, instance segmentation [1],
translation [2], or text-to-image generation [3]. Nonetheless, users struggle
to apply ML approaches to their data because adapting code and setting up
software and hardware environments need expert knowledge [4]. Therefore,
it is important to deploy ML models in a way such that non-expert users can
apply these models to their data easily.

Typically, ML models are deployed by programming Graphical User Interfaces
(GUIs) because users are familiar with it [4, 5, 6]. This deployment strategy,
however, has some disadvantages. Each individual user needs powerful
hardware because ML models are computationally expensive. The hardware
device is often underutilized as users do not process data continuously.
Additionally, the hardware does not scale with user requests. Experts have
to perform the installation process on the user site because of software
dependencies, for example, GPU drivers or ML frameworks. Code quality
suffers because of mixing model and GUI code. Updating software is
complicated since distributed code snippets along different users.

To solve these deployment problems, we contribute a software framework
(EasyMLServe) to deploy ML approaches as cloud-based software services
using Representational State Transfer (REST) [7]. Therefore, we introduce
a concept of cloud-based software, the framework architecture, and apply
the framework to two real-world applications. Additionally, the framework
is available on GitHub (https://github.com/KIT-IAI/EasyMLServe),
including two real-world applications.

In Section 2, we introduce existing frameworks for the cloud-based deployment
of ML models. The requirements, concept, architecture, and implementation
of the contributed framework is explained in Section 3. In Section 3.3, we
evaluate the frameworks and apply EasyMLServe on two real-world use cases,
i. e., energy time-series forecasting and instance segmentation of biological
images. Afterwards, we discuss and conclude the results in Section 5.6 and
Section 6.

12 Proc. 32. Workshop Computational Intelligence, Berlin, 01.-02.12.2022

https://github.com/KIT-IAI/EasyMLServe

2 Related Work

There are several REST frameworks available to deploy ML services. A lot
of them focus on high-performance like TorchServe [8] or TFX Serving [9].
Other frameworks offer easy-to-use config-based deployment of REST ML
frameworks like DEEP as a Service (DEEPaaS) [10].

TorchServe is a framework to deploy ML services in the cloud and it is part
of the PyTorch ecosystem [11]. The framework is actively maintained and
allows parallel requests as well as advanced features like model performance
optimization. TorchServe offers a broad range of examples due to the large
community. However, TorchServe is restricted to the PyTorch ecosystem and
excludes other ML frameworks like TensorFlow [12] or Scikit-Learn [13].

TFX Serving is part of the TensorFlow Extended (TFX) framework for
deploying productive ML pipelines and is also part of the TensorFlow
ecosystem. TFX Serving is also actively maintained and supports parallel
requests, advanced features, and offers a variety of examples. However,
like TorchServe, it is not independent of the ML framework, has a complex
interface and documentation, and no GUI support.

DEEPaaS is an independent framework to deploy ML services in the cloud. It
is actively maintained and it offers a simple config-based interface description.
DEEPaaS has support for multiple workers but it does not handle multiple GPU
access. Therefore, DEEPaaS recommends running only one worker if there is
one GPU. Additionally, DEEPaaS offers no examples and no GUI support.

There are more REST frameworks for ML services available but all of them
are very similar to the presented frameworks and have the same problems:
They are focused on performance and, thus, are not independent of the ML
framework. They offer many additional features, e.g., model management,
which makes them complex, and they support no generic GUIs to support fast
prototyping. With EasyMLServe, we want to offer an independent and easy-
to-use REST framework for ML services that additionally deploys generative
GUIs as a starting point for non-experts users.

Proc. 32. Workshop Computational Intelligence, Berlin, 01.-02.12.2022 13

3 EasyMLServe

In this section, we introduce the EasyMLServe framework to deploy ML
services using REST APIs and generic GUIs. First, we define the requirements
of REST frameworks for scientific ML services. Second, we describe the basic
concept of REST APIs and how the data is exchanged between the ML service,
the server, and the GUI. Third, we describe the most important EasyMLServe
classes. Fourth, we explain how developers can deploy their ML approaches
with the EasyMLServe framework.

3.1 Requirements

Developers in charge of implementing ML services for scientific users from
different domains have requirements for REST frameworks to deploy their ML
services.

• The REST framework should be actively maintained to ensure version
compatibility, continuous improvement, and bug fixing.

• As developers of ML approaches for researchers, it is necessary to
use different ML frameworks because not every novel ML approach
is available in all ML frameworks. Therefore, a REST framework
independent of the ML framework is required.

• In the research domain, prototypes of ML approaches need to be devel-
oped fast in the dynamic ML research community. Fast development can
be achieved by offering easy-to-use and accessible frameworks.

• Non-expert users need a fast and easy way to use the ML approach. GUIs
help to fulfill that objective.

• Real-world ML examples are needed to give developers a good starting
point for their approaches. This makes the framework easier to use and
reduces development time.

14 Proc. 32. Workshop Computational Intelligence, Berlin, 01.-02.12.2022

Other REST frameworks for ML services, in general, have additional
requirements. However, those requirements are not needed in our use cases.
Hence, we classify them as optional requirements:

• Industrial ML services need REST frameworks that handle thousands
or more users in parallel which is challenging when thinking of large
high-performance computing clusters on which the service should run.
Examples of such applications can be found at Amazon, Spotify, or
Netflix.

• Some REST frameworks offer more advanced features like model
management that always come with additional code and configuration
effort.

3.2 Concept

Based on the requirements, we propose a cloud-based service-oriented
software architecture. Each ML approach is a software program (service)
running on a remote computer (cloud). Data between services and users are
exchanged using REST.

REST is a design principle for distributed systems and is based on the HTTP
method stack [7]. Therefore, it can be used for every network, e. g., the
internet or local private networks, and on any device, from smart meters to
high-performance clusters. Software services that are based on REST often
exchange data using JSON files which are equivalent to a list of key-value
pairs.

If we apply the REST principle to our use case, we have a server offering a ML
service by providing a REST interface. All communications between the GUI
and server are based on HTTP messages. The REST interface, however, has no
GUI. Therefore, our concept considers a GUI to communicate with the server
via the REST interface. This GUI can be in form of a web page or a program
running on a local computer. An overview of the data exchange between users
and services is shown in Figure 1.

Proc. 32. Workshop Computational Intelligence, Berlin, 01.-02.12.2022 15

Figure 1: Data exchange between users and ML services. All data exchange between a user and a
service is based on JSON objects. GUIs are deployed remotely as a web page or locally
on a computer. Without GUIs, smart meters, or other low-end devices, can directly use
the ML service using the REST interface. Additionally, data exchange between third-
party actors is possible by using, for example, additional databases.

For the EasyMLServe framework, we decided that all requests and responses
of the REST interface are encoded as JSON objects. It would be possible to
exchange data directly as files but that increases the framework complexity.
Therefore, all data from and to the ML services are encoded as JSON objects
which makes it easier for developers and reduces framework complexity.

Depending on the GUI type, there are two ways of data exchange between
users and the GUI. First, for web-based GUIs, we propose to communicate
with the GUI via HTTP but not using a REST interface. Instead, the GUI is
deployed using a web server that displays a web page to use the ML service.
Second, for local GUIs, our concept suggests interacting directly with the GUI
without using HTTP. In both cases, however, the GUI has to communicate with
the ML service using the REST interface.

Data can also be exchanged with additional actors using any kind of
communication protocol. A simple example would be to load and store data

16 Proc. 32. Workshop Computational Intelligence, Berlin, 01.-02.12.2022

from a database instead of uploading data via HTTP which can accelerate
processing.

Regarding hardware constraints, the server needs to be deployed on powerful
hardware depending on the ML task. For instance segmentation tasks,
a Graphical Processing Unit (GPU) is recommended but for time-series
forecasting using Linear Regression, a CPU is sufficient. The GUI, however,
can be deployed on low-end hardware. Additionally, if a GUI is not needed,
low-end devices can directly communicate with the REST interface. Smart
meters, for example, can forecast energy time-series data or microscopes can
process images by using high-performance computing clusters.

3.3 Architecture

The EasyMLServe framework consists of three major classes, i. e.,
EasyMLService, EasyMLServer, and EasyMLUI. The actual ML service is
represented by the EasyMLService class. The EasyMLServer deploys the
REST interface. EasyMLUI is the base class for all other UI classes. The
relation between these three classes is shown in Figure 2.

EasyMLService is responsible for loading the model and processing JSON
request of the REST interface. It returns JSON objects as a result of the REST
interface request.

EasyMLServer provide the actual REST interface and passes all REST requests
to the EasyMLService. Therefore, the EasyMLServer has to deploy a web
server that handles HTTP messages which is done by the Uvicorn framework
[15].

EasyMLUI is the base class for all available generic GUIs of the EasyMLServe
framework. It handles the exchange of data between the user and the actual
REST ML service. Therefore, EasyMLUI takes user input, prepares a REST
request, and gets a REST response by passing the REST request to the REST
ML service via HTTP. Currently, we support two frameworks for GUIs, i. e.,
PyQt [16] and Gradio [17]. Both GUIs are available using the child classes
QtEasyMLUI and GradioEasyMLUI.

Proc. 32. Workshop Computational Intelligence, Berlin, 01.-02.12.2022 17

EasyMLServer

- app: FastAPI

+ EasyMLServer(service: EasyMLService)
+ deploy()

QtEasyMLUI

- clicked(**kwargs)
+ run()

EasyMLUI

- input_schema: JSON[key, UIType]
- output_schema: List[UIType]

- call_service_api(request: JSON)
- clicked(**kwargs)
- prepare_request(**kwargs): JSON
- process_response(
 request: JSON,
 response: JSON): List
+ run()

REST

EasyMLService

- router: FastAPI.APIRouter

+ load_model()
+ api_call(**kwargs): JSON

deploys

GradIOEasyMLUI

- clicked(**kwargs)
+ run()

GUI

Server

Figure 2: The basic architecture of EasyMLServe with the most important attributes and methods.
The top block (Server) shows the relation between EasyMLServer and EasyMLService.
The bottom part (GUI) shows the GUI classes and their relation. Both parts are separated
such that an EasyMLService can be deployed by the server without using an EasyMLUI
GUI.

18 Proc. 32. Workshop Computational Intelligence, Berlin, 01.-02.12.2022

3.4 Implementation

Developers that use EasyMLServe need to implement two classes: A service
class with EasyMLService as parent class and a GUI class with QtEasyMLUI
or GradioEasyMLUI as parent class. All relevant classes and their methods are
shown in Figure 2.

EasyMLService consists of two methods developers need to implement, i.
e., load_model and api_call. The load_model method is called after
the EasyMLService is initialized and allows the user to load the model. The
api_call method is called when a REST request is received with the actual
JSON object. In code, developers have to implement a EasyMLService class
like:

1 class MyMLService(EasyMLService):

2
3 def load_model(self):

4 # load and prepare model

5 pass

6
7 def process(self, request):

8 response ← {...} # prepare REST response

9 return response

EasyMLUI is the base class for all other GUI classes. Every GUI class has to
implement two methods, i. e., prepare_request and process_response. The
prepare_request method gets all user inputs defined in the input scheme and
returns the REST request JSON encoded. The process_response method
prepares and returns results that should be displayed to the user. In code,
developers have to implement a EasyMLUI class like:

1 class MyMLServiceUI(EasyMLUI):

2
3 def prepare_request(self, some_ui_input):

4 request ← {...} # prepare REST request

5 return request

6
7 def process_response(self, request, response):

8 results ← ... # prepare results (e.g. plots)

9 return results

Proc. 32. Workshop Computational Intelligence, Berlin, 01.-02.12.2022 19

To initialize EasyMLUI classes users have to define an input and output
scheme. Input schemes describe the data users pass to the GUI, e. g., a CSV
file. Output schemes determine what the GUI is presenting to the user, e. g.,
segmentation results or evaluation files. We need to define an input scheme
as data can be passed in several ways, for example, text for translation tasks
can be passed via text files or by typing text into text boxes. The output
scheme is needed because displaying the response is often not sufficient, for
example, when displaying segmentation results users may also be interested in
the number of cells or mean cell size.

To define the input and output scheme, we implemented a set of UITypes
which produce suitable GUI elements. These UITypes can be: Text, TextLong,
Number, Range, SingleChoice, MultipleChoice, File, ImageFile, CSVFile,
TimeSeriesCSVFile, or Plot.

After implementing an EasyMLService and EasyMLUI the resulting ML
service and GUI can be deployed by calling the run method. In code, starting
the server and service looks like:

1 # server.py

2 service ← MyMLService()

3 server ← EasyMLServer(service)

4 server.run()

1 # ui.py

2 input_schema ← {'some_ui_input': UIType()}

3 output_schema ← [Plot()]

4 app ← MyMLServiceUI(name← 'Example Service',

5 input_schema← input_schema,

6 output_schema← output_schema)

7 app.run()

4 Results

In the following, we evaluate the presented REST frameworks TorchServe [8],
TFX Serve [9], DEEPaaS [10], and EasyMLServe based on the previously
defined requirements for REST frameworks in scientific domains. Afterwards,
we apply the EasyMLServe framework on two real-world applications, i. e.,

20 Proc. 32. Workshop Computational Intelligence, Berlin, 01.-02.12.2022

Table 1: REST frameworks for ML services evaluated on the necessary and optional
requirements. Regarding necessary requirements, REST frameworks need to be actively
maintained, independent of the ML framework, easy accessible (not complex), supports
generative GUIs, and real-world examples. Regarding optional requirements, REST
frameworks need to handle parallel requests and advanced features (e.g. model
management).

Requirements REST Frameworks for ML
TorchServe TFX Serving DEEPaaS EasyMLServe

Maintained ✓ ✓ ✓ ✓
Independent ✗ ✗ ✓ ✓
Accessible ✗ ✗ ✓ ✓
GUI Support ✗ ✗ ✗ ✓
Examples ✓ ✓ ✗ ✓

Parallel ✓ ✓ (✓) (✓)
Advanced Features ✓ ✓ ✗ ✗

energy time-series forecasting and cell instance segmentation, to demonstrate
the benefits of the proposed framework.

4.1 Evaluation

EasyMLServe is a REST framework for ML services that is focused on
deployment of ML approaches for the research community. Therefore, we
define specific requirements which need to be solved.

Evaluating existing REST frameworks with these requirements, we see that
REST frameworks, which are focused on performance, are restricted to one
ML framework, e. g., TorchServe or TFX Serve. Other ML frameworks
like DEEPaaS, however, are independent of the ML framework but offer no
generative GUI support.

Our EasyMLServe framework fulfills all requirements and closes the gap of
actively maintained, ML framework independent, easy-to-use, and generative
GUI supported REST frameworks. A comparison of the REST frameworks
based on all requirements, including the optional ones, is shown in Table 1.

Additionally, to demonstrate the capabilities of EasyMLServe, we imple-
mented two real-world use cases. First, electrical load forecasting for

Proc. 32. Workshop Computational Intelligence, Berlin, 01.-02.12.2022 21

Germany which is representative for several time-series ML problems. Second,
biological cell instance segmentation which is a common ML task for image
processing.

4.2 Time-Series Forecasting

In the first use case, we forecast the electrical load for Germany one day
ahead. Hourly electrical load data is used from the Open Power System Data
(OPSD) dataset [14]. We used the years 2015 to 2018 for training. Regarding
the models, we consider a Linear Regression, Support Vector Machine, and
Random Forest model. All models are implemented using Scikit-Learn [13]
with default parameter settings.

Our ML service expects a list of model names to use for the forecast, a list of
time steps, and the corresponding energy values also as a list. After applying
the selected models on the energy time-series, the ML service returns a forecast
for each selected model in a list. Each forecast contains the corresponding
model name, a list of time steps, and the corresponding energy values.

Regarding the GUI input scheme, we choose the MultipleChoice GUI element
to define the model names. For the time steps and energy values, we use the
CSVFile GUI element. This CSV file needs to be parsed to finally return the
model names, time steps, and energy values as one JSON request. The parsing
is done in the prepare_request method.

For the output scheme, we return two plots and a CSV file. For the two
plots, we use the Plot GUI element to visualize the forecast and forecast error.
Regarding the CSV file, a File GUI element which contains the actual one-day
ahead forecasts is used.

Both supported GUIs can be deployed with EasyMLServe. Developers are able
to switch easily between the GUIs by changing the parent class. The resulting
GUIs are shown in Figure 3.

22 Proc. 32. Workshop Computational Intelligence, Berlin, 01.-02.12.2022

(a) Qt UI

(b) Gradio UI

Figure 3: Qt (a) and Gradio (b) based GUIs for the energy time-series forecasting use case. Qt is a
locally deployed GUI. Gradio is a web-based deployed GUI.

Proc. 32. Workshop Computational Intelligence, Berlin, 01.-02.12.2022 23

4.3 Image Segmentation

The second real-world use case focuses on machine learning for images. We
use microscopic images from the LIVECell dataset [18] and train a UNet [19]
utilizing the KaIDA framework [20].

The ML service expects a Base64 encoded image containing the image
encoding, data type, and shape. After segmenting the cells, our service returns
an image of detected instances Base64 encoded. Note, the resulting ML service
response has the same structure as the input request.

Regarding the GUI input scheme, we only use a File GUI element to select the
image file. After loading the image, the image is encoded as Base64 and the
REST request is created as JSON.

For the output scheme, we want to display the instances image, number of
cells, mean cell size, and the ML service response as a JSON file. The instance
overlay image is displayed by using the Plot GUI element of EasyMLServe.
The number of cells and mean cell size are visualized using the Number GUI
element. The response is displayed as a File GUI element where a user can
download it.

The GUI generation framework of EasyMLServe supports Qt, as a local GUI,
and Gradio, as a web-based GUI. Developers can switch between the two GUI
frameworks by changing the parent class of the implemented EasyMLUI class.
Both GUIs can be seen in Figure 4.

5 Discussion

EasyMLServe is a framework to easily deploy ML services using REST. To
reduce complexity and make the framework as slim as possible we focus on
the deployment part and leave out the training which is done by the developers
in any environment. This has the disadvantage that users need help of experts
in case they want to change the running ML service. Some frameworks offer
training routines that allow users to retrain the models. However, we think also

24 Proc. 32. Workshop Computational Intelligence, Berlin, 01.-02.12.2022

(a) Qt UI

(b) Gradio UI

Figure 4: Qt (a) and Gradio (b) based GUIs for the cell segmentation use case. Qt is a locally
deployed GUI. Gradio is a web-based deployed GUI.

Proc. 32. Workshop Computational Intelligence, Berlin, 01.-02.12.2022 25

retraining needs the supervision of experts. Especially in the research context
where it is important that results are reliable.

The easy deployment of EasyMLServe includes generic GUIs. These GUIs
support prototyping and fast deployment. The complexity of such GUIs,
however, is limited. It can not cover all possible GUIs without losing its
accessibility. Therefore, developers still have to develop GUIs on their own
if the limited complexity of the generic GUIs is not enough.

In EasyMLServe, ML services exchange data using JSON objects which is
a common way for REST services. It is also possible to directly upload
files using multipart/form-data. This would avoid encoding and decoding
files and thus reduces processing time and package size. We restricted the
EasyMLServe REST interface to JSON objects because it made the framework
and communication for the GUI easier. Furthermore, processing times of ML
services are mostly restricted to the ML approach itself which is usually the
most computational expensive part, e. g., instance segmentation using Deep
Neural Networks running on a GPU.

For the implementation of EasyMLServe, we use Python as the programming
language. Currently, the most common ML frameworks are written in Python.
Therefore, all recent ML approaches are available in Python. However, ML
approaches that are not written in Python can not easily be integrated into the
presented framework.

Finally, EasyMLServe is a novel framework and we just started with a first
version. There are bugs that need to be found and fixed as well as features
which are currently missing. Nonetheless, bugs will appear and feature
requirements will occur when developers apply this framework which belongs
to a normal life cycle of software frameworks.

6 Conclusion

Scientific users have special requirements on the deployment of ML ap-
proaches. Deploying software solutions on-site has several disadvantages.
Therefore, we propose a cloud-based solution that is based on REST and define

26 Proc. 32. Workshop Computational Intelligence, Berlin, 01.-02.12.2022

requirements of REST frameworks for scientific usage. These requirements
are evaluated on the presented REST frameworks. Existing frameworks
do not cover all necessary requirements completely and thus we contribute
EasyMLServe, a REST framework for easy deployment of ML services in the
cloud. Additionally, our presented framework offers generic GUIs for fast and
easy prototyping.

EasyMLServe is a fast solution for ML developers to implement ML services
in the cloud. It is actively maintained, independent of the ML framework,
easy-to-use, supports generic local or web-based GUIs, and offers real-world
applications as a starting point for developers.

To further improve EasyMLServe, we propose to deploy existing solutions
with the EasyMLServe framework, for example, pyWATTS pipelines [21].
EasyMLServe is a novel framework which is under development. In future
work, we aim to improve the EasyMLServe framework by fixing bugs and add
additional features to enhance the user experience. This includes more GUI
elements which need to be supported by the GUI generator as well as more
complex GUIs.

Acknowledgments

This project is funded by the Helmholtz Association’s Initiative and Net-
working Fund through Helmholtz AI, the Helmholtz Association under the
Programs “Energy System Design”(ESD) and „Natural, Artificial and Cogni-
tive Information Processing“ (NACIP), and the German Research Foundation
(DFG) under Germany’s Excellence Strategy – EXC number 2064/1 – Project
number 390727645.

References

[1] C. Stringer, T. Wang, M. Michaelos, and M. Pachitariu, “Cellpose: a
generalist algorithm for cellular segmentation,” Nature Methods, vol. 18,
pp. 100–106, 2021.

Proc. 32. Workshop Computational Intelligence, Berlin, 01.-02.12.2022 27

[2] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, et al.,
“Attention is All you Need,” in Advances in Neural Information
Processing Systems, vol. 30, 2017.

[3] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, et al., “Zero-Shot Text-
to-Image Generation,” in International Conference on Machine Learning,
vol. 38 pp. 8821–8831, 2021.

[4] E. Gomez-de-Mariscal, C. Garcia-Lopez-de-Haro, W. Ouyang, L. Donati,
E. Lundberg, et al., “DeepImageJ: A user-friendly environment to run
deep learning models in ImageJ,” Nature Methods, vol. 18, pp. 1192–
1195, 2021.

[5] S. Belda, L. Pipia, P. Morcillo-Pallarés, J. P. Rivera-Caicedo, E. Amin,
et al., “DATimeS: A machine learning time series GUI toolbox for
gap-filling and vegetation phenology trends detection,” Environmental
Modelling & Software, vol. 127, p. 104666, 2020.

[6] C. Doty, S. Gallagher, W. Cui, W. Chen, S. Bhushan, et al., “Design of
a graphical user interface for few-shot machine learning classification of
electron microscopy data,” Computational Materials Science, vol. 203,
p. 111121, Feb. 2022.

[7] R.T. Fielding, “Architectural Styles and the Design of Network-based
Software Architectures,” Doctoral dissertation, University of California,
Irvine, 2000.

[8] H. Bafna, et al., “TorchServe a flexible and easy to use tool for serving and
scaling PyTorch models in production,” on GitHub, https://github.
com/pytorch/serve, accessed: Sep. 2022.

[9] K. Gorovoy, et al., “TensorFlow Serving a flexible, high-performance
serving system for machine learning models, designed for produc-
tion environments,” on GitHub, https://github.com/tensorflow/
serving, accessed: Sep. 2022.

[10] A. Lopez Garcia, “DEEPaaS API: a REST API for Machine Learning
and Deep Learning models,” Journal of Open Source Software, pp. 1517,
2019.

28 Proc. 32. Workshop Computational Intelligence, Berlin, 01.-02.12.2022

https://github.com/pytorch/serve
https://github.com/pytorch/serve
https://github.com/tensorflow/serving
https://github.com/tensorflow/serving

[11] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, et al., “PyTorch:
An Imperative Style, High-Performance Deep Learning Library,” in
Advances in Neural Information Processing Systems, vol. 32, 2019.

[12] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, et al.,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
Software available at tensorflow.org, 2015.

[13] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
et al., “Scikit-learn: Machine Learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[14] F. Wiese, I. Schlecht, W.D. Bunke, C. Gerbaulet, L. Hirth, et al., “Open
Power System Data – Frictionless data for electricity system modelling,”
Applied Energy, vol. 236, pp. 401–409, 2019.

[15] T. Christie, et al., “Uvicorn an ASGI web server implementation
for Python,” on GitHub, https://github.com/encode/uvicorn,
accessed: Sep. 2022.

[16] Riverbank Computing Limited, The QT Company, “PyQt6 Reference
Guide,” on web, https://www.riverbankcomputing.com/static/
Docs/PyQt6/, accessed: Sep. 2022.

[17] A. Abid, A. Abdalla, A. Abid, D. Khan, A. Alfozan, et al., “Gradio:
Hassle-Free Sharing and Testing of ML Models in the Wild,” arXiv, 2019.

[18] C. Edlund, T. R. Jackson, N. Khalid, N. Bevan, T. Dale, et al., “LIVECell
– A large-scale dataset for label-free live cell segmentation,” Nature
Methods, vol. 18, pp. 1038–1045, 2021.

[19] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional
Networks for Biomedical Image Segmentation,” in Medical Image
Computing and Computer-Assisted Intervention pp. 234–241, Springer
International Publishing, 2015.

[20] M. P. Schilling, S. Schmelzer, L. Klinger, and M. Reischl, “KaIDA: a
modular tool for assisting image annotation in deep learning,” Journal of
Integrative Bioinformatics, pp. 20220018, 2022.

Proc. 32. Workshop Computational Intelligence, Berlin, 01.-02.12.2022 29

https://github.com/encode/uvicorn
https://www.riverbankcomputing.com/static/Docs/PyQt6/
https://www.riverbankcomputing.com/static/Docs/PyQt6/

[21] B. Heidrich, A. Bartschat, M. Turowski, O. Neumann, K. Phipps, et al.,
“pyWATTS: Python Workflow Automation Tool for Time Series,” arXiv,
2021.

30 Proc. 32. Workshop Computational Intelligence, Berlin, 01.-02.12.2022

