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a b s t r a c t 

There is an ever-growing need to study the optical response of complex photonic systems involving multi- 

scattering phenomena with strong near-field interactions. Since fully numerical methods often imply high 

computational costs, semi-analytical methods are preferred. However, most semi-analytical methods are 

commonly plagued by what is known as the problem of the Rayleigh Hypothesis: they typically use an- 

alytical representations of the scattered fields that are invalid in the near-field region of the scatterer. 

In this work, we present an alternative representation scheme for the scattered fields based on a distri- 

bution of multipolar sources across the topological skeleton of the scatterer. We demonstrate how such 

a representation overcomes the problem of the Rayleigh Hypothesis for scatterers of arbitrary geometry. 

In that regard, our work enriches the available toolkit of semi-analytical methods in light-scattering by 

pushing decisively against one of the fundamental limitations of the existing methods. 

© 2022 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

In 1907, Lord Rayleigh studied the diffraction of waves from 

ratings [1] . His famous hypothesis back then was that the re- 

ected field by the grating could be represented everywhere above 

he grating -even inside the region of the corrugations- as a su- 

erposition of propagating and evanescent plane waves, propagat- 

ng/decaying in discrete directions corresponding to the diffraction 

rders. This hypothesis was used to enforce the interface condi- 

ions at the surface of the grating to solve the diffraction prob- 

em. Since then, it has remained known in scientific history as the 

ayleigh Hypothesis, and it has been imbued with a more gen- 

ralized content that concerns the region of validity of analytical 

epresentations of fields. Initially constituting a topic of scientific 

ispute, the Rayleigh Hypothesis has been revisited multiple times 

rom a mathematical, physical, or engineering point of view. Today, 

ore than a century later, it remains an active topic of scientific 

esearch [2–24] . 

The first major mathematical treatment of the problem of the 

ayleigh Hypothesis came several decades later when Millar high- 

ighted the critical role of the analytic properties of the fields 

i.e., related to their analytic continuation within the domain of 
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he scatterer) [2] . Since then, physicists and engineers have strug- 

led to explicitly capitalize on the mathematical achievements 

nd the state-of-the-art understanding of the problem. They also 

ave been working to develop alternative practical methods to 

emi-analytically (i.e., not purely numerically) solve wave scatter- 

ng problems that are not plagued with spurious effects related to 

he problem of the Rayleigh Hypothesis, as has usually been the 

ase with the existing conventional methods. 

Today, there is a growing need for the efficient simulation 

f complex photonic systems. Complex scattering phenomena 

re prominent in diverse research fields related to optical sen- 

ors [25,26] , solar cells [27–30] , optoelectronic devices such as 

ight emitting diodes [31] , disordered media [31,32] , metamate- 

ials [33,34] , etc. Novel semi-analytical methods are being de- 

eloped to efficiently simulate such complex photonic systems 

35–43] . Quite often, the fully-numerical simulation of such sys- 

ems, which are frequently characterized by a disparity of the in- 

olved optical length scales, can be expensive, if possible at all. 

emi-analytical methods usually attempt to fill that gap. Their 

rimary advantage is an analytical representation of the fields 

cross an extended region of space. This enables the efficient semi- 

nalytical modeling of complex wave interactions in the simulated 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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ystem, which helps to reduce the computational burden tremen- 

ously. Therefore, it is evident that the problem of the Rayleigh 

ypothesis, which is exactly related to the region of validity of the 

nalytical representations of the fields, plays a pivotal role in all 

uch semi-analytical methods since it directly affects their major 

dvantage as a method. 

A year after the seminal work of Lord Rayleigh, Gustav Mie 

olved the canonical problem of light scattering by a sphere [44] . 

s a representation of the scattered field, he employed a multi- 

olar series where the origin was the center of the sphere. That 

onstituted a natural representation for his case due to the geom- 

try of the scatterer. However, the paradigm of Mie’s representa- 

ion still resonates today due to its strength. Today, we commonly 

eep employing the same representation Mie used to treat scat- 

erers of non-spherical geometry [45,46] . However, here comes the 

evil of the Rayleigh Hypothesis indoors; it is known that such a 

epresentation is guaranteed to be valid only outside a sphere that 

ircumscribes the scatterer. 

Nevertheless, representations that unlock the access to the 

ear-fields of the scatterers are essential for modeling multi- 

cattering phenomena involving scatterers placed in proximity, in- 

ide that problematic near-field region of each other. For example, 

odeling the electromagnetic coupling of nanoemitters such as 

olecules/quantum dots with nanoantennas or modeling the elec- 

romagnetic coupling of an array of tightly packed nanoparticles 

hose circumscribing spheres intersect with each other are fur- 

her examples where semi-analytical modeling methods, employ- 

ng Mie’s conventional representation, usually fail to address the 

ayleigh Hypothesis issue, which ends up posing as a fundamental 

hallenge to the applicability of the method itself. Moreover, var- 

ous semi-analytical methods exist for solving simpler scattering 

roblems related to individual scatterers [47–50] . Enforcing cor- 

ectly, in some way (frequently with a point-matching technique), 

he boundary conditions at the interface of the scatterer plays a 

entral role in many of these methods. Hence, dealing with the 

roblem of the Rayleigh Hypothesis, i.e., adopting representations 

or the fields whose region of validity includes the surface of the 

catterers, is, again, of fundamental importance when it comes to 

he point of the semi-analytical method being functional. 

The effects of the Rayleigh Hypothesis on conventional repre- 

entations of the scattered fields have been explored. A plethora of 

ethods employing alternative representations, usually based on 

 scheme with a spatial distribution of discrete sources, has been 

eported in the literature, including the Discrete Sources Method 

DSM), the Null Field Method with Discrete Sources (NFM-DS), 

he Multiple Multipole Method (MMM), the Method of Auxilliary 

ources (MAS), the Global Polarizability Matrix Method (GPMM) 

39,49,51–55] . Those alternative methods provided improved rep- 

esentation schemes that helped to model, with greater accuracy, 

he scattering from particles with extreme geometries in practice. 

hey had their respective limitations, but, arguably, their most im- 

ortant problem was the lack of much evidence, maybe apart from 

ntuition or some empirical rules [55] , for the optimal placement of 

he discrete sources representing the scattered fields from a parti- 

le of arbitrary geometry. 

In this work, we demonstrate that the distribution of multipo- 

ar sources across the topological skeleton of a scatterer constitutes 

 representation of the scatterer’s field that transcends the prob- 

em of the Rayleigh Hypothesis, i.e., it can provide a valid repre- 

entation of the fields everywhere outside the scatterer. The article 

s organized as follows: We begin with the theoretical statement 

nd discussion of the problem of the Rayleigh Hypothesis. Then, 

e highlight the important aspects of the analytic properties of 

he fields before we introduce our proposed representation based 

n a distribution of sources across the topological skeleton of the 

catterer, which constitutes a descriptor of its shape [56,57] . Fur- 
2

hermore, we provide a numerical example with a comparison of 

he method against the conventional representation, demonstrate 

he advantages of the method, and discuss some related practical 

spects. Finally, we discuss how our method can improve compu- 

ational strategies in multi-scattering phenomena. 

. Theoretical treatment of the scattering problem of the 

ayleigh Hypothesis 

In this section, we will theoretically introduce the scattering 

roblem of the Rayleigh Hypothesis. Afterwards, we briefly re- 

iew the state-of-the-art treatment of the problem. Finally, we 

ill approach it in our proposed way that helps to overcome the 

undamental limitations of the Rayleigh Hypothesis. In particular, 

e will theoretically introduce a representation of the scattered 

elds based on multipolar sources distributed across the topologi- 

al skeleton of the scatterer. This particular distribution grants ac- 

ess to the fields in the near-field region of the scatterer, which 

nder conventional representation schemes is not the case. 

.1. Theoretical statement and discussion of the problem 

Let us consider a surface S that may enclose the scatterer 

mbedded in free space (see Fig. 1 ). An extension to the case 

f scatterers embedded in linear, isotropic, and homogeneous 

edia is trivial. By making use of a Stratton-Chu-type integral 

50,58,59] (see also Appendix A ), we can represent the scattered 

eld E sca (which we always consider being monochromatic) every- 

here in the physical domain, i.e., in the free space V S out outside 

he surface S, in the following way: 

 sca (r ) ≡
∫ 

S 

↔ 

G (r , r 0 ) ·
[

ˆ n (r 0 ) × ∇ × E sca (r 0 ) 
]

+ ∇ ×
↔ 

G (r , r 0 ) ·
[

ˆ n (r 0 ) × E sca (r 0 ) 
]
d 

2 r 0 , r ∈ V S out (1) 

here ˆ n (r 0 ) is the normal unit vector of S pointing inside V S out and 

 

G (r , r 0 ) is the Dyadic Green’s Function (DGF) of the free space that

ives the field induced at point r from a unit point source placed at 

 0 . Equation (1) constitutes a representation of the scattered field 

s the collective emission product of a radiating electric and mag- 

etic surface current density distributed across the surface S of the 

catterer. 

However, following Morse & Feshbach, the DGF can be ex- 

anded in terms of the eigenmodes of the Helmholtz equation in 

ree space [60] . This expansion offers alternative ways to represent 

he scattered fields with analytical expansions into such eigen- 

odes. The advantage of such representations is that they pro- 

ide analytical access to the scattered fields into a big part of the 

hysical domain V S out , which is rather beneficial when it comes 

o the analytical modeling of complex light-matter interactions. At 

he core of the Rayleigh Hypothesis is this region of validity of 

uch analytical representations of the scattered fields. Dealing with 

he Rayleigh Hypothesis problematic practically means pushing the 

oundaries of the region of validity of such representations to in- 

lude the whole physical domain V S out . 

Let us further discuss the physics involved to elucidate the 

ayleigh Hypothesis problematic better. There are eleven coordi- 

ate systems under which the monochromatic scalar Helmholtz 

quation in three dimensions is separable, with two introduced 

eparation constants related to a couple of commuting symme- 

ry operators in the enveloping algebra of the Helmholtz operator 

or each such coordinate system [60,61] . The three most common 

ut of the eleven coordinate systems are the Cartesian, cylindri- 

al, and spherical. Once employed to separate the homogeneous 

ave equation, they give its Cartesian, cylindrical, and spherical 

igenmodes, which are the plane, cylindrical, and spherical waves, 
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Fig. 1. The regions of validity of analytical representations of the scattered fields in terms of series of a) plane waves, b) cylindrical waves, and c) spherical waves. The 

scatterer is denoted with a grey color (bounded by surface S). With brown color, we denote the region inside the scatterer that encloses all the singularities of the analytic 

continuation of the scattered field inside the scatterer (bounded by surface S ′ ). With green color, we denote the part of the physical domain where the representation is 

valid. The red color indicates the part of the physical domain where the representation is invalid. The domains of validity are bounded by a planar surface (a), or cylindrical 

surface (b), or spherical surface (c), that is indicated by the dashed lines above and is tangential to the singular surface S ′ , and is defined as ξ (3) = max 
{
ξ (3) 

s 

}
(see text). 

Representations based on expansions with respect to translated/rotated coordinate systems generally have an altered region of validity. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.). 
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2

b

H

t

ξ
v

espectively. For those three cases, the corresponding commuting 

ymmetry operators can be (P x , P y ) , (P z , J z ) , and (J 2 , J z ) , respec-

ively, with P being the linear momentum operator and J being 

he total angular momentum operator. If (ξ (1) , ξ (2) , ξ (3) ) are the 

hree coordinates of our coordinate system, the two commuting 

perators will be associated with two of those coordinates, let’s 

ay with ξ (1) , ξ (2) (see p.829 of [60] ). For example, in the Carte- 

ian coordinate system (x, y, z) the coordinates (x, y ) are associated 

ith the commuting symmetry operators (P x , P y ) , whereas in the 

ylindrical coordinate system ( ρ, φ, z) the coordinates ( φ, z) are as-

ociated with the commuting symmetry operators (P z , J z ) , and in 

he spherical coordinate system ( r , θ, φ) the coordinates ( θ, φ) are

ssociated with the commuting symmetry operators (J 2 , J z ) . 

For our purposes, the important thing to notice here is that 

ue to the point singularity at r = r 0 , the expansion of the DGF in

erms of such eigenmodes becomes discontinuous across the sur- 

ace that is defined by fixing the third coordinate ξ (3) , i.e., the one 

hat is not associated with the two commuting symmetry oper- 

tors, to that of the respective coordinate of the position of the 

oint source ξ (3) 
0 

. So, the representation of the DGF in terms of the 

igenmodes of the homogeneous wave equation associated with 

he considered coordinate system will be discontinuous across the 

urface ξ (3) = ξ (3) 
0 

(see Eq. 7.2.63 in [60] ) and will take different 

orms for the two regions, ξ (3) < ξ (3) 
0 

and ξ (3) > ξ (3) 
0 

, so that the 

ecessary condition for the regularity of the fields in all space 

part from r = r 0 , plus the radiation boundary conditions at infin- 

ty, are respected. Hence, we can expand the DGF in converging 

eries of such plane, cylindrical, or spherical waves, although the 

onvergence becomes poor due to the point singularity once we 

o close to the ξ (3) = ξ (3) 
0 

surface. Such expansion will have the 

ollowing branch-form: 

 

 (r , r 0 ) 
ξ≡

⎧ ⎪ ⎨ 

⎪ ⎩ 

∑ 

α,ξ1 ξ2 

ξ
↔ 

G 

−
α,ξ1 ξ2 

(r , r 0 ) , ξ (3) < ξ (3) 
0 

∑ 

α,ξ1 ξ2 

ξ
↔ 

G 

+ 
α,ξ1 ξ2 

(r , r 0 ) , ξ (3) > ξ (3) 
0 

(2) 

here we use the symbol ξ that takes the values ( p , c , s ) in order 

o refer to representations of the DGF in terms of expansions in 

lane, cylindrical, and spherical waves respectively. The expansion 

bove involves a summation over the three eigenvalues with the 

wo of them being ξ1 , ξ2 , i.e., the two eigenvalues that correspond 

o the two commuting symmetry operators of the ξ -coordinate 

ystem and the third one, α, accounting for the vectorial nature 

f the eigenmodes, i.e., referring to the TE, TM modes where the 

lectric (magnetic) field has no component along the vector that 

as used to construct the vectorial eigenmodes from the corre- 
3 
ponding scalar ones (see Eq. 13.1.6 in [60] ). Let us note that the 

igenvalues ξ1 , ξ2 may not be discrete and, in that case, the sum- 

ation will be an integral over such continuous eigenvalue. For ex- 

mple, such is the case of the eigenvalues of the projection of the 

inear momentum operator P on some axis. Note, also, that there 

s always a fourth eigenvalue, the wavenumber of the medium, 

 , corresponding to the operator P 

2 . However, we suppress this 

igenvalue for brevity reasons since it is fixed as long as we are 

onsidering monochromatic fields. Specific expressions of such ex- 

ansions of the DGF in the ξ -eigenmode series are presented in 

ppendix B . 

The problem of the Rayleigh Hypothesis becomes clear now. 

ssuming that the surface S of our scatterer is bounded by the 

wo planes z = min { z 0 } , z = max { z 0 } , or by the cylindrical surface 

= max { ρ0 } , or by the spherical surface r = max { r 0 } , then, in view 

f Eqs. (1), (2) , we can see that, as long as we pick a single branch

f the above expansion of the DGF, a representation of the scat- 

ered field in terms of series of plane waves guarantees access 

o the fields in the regions z > max { z 0 } (or z < min { z 0 } ). In con-

rast, a representation of the scattered field in terms of a series 

f cylindrical waves (with an origin corresponding to that of the 

oordinate system) guarantees access to the fields in the region 

> max { ρ0 } (i.e., outside the infinite cylinder that circumscribes 

he scatterer). Finally, a representation of the scattered field in 

erms of a series of spherical waves (again, with and origin cor- 

esponding to that of the coordinate system) guarantees access to 

he fields in the region r > max { r 0 } (i.e., outside the sphere that 

ircumscribes the scatterer). Hence, these representations are only 

alid inside a part ˜ V S out of the physical domain V S out . The remain- 

ng part of the physical domain, V S out \ ̃  V S out , corresponds to a “re- 

tricted space” where the validity of our representation of the scat- 

ered field is not guaranteed. Consequently, a representation of the 

cattered field in terms of plane/cylindrical/spherical waves consti- 

utes a natural choice for the case of planar/cylindrical/spherical- 

ike scatterers, respectively, in the sense that it allows for a valid 

epresentation of the scattered fields in the biggest part of the em- 

edding medium. 

.2. The role of the analytic properties of the scattered fields 

Importantly, the analytic properties of the scattered fields have 

een at the core of the discussion involved around the Rayleigh 

ypothesis problematic. 

First of all, let us highlight that it is rather frequently the case 

hat a series representation of the scattered field in terms of such 

-eigenmodes that we described in the previous subsection pro- 

ides access to some part of that “restricted volume” V S out \ ̃  V S out . 
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his implies that the above-mentioned boundaries are generally 

ot the “hard boundaries” of the region of validity of such series 

epresentations. It has been mathematically shown that the po- 

ition of the “hard boundaries” is related to the analytic proper- 

ies of the scattered field [10] . Specifically, Kyurkchan et al. note 

n [9,10] the following: 1) The scattered field, being a solution of 

he Helmholtz equation, hence a ramifying analytic function, has a 

nique analytic continuation inside the non-physical domain up to 

 convex envelope inside S containing the singularities of the an- 

lytic continuation. 2) Such singularities of the analytic continua- 

ion of the scattered field inside S always exist since the scattered 

eld is an analytic function that vanishes at infinity according to 

he radiation condition. 3) The position of the singularities inside 

depends on the geometry of the surface S and on the position 

f potential singularities of the excitation source, which appear 

s image-singularities of the analytic continuation of the scattered 

eld inside the volume of the scatterer. Such image-singularities 

ay appear from the presence of singularities inside neighboring 

catterers as well. This can render the task of locating the presence 

f singularities rather cumbersome and, most importantly, depen- 

ent on the actual scattering scenario in which the individual scat- 

erer gets involved. 

Two important concluding points have been highlighted by 

yurkchan et al. regarding the Rayleigh Hypothesis under the 

rism of the analytic continuation properties of the scattered fields 

9,10] . 

The first point is that a series representation of the scattered 

eld in terms of ξ -eigenmodes converges only in the region ξ (3) > 

ax 

{ 
ξ (3) 

s 

} 
, where ξ (3) 

s refers to the ξ (3) coordinate of the singu- 

arities inside S. This is, in general, a less strict condition compared 

o the one that we had initially since for a smooth surface S we 

ave that max 

{ 
ξ (3) 

s 

} 
< max 

{ 
ξ (3) 

0 

} 
. Actually, one of the first treat- 

ents of the original Rayleigh Hypothesis issue showed, by mak- 

ng use of conformal mapping transformations to study the an- 

lytic continuation properties of the fields, that the field that is 

iffracted by a sinusoidal grating with profile y = b cos (kx ) , can be

epresented everywhere in the physical domain -even inside the 

rea of the corrugations- as a series of plane waves, only under 

he condition of kb < 0 . 448 . Satisfying this condition corresponds 

o the case where all the singularities of the analytic continua- 

ion of the fields are located below the plane y = −b [2,5,10] . Re-

ently, it has been demonstrated with numerical simulations that, 

or the case of spheroids, an expansion of the scattered field in 

erms of a series of spherical waves emanating from the origin of 

he scatterer is valid only outside the sphere circumscribing the 

wo foci of the spheroid, instead of the whole spheroid [23,24] . 

nd this is because the foci of the ellipse coincide with the sin- 

ularities of the analytic continuation of the fields inside such a 

catterer, as predicted by the above theory [9,10] . Let us also note 

ere, though, another important thing that those numerical simu- 

ations revealed. When such series representations of the scattered 

eld in ξ -eigenmodes finally fail to represent the fields with va- 

idity, they usually fail blatantly. The errors inside this “restricted 

olume” become orders of magnitude larger than the actual fields 

ecause there the series of the representation diverges due to the 

resence of the singularities [23,24] . This first point, highlighted by 

yurkchan et al., sheds light on the case of the Rayleigh Hypoth- 

sis that plagues representations of the scattered field based on a 

eries of plane waves or a series of localized cylindrical/spherical 

aves (with fixed origin). 

In Fig. 2 , we illustrate the regions of validity of such represen- 

ations of the scattered field for the three cases. It is important 

o note that such analytical expansions of the fields with respect 

o rotated/translated coordinate systems generally change the re- 

ions of validity of the representations of the scattered field. Along 
4

his line, recently, there have been several attempts to circum- 

ent the Rayleigh Hypothesis problematic by alternative round- 

bout ways that involve an interplay of different representations 

f the scattered fields, i.e., employing expansions into eigen-waves 

ith respect to appropriately translated/rotated coordinate sys- 

ems. Specifically, in [62–64] , an interplay between representa- 

ions in terms of spherical and plane waves is used to access the 

elds inside the circumscribing sphere of the scatterers. In that 

ase, modeling their coupling to planar interfaces or neighboring 

catterers in close proximity becomes feasible. That work demon- 

trated that a plane wave representation of the scattered fields 

ould unlock access to an arbitrarily oriented half-space tangen- 

ial to the scatterer. Furthermore, in [65] , an interplay between 

epresentations of the scattered field in terms of spherical waves 

ith displaced origins was employed to move the spherical bound- 

ries of the regions of validity of the representations arbitrarily. 

hat allows for the solution of the scattering problem of a dimer 

f disks with high aspect ratios placed at closed proximity. Such 

pproaches involve analytical transformations among the different 

epresentations employed to solve the scattering problem, and this, 

lthough analytically relatively trivial, numerically may be chal- 

enging [64] . In any case, such approaches to the problem of the 

ayleigh Hypothesis avoid dealing with the core of the problem 

ince they maintain problematic representations of the scattered 

elds that are not valid everywhere needed in the physical domain. 

rguably, such an interplay between different field representations 

o access the fields into different sub-regions of the physical do- 

ain V S out (which allows for the proper treatment of different parts 

f the scattering problem) increases the complexity of the problem 

nd may lead to unnecessary computational overhead also. 

The second highlighted point is that an alternative integral rep- 

esentation of the scattered field in terms of radiation emanating 

rom distributed current sources across a surface S ′ exists. Such 

epresentation provides full access to the fields in the entire phys- 

cal domain V S out , as long as the support of the currents, i.e., sur- 

ace S ′ , circumscribes all the singularities of the analytic continu- 

tion of the scattered field, and gets circumscribed by the surface 

f the scatterer, S, too. In Appendix A , we show how a current dis-

ribution over such a more compact (with which, in this work, we 

ean more compressed/economical) support of currents, S ′ , than 

he surface S where originally the current sources are distributed 

n the representation of Eq. (1) , can be used to represent with va-

idity the scattered field everywhere inside the physical domain. It 

as been numerically demonstrated in several cases that the semi- 

nalytical methods on scattering problems, which adopt such an 

ntegral representation of the scattered field, have a stable perfor- 

ance only when the auxiliary radiating current sources are dis- 

ributed over such a closed contour that circumscribes all the sin- 

ularities of the analytic continuation of the fields inside the non- 

hysical domain [10,66] . An algebraic theoretical framework that 

ocates a priori the position of the shape-related singularities in- 

ide a scatterer of arbitrary geometry has been developed [9,10] . 

omputational methods such as MAS or MMM adopt such a repre- 

entation scheme for the scattered field as the radiation emanating 

rom distributed current sources over a surface S ′ inside the scat- 

erer [55,67,68] . Initially, a substantial problem with these methods 

as the optimal placement of these auxiliary sources inside the 

catterer. The analytic properties of the continuation of the fields 

nside the scatterer provided significant guidance in that regard. 

owever, one could claim that, in practice, the scientific commu- 

ity has barely capitalized on this analysis so far, probably due to 

he mathematical complexity of the task of locating the singulari- 

ies of the analytic continuation of the fields in the case of an ar- 

itrary scattering problem. As we mentioned already, apart from 

he standard geometry-related singularities, extra image singulari- 

ies related to the field exciting the scatterer may also exist. This 
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Fig. 2. Representations based on the topological skeleton of the scatterer: a) Illustration of the geometry of the problem in the 2D case, with the blue line being the outer 

surface of the scatterer S and with the red line being the topological skeleton of the scatterer � where the multipolar sources of the proposed representation of the scattered 

field are placed. b) The effect of the discretization of the topological skeleton of a prolate spheroid on the region of validity of the representation (green region). The cases 

of 1,2,3, and 6 origins of multipolar expansions (red stars) compared to the full topological skeleton, are illustrated. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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a

ould imply the need for varying representation schemes adapted 

ach time to the scattering scenario that the scatterer gets involved 

n, which constitutes an undesired complication. 

In what follows, we provide a general solution for the repre- 

entation of the scattered fields that provides a path to overcome 

he problem of the Rayleigh Hypothesis while transcending such 

onsiderations of the analytic properties of the fields. Importantly, 

ur method shall provide an all-around representation that can be 

mployed to represent the fields radiated by a scatterer of arbitrary 

eometry , being involved in an arbitrary scattering scenario . 

.3. Introduction of the representation in terms of multipolar sources 

istributed across the topological skeleton of the scatterer 

We need to take just a couple of small steps forward to tweak 

he integral representation of the scattered field already given by 

qs. (1), (2) and introduce a representation that is valid inside the 

hole physical domain V S out . Such a representation will be tailored 

o the arbitrary shape of the particular scatterer. It will provide a 

alid representation for any scattering scenario involving the par- 

icular scatterer while transcending the need for considerations re- 

ated to the analytic properties of the fields. 

The first step is to consider the following change of reference 

rame for the DGF, which consists of a shift of the origin of the 

ultipolar sources by a displacement r σ (r 0 ) , which depends on 

ach r 0 point of the surface of the object: 

 

 (r , r 0 ) = 

↔ 

G (r − r σ (r 0 ) , r 0 − r σ (r 0 )) , (3) 

here: 

 σ (r 0 ) = r 0 − ˆ n (r 0 ) R (r 0 ) σ (r 0 ) , (4) 

ith R (r 0 ) being the radius of the largest circle (sphere) that can 

e inscribed inside S, without intersecting it, tangentially to point 

 0 , and σ (r 0 ) is some function that takes values within the range

0,1] (see Fig. 2 a). Then, by introducing such a change of reference 

rame and using, also, exclusively the second branch of the expan- 

ion of the DGF of Eq. (2) in terms of either cylindrical waves (for

D scatterers, translationally invariant along the z-axis) or spheri- 

al waves (for 3D scatterers), we get the following representation 

f the scattered field that is valid everywhere inside the physical 
5 
omain V S out : 

 sca (r ) 
ξ≡

∑ 

α,ξ1 ξ2 

∫ 
S 

ξ
↔ 

G 

+ 
α,ξ1 ξ2 

(r − r σ , r 0 − r σ ) ·
[

ˆ n × ∇ × E sca (r 0 ) 
]

+ ∇ × ξ
↔ 

G 

+ 
α,ξ1 ξ2 

(r − r σ , r 0 − r σ ) ·
[

ˆ n × E sca (r 0 ) 
]
d 

2 r 0 

= 

∑ 

α,ξ1 ξ2 

∫ 
S 

ξB α,ξ1 ξ2 
(r 0 ) 

ξ F (3) 
α,ξ1 ξ2 

(r − r σ (r 0 ))d 

2 r 0 , (5) 

for r ∈ V S out , 

here ξB α,ξ1 ξ2 
(r 0 ) are some complex amplitude coefficients that 

re to be calculated according to the formula above, and as 

F (3) 
α,ξ1 ξ2 

(r − r σ (r 0 )) we denoted the spatial representation of ei- 

her of the radiating Vector Cylindrical Harmonics (VCH), ( ξ = c ), 

f Vector Spherical Harmonics (VSH), ( ξ = s ), with origin at r =
 σ (r 0 ) . Note that in the case of 2D scatterers, the surface integral

bove becomes a contour integral (see Appendix C for explicit ex- 

ressions for the 2D and 3D cases). We ended up with a represen- 

ation scheme of the scattered field in terms of a distribution of 

ultipolar sources over a closed surface inside the scatterer. Let us 

ighlight that the position of each such elementary source is de- 

ermined according to Eq. (4) relevant to the position of a point 

 0 on the surface S of the scatterer (see Fig. 2 a), and that its am-

litude ξB α,ξ1 ξ2 
(r 0 ) is also directly specified by the values of the 

angential electric and magnetic scattered fields at the same point 

 0 on the surface S of the scatterer (see Eqs. (C.2) and (C.6) ). How-

ver, even though we assign them such specific values here, it is 

mportant to note that those amplitudes are generally not unique 

see Appendix A ). 

In this way, we have achieved a representation of the scattered 

eld that is valid everywhere inside the physical domain V S out . And 

e achieved it by picking a representation for the individual ra- 

iation of each surface current 
[

ˆ n × E sca (r 0 ) 
]
, 
[

ˆ n × ∇ × E sca (r 0 ) 
]

at 

ach point r 0 that is valid everywhere in V S out . And we achieved 

his by placing the center of the expansion of the DGF, which acts 

n those particular surface currents, somewhere on top of a lin- 

ar segment inside the scatterer (see the green linear segment in 

ig. 2 a) that is the locus of the centers of all circles (spheres in the

D case) that are tangent on S at r 0 , and that do not intersect S at

ny other point. In this case, the expansion of the second branch 
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f the employed DGF in Eq. (2) is valid everywhere in | r − r σ | >
 r 0 − r σ | , and, hence, everywhere in V S out . By hiding in this way,

t the interior of the scatterer, the surfaces where the branch of 

q. (2) lies for each individual surface current, | r − r σ | = | r 0 − r σ |
see the yellow dashed circles in Fig. 2 a), we get a representation

f E sca (r ) that is valid everywhere in V S out . If the representation of

he radiation of each surface current is valid everywhere in V S out , 

hen so does the collective radiation emanating from all those sur- 

ace currents, i.e., so does the representation that we use for the 

cattered field in Eq. (5) . 

Actually, Eq. (5) corresponds to a family of representations of 

he scattered field. That is because to each function σ (r 0 ) cor- 

esponds a different representation with multipolar sources dis- 

ributed over different surfaces inside the scatterer. In the limit- 

ng case that σ (r 0 ) = 0 , ∀ r 0 , we have the sources distributed ex-

ctly across the surface of the scatterer S. This case corresponds to 

 representation equivalent to the representation used in classical 

urface integral methods [69] . The disadvantage of such an integral 

epresentation is that the kernel has singularities located across 

he surface S. This results in a poor convergence of the fields’ rep- 

esentation when the observation point r comes close to S, i.e., 

n the vicinity of the scatterer. However, we can push the singu- 

arities of the kernel further inside the scatterer by letting σ (r 0 ) 

ake non-zero values. Specifically, taking the other limiting case of 

(r 0 ) = 1 , ∀ r 0 , we end up with a representation that is based on

ultipolar sources distributed across the surface �, which is de- 

ned as: r �(r 0 ) = r σ (r 0 ) | σ (r 0 )=1 , ∀ r 0 . This zero-volume-enclosing 

urface, �, is by definition the topological skeleton of the scatterer 

see Fig. 2 a). 

The topological skeleton (also known as the medial axis) of an 

bject is defined as the locus of the centers of circles (spheres in 

D) that are tangent to its outer surface at two or more points, 

here all such circles (spheres in 3D) are contained inside the ob- 

ect [57] . It was initially introduced by Blum in 1967 as a tool for

iological shape recognition [56] . The medial axis, together with 

he associated radius function of the maximally inscribed circles 

spheres in 3D), which we denote as R (r 0 ) , is called the medial

xis transform (MAT) of the object. The MAT is a complete shape 

escriptor, meaning it can be used to reconstruct the shape of the 

riginal object. So, in that sense, it constitutes a compressed way 

o encode the shape of the object. Apart from medical imaging 

pplications, the topological skeleton has found a wide variety of 

pplications in fields such as computer graphics, animation, visu- 

lization, digital inspection, computer design, pattern recognition, 

obotics, collision detection, etc., where a compact shape represen- 

ation supporting shape analysis and synthesis is important [57] . 

t is a quite mature field of research, and several methods exist to 

alculate the topological skeleton of a given object, with Voronoi 

iagrams usually playing a central role in that regard [70–72] . 

From the physical point of view, on the one hand, we can claim 

hat the introduced topological-skeleton-based representation of 

he fields constitutes an optimal representation since it provides 

he locus of the most compact support of multipolar sources able 

o overcome the problem of the Rayleigh Hypothesis for an arbi- 

rary scattering scenario involving the considered scatterer. Let us 

ighlight that the topological skeleton does not necessarily pass 

hrough the singularities of the analytic continuation of the scat- 

ered fields, yet it provides a representation of the scattered field 

hat is valid everywhere in V S out (see Eq. (5) above). As we demon- 

trate in Appendix A , if we would assume the a priori knowledge 

f the analytic properties of the scattered fields, then the most op- 

imal and compact representation that does not suffer from the 

roblem of the Rayleigh Hypothesis, would, instead, be the one 

ased on a distribution of multipolar sources across the topological 

keleton of the surface S ′ , inside S, that encloses all the singular- 

ties of the analytic continuation of the fields inside the scatterer. 
6 
n the other hand, by placing the multipolar sources on the topo- 

ogical skeleton �, we also managed to move the singularities of 

he representation of the scattered field as far away from the sur- 

ace of the scatterer S as possible. In that sense, this is the opti- 

al placement of the distribution of the sources among all cases 

f different σ (r 0 ) , guaranteeing better convergent properties of the 

ear-fields. However, as it can be seen in Fig. 2 a, the topologi- 

al skeleton � touches the surface of the scatterer S at its sharp 

dges; such points always host singularities. This is not the case 

or a smooth surface S (which, in this work, we generally consider 

t to be). 

Importantly, let us note that not all parts of the topological 

keleton are equally significant. On the one hand, significant small 

arts can be responsible for the radiation of a big part of the sur- 

ace currents. Take, for example, a sphere whose topological skele- 

on is a single point at its center. That point can host the origin 

f a multipolar series that validly represents the fields all over the 

hysical domain V S out . On the other hand, it is also possible that 

arge parts of the topological skeleton correspond to only a mi- 

or part of the radiating surface currents. In such a case, we could 

prune” such insignificant parts of the topological skeleton to at- 

ain a more compact representation of the fields. This comes at 

he cost of sacrificing the guaranteed access to a valid representa- 

ion of the fields at a small enough region of the physical domain 

n the vicinity of the scatterer. 

Equation (5) describes an infinite-dimensional representation of 

he scattered fields that allows us to transcend the problem of the 

ayleigh Hypothesis. However, for practical purposes, we need to 

ender that representation finite-dimensional. This means that the 

ntegral in Eq. (5) should be replaced by a finite sum. This implies 

he discretization of the topological skeleton � and its substitution 

y a set of N points that act as centers of multipolar expansions for 

he field that is radiated by the surface currents distributed over 

 surface S i , that is part of S = 

∑ N 
i =1 S i . Specifically, for a finite-

imensional representation of the scattered field with multipolar 

ources distributed over the discretized topological skeleton, we 

an write: 

 sca (r ) 
ξ≡

∑ 

α,ξ1 ξ2 

N ∑ 

i =1 

∫ 
S i 

ξ
↔ 

G 

+ 
α,ξ1 ξ2 

(r − r i , r 0 − r i ) ·
[

ˆ n × ∇ × E sca (r 0 ) 
]

+ ∇ × ξ
↔ 

G 

+ 
α,ξ1 ξ2 

(r − r i , r 0 − r i ) ·
[

ˆ n × E sca (r 0 ) 
]
d 

2 r 0 

= 

∑ 

α,ξ1 ξ2 

N ∑ 

i =1 

ξB α,ξ1 ξ2 ,i 
ξ F (3) 

α,ξ1 ξ2 
(r − r i ) , 

for | r − r i | > R i , ∀ i (6) 

ith 

ξB α,ξ1 ξ2 ,i 
being some complex amplitudes. See Appendix C for 

xplicit expressions for the 2D and 3D cases. 

The above expression is only valid outside the union of circles 

spheres in 3D) that are centered at r = r i and have a radius of R i 
hat is large enough to contain inside each circle (sphere in 3D) 

he surface current sources that are distributed over the surface S i 
highlighted with light blue color in Fig. 2 b) that is associated with 

he i th center of multipolar expansion of the discretized topolog- 

cal skeleton. In Fig. 2 b, we illustrate the effect of discretization 

f the topological skeleton of a prolate spheroid on the region of 

alidity of the representation of the scattered fields. By increas- 

ng the number of points of expansion employed, i.e., by increas- 

ng the dimensionality of the representation, we unlock access to 

he near-fields closer and closer to the surface of the scatterer S. 

or example, already with six centers of multipolar expansion, we 

an see that we have reduced the problematic near-field region 

with red color in Fig. 2 b) rather significantly. The full topologi- 

al skeleton of a prolate spheroid of semi-minor axis a and semi- 

ajor axis b (along z) is a linear segment connecting the points 
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x, y, z) = (0 , 0 , ±(b 2 − a 2 ) /b) . Let us note that those two points are

ot the foci of the spheroid, which are singular points of the ana- 

ytic continuation of the scattered fields inside a prolate spheroid 

9,10,23,24] . 

We want to emphasize three things. First, the surface bound- 

ng the union of spheres defined by | r − r i | = R i does not consti- 

ute a hard boundary for the region of validity of the representa- 

ion of the scattered fields. The hard boundary is expected to be 

he surface bounding a union of spheres defined by | r − r i | = R ′ 
i 
. 

ere, R ′ 
i 
≤ R i . R 

′ 
i 

shall be the radius of the smallest sphere that en-

loses all the singularities of the analytic continuation of the fields 

hat are radiated by the surface current sources distributed over 

he surface S i . 

Second, let us note that the region of validity of the finite- 

imensional representation of the scattered fields that we intro- 

uced is not unique since the amplitudes ξB α,ξ1 ξ2 ,i 
are not unique. 

pecifically, an arbitrary and non-optimal assignment of the ra- 

iating surface currents to the N multipolar centers of expansion 

which, let us consider fixed here), may still lead, on the one hand, 

o multipolar amplitudes that can represent the far-field but, on 

he other hand, may obstruct the access to the near-fields. 

Finally, let us note that the maximum multipolar order of the 

ources placed at r = r i needed to accurately represent the fields 

manating from the corresponding radiating surface currents dis- 

ributed over S i shall depend on the radius R i . Points of the topo-

ogical skeleton placed at a large optical distance from the surface 

f the scatterer S generally require a larger number of multipoles 

or their expansions compared to points closer to S. We will dis- 

uss the effects of the multipolar truncations in further detail in 

he following section. 

. Numerical demonstration of the topological skeleton 

ethod 

In this section, we demonstrate the performance of the method 

f the topological skeleton numerically. We explore how it deals 

ith the problem of the Rayleigh Hypothesis and how it provides 

 valid representation of the near-field of a scatterer. 

In our indicative example, we use as a scatterer an axially sym- 

etric object with the complex shape of a seahorse. In Fig. 3 , the

hite-shaded region indicates the cross-section of such a scatterer 

long a meridian plane. We consider the scatterer to be circum- 

cribed by a sphere of radius half the wavelength of light in free 

pace ( λ). The scatterer is embedded in free space and made of 

n isotropic, non-magnetic material with a refractive index of n = 

 . 477 . We consider the excitation of the scatterer by a monochro- 

atic, TE-polarized regular VSH of angular momentum along the 

-axis, μ = 0 , and multipolar order, ν = 2 [see Eq. (B.10) for its

efinition]. We perform a full-wave numerical simulation with a 

nite element solver JCM-suite [73] to record the electromagnetic 

esponse of the scatterer under such excitation. By exploiting the 

xial symmetry of both the geometry and the excitation, we per- 

ormed the simulations in two dimensions, and we were able to 

each an accuracy of the recorded near-fields up to at least the 

ourth significant digit. We used finite elements of size λ/ 50 and 

olynomial order 10. We recorded the scattered field within the 

ear-field zone, inside a sphere of radius 0 . 65 λ containing the scat- 

erer. The norm of the scattered field, | E sca (r ) | , that we recorded 

rom the full-wave simulation is plotted in Fig. 3 a. 

Next, we want to study and compare how the problem of the 

ayleigh Hypothesis is manifested in that particular example, once 

e employ different analytical representation schemes to recon- 

truct the simulated target scattered field. For this, we record the 

angential field components at 60 0 0 points on the contour of the 

urface of the scatterer across a meridian plane, and we use them 

o get the complex amplitudes of the different analytical represen- 
7 
ations that we compare. For this, we establish the following loga- 

ithmic relative error metric: 

(r ) = log 10 

⎡ 

⎣ 

∣∣∣E 

analytical 
sca (r ) − E 

numerical 
sca (r ) 

∣∣∣∣∣E 

numerical 
sca (r ) 

∣∣
⎤ 

⎦ . (7) 

First, we consider the conventional representation of the scat- 

ered field based on a single center of multipolar expansion at 

 = 0 . Specifically, we use Eq. (C.8) to get the amplitudes of the

epresentation of the scattered field in terms of a series of ra- 

iating VSHs centered at r = 0 (magenta star in Fig. 3 b). As dis-

ussed already, such a representation of the fields is expected to 

e valid outside the minimal sphere that circumscribes the scat- 

erer ( r > max { r 0 } ). We use the numerically calculated amplitudes 

f the series expansion of the fields to reconstruct them analyt- 

cally by making use of Eq. (C.7) and calculate the log. relative 

rror E(r ) by comparing them against the numerical results. In 

ig. 3 b, we show color plots of E(r ) for increasing multipolar or- 

er of truncation of the infinite series ( νmax ). The dashed magenta 

ine denotes the spherical shell of r = max { r 0 } , inside of which the 

ayleigh Hypothesis is expected to get violated. Indeed, we ob- 

erve that, for νmax = 10 , we barely have any errors recorded in 

he dark blue region outside of the magenta sphere. Actually, the 

rrors are small, even a bit inside that sphere. As we discussed 

lready, the hard boundary of validity of such a representation is 

ot the magenta sphere but a sphere of a generally smaller radius 

hat circumscribes all the singularities of the analytic continuation 

f the scattered field inside the region of the scatterer. It is im- 

ortant to observe that by increasing νmax , on the one hand, we 

chieve better and better convergence of the series representation 

f the fields closer and closer to that spherical shell enclosing the 

ingularities. But, on the other hand, we get a worse and worse di- 

ergence of the series representation of the fields in the physical 

omain contained inside the spherical shell that encloses the sin- 

ularities. Such divergence of the fields has already been observed 

n References [23,24] . Here, whereas, for νmax = 1 , we observe a 

elative error of an order of magnitude larger than the norm of 

he scattered near-field, for νmax = 10 , we observe a relative error 

f twelve orders of magnitude larger than the norm of the scat- 

ered near-field. 

Such large errors may at first suggest that the existing semi- 

nalytical method of multiple light scattering, based on such con- 

entional multipolar representations of the fields in terms of lo- 

alized series of VSHs, would always become useless for model- 

ng the near-field coupling between closely placed scatterers. In 

ractice, this is not strictly the case, however. In Ref. [24] , it was

hown, with counterexamples featuring near-field interactions be- 

ween dimers of prolate spheroids, that sufficiently convergent re- 

ults can be obtained in unexpected near-field regions when a very 

arge number (40) of multipolar contributions is considered (in- 

reasing the dimensionality of the problem dramatically, though). 

ventually, this additionally requires that the calculations are per- 

ormed with quadruple-precision arithmetic to account for the in- 

eractions between multipoles of high order properly. Those re- 

ults seem to suggest that the problem of the Rayleigh Hypothe- 

is within the context of multi-scattering calculations is not intrin- 

ic, i.e., associated with the inherently problematic analytic proper- 

ies of the adopted representations of the fields. Instead, it appears 

o be a problem of numerical nature if we are always able to get 

onvergent solutions for the general multi-scattering problem as- 

ociated with an arbitrary geometric setup by ever increasing the 

ultipolar truncation order and the arithmetic precision used for 

he calculations. However, on the one hand, whether this sugges- 

ion is true in its generality remains an interesting open question, 

nd, on the other hand, even in such a case, it is evident that such

roblematic numerical issues stem from the analytic aspects of the 
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Fig. 3. Numerical example with a comparison of the performance of different analytical representations of the scattered field, elucidating their relation with the problem of 

the Rayleigh Hypothesis. a) Plot of the norm of the scattered near-field of a sub-wavelength, axially symmetric seahorse (with its cross-section along a meridian plane being 

white-shaded) excited by a regular VSH, as it was calculated by a finite element solver. Plots of the logarithmic relative error, E , in the representation of the scattered near 

fields by: b) the conventional case of a single center of multipolar expansion of the fields (magenta star), c) a distribution of multipolar sources across the entire topological 

skeleton of the seahorse (magenta line), d) a distribution of multipolar sources across the topological skeleton of the seahorse with its tail being truncated and substituted 

by a single origin of multipolar expansion (magenta star) to represent the radiation of the tail specifically. The plots are given for different truncation orders, νmax , of the 

infinite multipolar sums. The dashed magenta circles in (b) and (d) indicate the theoretical regions of validity of the representations. We can see how the representation of 

the topological skeleton allows for the transcendence of the problem of the Rayleigh Hypothesis that plagues the conventional representation of the fields. 
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roblem. We highlight that the method presented in this paper 

rovides representations of the scattered field that converge every- 

here outside the scatterers for general geometries and that re- 

uire only a reasonable number of multipoles. In the next section, 

e discuss how our method can be used to improve computational 

trategies for multi-scattering phenomena. 

Next, we consider the newly introduced representation scheme, 

hich is based on a distribution of multipolar sources over the 

opological skeleton of the scatterer, to represent the scattered 

elds. We first construct the topological skeleton of the axially 

ymmetric seahorse based on a constrained Delaunay Triangula- 

ion method [72] (see the magenta solid line in Fig. 3 c for a cross-

ection of the topological skeleton of the seahorse along a meridian 

lane). Then, we use Eq. (C.8) to get the amplitudes ξB α,ξ1 ξ2 ,i 
and 

epresent the scattered field in terms of radiating VSHs distributed 

ver the topological skeleton of the seahorse with Eq. (C.7) . We 

ensely discretize the meridian cross-section of the topological 

keleton using N = 60 0 0 points, i.e., we assign each considered el-

mentary radiating surface current to a distinct center of multipo- 

ar expansion. The integration over the azimuthal dimension of the 

keleton is performed adaptively, resembling a perfectly fine dis- 

retization along the azimuthal dimension. In Fig. 3 c, we plot again 

he calculated log. relative errors of the considered representation 

cheme for increasing multipolar order for the truncation of the se- 

ies. We can observe that, by νmax = 10 , an accuracy of more than

hree significant digits is achieved almost all over the near-field 
8 
egion we monitor. Actually, already by νmax = 3 , we get an ac- 

eptable convergence of the series representation of the fields. The 

opological skeleton method can fully transcend the problem of the 

ayleigh Hypothesis. Let us note again that the closer the observa- 

ion point to the surface of the scatterer, the larger the number of 

ultipoles needed for an accurate representation of the fields. 

Finally, we consider another representation scheme for the scat- 

ered fields to study the discretization effects of the topological 

keleton method. Specifically, as in the previous case, we begin 

ith the full topological skeleton of the seahorse, but now we 

runcate its tail and employ a single center of multipolar expan- 

ion to represent the radiating fields emanating from the surface 

urrents distributed over the tail of the seahorse. The magenta star 

n Fig. 3 d denotes that introduced center of multipolar expansion. 

ue to the axial symmetry, note that the star represents a ring 

f multipolar sources rather than a single multipolar center. Inter- 

stingly, DSM commonly employs multipolar sources placed in the 

omplex plane that constitute the image of such a ring of sources 

n the real space [49] . Again, we use Eq. (C.8) to get the ampli-

udes ξB α,ξ1 ξ2 ,i 
of our new representation. Now, the dimensional- 

ty of the representation is reduced to N = 4451 , as we truncated 

550 points belonging to the tail of the skeleton of the seahorse 

nd substituted them with a single origin of expansion. It is ex- 

ected that the representation provides access to the near-fields 

verywhere outside a torus centered at the magenta star and cir- 

umscribing the truncated tail of the seahorse. The dashed ma- 
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enta circle in Fig. 3 d indicates a cross-section of this torus along a

eridian plane where we plot a map of the calculated log. relative 

rrors E(r ) again. Indeed, we can observe that such a represen- 

ation still provides great accuracy of the reconstructed fields ev- 

rywhere outside the aforementioned torus (actually, everywhere 

utside the torus -of a bit smaller radius- that circumscribes the 

ingularities of the analytic continuation of the fields radiated by 

he truncated tail of the seahorse). Therefore, in practice, we can 

ignificantly reduce the dimensionality of the topological-skeleton- 

ased representation of the fields to a small enough number of 

enters of multipolar expansions by sacrificing the access of the 

epresentation to a small enough near-field region in the vicinity 

f the scatterer. For example, we saw in Fig. 2 b that only six prop-

rly placed centers of multipolar expansion already provide a good 

epresentation of the scattered fields by a prolate spheroid with an 

spect ratio of three. Nevertheless, more complicated geometries 

enerally require representations of higher dimensionality. 

We want to emphasize the following two key observations re- 

arding the number of multipoles needed for sufficient conver- 

ence of the aforementioned multipolar series representations of 

he scattered field: 1) the smaller the optical distance between the 

bservation point and the spherical (cylindrical in 2D) shell enclos- 

ng the singularities of the analytic continuation of the field repre- 

ented by the particular multipolar center of expansion, and 2) the 

arger the optical distance between the multipolar center of ex- 

ansion and the aforementioned singular shell, i.e., the larger the 

adius of the shell, the more multipoles are needed for the conver- 

ence of the series representation of the field. Let us note that this 

mplies quite significant limitations for methods based on dipolar- 

nly representations, such as e.g., in [39] . Such representations can 

nly be practically applicable either for cases of scatterers that are 

ufficiently optically small or for distributions of dipolar sources 

hat are placed at close enough optical distances from the sur- 

ace of the scatterer [this would correspond, for example, to the 

on-optimal case of the representation of Eq. (5) with small val- 

es of σ (r 0 ) ], which would typically increase the dimensionality 

f the representation significantly, though, since it would generally 

equire the spatial distribution of a larger number of centers of ex- 

ansion. 

In Appendix D , we provide three figures as additional support 

or the above-mentioned observations on the convergence of the 

cattered field representations based on infinite multipolar series. 

. Improving multi-scattering computational strategies with 

he topological skeleton method 

Our contribution paves the way toward the efficient semi- 

nalytical modeling of complex optical systems comprised of 

arge ensembles of particles and characterized by strong near- 

eld coupling. Fully numerical methods of analyzing such systems 

re computationally rather demanding, and semi-analytical meth- 

ds have proved to be useful in that regard. Our findings are 

ushing decisively against the limitations that the existing semi- 

nalytical methods traditionally face concerning the problem of 

he Rayleigh Hypothesis, i.e., concerning the problematic repre- 

entation of the near-fields of the scatterers. Specifically, our in- 

roduced topological-skeleton-based representation of the radiated 

elds provides clear and general guidelines for the proper place- 

ent of the sources in existing semi-analytical scattering meth- 

ds based on discrete sources, freeing them from the fundamental 

roblem of the Rayleigh Hypothesis [39,49,51–55] . 

Numerical methods, such as in References [39,45,46] , can be 

eneralized to calculate the T-matrices of scatterers of arbitrary 

eometry, by making use of our introduced topological-skeleton- 

ased representation of the scattered fields. However, apart from 

 proper basis for representing the scattered fields, there is also 
9

 crucial need to represent the incident field properly. In a multi- 

cattering scenario, the effective incident field on each scatterer, 

ncluding the scattered fields from the rest of the scatterers, also 

ossesses singularities in its analytic continuation in the near-field 

egion of the scatterer, which also affect the region of conver- 

ence of the representations. Adopting a representation of the in- 

ident field that is based on a series of regular VSHs centered 

t the same origins of expansion on the topological skeleton that 

re used for the radiating multipolar sources of the scattered field 

rovides a means to represent the incident field accurately every- 

here within the scatterer. Each center of expansion has a differ- 

nt spherical region of convergence, and the union of all those re- 

ions encloses the whole domain of the scatterer under the con- 

ition that the analytic continuation of the effective incident field 

ossesses no singularities inside a surface S i / o enclosing, e.g., the 

ed volume in Fig. 2 b, which encloses the scatterer. As a result, be-

ng able to represent the incident field properly everywhere over 

uch a surface S i / o , we can use Eq. (A.5) , in the absence of ex-

ernal sources inside S i / o , and expand the tangential surface cur- 

ents using the same multipolar series representation to end up 

ith a topological-skeleton-based series representation of the in- 

ident field, whose amplitudes are associated with the tangential 

urface currents of the incident field on S i / o . Such a representation 

f the incident field can also be employed as a basis for the new 

opological-skeleton-based T-matrix. The latter can then be used 

o model multi-scattering phenomena with strong near-field cou- 

ling, whose study, previously, has been problematic by conven- 

ional semi-analytical methods due to the problem of the Rayleigh 

ypothesis. As long as there is, in general, a guaranteed convergent 

epresentation of both the incident and scattered fields of each ar- 

itrary scatterer inside and outside its input/output surface S i / o re- 

pectively, then the multi-scattering method should be computa- 

ionally stable. 

. Final remarks 

In this work, we focused on the problem of the Rayleigh Hy- 

othesis as it is commonly manifested in semi-analytical meth- 

ds of solving wave scattering problems that are based on, fre- 

uently problematic in the near-field region, analytical represen- 

ations of the radiated field from scatterers with complex geome- 

ries. We discussed how the problem of the Rayleigh Hypothesis 

ould plague such methods, and we proposed an alternative repre- 

entation of the fields, based on sources distributed over the topo- 

ogical skeleton of the scatterer, that is demonstratively able to 

ranscend the problem of the Rayleigh Hypothesis. We also stud- 

ed some practical aspects of the implementation of the proposed 

ethod and discussed how it can be used to improve computa- 

ional strategies for multi-scattering phenomena. 

We want to note that, although in this work we only deal with 

he representations of the scattered field, i.e., with the exterior 

roblem, the Rayleigh Hypothesis issue may also exist for the inte- 

ior problem, i.e., there is always a need for valid representations 

f the field induced inside the scatterer, as well. The induced field 

lso has singularities in its analytic continuation outside the scat- 

erer, which may plague its representation [74] . For example, the 

xtended Boundary Condition Method (EBCM) is said to disregard 

he Rayleigh Hypothesis. Still, it does employ, however, a particular 

epresentation of the field induced inside the scatterer based on a 

eries of localized regular VSHs to apply the boundary conditions 

nd solve the scattering problem [50] . This does assume, though, 

hat such a series representation of the induced fields is conver- 

ent across the whole surface of the scatterer. And because such 

s not generally the case, this can be the reason that the method 

ails to solve the scattering problem in the case of scatterers with 

igh aspect ratios, for example. Improved representation schemes 
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f the fields induced inside the scatterer that were based on dis- 

rete sources have been employed by several methods to practi- 

ally deal with that manifestation of the problem of the Rayleigh 

ypothesis for the case of the interior problem [49,51–53,75] . Fi- 

ally, we would like to note that, even though our analysis was for- 

ulated in the context of the scattering of electromagnetic waves, 

he key ideas also apply to the scattering of acoustic waves, for 

hich a similar method can be readily developed. 
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ppendix A. Stratton-Chu-type integral representations of the 

cattered field 

Stratton-Chu-type integral representations of the scattered 

elds are a classic [50,58–60] . Here, in this Appendix, we will de- 

ive Eq. (1) of the main text and discuss further related details. 

The derivation of Stratton-Chu-type integral representations al- 

ays begins with employing the Green’s vector identity in its dif- 

erential form: 

 · ( ∇ × ∇ × Q ) − Q · ( ∇ × ∇ × P ) 

= ∇ · [ Q × ( ∇ × P ) − P × ( ∇ × Q ) ] . (A.1) 

here P , Q are some vector fields. For our purposes, we choose 

hem to be the electric field E (r 0 ) and the Dyadic Green’s Func-

ion (DGF) 
↔ 

G (r , r 0 ) of the background medium, respectively. Those 

atisfy the following monochromatic wave equations in linear, loss- 

ess, isotropic, and homogeneous media: 

∇ × ∇ × −k 2 
)
E (r 0 ) = i ωμ0 J (r 0 ) , (A.2) 

∇ × ∇ × −k 2 
)↔ 

G (r , r 0 ) = 

↔ 

I δ(r − r 0 ) , (A.3) 

here k is the wavenumber of the medium, ω is the frequency of 

he waves, μ0 is the magnetic permeability of the medium, J (r 0 ) is 

he electric current density hosted in the medium, 
↔ 

I is the identity 

atrix, and δ is the Dirac-delta function. Doing this substitution in 

q. (A.1) , integrating both sides over a closed volume V bounded 
0 

10 
y a surface S 0 , and applying the Gauss’s theorem, finally gives the 

ollowing main result: 

 (r ) δ(r ∈ V 0 ) = i ωμ0 

∫ 
V 0 

↔ 

G (r , r 0 ) · J (r 0 )d 

3 r 0 

+ 

∫ 
S 0 

↔ 

G (r , r 0 ) ·
[

ˆ n (r 0 ) × ∇ × E (r 0 ) 
]

+ ∇ ×
↔ 

G (r , r 0 ) ·
[

ˆ n (r 0 ) × E (r 0 ) 
]
d 

2 r 0 , (A.4) 

here δ(r ∈ V 0 ) takes the value 1 for r ∈ V 0 and the value 0 oth-

rwise, and 

ˆ n (r 0 ) is the unit vector normal to the surface S 0 and

hat points towards the interior of V 0 . We also made use of the 

ector identity: a · (b × c ) = (a × b ) · c . Equation (A.4) can be used

o derive several integral representations in scattering theory. 

First of all, by applying Eq. (A.4) for the case of the infinite 

ackground medium that is involved in the scattering problem and 

ntegrating over an arbitrary volume V 0 bounded by S 0 , we can get 

he following integral representation of the incident field inside 

 0 as a sum of a volume integral term involving fields by sources 

osted inside V 0 , and another surface integral term that is related 

o an electromagnetic field radiated from sources outside of V 0 : 

 inc (r ) δ(r ∈ V 0 ) = E inc , inside (r ) + E inc , outside (r ) 

= i ωμ0 

∫ 
V 0 

↔ 

G (r , r 0 ) · J (r 0 )d r 3 0 

+ 

∫ 
S 0 

↔ 

G (r , r 0 ) ·
[

ˆ n (r 0 ) × ∇ × E inc (r 0 ) 
]

+ ∇ ×
↔ 

G (r , r 0 ) ·
[

ˆ n (r 0 ) × E inc (r 0 ) 
]
d 

2 r 0 . (A.5) 

Let us now derive Eq. (1) of the main text. For this, first we 

ill make use of Eq. (A.4) for the case of the total fields, E tot (r ) =
 inc (r ) + E sca (r ) , that are defined inside the space V S out that is

ounded by the surface of the scatterer S and some spherical sur- 

ace at infinity S ∞ 

. This gives that: 

 tot (r ) δ(r ∈ V S out ) = i ωμ0 

∫ 
V S out 

↔ 

G (r , r 0 ) · J (r 0 )d r 3 0 

+ 

∫ 
S+ S ∞ 

↔ 

G (r , r 0 ) ·
[

ˆ n (r 0 ) × ∇ × E tot (r 0 ) 
]

+ ∇ ×
↔ 

G (r , r 0 ) ·
[

ˆ n (r 0 ) × E tot (r 0 ) 
]
d 

2 r 0 . (A.6) 

hen, by making use of the far-field expressions of the scattered 

elds (see Eqs. (2.94,2.95) in [50] ), together with the far-field ex- 

ression of the DGF and its curl (see Eqs. (8.55,8.57) in [76] ), we

an prove that: 

↔ 

G (r , r 0 ) ·
[

ˆ n (r 0 ) × ∇ × E sca (r 0 ) 
]

 ∇ ×
↔ 

G (r , r 0 ) ·
[

ˆ n (r 0 ) × E sca (r 0 ) 
]

= 0 , (A.7) 

for r 
 r 0 , r 0 ∈ S ∞ 

. 

inally, by making use of Eq. (A.5) both for S 0 = S and S 0 = S ∞ 

considering that there are no current sources inside the space of 

he scatterer, V S in , that is bounded by S), and combining those re- 

ults together with Eqs. ( A .6,A .7 ), we readily get Eq. (1) of the main

ext, as well as the following Stratton-Chu formula: 

−E inc (r ) δ(r ∈ V S in ) 
E sca (r ) δ(r ∈ V S out ) 

}
= 

∫ 
S 

↔ 

G (r , r 0 ) ·
[

ˆ n (r 0 ) × ∇ × E tot (r 0 ) 
]

+ ∇ ×
↔ 

G (r , r 0 ) ·
[

ˆ n (r 0 ) × E tot (r 0 ) 
]
d 

2 r 0 . 

(A.8) 

ote that in the above integral, we consider that n points towards 

he interior of V S out , and hence this minus in front of E inc (r ) gets

ntroduced. 
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In view of the second branch of the last equation, to- 

ether with Eq. (1) of the main text, we can deduce that such 

n integral representation of the scattered field is not unique. 

part from the electric and magnetic surface current distribu- 

ions, 
[

ˆ n (r 0 ) × ∇ × E sca (r 0 ) 
]
, 
[

ˆ n (r 0 ) × E sca (r 0 ) 
]
, there is a big fam- 

ly of current distributions over the surface of the scatterer S, 

ˆ n (r 0 ) × ∇ × E tot (r 0 ) 
]
, 
[

ˆ n (r 0 ) × E tot (r 0 ) 
]
, that are able to generate 

he same scattered fields E sca (r ) in V S out . This is because, the sur-

ace currents 
[

ˆ n (r 0 ) × ∇ × E inc (r 0 ) 
]
, 
[

ˆ n (r 0 ) × E inc (r 0 ) 
]

that corre- 

pond to an incident field that has no singularities inside the re- 

ion of the scatterer, demonstrate zero contribution to the fields 

adiated in V S out through the DGF in the Stratton-Chu integral rep- 

esentation. In that sense, it is important to highlight that the am- 

litudes ξB α,ξ1 ξ2 
(r 0 ) of the representation in Eq. (5) of the main 

ext are not unique. 

Finally, let us discuss how the knowledge of the analytic prop- 

rties of the scattered field can further modify the integral repre- 

entation of Eq. (1) . Let us assume that we know that all the singu-

arities, branch points, of the analytic continuation of the function 

f the scattered field E sca (r ) are enclosed inside a surface S ′ , that is

nclosed inside the surface of the scatterer S. Then, we can proceed 

n the same way that we derived Eq. (1) , but now integrating over

 

′ instead of S, and, due to the analytic continuation of E sca (r ) in-

ide the volume bounded by S and S ′ (which practically means the 

nalytic continuation of the solution of the Helmholtz equation of 

he scattered field inside that “unphysical” domain), we can get the 

ollowing formula: 

 sca (r ) δ(r ∈ V S ′ out ) ≡
∫ 

S ′ 

↔ 

G (r , r 0 ) ·
[

ˆ n (r 0 ) × ∇ × E sca (r 0 ) 
]

+ ∇ ×
↔ 

G (r , r 0 ) ·
[

ˆ n (r 0 ) × E sca (r 0 ) 
]
d 

2 r 0 , (A.9) 

here V S ′ out is the volume outside the surface S ′ (bounding the 

rown domain in Fig. 1 ), and where we also assume the knowledge 

f the analytic continuation of the scattered field on S ′ . In that 

ense, S ′ constitutes the most compact support of radiating cur- 

ents that can reconstruct the scattered field everywhere inside the 

hysical domain V S out ∈ V S ′ out . Hence, assuming the a priori knowl- 

dge of the analytic properties of the scattered fields, we can claim 

hat the most optimal representation of the scattered fields shall 

e based on multipolar sources distributed across the topological 

keleton, not of surface S, but of surface S ′ , instead. Nevertheless, 

s we discuss in the main text, such a representation, being tai- 

ored to the particular analytic properties of the fields, cannot be 

eneralized for an arbitrary scenario involving the scatterer since 

he surface S ′ generally varies because of the image singularities 

nduced by the arbitrary field that may excite the scatterer. 

ppendix B. Analytical expansions of the Dyadic Green’s 

unction of free space in terms of the Cartesian, cylindrical, 

pherical eigenmodes of the Helmholtz equation 

The Dyadic Green’s Function 

↔ 

G (r , r 0 ) of an infinite, linear, loss- 

ess, isotropic, and homogeneous medium obeys the monochro- 

atic wave equation given in Eq. (A.3) . Following [60] , the DGF 

an be expanded into a series of eigenmodes of the homogeneous 

ave equation of its corresponding medium. The three most com- 

on expansions we also use in the main part of the article are 

he ones into plane, cylindrical, and spherical waves. We will call 

hose eigenmodes as Vector Planar/Cylindrical/Spherical Harmonics 

VPHs/VCHs/VSHs), respectively. We will denote their spatial rep- 

esentation as ξ F (r ) . The symbol ξ takes the values p , c , s to re- 

er to the planar/cylindrical/spherical case, respectively. The eigen- 

odes can be constructed from the solutions of the monochro- 

atic, scalar homogeneous wave equation expressed in the corre- 

ponding coordinate system. As mentioned in the main text, those 
11
calar modes are eigenstates of two symmetry operators. There- 

ore, apart from the wavenumber of the medium k , they will also 

epend on two other eigenvalues. For these three coordinate sys- 

ems those scalar eigenmodes ξψ(r ) are given by: 

p ψ 

(±) 
k x k y 

(x, y, z) = e 
i 

(
k x x + k y y ±

√ 

k 2 −k 2 ρ (k x ,k y ) z 
)
, (B.1) 

 ψ 

(ι) 
μk z 

(ρ, φ, z) = Z (ι) μ ( ̃  ρ) e i μφe i k z z , (B.2) 

 ψ 

(ι) 
μν(r, θ, φ) = γμν z (ι) ν ( kr ) P 

μ
ν ( cos θ ) e i μφ, (B.3) 

here k x , k y , k z are the eigenvalues of the projection of the linear

omentum operator along the x −, y −, z−axis, respectively. More- 

ver, k ρ (k x , k y ) = 

√ 

k 2 x + k 2 y . μ is the eigenvalue of the projection

f the total angular momentum operator along the z-axis and 

˜ = k ρ (k z ) ρ with k ρ (k z ) = 

√ 

k 2 − k 2 z . ν(ν + 1) is the eigenvalue

f the total angular momentum squared operator. Z (ι) μ ( x ) denotes 

he cylindrical Bessel ( ι = 1 ) and Hankel ( ι = 3 ) functions of the

rst kind, of order μ, whereas z (ι) ν ( x ) denotes the spherical Bessel 

 ι = 1 ) and Hankel ( ι = 3 ) functions of the first kind, of order ν .

 

μ
ν (x ) are the associated Legendre functions of the first kind and 

μν = 

√ 

(2 ν+1)(ν−μ)! 
4 πν(ν+1)(ν+ μ)! 

are some normalization coefficients. 

When following [60] , we can construct a full set of divergent- 

ree vectorial eigenmodes based on the above scalar eigenmodes. 

e will use the symbol α to denote the TE ( α = M ) and TM ( α =
 ) such modes. 

The VPHs p F (±) 
α,k x k y 

(r ) , will be given by the formulas below: 

p F (±) 
M ,k x k y 

(r ) � 

1 

k ρ
∇ ×

[ 
ˆ z p ψ 

(±) 
k x k y 

(x, y, z) 
] 

= −i ̂  φ ˆ k 
(k x , k y ) 

p ψ 

(±) 
k x k y 

(x, y, z) , (B.4) 

p F (±) 
N ,k x k y 

(r ) � 

1 

k 
∇ ×

[ 
p F (±) 

M ,k x k y 
(r ) 
] 

= − ˆ θ (±) 
ˆ k 

(k x , k y ) 
p ψ 

(±) 
k x k y 

(x, y, z) , (B.5) 

here: 

ˆ 
ˆ k 
(k x , k y ) = 

−k y ̂  x + k x ̂  y 

k ρ
, (B.6) 

ˆ (±) 
ˆ k 

(k x , k y ) = ±
√ 

k 2 − k 2 ρ

kk ρ

(
k x ̂  x + k y ̂  y 

)
− k ρ

k 
ˆ z . (B.7) 

The VCHs, c F (ι) 
α,μk z 

(r ) , will be given by the formulas below: 

c F (ι) 
M ,μk z 

(r ) � 

1 

k ρ
∇ ×

[ 
ˆ z c ψ 

(ι) 
μk z 

(ρ, φ, z) 
] 

= 

e i k z z e i μφ

[
i μ

Z (ι) μ ( ̃  ρ) 

˜ ρ
ˆ ρ − ∂Z (ι) μ ( ̃  ρ) 

∂ ˜ ρ
ˆ φ

]
, (B.8) 

c F (ι) 
N ,μk z 

(r ) � 

1 

k 
∇ ×

[ 
c F (ι) 

M ,μk z 
(r ) 
] 

= 

e i k z z e i μφ×

i 
k z 

k 

∂Z (ι) μ ( ̃  ρ) 

∂ ˜ ρ
ˆ ρ − μ

k z 

k 

Z (ι) μ ( ̃  ρ) 

˜ ρ
ˆ φ + 

k ρ

k 
Z (ι) μ ( ̃  ρ) ˆ z 

]
. (B.9) 

And finally, the VSHs, s F (ι) α,μν (r ) , will be given by the formulas 

elow: 

 F (ι) 
M ,μν (r ) � ∇ ×

[
r s ψ 

(ι) 
μν(r, θ, φ) 

]
= i z (ι) ν (kr) f M ,μν ( ̂ r ) , (B.10) 
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 F (ι) 
N ,μν (r ) � 

1 

k 
∇ × s F (ι) 

M ,μν (r ) 

= 

ˆ r 
ν(ν + 1) 

kr 
s ψ 

(ι) 
μν(r, θ, φ) + ̃

 z (ι) ν (kr) f N ,μν ( ̂ r ) , (B.11) 

here: 

 M ,μν ( ̂ r ) = γμν

[ 
ˆ θτ (1) 

μν (θ ) + i ̂  φτ (2) 
μν (θ ) 

] 
e i μφ, (B.12) 

 N ,μν ( ̂ r ) = γμν

[ 
ˆ θτ (2) 

μν (θ ) + i ̂  φτ (1) 
μν (θ ) 

] 
e i μφ, (B.13) 

˜ 
 

(ι) 
ν (x ) = 

1 

x 

∂ 

∂x 
[ x z (ι) ν (x )] , (B.14) 

(1) 
μν (θ ) = μ

P 

μ
ν ( cos θ ) 

sin θ
, (B.15) 

(2) 
μν (θ ) = 

∂P 

μ
ν ( cos θ ) 

∂θ
. (B.16) 

Having defined the above vector wave functions in the three 

oordinate systems, let us now give the formulas that expand the 

GF into such eigenmodes. Avoiding the point singularity at r = r 0 , 

.e., the irrotational terms, the DGF can be expanded into a series 

f VPHs, VCHs, VSHs according to the following formulas [59] : 

 

 (r , r 0 ) 
p ≡ i 

8 π2 

∑ 

α

∫ ∫ + ∞ 

−∞ 

d k x d k y √ 

k 2 − k 2 x − k 2 y 

×
{ 

p F (−) 
α,k x k y 

(r ) � p F (+) 
α, −k x −k y 

(r 0 ) , z < z 0 
p F (+) 

α,k x k y 
(r ) � p F (−) 

α, −k x −k y 
(r 0 ) , z > z 0 

(B.17) 

 

 (r , r 0 ) 
c ≡ i 

8 π

∑ 

μ,α

(−1) μ
∫ + ∞ 

−∞ 

d k z 

×
{

c F (1) 
α,μk z 

(r ) � c F (3) 
α, −μ−k z 

(r 0 ) , ρ < ρ0 

c F (3) 
α,μk z 

(r ) � c F (1) 
α, −μ−k z 

(r 0 ) , ρ > ρ0 

(B.18) 

 

 (r , r 0 ) 
s ≡ i k 

∑ 

νμ,α

(−1) μ

×
{

s F (1) 
α,μν (r ) � s F (3) 

α, −μν(r 0 ) , r < r 0 
s F (3) 

α,μν (r ) � s F (1) 
α, −μν(r 0 ) , r > r 0 

(B.19) 

The last three formulas constitute explicit expressions of the se- 

ies expansion of the DGF in Eq. (2) of the main text. 

ppendix C. Explicit expressions for the 

opological-skeleton-based representations of the scattered 

elds. 

In this Appendix, we provide explicit expressions for the 

opological-skeleton-based representations of the scattered fields, 

s they are given by Eqs. (5) and (6) of the main text. 

For 2D scatterers, i.e. for scatterers that have continuous trans- 

ation symmetry along the z-axis, we can get the following repre- 

entation of the scattered field as a series expansion of cylindrical 

aves distributed on top of the topological skeleton of the scat- 

erer. By making use of Eq. (1) and the second branch of Eq. (B.18) ,

e get the following expressions: 

E sca (r ) 
c ≡
∑ 

α,μ

∫ + ∞ 

−∞ 

d k z 

∫ 
C 

d r 0 
c B α,μk z (r 0 ) 

× c F (3) 
α,μk z 

(r − r σ (r 0 )) , for r ∈ V S out , (C.1) 
12 
ith 

c B α,μk z (r 0 ) = 

i 

8 π
(−1) μ

∫ + ∞ 

−∞ 

d z 0 ×[ 
c F (1) 

α, −μ−k z 
(r 0 + z 0 ̂  z − r σ (r 0 )) ·

[
ˆ n × ∇ × E sca (r 0 + z 0 ̂  z ) 

]
+ k c F (1) 

β, −μ−k z 
(r 0 + z 0 ̂  z − r σ (r 0 )) ·

[
ˆ n × E sca (r 0 + z 0 ̂  z ) 

]] 
. (C.2) 

ote that here C is the contour of the cross-section of the scatterer 

cross the z = 0 plane, and 

ˆ n (r 0 ) is the vector normal to the con-

our C, pointing outwards. Moreover, note that here β � = α and we 

ade use of the property that the curl of a TE(TM) wave gives a 

M(TE) wave multiplied by the wavenumber k . For finite dimen- 

ional representations, i.e. for a discretized topological skeleton, 

he above expressions take the following form: 

 sca (r ) 
c ≡
∑ 

α,μ

∫ + ∞ 

−∞ 

d k z 

N ∑ 

i =1 

c B α,μk z ,i 
c F (3) 

α,μk z 
(r − r i ) , (C.3) 

for 
√ 

(x − x i ) 2 + (y − y i ) 2 > R i , ∀ i, 

ith 

 B α,μk z ,i = 

i 

8 π
(−1) μ

∫ 
C i 

d r 0 

∫ + ∞ 

−∞ 

d z 0 

×
[ 

c F (1) 
α, −μ−k z 

(r 0 + z 0 ̂  z − r i ) ·
[

ˆ n × ∇ × E sca (r 0 + z 0 ̂  z ) 
]

+ k c F (1) 
β, −μ−k z 

(r 0 + z 0 ̂  z − r i ) ·
[

ˆ n × E sca (r 0 + z 0 ̂  z ) 
]] 

. 

(C.4) 

ote that here we use N centers (axis) of expansion that are cen- 

ered at r i = x i ̂  x + y i ̂  y . C i is the i -th segment of the contour C and

 i is the minimum radius of the circle centered at r i enclosing the 

egment C i . 

For 3D scatterers, we can get the following representation of 

he scattered field as a series expansion of spherical waves dis- 

ributed on top of the topological skeleton of the scatterer. By mak- 

ng use of Eq. (1) and the second branch of Eq. (B.19) we get the

ollowing expressions: 

 sca (r ) 
s ≡
∑ 

α,μν

∫ 
S 

d 

2 r 0 
s B α,μν (r 0 ) 

s F (3) 
α,μν (r − r σ (r 0 )) , for r ∈ V S out , 

(C.5)

ith 

 B α,μν (r 0 ) = i k (−1) μ

×
[

s F (1) 
α, −μν(r 0 − r σ (r 0 )) ·

[
ˆ n × ∇ × E sca (r 0 ) 

]
+ k s F (1) 

β, −μν
(r 0 − r σ (r 0 )) ·

[
ˆ n × E sca (r 0 ) 

]] 
. (C.6) 

or finite dimensional representations, i.e. for a discretized topo- 

ogical skeleton, the above expressions take the following form: 

 sca (r ) 
s ≡
∑ 

α,μν

N ∑ 

i =1 

s B α,μν,i 
s F (3) 

α,μν (r − r i ) , (C.7) 

for | r − r i | > R i , ∀ i, 

ith 

 B α,μν,i = i k (−1) μ
∫ 

S i 

d 

2 r 0 

×
[

s F (1) 
α, −μν(r 0 − r i ) ·

[
ˆ n × ∇ × E sca (r 0 ) 

]
+ k s F (1) 

β, −μν
(r 0 − r i ) ·

[
ˆ n × E sca (r 0 ) 

]] 
. (C.8) 
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Fig. D.1. Statistical analysis of the convergence among several instances of 2D scatterers with varying geometry [illustrated with blue color in (a)], illuminated by TE-polarized 

plane waves propagating along varying directions on the xy -plane. In (b), we plot the statistics of the log. relative errors E(r ) recorded for the topological-skeleton-based 

representations [the topological skeleton of the 2D scatterers is illustrated with red color in (a)], as a function of the distance (in terms of free space wavelengths) between 

the observation point and the surface of the scatterer, and for varying truncation orders of the multipolar series ( | μ| max ). The angle of the illuminating plane waves is varied 

with a step of 5 o (for all non-trivial excitation angles with respect to the geometry of the scatterer). The scatterers are again considered to be inscribed inside a circle of 

radius half the free space wavelength. They are made of a material of refractive index n = 3 . 477 and embedded in free space. Eleven rectangular scatterers are considered 

with varying aspect ratios from one to ten. The surface and the topological skeleton of each scatterer are finely discretized using a large number of 12.0 0 0 points. We can 

observe that a smaller optical distance between the observation point and the scatterer generally requires a larger number of multipoles for sufficient convergence. Note, 

also, the different rates of convergence that we characteristically can observe, e.g., in the case of | μ| max = 5 , which is indicative of the additional role of the distance between 

the centers of multipolar expansion and the surface of the scatterer (or, to be more precise, the singularities of the analytic continuation of the fields that they represent) 

when it comes to the convergence of the multipolar-series representation of the fields; a larger such distance also requires a larger number of multipoles for convergence. 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ppendix D. On the convergence of representations of the 

cattered field based on a multipolar series 

In this Appendix, we provide with the following three fig- 

res some extra material that supports our remarks in the main 

ext regarding the convergence of representations of the scattered 

eld based on multipolar series. 

In the first figure ( Fig. D.1 ), we perform a statistical analysis 

f the convergence among several instances of 2D scatterers with 

arying geometry, illuminated by TE-polarized plane waves propa- 

ating along varying directions. There, we plot the statistics of the 

og. relative errors recorded for the topological-skeleton-based rep- 

esentations, as a function of the distance between the observation 

oint and the surface of the scatterer. We observe that there is a 

lower convergence rate recorded for smaller distances. The closer 

he observation point to the surface of the scatterer, the larger the 

umber of multipoles needed for convergence. However, it is also 
ig. D.2. Checking the convergence of the topological-skeleton-based representation of a 

ith axial symmetry to the z-axis and with an aspect ratio of six, inscribed inside a s

efractive index n = 3 . 477 and embedded in free space, is excited by a z-oriented electric

tar in (a)]. In (a), we plot the logarithm of the norm of the scattered by the disk field up

lot maps of the log. relative error E(r ) for the topological-skeleton-based representation 

ine denotes the topological skeleton of the cylinder. Here we use 8.250 unevenly distribu

ncident field) points for the fine discretization of both the surface of the cylinder and th

onvergence is relatively poorer compared with what we observed before due to the stro

13
bserved that the rate of such convergence is not unique. As dis- 

ussed already, the convergence also depends on the distance be- 

ween the multipolar center of expansion and the surface of the 

catterer. For the cases of scatterers where such distance between 

he topological skeleton and the surface of the scatterer becomes 

arge (like for rectangular scatterers of low aspect ratio), we ob- 

erve a slower convergence rate. 

In the second figure ( Fig. D.2 ), we demonstrate the rate of con- 

ergence for the case of a cylinder illuminated by a dipolar emit- 

er placed in close proximity on top of it. The emitter is known 

o induce an image singularity in the analytic continuation of the 

cattered fields of the cylinder at a small distance from its sur- 

ace. In this case, we observe a slower convergence rate for the 

opological-skeleton-based representation of the scattered field in 

ultipolar series. Although, theoretically, we can still achieve con- 

ergence all over the near-field region, we observe that a larger 

umber of multipoles are needed for convergence. That holds es- 
radiating field with a singularity located closely to the physical domain. A cylinder 

phere of radius one third of the free space wavelength λ, made of a material of 

 dipole placed at a distance of λ/ 50 on top of the disk [illustrated with a magenta 

on such an excitation. We can observe the strong gradients of the field. In (b), we 

of the fields for increasing truncation orders of the multipolar series. The magenta 

ted (we considered a denser discretization at the region of strong gradients of the 

e topological skeleton over the meridian plane. We observe that, in this case, the 

ngly singular radiated fields. 
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Fig. D.3. Study of the number of multipoles required to achieve convergence for the reconstruction of the fields radiated by a dipolar emitter in free space, as a function of 

1) the optical distance between the emitter and the observation point ( R 0 /λ), and 2) the optical distance between the emitter and a center of multipolar expansion that is 

used to represent the radiation of the emitter ( d z /λ). a) The geometry of the problem. The magenta star indicates the position of the multipolar expansion. The blue vector 

indicates the position and orientation of the dipolar emitter. The red curve indicates the cross-section of a spherical cap over which we calculate the convergence of the 

representation of the radiated fields. b-e) Maps of the minimum multipolar order needed ( νmin ) to achieve an average error below either 1% (b,d), or 10% (b,d), for the case 

of either an electric dipole (b,c) or a magnetic dipole (d,e) emitter. We observe that, as d z /λ increases and R 0 /λ decreases, the minimum number of multipoles needed for 

convergence increases. Moreover, for a fixed value of d z /λ, the number of multipoles needed for convergence remains practically invariant to R 0 /λ beyond some value of 

R 0 /λ. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ecially in the region in the vicinity of the image singularity inside 

he disk, which locally induces strong gradients to the near-fields. 

Finally, in the third figure ( Fig. D.3 ), we demonstrate the num- 

er of multipoles needed to achieve convergence for the recon- 

truction of the fields radiated by a dipolar emitter in free space as 

 function of 1) the optical distance between the emitter and the 

bservation point ( R 0 /λ), and 2) the optical distance between the 

mitter and a center of multipolar expansion that is used to repre- 

ent the radiation of the emitter ( d z /λ). The fields radiated by the

mitter have a singularity at its position. There, we observe that: 

) the larger the optical distance d z /λ, the larger the number of 

ultipoles needed for convergence, and 2) the larger the distance 

 0 /λ, the smaller the number of multipoles that are needed for 

onvergence. Note that, after some value of R 0 /λ, as we move away 

rom the singularity, i.e., as we move away from the near-field re- 

ion of the radiated fields, the number of multipoles needed for 

onvergence (for a particular d z /λ), remains practically unchanged 

oncerning R 0 /λ. 
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