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Abstract

We establish global existence and decay of solutions of a viscous half Klein-Gordon

equation with a quadratic nonlinearity considering initial data, whose Fourier transform

is small in L1(R) ∩ L∞(R). Our analysis relies on the observation that nonresonant

dispersive e�ects yield a transformation of the quadratic nonlinearity into a subcritical

nonlocal quartic one, which can be controlled by the linear di�usive dynamics through

a standard L1-L∞-argument. This transformation can be realized by applying the

normal form method of Shatah or, equivalently, through integration by parts in time

in the associated Duhamel formula.

Key words. Viscous Klein-Gordon equation, global existence, di�usive decay,

normal form method, space-time resonances method.

1 Introduction

We establish global existence and decay of solutions with small initial data in the viscous
half Klein-Gordon equation

(1) ∂tu− λ(∂x)u = B(u, u),

with t ≥ 0, x ∈ R and u(t, x) ∈ C, where the pseudo-di�erential operator λ is de�ned
through its Fourier symbol

(2) λ̂(k)
def
= −dk2 − i⟨k⟩,

with d > 0 representing viscosity, and where B is a bilinear form given by

(3) B(u1, u2) = F−1

(
k 7→

�
R
B̂(k, l)û1(k − l)û2(l)dl

)
,
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with B̂ ∈ L∞(R2). Here, we use the Japanese bracket notation ⟨k⟩ def
=

√
1 + k2 and F

stands for the Fourier transform

û(k) = (Fu)(k) =
�
R
e−ikxu(x)dx.

We remark that the case B̂(k, l) = 1
2π corresponds to the standard quadratic nonlinearity

B(u, u) = u2.
Our study of (1) is motivated by the one-dimensional Klein-Gordon equation with

viscoelastic dissipation [1, 2, 3, 18], given by

utt + β2
(
γ − ∂2x

)
u− α∂2xut = N(u),(4)

with x ∈ R, t ≥ 0, u(x, t) ∈ R and parameters α, β ≥ 0 and γ > 0, where N ∈ C1(R,R) is
a nonlinearity with N(0), N ′(0) = 0. After rewriting (4) as a nonlinear evolution system,
the Fourier symbol of its linearization about the trivial state possesses the eigenvalues

λ±(k) = −1

2
αk2 ±

√
1

4
α2k4 − β2(γ + k2),(5)

which correspond to the Fourier symbol of the pseudo-di�erential operator λ in (1) up to
the term 1

4α
2k4 upon setting α = 2d, β = 1 and γ = 1. We note, as long as β > 0, it is

always possible to realize β = 1 and γ = 1 by rescaling time, space and the parameter α
in (4).

It is well-known that the asymptotics of solutions with small initial data in (damped)
nonlinear wave equations such as (4) is delicate. More precisely, the temporal decay ex-
hibited by the linear terms in (4) is algebraic and at rate t−

1
2 in L∞(R) for su�ciently

localized initial data, cf. [3, 18]. For nonlinearities N(u) = uq and functions u(t) decaying
at such rate in L∞(R) we thus obtain ∥N(u(t))∥Lp ≤ t−

q−1
2 ∥u(t)∥Lp for 1 ≤ p ≤ ∞ and

q ∈ N, showing that in case q ≤ 3 we are at or below the threshold of integrability. Hence,
standard arguments providing control on quadratic or cubic nonlinear terms in (4) by the
linear dynamics through iterative estimates on the Duhamel formulation do not apply and
the asymptotics of solutions with small initial data could depend on the precise structure
of the nonlinearity.

In fact, in the purely dispersive case with α = 0, i.e. without viscoelastic dissipation,
all solutions of (4) with small, compactly supported initial data blow up in �nite time for
N(u) = |u|u, cf. [12]. Moreover, also in the purely dissipative case obtained by setting
β = 0, one readily observes that solutions of (4) with (arbitrarily small) Gaussian initial
data u(x, 0) = ηe−x

2
, ut(x, 0) = 0 with η > 0 blow up in �nite time for N(u) = u2.

On the other hand, there are various global existence results for solutions of (4) with
small initial data in the purely dispersive case with α = 0 and β > 0, allowing for nonlinear
terms of the form N(u) = a0u

2 + a1u
3 with a0, a1 ∈ R, see [4, 10, 11, 19] and references

therein. These results rely on the classical observation of Shatah [16] that these nonlinear
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terms satisfy a nonresonance condition in case of nonzero dispersion and can be transformed
into nonlocal higher-order terms using normal forms.

Although global existence of solutions of (4) in the case with viscoelastic dissipation,
i.e. in case α, β > 0, has been established in [1] for higer spatial dimensions, where the
nonlinearities are subcritical, such results seem to be unavailable in spatial dimension one.
In this contribution we make a �rst step in this direction by proving global existence and
decay of solutions of (1) with initial data whose Fourier transform is small in L1(R)∩L∞(R).
That is, we prove the following result.

Theorem 1.1. There exist δ > 0 and C > 0 such that, if the Fourier transform of u0 ∈
L2(R) satis�es û0 ∈ L1(R) ∩ L∞(R) with

E0
def
= ∥û0∥L1∩L∞ ≤ δ,

then there exists a unique global mild solution u ∈ C
(
[0,∞), L2(R)

)
of (1) with initial

condition u0. Furthermore, the solution u(t) satis�es û(t) ∈ L1(R) ∩ L∞(R) and obeys the
estimates

∥u(t)∥L∞ ≤ ∥û(t)∥L1 ≤ CE0(1 + t)−
1
2 , ∥u(t)∥L2 ≤ CE0(1 + t)−

1
4 ,

∥û(t)∥L∞ ≤ CE0,

for all t ≥ 0.

As explained before, the quadratic nonlinearity in (1) cannot be controlled by the linear
dynamics through standard iterative estimates on the Duhamel formulation. Thus, inspired
by the analyses in [4, 10, 11, 19], we show that the quadratic nonlinearity in (1) satis�es
a nonresonance condition and can be transformed into a subcritical quartic one using the
normal form method of Shatah. We note that the absence of resonances strongly hinges
on the dispersive character of (1). That is, without the dispersive term i⟨k⟩ in the Fourier
symbol of the pseudo-di�erential operator λ in (1) Theorem 1.1 fails, see Remark 1.2.

Our analysis con�rms that the normal form method works well in the presence of dis-
sipative terms. In fact, after applying the normal form transform, the remaining quartic
nonlinearity can be controlled by the linear di�usive term −d∂2x in (1) through standard
iterative L1-L∞-estimates, cf. [15, Chapter 14.1.3], on the associated Duhamel formulation.
This allows us to handle a signi�cantly larger (in the sense of regularity and localization)
class of initial data compared to the aforementioned works [4, 10, 11, 19] treating the purely
dispersive case, where initial conditions u0 are at least two times weakly di�erentiable and
more strongly localized in the sense that at least x 7→ ⟨x⟩u0(x) must lie in L2(R).

The normal form method is equivalent to an integration-by-parts procedure with re-
spect to time in the Duhamel formulation. Thereby, it relates to the space-time resonances
method [7, 8, 9] as developed by Germain, Masmoudi and Shatah. This method is designed
to capture dispersive decay in Duhamel-based arguments by blending (non-)stationary
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phase theory with bi- and multilinear analysis of oscillatory integrals arising in Fourier
space. We refer to [6, 13, 17] for more details and background. We explore the connec-
tion to the space-time resonances method in our setting by showing that Theorem 1.1 can
also be proved through integration by parts with respect to time in the Duhamel formula
associated with (1).

Our paper is structured as follows. First, we employ the normal form method in �2 to
prove Theorem 1.1. Next, we relate in �3 to the space-time resonances method by showing
how Theorem 1.1 follows through integration by parts with respect to time in the Duhamel
formulation. Finally, Appendix A contains the (technical) analysis of the phase function,
whose zeros correspond to possible resonances of the quadratic nonlinearity in (1).

Remark 1.2. The necessity of dispersion becomes apparent by setting λ(∂x) = d∂2x and
B(u, u) = u2 in (1), which yields the heat equation with quadratic nonlinearity in which
all nonnegative nontrivial initial data blow up in �nite time [5].

Remark 1.3. For small frequencies we expect that our analysis can be transferred from
the viscous half Klein-Gordon equation (1) to the �full� Klein-Gordon equation (4) with
viscoelastic dissipation. Yet, di�erent arguments are necessary for large frequencies, since
the dispersive character of the Fourier symbol associated with the �rst-order formulation
of (4) disappears with its eigenvalues (5) becoming real for large k. In contrast, the Fourier
symbol (2) of the pseudo-di�erential operator λ in (1) maintains its nonzero imaginary part
for large k.

Notation. Let S be a set, and let A,B : S → R. Throughout the paper, the expression
�A(x) ≲ B(x) for x ∈ S�, means that there exists a constant C > 0, independent of x, such
that A(x) ≤ CB(x) holds for all x ∈ S.

Acknowledgement. Funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) � Project-ID 258734477 � SFB 1173.

2 Normal form transform

In this section we prove Theorem 1.1 using the normal form method of Shatah, cf. [4, 10,
11, 16, 19].

2.1 Change of variable

In the following proposition we introduce the relevant change of variables that transforms
the quadratic nonlinearity in (1) into a quartic one. We will work in the Banach space

X
def
=
{
u ∈ L2(R) : û ∈ L1(R) ∩ L∞(R)

}
,

equipped with the norm ∥u∥X = ∥û∥L1∩L∞ . The space X can be recognized as the inverse
image of L1(R) ∩ L∞(R) under the Fourier transform F : L2(R) → L2(R).
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Proposition 2.1. Let 1 ≤ p ≤ ∞. There exist a constant C > 0 and bounded bilinear and
a trilinear forms A2 and A3 on X obeying the estimates

∥F(A2(u, u))∥Lp ≤ C∥û∥L1∥û∥Lp ,(6)

∥F(A3(u, u, u))∥Lp ≤ C∥û∥2L1∥û∥Lp ,(7)

such that, if u ∈ C
(
[0,∞), X

)
∩ C1

(
(0,∞), X

)
is a classical solution of (1), then w ∈

C
(
[0,∞), X

)
∩ C1

(
(0,∞), X

)
given by

(8) w = u+A2(u, u) +A3(u, u, u)

is a classical solution of

(9) ∂tw − λ(∂x)w = Q(u),

where Q : X → X is the quartic nonlinearity given by

(10) F(Q(u))(k) =

�
R3

Q̂(k, l,m, n)û(k − l)û(l −m)û(m− n)û(n)dndmdl.

with Q̂ ∈ L∞(R4), satisfying

∥F(Q(u))∥Lp ≤ C∥û∥3L1∥û∥Lp .(11)

Proof. We begin with the simpler ansatz w = u+A2(u, u), where A2 is a bilinear form on
X de�ned by its action on Fourier space as

F(A2(u1, u2))(k) =

�
R
Â2(k, l)û1(k − l)û2(l)dl,

and Â2 ∈ L∞(R2) is a function we are about to determine. Using the fact that A2 is bilinear,
we compute ∂tA2(u, u) = A2(∂tu, u) + A2(u, ∂tu) for t > 0. Thus, using equation (1), we
arrive at

∂tw − λ(∂x)w = B(u, u)− [λ(∂x), A2](u, u) + T (u),

for t > 0, where T (u) is the trilinear term given by T (u)
def
= A2(B(u, u), u)+A2(u,B(u, u)),

and where the square brackets stand for the linear-bilinear commutator

[λ(∂x), A2](u1, u2)
def
= λ(∂x)A2(u1, u2)−A2(λ(∂x)u1, u2)−A2(u1, λ(∂x)u2).

We see here that imposing the condition [λ(∂x), A2] = B allows us to replace quadratic by
cubic terms in the equation satis�ed by w. One readily veri�es

F
(
[λ(∂x), A2](u1, u2)

)
(k) = −

�
R
ϕ(k, l)Â2(k, l)û1(k − l)û2(l)dl,
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where ϕ : R2 → C is given by

ϕ(k, l)
def
= −λ̂(k) + λ̂(k − l) + λ̂(l).

Thus, setting Â2 ∈ L∞(R2) equal to Â2(k, l) = B̂(k,l)
ϕ(k,l) , which is well-de�ned by Proposi-

tion A.1, ensures that [λ(∂x), A2] = B. This leads to

∂tw − λ(∂x)w = T (u),

for t > 0. Moreover, we estimate

∥F(A2(u, u))∥Lp ≤
∥∥∥∥�

R
∥Â2∥L∞(R2)|û(k − l)||û(l)|dl

∥∥∥∥
Lp

= ∥Â2∥L∞(R2)

∥∥|û| ∗ |û|∥∥
Lp .

Applying Young's convolution inequality then leads to the estimate (6).
Now, we work with the more advanced change of variable (8), where the trilinear form

A3 on X is de�ned by its action on Fourier space as

F(A3(u1, u2, u3))(k) =

�
R2

Â3(k, l,m)û1(k − l)û2(l −m)û3(m)dmdl,

where Â3 ∈ L∞(R3) is to be determined. We now essentially follow the same steps as
above, keeping the previous de�nition of A2. Inserting the ansatz (8) into (1), we obtain

∂tw − λ(∂x)w = T (u)− [λ(∂x), A3](u, u, u) +Q(u),

for t > 0, where the square brackets stand for the linear-trilinear commutator

[λ(∂x), A](u1, u2, u3)
def
= λ(∂x)A(u1, u2, u3)−A(λ(∂x)u1, u2, u3)−A(u1, λ(∂x)u2, u3)

− A(u1, u2, λ(∂x)u3),

and where the quartic term Q(u) is given by

Q(u)
def
= A3(B(u, u), u, u) +A3(u,B(u, u), u) +A3(u, u,B(u, u)),

which corresponds to expression (10) with

Q̂(k, l,m, n)
def
= Â3(k,m, n)B̂(k −m, l −m) + Â3(k, l, n)B̂(l − n,m− n)

+ Â3(k, l,m)B̂(m,n).
(12)

One readily computes

F
(
[λ(∂x), A3](u1, u2, u3)

)
(k) =

�
R2

ψ(k, l,m)Â3(k, l,m)û1(k − l)û2(l −m)û3(m)dmdl,
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where ψ : R3 → C is given by

ψ(k, l,m)
def
= λ̂(k)− λ̂(k − l)− λ̂(l −m)− λ(m) = −ϕ(k, l)− ϕ(l,m).

On the other hand, we have

F(T (u))(k) =

�
R2

(
Â2(k, l)B̂(k − l,m)û(k − l −m)û(m)û(l)

+ Â2(k, l)B̂(l,m)û(k − l)û(l −m)û(m)

)
dmdl,

=

�
R2

(
Â2(k,m)B̂(k −m, l −m) + Â2(k, l)B̂(l,m)

)
û(k − l)û(l −m)û(m)dmdl.

Thus, setting Â3 ∈ L∞(R3) equal to

(13) Â3(k, l,m) =
1

ϕ(k, l) + ϕ(l,m)

(
B̂(k,m)B̂(k −m, l −m)

ϕ(k,m)
+
B̂(k, l)B̂(l,m)

ϕ(k, l)

)

which is well-de�ned by Proposition A.1, ensures that [λ(∂x), A3](u, u, u) = T (u). Because
Â3 and B̂ are in L∞(R3) and L∞(R2), respectively, we �nd that Q̂ lies in L∞(R4).

Finally, the proof of the inequalities (7) and (11) goes along the same line as the esti-
mate (6): we simply observe that Â3 and Q̂ are in L∞(R3) and L∞(R4), respectively, recall
their expressions (12) and (13), and a direct iteration of Young's inequality for convolution
products leads to a constant Cn > 0 such that

∥u1 ∗ · · · ∗ un∥Lp ≤ Cn∥u1∥Lp1 · · · ∥un∥Lpn , (n− 1) +
1

p
=

n∑
i=1

1

pi
,

which we apply with p1 = p and pi = 1 for i = 2, . . . , n.

2.2 Linear bound

We establish the relevant bound on the linear semigroup generated by the Fourier multiplier
λ̂ de�ned in (2).

Lemma 2.2. Let 1 ≤ p ≤ ∞. There exists C > 0 such that we have

(14) ∥k 7→ etλ̂(k)û0(k)∥Lp ≤ C
∥û0∥Lp∩L∞

(1 + t)
1
2p

.

for all t ≥ 0.
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Proof. Let 1 ≤ q, α ≤ ∞ be such that 1
p = 1

q +
1
α . There exists a constant C > 0 such that

∥k 7→ etλ̂(k)û0(k)∥Lp = ∥k 7→ e−tdk
2
û0(k)∥Lp ≤ ∥û0∥Lq∥k 7→ e−tdk

2∥Lα ≤ C∥û0∥Lq t−
1
2α ,

for t > 0, where we used Hölder's inequality and the standard integral identity
�
R
e−dk

2tdk =

√
π√
dt
, t > 0.(15)

To obtain (14) we combine the above estimate with p = q and α = ∞ for small times
t ∈ (0, 1) with the estimate with q = ∞ and α = p for large times t ≥ 1.

2.3 Closing the nonlinear argument

We prove Theorem 1.1 by �rst applying the change of variables (8) which transforms (1) into
its �normal form� (9). Subsequently, we close a nonlinear argument by iteratively estimating
the right-hand side of the Duhamel formulation associated with (9) in X using the linear
and multilinear bounds, established in Lemma 2.2 and Proposition 2.1, respectively.

Proof � Theorem 1.1. Let 1 ≤ p ≤ ∞ and u0 ∈ X. By standard local existence theory for
semilinear parabolic equations, cf. [14], there exist Tmax ∈ (0,∞] and a unique, maximally
de�ned, classical solution

u ∈ C
(
[0, Tmax), X

)
∩ C1

(
(0, Tmax), X

)
,

of (1) with initial condition u(0) = u0. If Tmax <∞, then it holds limt↑Tmax ∥u(t)∥X = ∞.
Proposition 2.1 then yields a classical solution

w ∈ C
(
[0, Tmax), X

)
∩ C1

(
(0, Tmax), X

)
,

of (9) given by (8). If Tmax <∞, then it holds limt↑Tmax ∥w(t)∥X = ∞.
The template function Θu : [0, Tmax) → R given by

Θu(t) = sup
s∈[0,t]

(
∥û(s)∥L∞ + (1 + s)

1
2 ∥û(s)∥L1

)
,

is continuous, monotonically increasing and satis�es limt↑Tmax Θu(t) = ∞ if Tmax < ∞.
Analogously, we de�ne the template function Θw(t) for w(t).

With the notations of Proposition 2.1, the normal form transform ensures that

(16) ∂tŵ − λ̂ŵ = F(Q(u)).

Using Proposition 2.1 we bound the right-hand side of (8) as

∥û∥Lp ≤ ∥ŵ∥Lp + ∥F(A2(u, u))∥Lp + ∥F(A3(u, u, u))∥Lp ,

≲ ∥ŵ∥Lp + ∥û∥Lp

(
∥û∥L1 + ∥û∥2L1

)
.
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Hence, we obtain

(17) Θu(t) ≲ Θw(t) + Θu(t)
2,

for t ∈ [0, Tmax) with Θu(t) ≤ 1. Using Proposition 2.1 again, we estimate the quartic term
in (16) as

∥F(Q(u))∥Lp∩L∞ ≲ ∥F(Q(u))∥Lp + ∥F(Q(u))∥L∞ ,

≲ ∥û∥3L1 (∥û∥Lp + ∥û∥L∞) .

So, we establish

(18) ∥F(Q(u(s)))∥Lp∩L∞ ≲
Θu(s)

2

(1 + s)
3
2

,

for s ∈ [0, t] with t ∈ [0, Tmax) satisfying Θu(t) ≤ 1.
We now bound the Duhamel formula associated with (16), which reads

ŵ(t, k) = etλ̂(k)ŵ(0, k) +

� t

0
e(t−s)λ̂(k)F(Q(u(s)))(k)ds.

Using the linear bound (14) from Lemma 2.2 and the nonlinear bound (18), we get

∥ŵ(t)∥Lp ≲
∥ŵ(0)∥Lp∩L∞

(1 + t)
1
2p

+

� t

0

∥F(Q(u(s)))∥Lp∩L∞

(1 + t− s)
1
2p

ds,

≲
∥ŵ(0)∥Lp∩L∞

(1 + t)
1
2p

+Θu(t)
2

� t

0

ds

(1 + t− s)
1
2p (1 + s)

3
2

,

≲
∥ŵ(0)∥Lp∩L∞

(1 + t)
1
2p

+
Θu(t)

2

(1 + t)
1
2p

,

(19)

for all t ∈ [0, Tmax) with Θu(t) ≤ 1.
Considering estimate (19) for both p = 1 and p = ∞, and taking the supremum, we

conclude that
Θw(t) ≲ ∥ŵ(0)∥L1∩L∞ +Θu(t)

2.

holds for all t ∈ [0, Tmax) with Θu(t) ≤ 1. Combining the latter with estimate (17), and
applying the estimates (6) and (7) in Proposition 2.1 at time t = 0, we get

Θu(t) ≲ ∥ŵ(0)∥L1∩L∞ +Θu(t)
2 ≲ ∥û0∥L1∩L∞ +Θu(t)

2,

implying that there exists a constant C > 0 such that

(20) Θu(t) ≤ C
(
E0 +Θu(t)

2
)
,

9



for t ∈ [0, Tmax) with Θu(t) ≤ 1, so that taking E0 ≤ 1
4C2 yields Tmax = ∞ and Θu(t) ≤

2CE0 for all t ≥ 0 by continuity of Θu. By interpolation, we deduce that

∥û(t)∥L1 ≲
∥û0∥L1∩L∞

(1 + t)
1
2

, ∥û(t)∥L2 ≲
∥û0∥L1∩L∞

(1 + t)
1
4

,

∥û(t)∥L∞ ≲ ∥û0∥L1∩L∞ .

holds for all t ≥ 0. We can then apply the Hausdor�-Young inequality for p = 2,∞, and
obtain the claimed estimates, which concludes the proof.

3 Relation to the space-time resonances method: integration

by parts in time

3.1 Set-up

Our arguments strongly rely on the properties of the phase function ϕ : R2 → C given by

ϕ(k, l)
def
= −λ̂(k) + λ̂(k − l) + λ̂(l).

We decompose ϕ = ϕre + iϕim, with

ϕre(k, l)
def
= d

(
k2 − (k − l)2 − l2

)
, ϕim(k, l)

def
= ⟨k⟩ − ⟨k − l⟩ − ⟨l⟩.

For the sake of simplicity of exposition, we restrict here to the case B(u, u) = u2.
The arguments for general B̂ ∈ L∞(R2) in (3) follow analogously. We apply the Fourier
transform to (1), and arrive at

∂tû(t, k) = λ̂(k)û(t, k) + û∗2(t, k).(21)

Upon introducing the new coordinate

v(t, k) = ei⟨k⟩tû(t, k),(22)

equation (21) transforms into

∂tv(t, k) = −dk2v(t, k) +
�
R
eϕim(k,y)itv(t, k − y)v(t, y)dy.(23)

The associated Duhamel formulation reads

v(t, k) = e−dk
2tû0(k) +

� t

0

�
R
e−dk

2(t−s)+ϕim(k,y)isv(s, k − y)v(s, y)dyds.(24)

Our next step is to transform the quadratic integral term in (24) into a quartic one
using integration by parts in time. Here, we exploit the fact that the phase function ϕ is
uniformly bounded away from 0 on R2, cf. Appendix A. In the language of the space-time
resonances method of Germain, Masmoudi and Shatah this means that we have an absence
of time resonances, cf. [6, 13, 17].
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3.2 Integration by parts in time

Since ϕim(0, y) ≤ −1 for all y ∈ R, the mapping ψ1 : R2 → R given by ψ1(k, y) = dk2 +
ϕim(k, y)i never vanishes. Thus, for any f : R2 → C satisfying f(k, y) = f(k, k − y) for
(k, y) ∈ R2, we can integrate by parts in time to establish

� t

0

�
R
e−dk

2(t−s)+ϕim(k,y)isv(s, k − y)v(s, y)f(k, y)dyds

=

[�
R

e−dk
2(t−s)+ϕim(k,y)is

dk2 + ϕim(k, y)i
v(s, k − y)v(s, y)f(k, y)dy

]t
s=0

− 2

� t

0

�
R2

e−dk
2(t−s)+(ϕim(k,y)+ϕim(y,z))is

dk2 + ϕim(k, y)i
v(s, k − y)

· v(s, y − z)v(s, z)f(k, y)dzdyds

+

� t

0

�
R

e−dk
2(t−s)+ϕim(k,y)is

dk2 + ϕim(k, y)i
d
(
y2 + (k − y)2

)
v(s, k − y)v(s, y)f(k, y)dyds,

(25)

where we used the equation (23) to express the temporal derivatives ∂sv(s, y) and ∂sv(s, k−
y), and the identity ϕim(k, y) = ϕim(k, k − y) for (k, y) ∈ R2 to perform the substition of
variables y 7→ k − y in one of the integrals.

From Proposition A.1, the function ϕ is bounded away from 0, uniformly with respect
to (k, y) ∈ R2. Thus, the function f1 : R2 → C given by

f1(k, y) =

(
1− dy2 + d(k − y)2

dk2 + ϕim(k, y)i

)−1

=
dk2 + ϕim(k, y)i

ϕ(k, y)
,

is well-de�ned and satis�es f1(k, y) = f1(k, k − y) for all (k, y) ∈ R2. Thus, subsituting
this choice of f into (25) and moving the last integral on the right-hand side of (25) to the
left-hand side, we arrive at the identity

� t

0

�
R
e−dk

2(t−s)+ϕim(k,y)isv(s, k − y)v(s, y)dyds

=

[�
R

e−dk
2(t−s)+ϕim(k,y)is

ϕ(k, y)
v(s, k − y)v(s, y)dy

]t
s=0

− 2

� t

0

�
R2

e−dk
2(t−s)+(ϕim(k,y)+ϕim(y,z))is

ϕ(k, y)
v(s, k − y)v(s, y − z)v(s, z)dzdyds.

(26)

Next, we repeat the procedure of integration by parts in time to transform the cubic
integral term in (26) into a quartic one. Since ϕim(0, y)+ϕim(y, z) ≤ −2 for all (y, z) ∈ R2,
the mapping ψ2 : R3 → R given by ψ2(k, y, z) = dk2+ϕim(k, y)i+ϕim(y, z)i never vanishes.
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Thus, for any g : R3 → C and f : R2 → C satisfying f(k, y) = f(k, k − y), g(k, y, z) =
g(k, y, y − z) and g(k, y, z) = g(k, k − z, y − z) for (k, y, z) ∈ R3, we can integrate by parts
in time to obtain

� t

0

�
R2

e−dk
2t+ψ2(k,y,z)sv(s, k − y)v(s, y − z)v(s, z)f(k, y)g(k, y, z)dzdyds

=

[�
R2

e−dk
2t+ψ2(k,y,z)s

ψ2(k, y, z)
v(s, k − y)v(s, y − z)v(s, z)f(k, y)g(k, y, z)dzdy

]t
s=0

−
� t

0

�
R3

e−dk
2(t−s)+(ϕim(k,y)+ϕim(y,z)+ϕim(z,w))is

ψ2(k, y, z)
v(s, k − y)v(s, y − z)

· v(s, z − w)v(s, w) (2f(k, y) + f(k, y − z)) g(k, y, z)dwdzdyds

+

� t

0

�
R2

e−dk
2t+ψ2(k,y,z)s

ψ2(k, y, z)
d
(
z2 + (y − z)2 + (k − y)2

)
· v(s, k − y)v(s, y − z)v(s, z)f(k, y)g(k, y, z)dzdyds,

(27)

where we used the equation (23) to express the temporal derivatives ∂sv(s, k − y) and
∂sv(s, y−z) and ∂sv(s, z), the identity ϕim(y, z) = ϕim(y, y−z) for (y, z) ∈ R2 to substitute
the variable z by y − z in one of the integrals, and the identity ϕim(k, z) + ϕim(k − z, y −
z) = ϕim(k, y) + ϕim(y, z) for any (k, y, z) ∈ R3 for the substitution of variables (y, z) 7→
(k − z, y − z) in one of the other integrals.

Proposition A.1 yields that the function ψ3 : R3 → C given by ψ3(k, y, z) = ϕ(k, y) +
ϕ(y, z) is bounded away from zero, uniformly with respect to (k, y, z) ∈ R3. Thus, the
function g1 : R3 → C given by

g1(k, y, z) =

(
1− d

z2 + (y − z)2 + (k − y)2

ψ2(k, y, z)

)−1

=
ψ2(k, y, z)

ψ3(k, y, z)
,

is well-de�ned and satis�es g1(k, y, z) = g1(k, y, y−z) and g1(k, y, z) = g1(k, k−z, y−z) for
(k, y, z) ∈ R3. Thus, subsituting this choice of g into (27), setting f(k, y) = −2

ϕ(k,y) in (27)
and moving the last integral on the right-hand side of (27) to the left-hand side we arrive
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at the identity

− 2

� t

0

�
R2

e−dk
2(t−s)+(ϕim(k,y)+ϕim(y,z))is

ϕ(k, y)
v(s, k − y)v(s, y − z)v(s, z)dzdyds

= −2

[�
R2

e−dk
2(t−s)+(ϕim(k,y)+ϕim(y,z))is

ϕ(k, y)ψ3(k, y, z)
v(s, k − y)v(s, y − z)v(s, z)dzdy

]t
s=0

+ 2

� t

0

�
R3

e−dk
2(t−s)+(ϕim(k,y)+ϕim(y,z)+ϕim(z,w))is

ψ3(k, y, z)

(
2

ϕ(k, y)
+

1

ϕ(k, y − z)

)
· v(s, k − y)v(s, y − z)v(s, z − w)v(s, w)dwdzdyds.

(28)

All in all, combining (26) and (28), we can rewrite (24) as

v(t, k) = e−dk
2tû0(k)−

�
R

e−dk
2t

ϕ(k, y)
û0(k − y)û0(y)dy

+ 2

�
R2

e−dk
2tû0(k − y)û0(y − z)û0(z)

ϕ(k, y)ψ3(k, y, z)
dzdy

+

�
R

eϕim(k,y)it

ϕ(k, y)
v(t, k − y)v(t, y)dy

− 2

�
R2

e(ϕim(k,y)+ϕim(y,z))it

ϕ(k, y)ψ3(k, y, z)
v(t, k − y)v(t, y − z)v(t, z)dzdy

+ 2

� t

0

�
R3

e−dk
2(t−s)+(ϕim(k,y)+ϕim(y,z)+ϕim(z,w))is

ψ3(k, y, z)

(
2

ϕ(k, y)
+

1

ϕ(k, y − z)

)
· v(s, k − y)v(s, y − z)v(s, z − w)v(s, w)dwdzdyds.

(29)

3.3 Closing the nonlinear iteration

We close a nonlinear argument by applying standard iterative L1-L∞-estimates to the
Duhamel formulation (29) associated with v, which immediately yields the proof of Theo-
rem 1.1 after undoing the change of variables (22).

Proof � Theorem 1.1. Let u0 ∈ X. By standard local existence theory for semilinear
parabolic equations there exist Tmax ∈ (0,∞] and a unique, maximally de�ned, classical
solution

v ∈ C
(
[0, Tmax), L

1(R) ∩ L∞(R)
)
∩ C1

(
(0, Tmax), L

1(R) ∩ L∞(R)
)
,
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of (24) or, equivalently, of (29) with initial condition v(0) = û0. If Tmax <∞, then it holds
limt↑Tmax ∥v(t)∥L1∩L∞ = ∞.

Consequently, the template function η : [0, Tmax) → R given by

η(t) = sup
s∈[0,t]

(
∥v(s)∥∞ + ∥v(s)∥1

√
1 + s

)
,

is well-de�ned, continuous, monotonically increasing and, if Tmax < ∞, then it satis�es
limt↑Tmax η(t) = ∞.

Assume E0 = ∥û0∥L1∩L∞ ≤ 1 and let t ∈ [0, Tmax) be such that η(t) ≤ 1. Using Young's
convolution inequality, the integral identity (15) and the fact that ϕ and ψ3 are uniformly
bounded away from 0 by Proposition A.1, we estimate the right-hand side of (29) by

∥v(t)∥∞ ≲ E0 +
η(t)2√
1 + t

+

� t

0

η(s)2

(1 + s)
3
2

ds ≲ E0 + η(t)2,

and

∥v(t)∥1 ≲
E0√
1 + t

+
η(t)2

1 + t
+

� t

0

η(s)2
√
t− s(1 + s)

3
2

ds ≲
E0 + η(t)2√

1 + t
.

Combining the latter two estimates yields a constant C ≥ 1 such that for all t ∈ [0, Tmax)
with η(t) ≤ 1 it holds

η(t) ≤ C
(
E0 + η(t)2

)
,

so that E0 ≤ 1
4C2 yields Tmax = ∞ and η(t) ≤ 2CE0 for all t ≥ 0.

Thus, undoing the coordinate transform implies that there exist constants K, δ > 0
such that for each u0 ∈ X satisfying E0 := ∥u0∥X < δ there exists a unique global classical
solution

u ∈ C
(
[0,∞), X

)
∩ C1

(
(0,∞), X

)
,

of (1) with initial condition u(0) = u0 obeying the estimates

∥u(t)∥2 ≤ KE0(1 + t)−
1
4 , ∥u(t)∥∞ ≤ ∥û(t)∥1 ≤ KE0(1 + t)−

1
2 , ∥û(t)∥∞ ≤ KE0,

for all t ≥ 0, which completes the proof.

A Phase study

We derive lower bounds on the phase function ϕ : R2 → C given by

ϕ(k, l)
def
= −λ̂(k) + λ̂(k − l) + λ̂(l).
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Proposition A.1. There exists a constant ϕ0 > 0 such that

|ϕ(k, l)| ≥ ϕ0, (k, l) ∈ R2,

|ϕ(k, l) + ϕ(l,m)| ≥ ϕ0, (k, l,m) ∈ R3.

Proof. As before, we decompose ϕ into its real and imaginary part as ϕ = ϕre + iϕim with

ϕre(k, l) = d
(
k2 − (k − l)2 − l2

)
, ϕim(k, l) = ⟨k⟩ − ⟨k − l⟩ − ⟨l⟩.

First, if (k, l) ∈ R2 satis�es |l| ≥ 1
2 and |k − l| ≥ 1

2 , then it holds

|ϕre(k, l)| = 2d|l||k − l| ≥ d

2
> 0.

On the other hand, if (k, l) ∈ R2 satis�es |l| ≤ 1
2 , then the convexity of g : R → R, g(k) =

⟨2k⟩ yields a constant δ > 0 such that

ϕim(k, l) = g

(
1

2
l +

1

2
(k − l)

)
− ⟨l⟩ − ⟨k − l⟩

≤ 1

2
g(l) +

1

2
g(k − l)− ⟨l⟩ − ⟨k − l⟩ ≤

√
1

4
+ l2 −

√
1 + l2 < −δ.

Similarly, we �nd for (k, l) ∈ R2 with |k− l| ≤ 1
2 that ϕim(k, l) < −δ. Moreover, we showed

in passing that ϕim(k, l) is negative for any (k, l) ∈ R2. We conclude that ϕ is uniformly
bounded away from 0 on R2.

Subsequently, we consider the mapping ψ : R3 → C given by ψ(k, l,m) = ϕ(k, l) +
ϕ(l,m). If (k, l,m) ∈ R3 is such that sgn(l) = sgn(k − l), sgn(m) = sgn(l − m) and
|l|, |k − l|, |m|, |l −m| ≥ 1

2 , then it holds

Re(ψ(k, l,m)) = ϕre(k, l) + ϕre(l,m) = 2d (l(k − l) +m(l −m)) ≥ d > 0.

On the other hand, if (n, l) ∈ R2 is such that n and n− l have opposite sign, then we have
|n| ≤ |l|, implying ⟨l⟩ ≥ ⟨n⟩. So, we have ϕim(n, l) ≤ −1. Hence, if (k, l,m) ∈ R3 is such
that sgn(l) ̸= sgn(k − l) or sgn(m) ̸= sgn(l −m), then it holds

Im(ψ(k, l,m)) = ϕim(k, l) + ϕim(l,m) ≤ −1 < 0,

using that ϕim is negative on R2. Finally, if (k, l,m) ∈ R3 satis�es |l| ≤ 1
2 , |k − l| ≤ 1

2 ,
|l −m| ≤ 1

2 or |m| ≤ 1
2 , then we have

Im(ψ(k, l,m)) = ϕim(k, l) + ϕim(l,m) ≤ −δ,

using that ϕim is negative on R2 and it holds ϕim(n, l) ≤ −δ for (n, l) ∈ R2 with |n− l| ≤ 1
2

or |n| ≤ 1
2 (as derived above). We conclude that ψ is uniformly bounded away from 0 on

R3.
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