

Multiplication operators on a class of Hardy spaces for Fourier integral operators

Dorothee Frey

CRC Preprint 2023/1, January 2023

KARLSRUHE INSTITUTE OF TECHNOLOGY

Participating universities

Funded by

ISSN 2365-662X

MULTIPLICATION OPERATORS ON A CLASS OF HARDY SPACES FOR FOURIER INTEGRAL OPERATORS

DOROTHEE FREY

ABSTRACT. We show boundedness of multiplication operators M_g on Hardy spaces for Fourier integral operators $H^p_{FIO,a}(\mathbb{R}^d)$, which are adapted to structured Lipschitz coefficients. The boundedness is described in terms of regularity of g in adapted Besov and BMO spaces. This improves a recent result on multiplication operators on $H^p_{FIO,a}(\mathbb{R}^d)$, where more regularity on g was required.

Mathematics Subject Classification (2020): Primary 42B35. Secondary 35L05, 42B30, 42B37, 35S30.

1. INTRODUCTION

The function space $H^1_{FIO}(\mathbb{R}^d)$, called Hardy space for Fourier integral operators, was first introduced in [15], with the purpose to have a function space at hand that is preserved by Fourier integral operators of order 0 associated to canonical transformations. In the more recent work [7], the construction of [15] was then generalised to all $p \in [1, \infty]$, and it was shown that the Hardy spaces $H^p_{FIO}(\mathbb{R}^d)$ are again preserved by Fourier integral operators of order 0. The results in particular imply the boundedness of the wave operator $\cos(\sqrt{-\Delta})$ on $H^p_{FIO}(\mathbb{R}^d)$, and, because of sharp Sobolev embeddings between H^p_{FIO} and L^p spaces, one recovers the fixed-time L^p estimates for wave equations of [11,12] as a special case. Much more general results have been obtained in the subsequent work [8], where the well-posedness of linear wave equations with $C^{1,1}$ coefficients on $H^p_{FIO}(\mathbb{R}^d)$ was shown. The spaces $H^p_{FIO}(\mathbb{R}^d)$ play a key role in [8] for the construction of a parametrix.

In our recent work [6] together with P. Portal, on the other hand, we introduced a class of Hardy spaces for Fourier integral operators $H^p_{FIO,a}(\mathbb{R}^d)$ that are adapted to structured Lipschitz coefficients. The precise condition on the coefficients is described below. We use the Hardy spaces $H^p_{FIO,a}(\mathbb{R}^d)$ to show fixed-time L^p estimates for the half-wave operator $(e^{it\sqrt{L}})_{t\in\mathbb{R}}$, where e.g. $L = -\sum_{j=1}^d \partial_j \tilde{a}_j \partial_j$, see also the definitions of L_1 and L_2 in Section 3 below. This was done by showing boundedness of the half-wave group on $H^p_{FIO,a}(\mathbb{R}^d)$ together with sharp Sobolev embeddings for $H^p_{FIO,a}(\mathbb{R}^d)$.

A natural question occurring in this context is the boundedness of multiplication operators on $H^p_{FIO}(\mathbb{R}^d)$ or $H^p_{FIO,a}(\mathbb{R}^d)$. Results for $H^p_{FIO}(\mathbb{R}^d)$ have been obtained in [14] and rely on Coifman-Meyer type paraproduct arguments with additional decompositions in angular directions in order to respect the anisotropy inherent to $H^p_{FIO}(\mathbb{R}^d)$. Since the construction of $H^p_{FIO,a}(\mathbb{R}^d)$ relies on the Phillips calculus as a generalisation of the Fourier multiplier

Date: January 2, 2023.

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 258734477 – SFB 1173.

construction of $H^p_{FIO}(\mathbb{R}^d)$, the arguments of [14] cannot be applied directly for an analogous result on $H^p_{FIO,a}(\mathbb{R}^d)$. In [6], we give a first result on multiplication operators on $H^p_{FIO,a}(\mathbb{R}^d)$ through Leibniz type rules for the operator D_a as defined in the next section. In this article, we are now able to significantly improve the result of [6, Theorem 10.1] and obtain boundedness of

$$M_g: H^p_{FIO,a}(\mathbb{R}^d) \to H^p_{FIO,a}(\mathbb{R}^d),$$

whenever $p \in (1,\infty)$, $s > \frac{s_p}{2} = \frac{d-1}{2} \left| \frac{1}{p} - \frac{1}{2} \right|$, and $g \in L^{\infty}(\mathbb{R}^d)$ is such that $g \in \dot{B}^{0,L_k}_{\infty,\infty}$, $\nabla L_m^{-\frac{1}{2}} g \in \dot{B}^{0,L_k}_{\infty,\infty}$ and $L_m^s g \in BMO_{L_m}$ for m = 1, 2. As a corollary of [6, Theorem 10.1], we obtained in [6] the boundedness of the half-wave

As a corollary of [6, Theorem 10.1], we obtained in [6] the boundedness of the half-wave operator under first order perturbations with g in the above class of functions for all $s > s_p$. We refer to [6, Corollary 10.3] for the precise statement. With our new result in Theorem 3.1, we can now weaken the assumptions on g to $s > \frac{s_p}{2}$ instead of $s > s_p$. In follow-up work, we will apply Theorem 3.1 to pseudodifferential operators with symbols of limited smoothness and establish their boundedness on $H^p_{FIO,a}(\mathbb{R}^d)$, cf. [14] for corresponding results on $H^p_{FIO}(\mathbb{R}^d)$. We moreover expect that Theorem 3.1 will play a crucial for the investigation of nonlinear wave equations with structured Lipschitz coefficients.

2. WAVE PACKET TRANSFORM AND HARDY SPACES

For a detailed description of the setting, we refer to [6]. We recall the most important definitions.

For $j \in \{1, \ldots, 2d\}$, let $a_j \in C^{0,1}(\mathbb{R})$ with $\frac{d}{dx}a_j \in L^{\infty}$, and assume that there exist $0 < \lambda \leq \Lambda$ such that $\lambda \leq a_j(x) \leq \Lambda$ for all $x \in \mathbb{R}$. We denote by $\tilde{a}_j \in C^{0,1}(\mathbb{R}^d)$ the map defined by $\tilde{a}_j : x \mapsto a_j(x_j)$.

Definition 2.1. For $\xi = (\xi_1, ..., \xi_d) \in \mathbb{R}^d$, define

$$\begin{split} \xi.D_a &:= \sum_{j=1}^d \xi_j \left(\begin{array}{cc} 0 & -\widetilde{a_{j+d}}\partial_j \\ \widetilde{a_j}\partial_j & 0 \end{array} \right), \\ \xi.\sqrt{D_a^2} &:= \sum_{j=1}^d \xi_j \left(\begin{array}{cc} \sqrt{-\widetilde{a_{j+d}}\partial_j\widetilde{a_j}\partial_j} & 0 \\ 0 & \sqrt{-\widetilde{a_j}\partial_j\widetilde{a_{j+d}}\partial_j} \end{array} \right), \end{split}$$

as an unbounded operator acting on $L^2(\mathbb{R}^d; \mathbb{C}^2)$, with domain $W^{1,2}(\mathbb{R}^d; \mathbb{C}^2)$.

As in [10, Section 4, Case II], $ie_j D_a$ generates a bounded C_0 group on $L^2(\mathbb{R}^d; \mathbb{C}^2)$ for all j = 1, ..., d, since $e_j D_a$ is self-adjoint with respect to an equivalent inner product of the form $(u, v) \mapsto \langle A^{-1}u, v \rangle$, where A is a diagonal multiplication operator with $C^{0,1}$ entries.

[6, Proposition 4.3] states that for $\xi \in \mathbb{R}^d$ and $p \in (1, \infty)$, the group $(\exp(it\xi \cdot \sqrt{D_a^2}))_{t \in \mathbb{R}}$ is bounded on $L^p(\mathbb{R}^d; \mathbb{C}^2)$. Given $\Psi \in \mathcal{S}(\mathbb{R}^d)$, we can therefore define $\Psi(\sqrt{D_a^2})$ using the Phillips functional calculus associated with the commutative group $(\exp(i\xi \cdot \sqrt{D_a^2}))_{\xi \in \mathbb{R}^d}$:

$$\Psi(\sqrt{D_a^2}) := \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \widehat{\Psi}(\xi) \exp(i\xi \cdot \sqrt{D_a^2}) d\xi.$$

We restrict our attention to functions Ψ that satisfy $\Psi = \Psi^s$, where

$$\Psi^{s}(x) := 2^{-d} \sum_{(\delta_{j})_{j=1}^{d} \in \{-1,1\}^{d}} \Psi(\delta_{1}x_{1}, ..., \delta_{d}x_{d}),$$

and write $\Psi(D_a)$ instead of $\Psi(\sqrt{D_a^2})$ when $\Psi = \Psi^s$ is symmetrised.

We recall the definition of wave packets from [6] (see also [7,13]). In the following we only consider functions that are symmetrised, i.e. $\Psi_{\omega,\sigma} = \Psi_{\omega,\sigma}^s$.

Let $\Psi \in C_c^{\infty}(\mathbb{R}^d)$ be a non-negative radial function with $\Psi(\zeta) = 0$ for $|\zeta| \notin [\frac{1}{2}, 2]$, and

(2.1)
$$\int_0^\infty \Psi(\sigma\zeta)^2 \frac{d\sigma}{\sigma} = 1$$

for $\zeta \neq 0$. Let $\varphi \in C_c^{\infty}(\mathbb{R}^d)$ be a radial, non-negative function with $\varphi(\zeta) = 1$ for $|\zeta| \leq \frac{1}{2}$ and $\varphi(\zeta) = 0$ for $|\zeta| > 1$. For $\omega \in S^{d-1}$, $\sigma > 0$ and $\zeta \in \mathbb{R}^d \setminus \{0\}$, set $\underline{\varphi_{\omega,\sigma}}(\zeta) := c_{\sigma}\varphi\left(\frac{\hat{\zeta}-\omega}{\sqrt{\sigma}}\right)$, and $\varphi_{\omega,\sigma} = \underline{\varphi_{\omega,\sigma}}^s$, where $c_{\sigma} := \left(\int_{S^{d-1}} \varphi\left(\frac{e_1-\nu}{\sqrt{\sigma}}\right)^2 d\nu\right)^{-1/2}$. Set $\varphi_{\omega,\sigma}(0) := 0$. Set furthermore $\Psi_{\sigma}(\zeta) := \Psi(\sigma\zeta)$ and $\psi_{\omega,\sigma}(\zeta) := \Psi_{\sigma}(\zeta)\varphi_{\omega,\sigma}(\zeta)$ for $\omega \in S^{d-1}$, $\sigma > 0$ and $\zeta \in \mathbb{R}^d$. By construction, we then have

(2.2)
$$\int_0^\infty \int_{S^{d-1}} \psi_{\omega,\sigma}(\zeta)^2 \, d\omega \frac{d\sigma}{\sigma} = 1$$

for all $\zeta \in \mathbb{R}^d \setminus \{0\}$, see [7, Lemma 4.1]. For $\omega \in S^{d-1}$ and $\zeta \in \mathbb{R}^d$, we moreover set

$$\varphi_{\omega}(\zeta) := \int_0^4 \psi_{\omega,\tau}(\zeta) \, \frac{d\tau}{\tau}$$

We then have, for all $f \in L^2(\mathbb{R}^d)$, the following resolution of identity

(2.3)
$$\frac{1}{|S^{d-1}|} \int_{S^{d-1}} \int_{1}^{\infty} \Psi(\sigma D_a)^2 f \, \frac{d\sigma}{\sigma} d\omega + \int_{S^{d-1}} \int_{0}^{1} \varphi_{\omega}(D_a)^2 \Psi(\sigma D_a)^2 f \, \frac{d\sigma}{\sigma} d\omega = f$$

We recall the definition of Hardy spaces $H^p_{FIO,a}(\mathbb{R}^d)$, and refer to [6, Section 7] for more details. In order to define $H^p_{FIO,a}(\mathbb{R}^d)$, we first define test function spaces adapted to our setting.

Definition 2.2. Define

$$\mathcal{S}_1 = \{ f \in H^1_L(\mathbb{R}^d) : \exists g \in L^1(\mathbb{R}^d) \cap L^2(\mathbb{R}^d) \ \exists \tau > 0 \ f = \Psi(\tau D_a)g \}$$

and for $p \in (1, \infty)$

$$\mathcal{S}_p = \{ f \in L^p(\mathbb{R}^d) : \exists g \in L^p(\mathbb{R}^d) \cap L^2(\mathbb{R}^d) \ \exists \tau > 0 \ f = \Psi(\tau D_a)g \}$$

We can then define $H^p_{FIO,a}(\mathbb{R}^d)$ in the following way. For the definition of tent spaces $T^{p,2}(\mathbb{R}^d)$, we refer to [4].

Definition 2.3. Let $p \in [1, \infty)$. We define the space $H^p_{FIO,a}(\mathbb{R}^d)$ as the completion of S_p for the norm defined by

$$\begin{aligned} \|f\|_{H^p_{FIO,a}(\mathbb{R}^d)} &:= \|\omega \mapsto [(\sigma, x) \mapsto 1_{(1,\infty)}(\sigma)\Psi(\sigma D_a)f(x) + 1_{[0,1]}(\sigma)\varphi_{\omega}(D_a)\Psi(\sigma D_a)f(x)]\|_{L^p(S^{d-1};T^{p,2}(\mathbb{R}^d))}. \end{aligned}$$

3. Multiplication on Hardy spaces

We denote by L_1 and L_2 the operators

$$L_1 := -\sum_{j=1}^d \widetilde{a_{j+d}} \partial_j \widetilde{a_j} \partial_j, \qquad L_2 := -\sum_{j=1}^d \widetilde{a_j} \partial_j \widetilde{a_{j+d}} \partial_j$$

and set $L := \begin{pmatrix} L_1 & 0 \\ 0 & L_2 \end{pmatrix} = D_a^2.$

For a function $g: \mathbb{R}^d \to \mathbb{R}$, we denote by M_g the multiplication operator $(f, F) \mapsto (gf, gF)$. For the definition of Besov spaces $\dot{B}^{0,L_k}_{\infty,\infty}$ associated with the operators L_k , we refer to [2], and for the definition of BMO spaces BMO_{L_k} , we refer to [5].

We obtain the following improvement of [6, Theorem 10.1].

Theorem 3.1. Let $p \in (1, \infty)$, $s_p = (d-1)\left|\frac{1}{p} - \frac{1}{2}\right|$ and $s > \frac{s_p}{2}$. Let $g \in L^{\infty}(\mathbb{R}^d)$ be such that $g \in \dot{B}^{0,L_k}_{\infty,\infty}$, $\nabla L_m^{-\frac{1}{2}}g \in \dot{B}^{0,L_k}_{\infty,\infty}$ and $L_m^sg \in BMO_{L_m}$ for m = 1, 2. Then

$$M_g: H^p_{FIO,a}(\mathbb{R}^d) \to H^p_{FIO,a}(\mathbb{R}^d)$$

is bounded.

The proof will be a consequence of Lemma [6, Lemma 10.4], Lemma 3.3 and Lemma 3.6 below.

We use the following paraproduct decomposition, which is a refinement of the decomposition in [6]. Let $\Phi \in \mathcal{S}(\mathbb{R}^d), \phi \in \mathcal{S}(\mathbb{R}^d)$ with $\phi(0) = 1$ and $\Phi_{\sigma}(\zeta) = \phi(\sigma^2 |\zeta|^2)$ for $\sigma > 0$, $\zeta \in \mathbb{R}^d$. We denote by $M_{\phi(L)g}$ and $M_{\phi(\underline{L})g}$, respectively, the multiplication operators

$$M_{\phi(L)g} : (f, F) \mapsto (\phi(L_1)g.f, \phi(L_2)g.F),$$

$$M_{\phi(\underline{L})g} : (f, F) \mapsto (\phi(L_2)g.f, \phi(L_1)g.F).$$

4

For $f \in \mathcal{S}_p$ and $g \in \mathcal{S}(\mathbb{R}^d)$, we use (2.3) to decompose the product gf as follows.

$$M_{g}f = \int_{1}^{\infty} M_{\phi(\tau L)g} \Psi(\tau D_{a})^{2} f \frac{d\tau}{\tau} + \int_{1}^{\infty} (M_{g} - M_{\phi(\tau L)g}) \Psi(\tau D_{a})^{2} f \frac{d\tau}{\tau} + \int_{S^{d-1}} \int_{0}^{1} M_{\phi(\tau L)g} \varphi_{\nu}(D_{a})^{2} \Psi(\tau D_{a})^{2} f \frac{d\tau}{\tau} d\nu + \int_{S^{d-1}} \int_{0}^{1} (M_{g} - M_{\phi(\tau L)g}) \varphi_{\nu}(D_{a})^{2} \Psi(\tau D_{a})^{2} f \frac{d\tau}{\tau} d\nu.$$
(3.1)

We omit the proof for the two low-frequency terms in the first line, as they are similar but simpler than the high-frequency terms and can be treated with similar arguments as in e.g. [1] without additional angular decomposition. We now further decompose the term in the third line of (3.1) and write for $\tau \in (0, 1)$

$$(I - \phi(\tau L))g = \sum_{k=1}^{j_0} (\phi(2^{k-1}\tau^2 L) - \phi(2^k\tau^2 L))g + (I - \phi(\tau^2 L))g$$

where, for notational simplicity, we assume that $j_0 \in \mathbb{N}$ can be chosen such that $2^{j_0} = \tau^{-1}$ (otherwise one adds another similar term to the decomposition). Now note that for $k = 1, \ldots, j_0$,

$$\phi(2^{k-1}\tau^2 L) - \phi(2^k\tau^2 L) = \psi(2^k\tau^2 L),$$

for some function $\psi \in C_c^{\infty}(\mathbb{R}^d)$, with $\psi(\zeta) = 0$ outside a compact annulus not containing 0.

In order to prove Theorem 3.1, it is therefore enough to estimate the term in the second line of (3.1), the term

(3.2)
$$\int_{S^{d-1}} \int_0^1 (M_g - M_{\phi(\tau^2 L)g}) \varphi_{\nu}(D_a)^2 \Psi(\tau D_a)^2 f \, \frac{d\tau}{\tau} d\nu,$$

as well as the term

(3.3)
$$\int_{S^{d-1}} \int_0^1 \sum_{k=1}^{j_0} (M_{\psi(2^k \tau^2 L)g}) \varphi_{\nu}(D_a)^2 \Psi(\tau D_a)^2 f \, \frac{d\tau}{\tau} d\nu$$

For the term in the second line of (3.1), we recall [6, Lemma 10.4].

Lemma 3.2. Let $p \in (1, \infty)$. Let $g \in L^{\infty}$ be such that $g \in \dot{B}^{0,L_m}_{\infty,\infty}$ and $\nabla L_m^{-\frac{1}{2}}g \in \dot{B}^{0,L_m}_{\infty,\infty}$ for m = 1, 2. For all $f \in H^p_{FIO,a}(\mathbb{R}^d)$, we have that

$$\begin{aligned} \|(\omega,\sigma,\cdot) \mapsto \psi_{\omega,\sigma}(D_a) \int_{S^{d-1}} \int_0^1 M_{\phi(\tau L)g} \varphi_{\nu}(D_a)^2 \Psi(\tau D_a)^2 f \, \frac{d\tau}{\tau} \, d\nu \|_{L^p(S^{d-1};T^{p,2}(\mathbb{R}^d))} \\ \lesssim (\|g\|_{\infty} + \max_{m=1,2} \|g\|_{\dot{B}^{0,L_m}_{\infty,\infty}} + \max_{m=1,2} \|\nabla L_m^{-\frac{1}{2}}g\|_{\dot{B}^{0,L_m}_{\infty,\infty}}) \|f\|_{H^p_{FIO,a}(\mathbb{R}^d)}. \end{aligned}$$

Since we have

$$(I - \phi(\tau^2 L))g = -\int_0^\tau \partial_s \phi(s^2 L)g \, ds = \int_0^\tau \psi(s^2 L)g \, \frac{ds}{s},$$

with some $\psi \in C_c^{\infty}$ with compact support away from 0, we obtain with integration by parts

$$\int_0^1 (I - \phi(\tau^2 L))g \cdot \varphi_\nu(D_a)^2 \Psi(\tau D_a) f \frac{dt}{t} = \int_0^1 \int_0^\tau \psi(s^2 L)g \cdot \varphi_\nu(D_a)^2 \Psi(\tau D_a) f \frac{ds}{s} \frac{d\tau}{\tau}$$
$$\simeq \int_0^1 \psi(s^2 L)g \cdot \int_s^1 \varphi_\nu(D_a)^2 \Psi(\tau D_a) f \frac{\tau}{\tau} \frac{ds}{s}$$
$$\simeq \int_0^1 \psi(s^2 L)g \cdot \varphi_\nu(D_a)^2 \Phi(\tau D_a) f \frac{ds}{s},$$

omitting possible additional low frequency terms. The term in (3.2) can therefore be dealt with as in [6, Lemma 10.6], noting that because the scaling of $M_{\Psi(\tau^2 L)g}$ is now in τ^2 instead of τ , we only require that $L^s g \in BMO_{L_m}$ for m = 1, 2 and $s > \frac{s_p}{2}$. Note also that $\Psi(\tau D_a)$ can be changed to $\Psi(\tau D_a)^2$ by renormalisation.

Lemma 3.3. Let $p \in (1, \infty)$, let $s > \frac{s_p}{2}$. Let $g \in L^{\infty}$ be such that $L_m^s g \in BMO_{L_m}$ for m = 1, 2, and let $f \in H^p_{FIO,q}(\mathbb{R}^d)$. Then

$$\begin{aligned} \|(\omega,\sigma,\cdot)\mapsto\psi_{\omega,\sigma}(D_a)\int_{S^{d-1}}\int_0^1 M_{\Psi(\tau^2L)g}\cdot\varphi_{\nu}(D_a)^2\Phi(\tau D_a)f\,\frac{d\tau}{\tau}d\nu\|_{L^p(T^{p,2})}\\ &\lesssim \max_{m=1,2}\|L_m^sg\|_{BMO_{L_m}}\|f\|_{H^p_{FIO,a}(\mathbb{R}^d)}.\end{aligned}$$

The main part of the proof is the estimate for (3.3) with g restricted to intermediate frequencies. We recall the following result for the boundedness of wave packets on $L^{p}(S^{d-1}; T^{p,2}(\mathbb{R}^{d}))$ from [6, Remark 8.2].

Lemma 3.4. For all $p \in (1, \infty)$, we have

$$\|(\omega,\sigma,\,.\,)\mapsto\sigma^{\frac{o_p}{2}}\psi_{\omega,\sigma}(D_a)F(\sigma,\,.\,)\|_{L^p(S^{d-1};T^{p,2}(\mathbb{R}^d))}\lesssim \|F\|_{T^{p,2}(\mathbb{R}^d)}$$

for all $F \in T^{p,2}(\mathbb{R}^d)$.

We also recall the following result on factorizations for tent spaces.

Theorem 3.5 ([3, Theorem 1.1]). Let $p, q \in (1, \infty)$. If $F \in T^{p,\infty}(\mathbb{R}^d)$ and $G \in T^{\infty,q}(\mathbb{R}^d)$, then $FG \in T^{p,q}(\mathbb{R}^d)$ and

$$\|F \cdot G\|_{T^{p,q}(\mathbb{R}^d)} \le C \|F\|_{T^{p,\infty}(\mathbb{R}^d)} \|G\|_{T^{\infty,q}(\mathbb{R}^d)},$$

with a constant C > 0 which is independent of F and G.

For the estimate of intermediate frequencies, we refine the angular decomposition used in [6, Lemma 10.4]. We then however proceed with a tent space factorization $T^{p,2} = T^{p,\infty} \cdot T^{\infty,2}$ as in [6, Lemma 10.6], since the cancellative term acts on g and not on f (i.e. we are dealing an operator of type ψ_k instead of φ_k acting on g).

Lemma 3.6. Let $p \in (1, \infty)$ and $s > \frac{s_p}{2}$. Let $g \in L^{\infty}(\mathbb{R}^d)$ be such that $L_m^s g \in BMO_{L_m}$ for m = 1, 2, and let $f \in H_{FIO,a}^p(\mathbb{R}^d)$. Let $k \in \mathbb{N}$, and set $\psi(2^k \tau^2 L) = 0$ for $\tau \in (0, 1)$ with $2^k > \frac{1}{\tau}$. Then

$$\| (\omega, \sigma, .) \mapsto \psi_{\omega, \sigma}(D_a) \int_{S^{d-1}} \int_0^1 M_{\psi(2^k \tau^2 L)g} \varphi_{\nu}(D_a)^2 \Phi(\tau D_a) f \, \frac{d\tau}{\tau} d\nu \|_{L^p(T^{p,2})} \\ \lesssim \max_{m=1,2} \| L_m^s g \|_{BMO_{L_m}} \| f \|_{H^p_{FIO,a}(\mathbb{R}^d)}.$$

Proof. Since the result is true for p = 2 with s = 0, by interpolation and duality it suffices to show the statement for $s = \frac{d-1}{4} = \frac{s_1}{2}$ and $p \in (1, 2)$. We decompose the integral in τ into the two regions $0 < \tau < \sigma$ and $\sigma < \tau < 1$ and the integral in ν into the two regions $|\nu - \omega| \le 2^{(j_0 - k)/2} \sqrt{\tau}$ and its complement.

Part 1: We first consider the case $0 < \tau < \sigma$ and $|\nu - \omega| \le 2^{(j_0 - k)/2} \sqrt{\tau}$. By [6, Lemma 6.8], [9, Theorem 5.2] and Hardy's inequality we then have

$$\begin{aligned} \|\psi_{\omega,\sigma}(D_{a})\int_{0}^{\min(\sigma,1)}\int_{|\nu-\omega|\leq 2^{(j_{0}-k)/2}\sqrt{\tau}}M_{\psi(2^{k}\tau^{2}L)g}\,\varphi_{\nu}(D_{a})^{2}\Phi(\tau D_{a})f\,\frac{d\tau}{\tau}d\nu\|_{L^{p}(T^{p,2})} \\ &\lesssim \|\sigma^{-\frac{d-1}{4}}\int_{0}^{\min(\sigma,1)}\int_{|\nu-\omega|\leq 2^{(j_{0}-k)/2}\sqrt{\tau}}M_{\psi(2^{k}\tau^{2}L)g}\,\varphi_{\nu}(D_{a})^{2}\Phi(\tau D_{a})f\,\frac{d\tau}{\tau}d\nu\|_{L^{p}(T^{p,2})} \\ &\lesssim \int_{S^{d-1}}\|\tau^{-\frac{d-1}{4}}\int_{|\nu-\omega|\leq 2^{(j_{0}-k)/2}\sqrt{\tau}}M_{\psi(2^{k}\tau^{2}L)g}\,\varphi_{\nu}(D_{a})^{2}\Phi(\tau D_{a})f\,d\nu\|_{T^{p,2}}\,d\omega. \end{aligned}$$

Now observe that by [6, Lemma 6.1] we have that $\|\mathcal{F}^{-1}(\varphi_{\nu}\Phi_{\tau})\|_{L^{1}(\mathbb{R}^{d})} \lesssim \tau^{-\frac{d-1}{4}}$ uniformly in τ and ν , thus

$$\tau^{-\frac{d-1}{4}} \int_{|\nu-\omega| \le 2^{(j_0-k)/2}\sqrt{\tau}} \|\mathcal{F}^{-1}(\varphi_{\nu}\Phi_{\tau})\|_{L^1} d\nu \lesssim \tau^{-\frac{d-1}{4}} (2^{(j_0-k)/2}\sqrt{\tau})^{d-1} \tau^{-\frac{d-1}{4}} = 2^{(j_0-k)\frac{d-1}{2}}.$$

We can therefore modify the arguments of [6, Proposition 7.9] and replace the operator $\Phi_{\sigma}(D_a)\varphi_{\omega}(D_a)$ (with σ replaced by τ , ω replaced by ν) in the second part of the proof of [6, Proposition 7.9] by

$$\tau^{-\frac{d-1}{4}} \int_{|\nu-\omega| \le 2^{(j_0-k)/2}\sqrt{\tau}} \varphi_{\nu}(D_a) \Phi_{\tau}(D_a) \, d\nu.$$

Since we have the corresponding off-diagonal estimates, we obtain the following estimate for the nontangential maximal function

$$\int_{S^{d-1}} \|\int_{|\nu-\omega| \le 2^{(j_0-k)/2}\sqrt{\tau}} 2^{k\frac{d-1}{2}} \tau^{\frac{d-1}{4}} \varphi_{\nu}(D_a)^2 \Phi(\tau D_a) f \, d\nu\|_{T^{p,\infty}} \, d\omega \lesssim \|f\|_{H^p_{FIO,a}(\mathbb{R}^d)}.$$

The factorization of tent spaces stated in Theorem 3.5 then yields that the expression in (3.4) is bounded by a constant times

$$2^{-k\frac{d-1}{2}} \|\tau^{-\frac{d-1}{2}} \psi(2^{k}\tau^{2}L)g\|_{T^{\infty,2}}$$

$$\cdot \int_{S^{d-1}} \|\int_{|\nu-\omega| \le 2^{(j_{0}-k)/2}\sqrt{\tau}} 2^{k\frac{d-1}{2}} \tau^{\frac{d-1}{4}} \varphi_{\nu}(D_{a})^{2} \Phi(\tau D_{a}) f \, d\nu\|_{T^{p,\infty}} \, d\omega$$

$$\lesssim 2^{-k\frac{d-1}{4}} \|(2^{k}\tau^{2}L)^{-\frac{d-1}{4}} \psi(2^{k}\tau^{2}L)L^{\frac{d-1}{4}}g\|_{T^{\infty,2}} \|f\|_{H^{p}_{FIO,a}(\mathbb{R}^{d})}$$

$$\lesssim 2^{-k\frac{d-1}{4}} \max_{m=1,2} \|L_{m}^{\frac{d-1}{4}}g\|_{BMO_{Lm}} \|f\|_{H^{p}_{FIO,a}(\mathbb{R}^{d})},$$

where in the last line we use [5, Lemma 4.3].

Part 2: Now consider the integral over $0 < \tau < \sigma$ and $|\nu - \omega| \ge 2^{(j_0 - k)/2} \sqrt{\tau}$. In this case $|\omega \cdot \nu| \le 2^{(j_0 - k)/2} \sqrt{\tau}$. In order to estimate

$$\|\psi_{\omega,\sigma}(D_a)\int_0^{\min(\sigma,1)}\int_{|\nu-\omega|\geq 2^{(j_0-k)/2}\sqrt{\tau}}M_{\Psi(2^k\tau^2L)g}\cdot\varphi_{\nu}(D_a)^2\Psi(\tau D_a)^2f\frac{d\tau}{\tau}d\nu\|_{L^p(T^{p,2})},$$

we apply the product rule by distributing derivatives from the factor $\varphi_{\nu}(D_a)^2 \Psi(\tau D_a)^2 f$ onto the other parts. More precisely, we use that

$$M_{\Psi(2^{k}\tau^{2}L)g}(e_{j}.D_{a}) = (e_{j}.D_{a})M_{\Psi(2^{k}\tau^{2}\underline{L})g} - M_{(e_{j}.D_{a})\Psi(2^{k}\tau^{2}L)g},$$

for $j = 1, \ldots, d$, where

$$M_{(e_j.D_a)\Psi(2^k\tau^2L)g}: (f,F) \mapsto (-\widetilde{a_{j+d}}\partial_j\Psi(2^k\tau^2L_1)g \cdot F, \widetilde{a_j}\partial_j\Psi(2^k\tau^2L_2)g \cdot f).$$

In order to handle derivatives onto the operator on the outside, we denote by $(\omega, \omega_1, \ldots, \omega_{d-1})$ an orthonormal basis of \mathbb{R}^d , and write

$$\tau(\nu.D_a)\psi_{\omega,\sigma}(D_a) = \frac{\tau}{\sigma}(\nu.\omega)\sigma(\omega.D_a)\psi_{\omega,\sigma}(D_a) + \sqrt{\tau}\sqrt{\frac{\tau}{\sigma}}\sum_{j=1}^{d-1}(\nu.\omega_j)\sqrt{\sigma}(\omega_j.D_a)\psi_{\omega,\sigma}(D_a)$$
$$\simeq \sqrt{\tau}(2^{(j_0-k)/2}\frac{\tau}{\sigma} + \sqrt{\frac{\tau}{\sigma}})\tilde{\psi}_{\omega,\sigma}(D_a),$$

with $\tilde{\psi}_{\omega,\sigma}$ some function satisfying the same assumptions as $\psi_{\omega,\sigma}$ (up to constants). On the other hand, we can write

$$\tau(\nu.D_a)\Psi(2^k\tau^2L)g \simeq 2^{-k/2}\tilde{\Psi}(2^k\tau^2L)g \simeq 2^{(j_0-k)/2}\sqrt{\tau}\tilde{\Psi}(2^k\tau^2L)g,$$

again with $\tilde{\Psi}$ being similar to Ψ . Applying the product rule 2M times, we obtain - suppressing similar terms with L replaced by \underline{L} -

$$\begin{split} \|\psi_{\omega,\sigma}(D_{a}) \int_{0}^{\min(\sigma,1)} \int_{|\nu-\omega| \ge 2^{(j_{0}-k)/2}\sqrt{\tau}} M_{\Psi(2^{k}\tau^{2}L)g} \cdot \varphi_{\nu}(D_{a})^{2} \Psi(\tau D_{a})^{2} f \frac{d\tau}{\tau} d\nu \|_{L^{p}(T^{p,2})} \\ \lesssim \max_{l=0,\dots,2M} \|\tau^{M} (2^{(j_{0}-k)/2} \frac{\tau}{\sigma} + \sqrt{\frac{\tau}{\sigma}})^{l} (2^{(j_{0}-k)/2})^{2M-l} \tilde{\psi}_{\omega,\sigma}(D_{a}) \\ \int_{0}^{\min(\sigma,1)} \int_{|\nu-\omega| \ge 2^{(j_{0}-k)/2}\sqrt{\tau}} M_{\tilde{\Psi}(2^{k}\tau^{2}L)g} \cdot \tilde{\varphi}_{\nu}(D_{a})^{2} \tilde{\Psi}(\tau D_{a})^{2} f \frac{d\tau}{\tau} d\nu \|_{L^{p}(T^{p,2})}. \end{split}$$

Repeating the arguments of Part 1 and applying [6, Lemma 6.8], [9, Theorem 5.2] and Hardy's inequality together with Theorem 3.5, we get that the last expression is bounded by a constant times

$$\begin{split} \max_{l=0,\dots,2M} \int_{S^{d-1}} \| (2^{(j_0-k)/2}+1)^l (2^{(j_0-k)/2})^{2M-l} \tau^M \tau^{-\frac{d-1}{4}} M_{\tilde{\Psi}(2^k\tau^2 L)g} \cdot \tilde{\varphi}_{\nu}(D_a)^2 \tilde{\Psi}(\tau D_a)^2 f \|_{T^{p,2}} \, d\nu \\ \lesssim 2^{-kM} \| \tau^{-\frac{d-1}{4}} \tau^{-\frac{d-1}{4}} \tilde{\Psi}(2^k\tau^2 L) g \|_{T^{\infty,2}} \int_{S^{d-1}} \| \tau^{\frac{d-1}{4}} \tilde{\varphi}_{\nu}(D_a)^2 \tilde{\Psi}(\tau D_a)^2 f \|_{T^{p,\infty}} \, d\nu \\ \simeq 2^{-kM} 2^{k\frac{d-1}{4}} \| (2^k\tau^2)^{-\frac{d-1}{4}} \tilde{\Psi}(2^k\tau^2 L) g \|_{T^{\infty,2}} \int_{S^{d-1}} \| \tau^{\frac{d-1}{4}} \tilde{\varphi}_{\nu}(D_a)^2 \tilde{\Psi}(\tau D_a)^2 f \|_{T^{p,\infty}} \, d\nu \\ \lesssim 2^{-k\tilde{M}} \max_{m=1,2} \| L_m^{\frac{d-1}{4}} g \|_{BMO_{L_m}} \| f \|_{H^p_{FIO,a}(\mathbb{R}^d)}. \end{split}$$

Part 3: Now consider the integral over $0 < \sigma < \tau$ and $|\nu - \omega| \leq 2^{(j_0 - k)/2} \sqrt{\tau}$. We choose $M \in \mathbb{N}$ sufficiently large depending on p, d and write $\tilde{\psi}_{\omega,\sigma}(D_a) := \psi_{\omega,\sigma}(D_a)(\sigma^2 L)^{-M}$ with $\tilde{\psi}_{\omega,\sigma}$ a function with the same properties as $\psi_{\omega,\sigma}$ up to constants. We can then write with similar arguments as in Part 1, using [6, Lemma 6.8] and Hardy's inequality,

$$\begin{split} \|\psi_{\omega,\sigma}(D_{a})\int_{\min(\sigma,1)}^{1}\int_{|\nu-\omega|\leq 2^{(j_{0}-k)/2}\sqrt{\tau}}M_{\psi(2^{k}\tau^{2}L)g}\,\varphi_{\nu}(D_{a})^{2}\Phi(\tau D_{a})f\,\frac{d\tau}{\tau}d\nu\|_{L^{p}(T^{p,2})}\\ &\lesssim \|\sigma^{2M-\frac{d-1}{4}}\int_{\min(\sigma,1)}^{1}\int_{|\nu-\omega|\leq 2^{(j_{0}-k)/2}\sqrt{\tau}}L^{M}[M_{\psi(2^{k}\tau^{2}L)g}\,\varphi_{\nu}(D_{a})^{2}\Phi(\tau D_{a})f]\,\frac{d\tau}{\tau}d\nu\|_{L^{p}(T^{p,2})}\\ &\lesssim \|\tau^{2M-\frac{d-1}{4}}\int_{|\nu-\omega|\leq 2^{(j_{0}-k)/2}\sqrt{\tau}}L^{M}[M_{\psi(2^{k}\tau^{2}L)g}\,\varphi_{\nu}(D_{a})^{2}\Phi(\tau D_{a})f]\,d\nu\|_{L^{p}(T^{p,2})}. \end{split}$$

Now use for $j = 1, \ldots, d$ the product rule

$$(e_j.D_a)M_{\Psi(2^k\tau^2L)g} = M_{\Psi(2^k\tau^2\underline{L})g}(e_j.D_a) + M_{(e_j.D_a)\Psi(2^k\tau^2L)g},$$

and note that with $l \in \{0, ..., 2M\}$ even, m = 1, 2 and $\delta \in \{0, 1\}$, we can bound the above expression by multiples of terms of the form

$$\|\tau^{-\frac{d-1}{4}} \int_{|\nu-\omega| \le 2^{(j_0-k)/2}\sqrt{\tau}} M_{\tau^{\delta}(e_j.D_a)^{\delta}(\tau^2 L_m)^{l/2}\psi(2^k\tau^2 L)g} (\tau D_a)^{2M-l-\delta} \varphi_{\nu}(D_a)^2 \Phi(\tau D_a) f \, d\nu\|_{L^p(T^{p,2})} d\nu = 0$$

Terms of this form can now be estimated similarly as in Part 1. The estimate of the factor involving f does not change significantly, as the operator $(\tau D_a)^{2M-l-\delta}\varphi_{\nu}(D_a)^2\Phi(\tau D_a)$ has the same (for $2M-l-\delta=0$) or better properties than $\varphi_{\nu}(D_a)^2\Phi(\tau D_a)$. For the estimate of the factor involving g, we have to deal with the following term, which again behaves the same or better than the corresponding term in Part 1,

$$2^{-k\frac{d-1}{2}} \|\tau^{-\frac{d-1}{2}} \tau^{\delta}(e_j.D_a)^{\delta} (\tau^2 L_m)^{l/2} \psi(2^k \tau^2 L) g\|_{T^{\infty,2}} \\ \lesssim 2^{-k\frac{d-1}{2}} 2^{-k\frac{\delta+l}{2}} \|\tau^{-\frac{d-1}{2}} \widetilde{\psi}(2^k \tau^2 L) g\|_{T^{\infty,2}} \lesssim 2^{-k\frac{d-1}{4}} \max_{m=1,2} \|L_m^{\frac{d-1}{4}} g\|_{BMO_{L_m}}.$$

Part 4: For the integral over $0 < \sigma < \tau$ and $|\nu - \omega| \ge 2^{(j_0-k)/2}\sqrt{\tau}$, we combine the arguments of Part 2 with the use of the Leibniz rule in Part 3. This is done just as in the

last part of the proof of [6, Lemma 10.4], with first applying the product rule argument of Part 2 in order to gain a factor $\tau^{\frac{M'}{2}}$, but still keeping some operator $\tilde{\psi}_{\omega,\sigma}(D_a)$ in the expression. One can then apply the product rule argument of Part 3 with $M > \frac{M'}{2}$ sufficiently large in order to get into a position where Hardy's inequality in $\sigma < \tau$ is applicable. The occurring terms change from Part 2 to Part 4 in the same way as they did from Part 1 to Part 3.

References

- F. Bernicot, T. Coulhon, D. Frey, Sobolev algebras through heat kernel estimates. J. Éc. polytech. Math. 3 (2016), 99–161.
- [2] H.Q. Bui, X.T. Duong, L. Yan, Calderón reproducing formulas and new Besov spaces associated with operators. Adv. Math. 229 (2012), no. 4, 2449–2502.
- [3] W. S. Cohn, I. E. Verbitsky, Factorization of tent spaces and Hankel operators. J. Funct. Anal. 175 (2000), no. 2, 308–329.
- [4] R. Coifman, Y. Meyer, E. M. Stein. Some new function spaces and their applications to harmonic analysis. J. Funct. Anal. 62(2) (1985) 304–335.
- [5] X. Duong, L. Yan. Duality of Hardy and BMO spaces associated with operators with heat kernel bounds. J. Amer. Math. Soc. 18(4) (2005) 943–973.
- [6] D. Frey, P. Portal. L^p estimates for wave equations with specific $C^{0,1}$ coefficients. CRC 1173 Preprint (2020). DOI 10.5445/IR/1000124653.
- [7] A. Hassell, P. Portal, J. Rozendaal, Off-singularity bounds and Hardy spaces for Fourier integral operators. *Trans. Amer. Math. Soc.* **373** (8) (2020) 5773–5832.
- [8] A. Hassell, J. Rozendaal, L^p and \mathcal{H}^p_{FIO} regularity for wave equations with rough coefficients, Part I. arXiv:2010.13761
- [9] T. Hytönen, J. van Neerven, P. Portal, Conical square function estimates in UMD Banach spaces and applications to H^{∞} -functional calculi. J. Anal. Math. **106** (2008), 317–351.
- [10] A. McIntosh, A. J. Morris, Finite propagation speed for first order systems and Huygens' principle for hyperbolic equations. *Proc. Amer. Math. Soc.* 141 (2013), no. 10, 3515–3527.
- [11] A. Miyachi, On some estimates for the wave equation in L^p and H^p . J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), no. 2, 331–354.
- [12] J. C. Peral, L^p estimates for the wave equation. J. Functional Analysis **36** (1980), no. 1, 114–145.
- [13] J. Rozendaal, Characterizations of Hardy spaces for Fourier integral operators. *Rev. Mat. Iberoam.* 37 (2021), no. 5, 1717–1745.
- [14] J. Rozendaal, Rough pseudodifferential operators on Hardy spaces for Fourier integral operators. arXiv:2010.13895.
- [15] H. Smith. A Hardy space for Fourier integral operators. J. Geom. Anal. 8(4) (1998) 629-653.

DOROTHEE FREY, KARLSRUHE INSTITUTE OF TECHNOLOGY, DEPARTMENT OF MATHEMATICS, 76128 KARLSRUHE, GERMANY

Email address: dorothee.frey@kit.edu