KIT | KIT-Bibliothek | Impressum | Datenschutz

Bayesian Cramér-Rao Lower Bound for Magnetic Field-Based Localization

Siebler, Benjamin ; Sand, Stephan; Hanebeck, Uwe D. 1
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract:

In this paper, we show how to analyze the achievable position accuracy of magnetic localization based on Bayesian Cramér-Rao lower bounds and how to account for deterministic inputs in the bound. The derivation of the bound requires an analytical model, e.g., a map or database, that links the position that is to be estimated to the corresponding magnetic field value. Unfortunately, finding an analytical model from the laws of physics is not feasible due to the complexity of the involved differential equations and the required knowledge about the environment. In this paper, we therefore use a Gaussian process (GP) that approximates the true analytical model based on training data. The GP ensures a smooth, differentiable likelihood and allows a strict Bayesian treatment of the estimation problem. Based on a novel set of measurements recorded in an indoor environment, the bound is evaluated for different sensor heights and is compared to the mean squared error of a particle filter. Furthermore, the bound is calculated for the case when only the magnetic magnitude is used for positioning and the case when the whole vector field is considered. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000154188
Veröffentlicht am 30.12.2022
Originalveröffentlichung
DOI: 10.1109/ACCESS.2022.3223693
Scopus
Zitationen: 2
Web of Science
Zitationen: 2
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 2169-3536
KITopen-ID: 1000154188
Erschienen in IEEE Access
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Band 10
Seiten 123080–123093
Vorab online veröffentlicht am 21.11.2022
Schlagwörter Bayesian Cramér-Rao lower bound, finger-printing, Gaussian process, indoor localization, magnetic field-based localization, particle filter
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page