

EMOS: Development of a mobile, automated, optical inspection system for radioactive drums

Tania Barretto, Melanie Müßle

Institute for Technology and Management in Construction (TMB) – Deconstruction and Decommissioning of Conventional and Nuclear Buildings

ICOND 11th INTERNATIONAL CONFERENCE ON NUCLEAR DECOMMISSIONING, NOVEMBER 15th – 17th, 2022 in Aachen

www.kit.edu

Agenda

- Starting position
- Goals of the research project EMOS
- Inspection process
- Results
- Timeline
- Summary

Sponsored by:

Federal Ministry of Education and Research

- BMBF Sponsoring Programme "Research for the dismantling of nuclear facilities" (FORKA)
- Research cooperation within the KIT
 - Institute of Technology and Management in Construction (TMB):
 - Development, design and construction of the inspection unit
 - Institute of Photogrammetry and Remote Sensing (IPF):
 - Selection and conception of the optical detection as well as creation and implementation of the evaluation algorithms

Starting position

Currently, approximately 120.000 m³ of treated and conditioned low- and intermediate-level radioactive waste is stored in Germany.

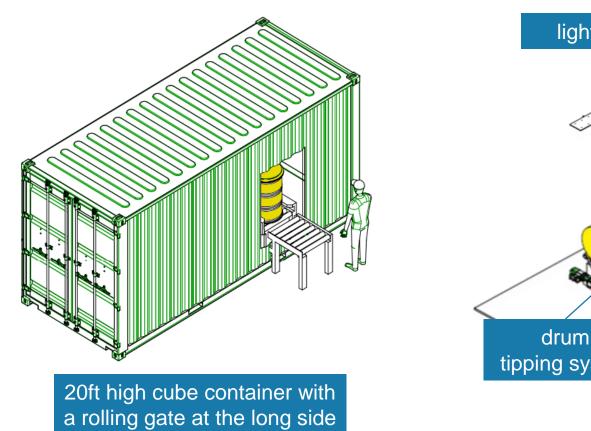
- The waste is filled in containers, mostly 200 L steel drums.
- Their safekeeping must be ensured for an indefinite period of interim storage.
- → Recurrent inspection of the drums is required to detect corrosion and other damages and, if necessary, to be able to initiate consequences to minimize damage.

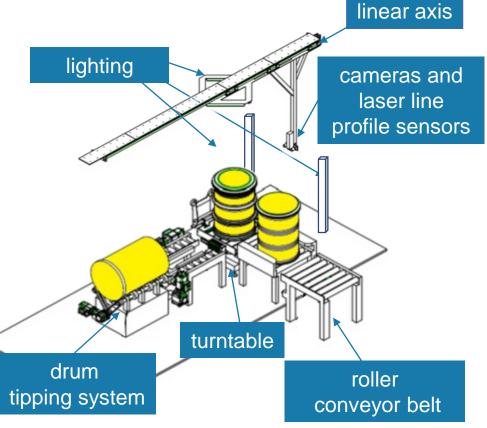
Source: https://www.einblicke.de/einblicke-7/unter-tage-muss-ordnung-herrschen

Goals of the research project

Automation and standardization of the inspection process of the drums

- Automatical detection of damage to new and stored drums
- Categorization of damages
- Detection of changes of damages over time
- Indicate, when consequences must be taken to minimize damage


Advantages


- Increase in Safety during interim storage of nuclear waste
- Increase in occupational safety: Staff is less exposed to radiation
- **Time Gain** in the inspection process of the drums

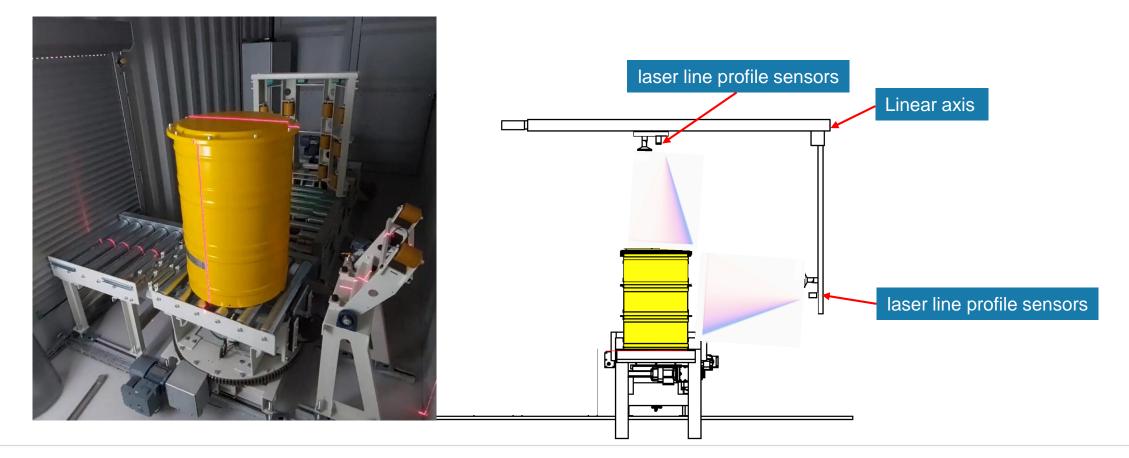
Setting of inspection unit and components

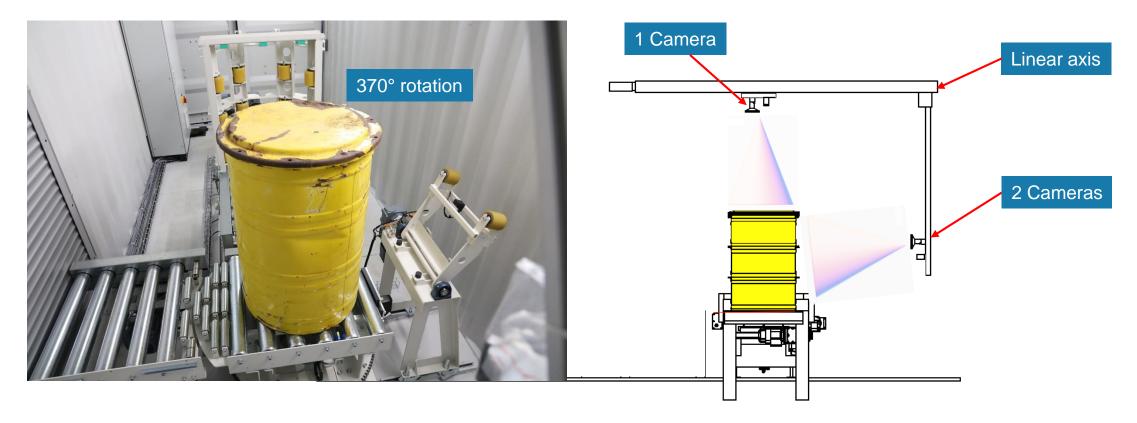
Construction of the inspection system

Mobile inspection system

20ft high cube container with a rolling gate at the long side

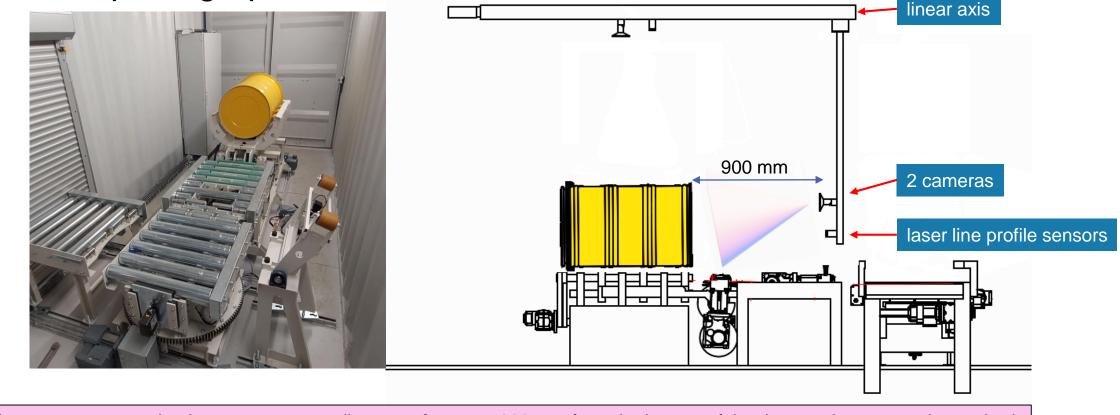
component installation


Drum on Turntable - Drum is moved onto the turntable and centered


Drum shell and drum lid scan

Inspection process: Camera

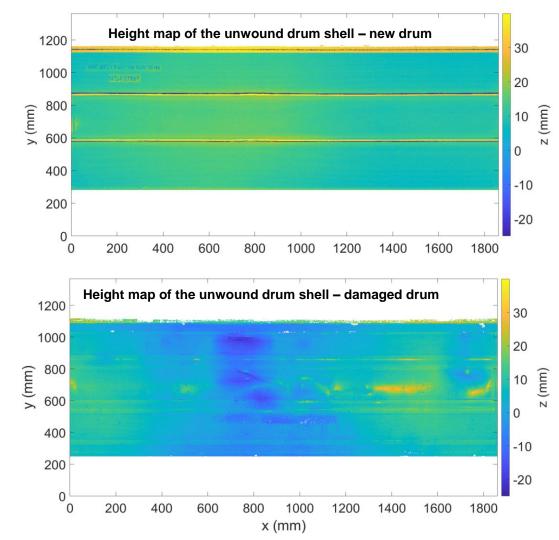
Drum shell and drum lid photograph



Drum on tipping system - Drum is transported to the tipping system and tipped

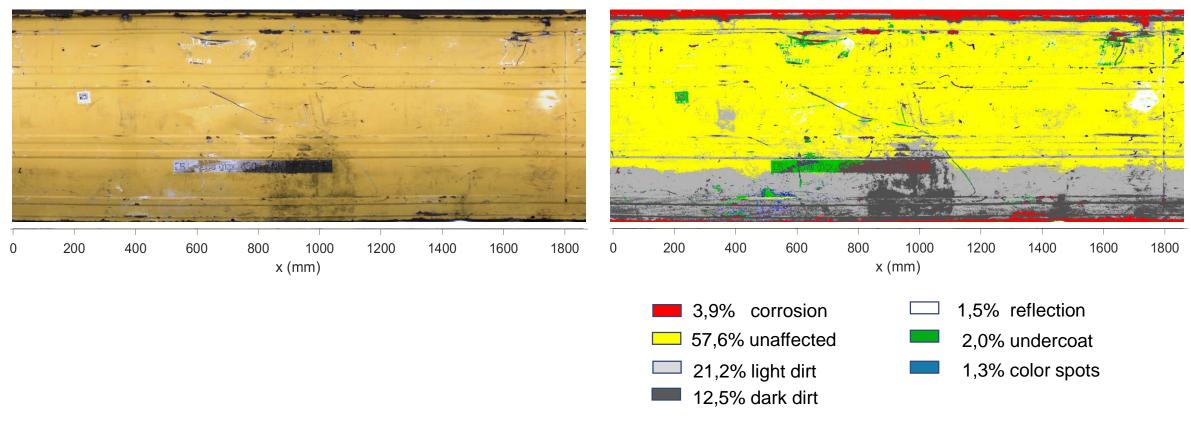
Scan and photograph the bottom of the drum

> In order to ensure an optimal measurement, a distance of approx. 900 mm from the bottom of the drum to the sensors is required



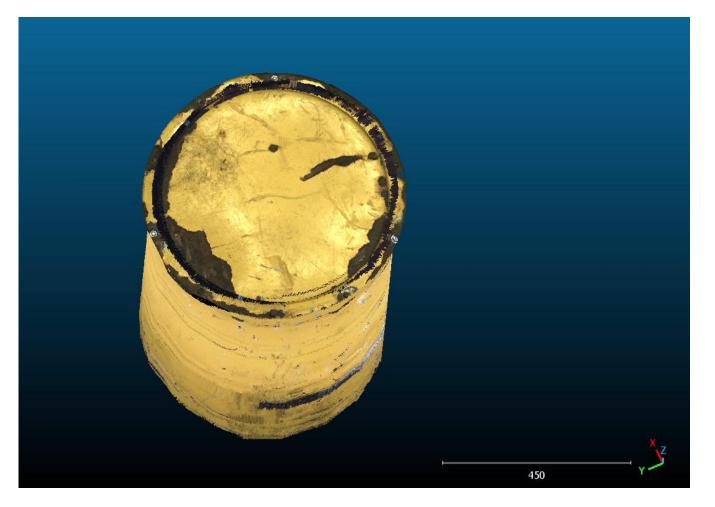
Duration of complete
inspection process:
about 9 minutes

Results: Laser line profile sensor


Detection of geometric damage, such as bumps and dents

Results: Camera

Detection and classification of visual damage


Composite image of the unwound drum shell

Source: D. Haitz et al. (2022): "Corrosion Detection for Industrial Objects: From Multi-Sensor System to 5D Feature Space"

Results: 3D model of a damaged drum

- Three-dimensional visualization of drums
- 3D-model is manually computed by combination of laser profiles and camera recordings

Timeline

		2020										2021										2022												2023				
Arbeitspakete	J	F	M	AN	V J	J	А	S	0	Ν	D	J	F	Μ	A	N	JJ	J	A S	5 0	N	D	J	F	М	A N	1 J	J	А	S	0	Ν	D	J	F	M	A M	J
AP1 Grundlagenerarbeitung																																						
AP2 Vorstudie																																						
AP3 Konzeptphase													< <u>N</u>	11																								
AP4 Softwareentwicklung																		<u> </u>																				
AP5 Erstellung Demonstrator 1.0																	<	M																				
AP6 Feineinstellungs- und Testphase																		Ý																				
AP7 Validierungsphase																																						
AP8 Optimierung Demonstrator 1.0																																	M	3				
AP9 Softwareoptimierung																																	ľ					
AP10 Praxisphase und Abschlusstest																																				<	M4	
AP11 Evaluationsphase																																						

Milestones

M1 Finished Concept

Construction Demonstrator 1.0

Optimization Demonstrator 1.0

Final maturity Demonstrator 1.0 $\overline{M4}$

- Concept development, creation and construction of a functional inspection system that enables the automated inspection of temporarily stored drums to be reproduced and consistently accurate
- Self-developed software
- New recording and description of the surface condition of a drum
- Automatic detection of critical deviations from the normal state, e.g. the differentiation of uncritical color changes (e.g. due to slight color abrasion of a gripper arm) from dangerous changes due to significant indentations or bulges or rust formation

- Combination and interaction of the laser light section process and the optical recording for the new and exact recording of a container surface
- Monitoring of drum surface changes over the duration of storage

Opportunities for further development:

- Detection of corrosion and reaction inside the drums
- Optimization of the setup of the drum inspection unit
- 3D model and digital twin of the drum surface

Thank you very much for your attention!