KIT | KIT-Bibliothek | Impressum | Datenschutz

microbeSEG: A deep learning software tool with OMERO data management for efficient and accurate cell segmentation

Scherr, Tim ORCID iD icon 1; Seiffarth, Johannes; Wollenhaupt, Bastian; Neumann, Oliver 1; Schilling, Marcel P. ORCID iD icon 1; Kohlheyer, Dietrich; Scharr, Hanno; Nöh, Katharina ; Mikut, Ralf ORCID iD icon 1; Imran, Azhar [Hrsg.]
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)

Abstract:

In biotechnology, cell growth is one of the most important properties for the characterization and optimization of microbial cultures. Novel live-cell imaging methods are leading to an ever better understanding of cell cultures and their development. The key to analyzing acquired data is accurate and automated cell segmentation at the single-cell level. Therefore, we present microbeSEG, a user-friendly Python-based cell segmentation tool with a graphical user interface and OMERO data management. microbeSEG utilizes a state-of-the-art deep learning-based segmentation method and can be used for instance segmentation of a wide range of cell morphologies and imaging techniques, e.g., phase contrast or fluorescence microscopy. The main focus of microbeSEG is a comprehensible, easy, efficient, and complete workflow from the creation of training data to the final application of the trained segmentation model. We demonstrate that accurate cell segmentation results can be obtained within 45 minutes of user time. Utilizing public segmentation datasets or pre-labeling further accelerates the microbeSEG workflow. This opens the door for accurate and efficient data analysis of microbial cultures.


Verlagsausgabe §
DOI: 10.5445/IR/1000154159
Veröffentlicht am 30.12.2022
Originalveröffentlichung
DOI: 10.1371/journal.pone.0277601
Scopus
Zitationen: 6
Web of Science
Zitationen: 5
Dimensions
Zitationen: 8
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 1932-6203
KITopen-ID: 1000154159
HGF-Programm 47.14.02 (POF IV, LK 01) Information Storage and Processing in the Cell Nucleus
Erschienen in PLOS ONE
Verlag Public Library of Science (PLoS)
Band 17
Heft 11
Seiten Art.-Nr.: e0277601
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Vorab online veröffentlicht am 29.11.2022
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page