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MULTIPLICATION OPERATORS ON A CLASS OF HARDY SPACES
FOR FOURIER INTEGRAL OPERATORS

DOROTHEE FREY

Abstract. We show boundedness of multiplication operators Mg on Hardy spaces for
Fourier integral operators Hp

FIO,a(Rd), which are adapted to structured Lipschitz coef-
ficients. The boundedness is described in terms of regularity of g in adapted Besov and
BMO spaces. This improves a recent result on multiplication operators on Hp

FIO,a(Rd),
where more regularity on g was required.

Mathematics Subject Classification (2020): Primary 42B35. Secondary 35L05,
42B30, 42B37, 35S30.

1. Introduction

The function space H1
FIO(Rd), called Hardy space for Fourier integral operators, was first

introduced in [15], with the purpose to have a function space at hand that is preserved
by Fourier integral operators of order 0 associated to canonical transformations. In the
more recent work [7], the construction of [15] was then generalised to all p ∈ [1,∞],
and it was shown that the Hardy spaces Hp

FIO(Rd) are again preserved by Fourier integral
operators of order 0. The results in particular imply the boundedness of the wave operator
cos(
√
−∆) on Hp

FIO(Rd), and, because of sharp Sobolev embeddings between Hp
FIO and Lp

spaces, one recovers the fixed-time Lp estimates for wave equations of [11,12] as a special
case. Much more general results have been obtained in the subsequent work [8], where
the well-posedness of linear wave equations with C1,1 coefficients on Hp

FIO(Rd) was shown.
The spaces Hp

FIO(Rd) play a key role in [8] for the construction of a parametrix.
In our recent work [6] together with P. Portal, on the other hand, we introduced a class
of Hardy spaces for Fourier integral operators Hp

FIO,a(Rd) that are adapted to structured
Lipschitz coefficients. The precise condition on the coefficients is described below. We use
the Hardy spaces Hp

FIO,a(Rd) to show fixed-time Lp estimates for the half-wave operator
(eit
√
L)t∈R, where e.g. L = −

∑d
j=1 ∂j ãj∂j, see also the definitions of L1 and L2 in Section

3 below. This was done by showing boundedness of the half-wave group on Hp
FIO,a(Rd)

together with sharp Sobolev embeddings for Hp
FIO,a(Rd).

A natural question occurring in this context is the boundedness of multiplication operators
on Hp

FIO(Rd) or Hp
FIO,a(Rd). Results for Hp

FIO(Rd) have been obtained in [14] and rely on
Coifman-Meyer type paraproduct arguments with additional decompositions in angular
directions in order to respect the anisotropy inherent to Hp

FIO(Rd). Since the construction
of Hp

FIO,a(Rd) relies on the Phillips calculus as a generalisation of the Fourier multiplier
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construction of Hp
FIO(Rd), the arguments of [14] cannot be applied directly for an anal-

ogous result on Hp
FIO,a(Rd). In [6], we give a first result on multiplication operators on

Hp
FIO,a(Rd) through Leibniz type rules for the operator Da as defined in the next section.

In this article, we are now able to significantly improve the result of [6, Theorem 10.1]
and obtain boundedness of

Mg : Hp
FIO,a(R

d)→ Hp
FIO,a(R

d),

whenever p ∈ (1,∞), s > sp
2

= d−1
2

∣∣1
p
− 1

2

∣∣, and g ∈ L∞(Rd) is such that g ∈ Ḃ0,Lk
∞,∞,

∇L−
1
2

m g ∈ Ḃ0,Lk
∞,∞ and Lsmg ∈ BMOLm for m = 1, 2.

As a corollary of [6, Theorem 10.1], we obtained in [6] the boundedness of the half-wave
operator under first order perturbations with g in the above class of functions for all
s > sp. We refer to [6, Corollary 10.3] for the precise statement. With our new result in
Theorem 3.1, we can now weaken the assumptions on g to s > sp

2
instead of s > sp.

In follow-up work, we will apply Theorem 3.1 to pseudodifferential operators with symbols
of limited smoothness and establish their boundedness on Hp

FIO,a(Rd) , cf. [14] for corre-
sponding results on Hp

FIO(Rd). We moreover expect that Theorem 3.1 will play a crucial
for the investigation of nonlinear wave equations with structured Lipschitz coefficients.

2. Wave packet transform and Hardy spaces

For a detailed description of the setting, we refer to [6]. We recall the most important
definitions.

For j ∈ {1, . . . , 2d}, let aj ∈ C0,1(R) with d
dx
aj ∈ L∞, and assume that there exist

0 < λ ≤ Λ such that λ ≤ aj(x) ≤ Λ for all x ∈ R. We denote by ãj ∈ C0,1(Rd) the map
defined by ãj : x 7→ aj(xj).

Definition 2.1. For ξ = (ξ1, ..., ξd) ∈ Rd, define

ξ.Da :=
d∑
j=1

ξj

(
0 −ãj+d∂j

ãj∂j 0

)
,

ξ.
√
D2
a :=

d∑
j=1

ξj

( √
−ãj+d∂j ãj∂j 0

0
√
−ãj∂j ãj+d∂j

)
,

as an unbounded operator acting on L2(Rd;C2), with domain W 1,2(Rd;C2).

As in [10, Section 4, Case II], iej.Da generates a bounded C0 group on L2(Rd;C2) for all
j = 1, .., d, since ej.Da is self-adjoint with respect to an equivalent inner product of the
form (u, v) 7→ 〈A−1u, v〉, where A is a diagonal multiplication operator with C0,1 entries.

[6, Proposition 4.3] states that for ξ ∈ Rd and p ∈ (1,∞), the group (exp(itξ.
√
D2
a))t∈R

is bounded on Lp(Rd;C2). Given Ψ ∈ S(Rd), we can therefore define Ψ(
√
D2
a) using the



3

Phillips functional calculus associated with the commutative group (exp(iξ.
√
D2
a))ξ∈Rd :

Ψ(
√
D2
a) :=

1

(2π)d

ˆ

Rd

Ψ̂(ξ) exp(iξ.
√
D2
a)dξ.

We restrict our attention to functions Ψ that satisfy Ψ = Ψs, where

Ψs(x) := 2−d
∑

(δj)dj=1∈{−1,1}d
Ψ(δ1x1, ..., δdxd),

and write Ψ(Da) instead of Ψ(
√
D2
a) when Ψ = Ψs is symmetrised.

We recall the definition of wave packets from [6] (see also [7,13]). In the following we only
consider functions that are symmetrised, i.e. Ψω,σ = Ψs

ω,σ.

Let Ψ ∈ C∞c (Rd) be a non-negative radial function with Ψ(ζ) = 0 for |ζ| /∈ [1
2
, 2], and

(2.1)
ˆ ∞

0

Ψ(σζ)2 dσ

σ
= 1

for ζ 6= 0. Let ϕ ∈ C∞c (Rd) be a radial, non-negative function with ϕ(ζ) = 1 for |ζ| ≤ 1
2

and ϕ(ζ) = 0 for |ζ| > 1.
For ω ∈ Sd−1, σ > 0 and ζ ∈ Rd \ {0}, set ϕω,σ(ζ) := cσϕ

(
ζ̂−ω√
σ

)
, and ϕω,σ = ϕω,σ

s, where

cσ :=

(ˆ
Sd−1

ϕ

(
e1 − ν√

σ

)2

dν

)−1/2

. Set ϕω,σ(0) := 0. Set furthermore Ψσ(ζ) := Ψ(σζ)

and ψω,σ(ζ) := Ψσ(ζ)ϕω,σ(ζ) for ω ∈ Sd−1, σ > 0 and ζ ∈ Rd. By construction, we then
have ˆ ∞

0

ˆ
Sd−1

ψω,σ(ζ)2 dω
dσ

σ
= 1(2.2)

for all ζ ∈ Rd \ {0}, see [7, Lemma 4.1]. For ω ∈ Sd−1 and ζ ∈ Rd, we moreover set

ϕω(ζ) :=

ˆ 4

0

ψω,τ (ζ)
dτ

τ
.

We then have, for all f ∈ L2(Rd), the following resolution of identity

1

|Sd−1|

ˆ
Sd−1

ˆ ∞
1

Ψ(σDa)
2f
dσ

σ
dω +

ˆ
Sd−1

ˆ 1

0

ϕω(Da)
2Ψ(σDa)

2f
dσ

σ
dω = f(2.3)

We recall the definition of Hardy spaces Hp
FIO,a(Rd), and refer to [6, Section 7] for more

details. In order to define Hp
FIO,a(Rd), we first define test function spaces adapted to our

setting.

Definition 2.2. Define

S1 = {f ∈ H1
L(Rd) : ∃g ∈ L1(Rd) ∩ L2(Rd) ∃τ > 0 f = Ψ(τDa)g},
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and for p ∈ (1,∞)

Sp = {f ∈ Lp(Rd) : ∃g ∈ Lp(Rd) ∩ L2(Rd) ∃τ > 0 f = Ψ(τDa)g}.

We can then define Hp
FIO,a(Rd) in the following way. For the definition of tent spaces

T p,2(Rd), we refer to [4].

Definition 2.3. Let p ∈ [1,∞). We define the space Hp
FIO,a(Rd) as the completion of Sp

for the norm defined by

‖f‖Hp
FIO,a(Rd)

:= ‖ω 7→ [(σ, x) 7→ 1(1,∞)(σ)Ψ(σDa)f(x) + 1[0,1](σ)ϕω(Da)Ψ(σDa)f(x)]‖Lp(Sd−1;T p,2(Rd)).

3. Multiplication on Hardy spaces

We denote by L1 and L2 the operators

L1 := −
d∑
j=1

ãj+d∂j ãj∂j, L2 := −
d∑
j=1

ãj∂j ãj+d∂j,

and set L :=

(
L1 0
0 L2

)
= D2

a.

For a function g : Rd → R, we denote byMg the multiplication operator (f, F ) 7→ (gf, gF ).
For the definition of Besov spaces Ḃ0,Lk

∞,∞ associated with the operators Lk, we refer to [2],
and for the definition of BMO spaces BMOLk , we refer to [5].

We obtain the following improvement of [6, Theorem 10.1].

Theorem 3.1. Let p ∈ (1,∞), sp = (d− 1)
∣∣1
p
− 1

2

∣∣ and s > sp
2
. Let g ∈ L∞(Rd) be such

that g ∈ Ḃ0,Lk
∞,∞, ∇L

− 1
2

m g ∈ Ḃ0,Lk
∞,∞ and Lsmg ∈ BMOLm for m = 1, 2. Then

Mg : Hp
FIO,a(R

d)→ Hp
FIO,a(R

d)

is bounded.

The proof will be a consequence of Lemma [6, Lemma 10.4], Lemma 3.3 and Lemma 3.6
below.

We use the following paraproduct decomposition, which is a refinement of the decompo-
sition in [6]. Let Φ ∈ S(Rd), φ ∈ S(Rd) with φ(0) = 1 and Φσ(ζ) = φ(σ2|ζ|2) for σ > 0,
ζ ∈ Rd. We denote by Mφ(L)g and Mφ(L)g, respectively, the multiplication operators

Mφ(L)g : (f, F ) 7→ (φ(L1)g.f, φ(L2)g.F ),

Mφ(L)g : (f, F ) 7→ (φ(L2)g.f, φ(L1)g.F ).
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For f ∈ Sp and g ∈ S(Rd), we use (2.3) to decompose the product gf as follows.

Mgf =

ˆ ∞
1

Mφ(τL)gΨ(τDa)
2f
dτ

τ
+

ˆ ∞
1

(Mg −Mφ(τL)g)Ψ(τDa)
2f
dτ

τ

+

ˆ
Sd−1

ˆ 1

0

Mφ(τL)gϕν(Da)
2Ψ(τDa)

2f
dτ

τ
dν

+

ˆ
Sd−1

ˆ 1

0

(Mg −Mφ(τL)g)ϕν(Da)
2Ψ(τDa)

2f
dτ

τ
dν.(3.1)

We omit the proof for the two low-frequency terms in the first line, as they are similar but
simpler than the high-frequency terms and can be treated with similar arguments as in
e.g. [1] without additional angular decomposition. We now further decompose the term
in the third line of (3.1) and write for τ ∈ (0, 1)

(I − φ(τL))g =

j0∑
k=1

(φ(2k−1τ 2L)− φ(2kτ 2L))g + (I − φ(τ 2L))g,

where, for notational simplicity, we assume that j0 ∈ N can be chosen such that 2j0 = τ−1

(otherwise one adds another similar term to the decomposition). Now note that for k =
1, . . . , j0,

φ(2k−1τ 2L)− φ(2kτ 2L) = ψ(2kτ 2L),

for some function ψ ∈ C∞c (Rd), with ψ(ζ) = 0 outside a compact annulus not containing 0.

In order to prove Theorem 3.1, it is therefore enough to estimate the term in the second
line of (3.1), the term

ˆ
Sd−1

ˆ 1

0

(Mg −Mφ(τ2L)g)ϕν(Da)
2Ψ(τDa)

2f
dτ

τ
dν,(3.2)

as well as the term
ˆ
Sd−1

ˆ 1

0

j0∑
k=1

(Mψ(2kτ2L)g)ϕν(Da)
2Ψ(τDa)

2f
dτ

τ
dν.(3.3)

For the term in the second line of (3.1), we recall [6, Lemma 10.4].

Lemma 3.2. Let p ∈ (1,∞). Let g ∈ L∞ be such that g ∈ Ḃ0,Lm
∞,∞ and ∇L−

1
2

m g ∈ Ḃ0,Lm
∞,∞ for

m = 1, 2. For all f ∈ Hp
FIO,a(Rd), we have that

‖(ω, σ, ·) 7→ ψω,σ(Da)

ˆ
Sd−1

ˆ 1

0

Mφ(τL)gϕν(Da)
2Ψ(τDa)

2f
dτ

τ
dν‖Lp(Sd−1;T p,2(Rd))

. (‖g‖∞ + max
m=1,2

‖g‖Ḃ0,Lm
∞,∞

+ max
m=1,2

‖∇L−
1
2

m g‖Ḃ0,Lm
∞,∞

)‖f‖Hp
FIO,a(Rd).

Since we have

(I − φ(τ 2L))g = −
ˆ τ

0

∂sφ(s2L)g ds =

ˆ τ

0

ψ(s2L)g
ds

s
,
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with some ψ ∈ C∞c with compact support away from 0, we obtain with integration by
parts
ˆ 1

0

(I − φ(τ 2L))g · ϕν(Da)
2Ψ(τDa)f

dt

t
=

ˆ 1

0

ˆ τ

0

ψ(s2L)g · ϕν(Da)
2Ψ(τDa)f

ds

s

dτ

τ

'
ˆ 1

0

ψ(s2L)g ·
ˆ 1

s

ϕν(Da)
2Ψ(τDa)f

τ

τ

ds

s

'
ˆ 1

0

ψ(s2L)g · ϕν(Da)
2Φ(τDa)f

ds

s
,

omitting possible additional low frequency terms. The term in (3.2) can therefore be dealt
with as in [6, Lemma 10.6], noting that because the scaling ofMΨ(τ2L)g is now in τ 2 instead
of τ , we only require that Lsg ∈ BMOLm for m = 1, 2 and s > sp

2
. Note also that Ψ(τDa)

can be changed to Ψ(τDa)
2 by renormalisation.

Lemma 3.3. Let p ∈ (1,∞), let s > sp
2
. Let g ∈ L∞ be such that Lsmg ∈ BMOLm for

m = 1, 2, and let f ∈ Hp
FIO,a(Rd). Then

‖(ω, σ, ·) 7→ ψω,σ(Da)

ˆ
Sd−1

ˆ 1

0

MΨ(τ2L)g · ϕν(Da)
2Φ(τDa)f

dτ

τ
dν‖Lp(T p,2)

. max
m=1,2

‖Lsmg‖BMOLm
‖f‖Hp

FIO,a(Rd).

The main part of the proof is the estimate for (3.3) with g restricted to intermedi-
ate frequencies. We recall the following result for the boundedness of wave packets on
Lp(Sd−1;T p,2(Rd)) from [6, Remark 8.2].

Lemma 3.4. For all p ∈ (1,∞), we have

‖(ω, σ, . ) 7→ σ
sp
2 ψω,σ(Da)F (σ, . )‖Lp(Sd−1;T p,2(Rd)) . ‖F‖T p,2(Rd)

for all F ∈ T p,2(Rd).

We also recall the following result on factorizations for tent spaces.

Theorem 3.5 ([3, Theorem 1.1]). Let p, q ∈ (1,∞). If F ∈ T p,∞(Rd) and G ∈ T∞,q(Rd),
then FG ∈ T p,q(Rd) and

‖F ·G‖T p,q(Rd) ≤ C‖F‖T p,∞(Rd)‖G‖T∞,q(Rd),

with a constant C > 0 which is independent of F and G.

For the estimate of intermediate frequencies, we refine the angular decomposition used
in [6, Lemma 10.4]. We then however proceed with a tent space factorization T p,2 =
T p,∞ · T∞,2 as in [6, Lemma 10.6], since the cancellative term acts on g and not on f (i.e.
we are dealing an operator of type ψk instead of ϕk acting on g).

Lemma 3.6. Let p ∈ (1,∞) and s > sp
2
. Let g ∈ L∞(Rd) be such that Lsmg ∈ BMOLm

for m = 1, 2, and let f ∈ Hp
FIO,a(Rd). Let k ∈ N, and set ψ(2kτ 2L) = 0 for τ ∈ (0, 1) with
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2k > 1
τ
. Then

‖(ω, σ, . ) 7→ ψω,σ(Da)

ˆ
Sd−1

ˆ 1

0

Mψ(2kτ2L)g ϕν(Da)
2Φ(τDa)f

dτ

τ
dν‖Lp(T p,2)

. max
m=1,2

‖Lsmg‖BMOLm
‖f‖Hp

FIO,a(Rd).

Proof. Since the result is true for p = 2 with s = 0, by interpolation and duality it suffices
to show the statement for s = d−1

4
= s1

2
and p ∈ (1, 2). We decompose the integral in τ

into the two regions 0 < τ < σ and σ < τ < 1 and the integral in ν into the two regions
|ν − ω| ≤ 2(j0−k)/2

√
τ and its complement.

Part 1: We first consider the case 0 < τ < σ and |ν − ω| ≤ 2(j0−k)/2
√
τ . By [6, Lemma

6.8], [9, Theorem 5.2] and Hardy’s inequality we then have

‖ψω,σ(Da)

ˆ min(σ,1)

0

ˆ
|ν−ω|≤2(j0−k)/2

√
τ

Mψ(2kτ2L)g ϕν(Da)
2Φ(τDa)f

dτ

τ
dν‖Lp(T p,2)

. ‖σ−
d−1
4

ˆ min(σ,1)

0

ˆ
|ν−ω|≤2(j0−k)/2

√
τ

Mψ(2kτ2L)g ϕν(Da)
2Φ(τDa)f

dτ

τ
dν‖Lp(T p,2)

.
ˆ
Sd−1

‖τ−
d−1
4

ˆ
|ν−ω|≤2(j0−k)/2

√
τ

Mψ(2kτ2L)g ϕν(Da)
2Φ(τDa)f dν‖T p,2 dω.(3.4)

Now observe that by [6, Lemma 6.1] we have that ‖F−1(ϕνΦτ )‖L1(Rd) . τ−
d−1
4 uniformly

in τ and ν, thus

τ−
d−1
4

ˆ
|ν−ω|≤2(j0−k)/2

√
τ

‖F−1(ϕνΦτ )‖L1 dν . τ−
d−1
4 (2(j0−k)/2

√
τ)d−1τ−

d−1
4 = 2(j0−k) d−1

2 .

We can therefore modify the arguments of [6, Proposition 7.9] and replace the operator
Φσ(Da)ϕω(Da) (with σ replaced by τ , ω replaced by ν) in the second part of the proof of
[6, Proposition 7.9] by

τ−
d−1
4

ˆ
|ν−ω|≤2(j0−k)/2

√
τ

ϕν(Da)Φτ (Da) dν.

Since we have the corresponding off-diagonal estimates, we obtain the following estimate
for the nontangential maximal function

ˆ
Sd−1

‖
ˆ
|ν−ω|≤2(j0−k)/2

√
τ

2k
d−1
2 τ

d−1
4 ϕν(Da)

2Φ(τDa)f dν‖T p,∞ dω . ‖f‖Hp
FIO,a(Rd).
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The factorization of tent spaces stated in Theorem 3.5 then yields that the expression in
(3.4) is bounded by a constant times

2−k
d−1
2 ‖τ−

d−1
2 ψ(2kτ 2L)g‖T∞,2

·
ˆ
Sd−1

‖
ˆ
|ν−ω|≤2(j0−k)/2

√
τ

2k
d−1
2 τ

d−1
4 ϕν(Da)

2Φ(τDa)f dν‖T p,∞ dω

. 2−k
d−1
4 ‖(2kτ 2L)−

d−1
4 ψ(2kτ 2L)L

d−1
4 g‖T∞,2‖f‖Hp

FIO,a(Rd)

. 2−k
d−1
4 max

m=1,2
‖L

d−1
4

m g‖BMOLm
‖f‖Hp

FIO,a(Rd),

where in the last line we use [5, Lemma 4.3].

Part 2: Now consider the integral over 0 < τ < σ and |ν −ω| ≥ 2(j0−k)/2
√
τ . In this case

|ω.ν| . 2(j0−k)/2
√
τ . In order to estimate

‖ψω,σ(Da)

ˆ min(σ,1)

0

ˆ
|ν−ω|≥2(j0−k)/2

√
τ

MΨ(2kτ2L)g · ϕν(Da)
2Ψ(τDa)

2f
dτ

τ
dν‖Lp(T p,2),

we apply the product rule by distributing derivatives from the factor ϕν(Da)
2Ψ(τDa)

2f
onto the other parts. More precisely, we use that

MΨ(2kτ2L)g(ej.Da) = (ej.Da)MΨ(2kτ2L)g −M(ej .Da)Ψ(2kτ2L)g,

for j = 1, . . . , d, where

M(ej .Da)Ψ(2kτ2L)g : (f, F ) 7→ (−ãj+d∂jΨ(2kτ 2L1)g · F, ãj∂jΨ(2kτ 2L2)g · f).

In order to handle derivatives onto the operator on the outside, we denote by (ω, ω1, . . . , ωd−1)
an orthonormal basis of Rd, and write

τ(ν.Da)ψω,σ(Da) =
τ

σ
(ν.ω)σ(ω.Da)ψω,σ(Da) +

√
τ

√
τ

σ

d−1∑
j=1

(ν.ωj)
√
σ(ωj.Da)ψω,σ(Da)

'
√
τ(2(j0−k)/2 τ

σ
+

√
τ

σ
)ψ̃ω,σ(Da),

with ψ̃ω,σ some function satisfying the same assumptions as ψω,σ (up to constants). On
the other hand, we can write

τ(ν.Da)Ψ(2kτ 2L)g ' 2−k/2Ψ̃(2kτ 2L)g ' 2(j0−k)/2
√
τΨ̃(2kτ 2L)g,

again with Ψ̃ being similar to Ψ. Applying the product rule 2M times, we obtain -
suppressing similar terms with L replaced by L -

‖ψω,σ(Da)

ˆ min(σ,1)

0

ˆ
|ν−ω|≥2(j0−k)/2

√
τ

MΨ(2kτ2L)g · ϕν(Da)
2Ψ(τDa)

2f
dτ

τ
dν‖Lp(T p,2)

. max
l=0,...,2M

‖τM(2(j0−k)/2 τ

σ
+

√
τ

σ
)l(2(j0−k)/2)2M−lψ̃ω,σ(Da)

ˆ min(σ,1)

0

ˆ
|ν−ω|≥2(j0−k)/2

√
τ

MΨ̃(2kτ2L)g · ϕ̃ν(Da)
2Ψ̃(τDa)

2f
dτ

τ
dν‖Lp(T p,2).
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Repeating the arguments of Part 1 and applying [6, Lemma 6.8], [9, Theorem 5.2] and
Hardy’s inequality together with Theorem 3.5, we get that the last expression is bounded
by a constant times

max
l=0,...,2M

ˆ
Sd−1

‖(2(j0−k)/2 + 1)l(2(j0−k)/2)2M−lτMτ−
d−1
4 MΨ̃(2kτ2L)g · ϕ̃ν(Da)

2Ψ̃(τDa)
2f‖T p,2 dν

. 2−kM‖τ−
d−1
4 τ−

d−1
4 Ψ̃(2kτ 2L)g‖T∞,2

ˆ
Sd−1

‖τ
d−1
4 ϕ̃ν(Da)

2Ψ̃(τDa)
2f‖T p,∞ dν

' 2−kM2k
d−1
4 ‖(2kτ 2)−

d−1
4 Ψ̃(2kτ 2L)g‖T∞,2

ˆ
Sd−1

‖τ
d−1
4 ϕ̃ν(Da)

2Ψ̃(τDa)
2f‖T p,∞ dν

. 2−kM̃ max
m=1,2

‖L
d−1
4

m g‖BMOLm
‖f‖Hp

FIO,a(Rd).

Part 3: Now consider the integral over 0 < σ < τ and |ν − ω| ≤ 2(j0−k)/2
√
τ . We choose

M ∈ N sufficiently large depending on p, d and write ψ̃ω,σ(Da) := ψω,σ(Da)(σ
2L)−M with

ψ̃ω,σ a function with the same properties as ψω,σ up to constants. We can then write with
similar arguments as in Part 1, using [6, Lemma 6.8] and Hardy’s inequality,

‖ψω,σ(Da)

ˆ 1

min(σ,1)

ˆ
|ν−ω|≤2(j0−k)/2

√
τ

Mψ(2kτ2L)g ϕν(Da)
2Φ(τDa)f

dτ

τ
dν‖Lp(T p,2)

. ‖σ2M− d−1
4

ˆ 1

min(σ,1)

ˆ
|ν−ω|≤2(j0−k)/2

√
τ

LM [Mψ(2kτ2L)g ϕν(Da)
2Φ(τDa)f ]

dτ

τ
dν‖Lp(T p,2)

. ‖τ 2M− d−1
4

ˆ
|ν−ω|≤2(j0−k)/2

√
τ

LM [Mψ(2kτ2L)g ϕν(Da)
2Φ(τDa)f ] dν‖Lp(T p,2).

Now use for j = 1, . . . , d the product rule
(ej.Da)MΨ(2kτ2L)g = MΨ(2kτ2L)g(ej.Da) +M(ej .Da)Ψ(2kτ2L)g,

and note that with l ∈ {0, . . . , 2M} even, m = 1, 2 and δ ∈ {0, 1}, we can bound the
above expression by multiples of terms of the form

‖τ−
d−1
4

ˆ
|ν−ω|≤2(j0−k)/2

√
τ

Mτδ(ej .Da)δ(τ2Lm)l/2ψ(2kτ2L)g (τDa)
2M−l−δϕν(Da)

2Φ(τDa)f dν‖Lp(T p,2).

Terms of this form can now be estimated similarly as in Part 1. The estimate of the factor
involving f does not change significantly, as the operator (τDa)

2M−l−δϕν(Da)
2Φ(τDa) has

the same (for 2M − l− δ = 0) or better properties than ϕν(Da)
2Φ(τDa). For the estimate

of the factor involving g, we have to deal with the following term, which again behaves
the same or better than the corresponding term in Part 1,

2−k
d−1
2 ‖τ−

d−1
2 τ δ(ej.Da)

δ(τ 2Lm)l/2ψ(2kτ 2L)g‖T∞,2

. 2−k
d−1
2 2−k

δ+l
2 ‖τ−

d−1
2 ψ̃(2kτ 2L)g‖T∞,2 . 2−k

d−1
4 max

m=1,2
‖L

d−1
4

m g‖BMOLm
.

Part 4: For the integral over 0 < σ < τ and |ν − ω| ≥ 2(j0−k)/2
√
τ , we combine the

arguments of Part 2 with the use of the Leibniz rule in Part 3. This is done just as in the
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last part of the proof of [6, Lemma 10.4], with first applying the product rule argument
of Part 2 in order to gain a factor τ

M′
2 , but still keeping some operator ψ̃ω,σ(Da) in the

expression. One can then apply the product rule argument of Part 3 with M > M ′

2
sufficiently large in order to get into a position where Hardy’s inequality in σ < τ is
applicable. The occurring terms change from Part 2 to Part 4 in the same way as they
did from Part 1 to Part 3. �
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