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Abstract: Over the past century, advances in biotechnology, biochemistry, and pharmacognosy 

have spotlighted flavonoids, polyphenolic secondary metabolites that have the ability to modulate 

many pathways involved in various biological mechanisms, including those involved in neuronal 

plasticity, learning, and memory. Moreover, flavonoids are known to impact the biological pro-

cesses involved in developing neurodegenerative diseases, namely oxidative stress, neuroinflam-

mation, and mitochondrial dysfunction. Thus, several flavonoids could be used as adjuvants to pre-

vent and counteract neurodegenerative disorders such as Alzheimer’s and Parkinson’s diseases. 

Zebrafish is an interesting model organism that can offer new opportunities to study the beneficial 

effects of flavonoids on neurodegenerative diseases. Indeed, the high genome homology of 70% to 

humans, the brain organization largely similar to the human brain as well as the similar neuroana-

tomical and neurochemical processes, and the high neurogenic activity maintained in the adult 

brain makes zebrafish a valuable model for the study of human neurodegenerative diseases and 

deciphering the impact of flavonoids on those disorders. 

Keywords: zebrafish; flavonoids; neurogenesis; neuroplasticity; brain; Alzheimer; neurodegenera-

tion; neuroinflammation; antioxidant; neuropathology 

 

1. Introduction 

Over the past century, advances in biotechnology, biochemistry, and pharmacog-

nosy have renewed interest in natural medicines, which have many advantages over syn-

thetic drugs [1], namely, a strong binding affinity, high efficacy, lower toxicity, and fewer 

side effects, and are therefore safer and have few drawbacks [2,3]. This interest is based 

on the growing awareness that a large number of secondary metabolites, namely poly-

phenols [4], alkaloids [5], and terpenoids [6], play an important role in human health. 

Flavonoids are a substantial family of polyphenolic secondary metabolites that have 

attracted great interest in scientific research in the recent decade. They are able to regulate 

the expression of multiple genes and modulate many molecular pathways involved in 

various biological mechanisms. For example, they exert anti-inflammatory activities by 

reducing the formation of reactive oxygen species (ROS) and decreasing the expression of 

some inflammatory mediators [7,8]. Thus, they prevent pathological processes such as 

aging [9], cancer [10], cardiovascular diseases [11], inflammation-related diseases [12], 

and neurodegenerative diseases [13]. 
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At the neurological level, there is growing evidence of the link between a flavonoid-

rich diet and improved cognitive abilities [14,15], probably because flavonoids influence 

signaling pathways involved in neuronal plasticity, learning, and memory (i.e., cAMP re-

sponse element-binding protein/extracellular signal-regulated kinase/brain-derived neu-

rotrophic factor (CREB/ERK/BDNF) or serine/threonine-specific protein kinase/protein ki-

nase B (Akt/PKB) [16,17]. Furthermore, it has been shown that several flavonoids could 

be used as adjuvants in the prevention and cure of neurodegenerative disorders such as 

Alzheimer’s (AD) [18,19] and Parkinson’s [20].  

Although neurogenesis in adulthood was considered impossible in mammals for al-

most a century, new data have clearly demonstrated that the brains of adult vertebrates, 

including humans, maintain a significant neurogenic activity in discrete regions through-

out life [21–24]. Indeed, after embryonic development, neurogenesis is mainly restricted 

to the subgranular zone (SGZ) in the hippocampus and to the subventricular zone (SVZ) 

in the forebrain [25–28]. In these neurogenic niches, the alterations in the production of 

new neurons or the loss of homeostasis between new neuron genesis and apoptosis have 

been linked to psychiatric and neurodegenerative disorders [29,30]. Given that flavonoids 

inhibit pro-apoptotic mechanisms and enhance neuronal plasticity [31,32], they have at-

tracted great interest in combating neurodegenerative diseases. These phytochemical 

compounds have been shown to reduce neuroinflammation [33] via the modulation of 

inflammatory cytokines released by mixed glial cells (astrocytes and microglia) [34]. They 

also modulate the activity of several enzymes involved in oxidative stress, such as super-

oxide dismutase (SOD), cyclooxygenase-1 (COX-1), and cyclooxygenase-2 (COX-2) [35]. 

In addition, numerous studies have shown that some flavonoids can interfere with the 

formation and accumulation of neurotoxic proteins, such as amyloid -protein 42 (A42) 

[36] and α-synuclein [37], which are responsible for the progression of neurodegenerative 

diseases. 

Zebrafish (Danio rerio) is an interesting model organism that can offer new opportu-

nities in the research of beneficial effects of flavonoids, thanks to a combination of inter-

esting aspects and several experimental advantages. Firstly, zebrafish are small, robust 

fish that are easy to maintain and inexpensive to grow, allowing the screening of large 

libraries of natural products and drugs [38,39]. Secondly, the optically transparent 

zebrafish are suitable for optical monitoring and manipulation from the time of external 

fertilization until organogenesis. Thirdly, the high genome homology of 70% to humans 

makes zebrafish a valuable model for the study of human diseases [39,40]. Finally, the 

zebrafish is a valuable model for the study of neurodegenerative diseases, as the organi-

zation of the zebrafish brain and the human brain is largely similar, and the neuroana-

tomical and neurochemical processes are very similar [41]. The use of zebrafish in the re-

search of new treatments based on natural compounds could accelerate the discovery of 

pharmacological adjuvants without side effects on human health. 

This review aims to decipher the potential of flavonoids for treating neurodegenera-

tive diseases and describe the neurogenic and regenerative features of the zebrafish brain 

compared to other vertebrates, especially the human brain. We first reported the different 

subclass of flavonoids, their bioavailability in the brain, and their effects on neurodegen-

erative disorders. In the second part, we compare the neuroanatomy and neurochemistry 

of zebrafish nervous system (NS) of relevance to other vertebrates’ NS and the effects of 

flavonoids on its neurodegenerative disorders. 

2. Flavonoids 

Flavonoids are a large family of polyphenolic secondary metabolites of plants that 

are synthesized from phenylalanine via the phenylpropanoid pathway. They are a series 

of pigments that impart different colors to fruits and vegetables and are found in green 

plants, tea, coffee, and wine [42]. Therefore, flavonoids are an important component of the 

human diet [43]. These natural compounds have attracted increasing interest because they 

possess various biochemical properties useful for maintaining good health. They can 
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strongly absorb UV radiation, and their accumulation in the leaf epidermis suggests a 

specific function to protect against the damage that this radiation causes to cell DNA 

[44,45].  

2.1. Chemical Structure and Subclasses of Flavonoids 

The plant enzyme chalcone synthase (CHS) is responsible for chalcone biosynthesis, 

the basic structure of all flavonoids (Figure 1). The general structure of flavonoids consists 

of a diphenyl propane skeleton composed of two benzene rings (A and B), connected by 

a chain of three carbon atoms forming a pyran ring I (oxygen-containing heterocyclic ring) 

[40]. Indeed, in the presence of one molecule of p-Coumaroyl CoA and three of malonyl-

CoA, the CHS catalyzes a series of sequential decarboxylations and condensations, during 

which a polyketide intermediate is formed that undergoes cyclizations and aromatization, 

leading to the formation of the A ring, and the resulting chalcone structure. The product 

of the above reactions is naringenin chalcone (2′,4,4′,6′-tetrahydroxychalcone, C15H12O5), 

6′-hydroxychcone, and the first flavonoid produced [46]. Naringenin chalcone, (2S)-

naringenin, and its derivative dihydro-kaempferol (dihydroflavonol) are central interme-

diates in flavonoid biosynthesis, being branching points from which the synthesis of dis-

tinct flavonoid subclasses departs. Through the action of several enzymes such as isomer-

ase, reductase, hydroxylase, glycosyltransferase, and acyltransferase that modify the 

structure of the C ring and the degree of unsaturation and oxidation, all varieties of chem-

ical subclasses of flavonoids are formed: isoflavones, flavones, flavonols, flavanones, fla-

vanols, and anthocyanidins (Figure 1) [47]. 

 

Figure 1. Basic skeleton structure of flavonoids and its subclasses. Adapted with permission from 

[38]. 2021, Giuseppe Montalbano.  

2.1.1. Isoflavones 

Isoflavones are an important subclass of flavonoids that consist of a 3-phenylchrome 

backbone derived from the 2-phenylchrome backbone via an aryl migration mechanism 

[48]. In contrast to most flavonoids, where the B ring binds to the C ring in position 2 in 

isoflavones, the B ring binds to the C ring in position 3 in isoflavones (Figure 1). Isofla-

vones are almost found in plants belonging to the family of Leguminosae or Fabaceae, in 
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particular in soybean [49], and are involved in plant-microbe interactions and defense 

mechanisms [50]. Isoflavones are structurally similar to estrogens, particularly to 17β-es-

tradiol. This similarity confers them the ability to modulate estrogen signaling through 

the binding of nuclear estrogen receptors- and β (ERs). They are consequently consid-

ered “phytoestrogens” due to their hormone-like mechanism [51]. The most abundant iso-

flavones are genistein (4′,5,7-trihydroxyisoflavone), and daidzein. 

Additionally, isoflavones play a central role in regulating mechanisms of adipogen-

esis and osteogenesis; in particular, genistein shows modest selectivity for ERβ [52]. It has 

different dose-dependent biological effects. At low concentrations, genistein acts as an es-

trogen (positive effect on osteogenesis and negative effect on adipogenesis), while at high 

concentrations (>1 μM), it acts as a ligand of PPARγ by stimulating the transcription of its 

target genes; it up-regulates adipogenesis [53]. They are also characterized by high anti-

oxidant power, probably mediated by moderating the nuclear factor erythroid 2-related 

factor 2 (Nrf2)-ARE pathway, a mechanism that stimulates the antioxidant defense system 

and phase 2 detoxifying enzymes as NAD(P)H Quinone oxidoreductase 1 (NQO1), and 

Heme oxygenase 1 (HO-1) [54,55]. 

2.1.2. Flavonols 

The basic chemical structure of flavonols is the 3-hydroxyflavone, characterized by a 

double bond between C2=C3 and the presence of a ketone group in C4. In addition, the 3-

hydroxyl group can be attached to a sugar (glycosylated), usually glucose or rhamnose 

[56]. Flavonols are found abundantly in fruits and vegetables such as capers, onion, broc-

coli, berries, and grapes but also in green and black tea. The most common flavonols are 

quercetin, kaempferol, myricetin and isorhamnetin.  

Flavonols have attracted great interest in the field of biomedical research for their 

capacity to improve conditions of hypertension, inflammation, and cardiovascular risk 

[57]. Quercetin and its derivatives have demonstrated a significant protective effect on 

low-density lipoproteins (LDL) against oxidative modification [58]. They could also re-

duce the risk of neurodegenerative disorders such as AD  [59] due to their antioxidant 

capacity, including the one of the o-dihydroxy (catechol) in the B ring. It acts as a radical 

target site for the double bond between C2=C3, cojoined to the 4-keto group, which allows 

the delocalization of electrons from the B-ring and the 3- and 5-hydroxyl groups, allowing 

the strong adsorption of radicals and the maximum radical scavenging power (Figure 1) 

[60]. 

2.1.3. Flavones 

Flavones are colorless-to-yellow flavonoids of the C15H10O2 chemical formula, de-

rived from flavanone by the introduction of a double bond between C-2 and C-3 and a 4-keto 

group on the C ring. The majority of flavones present a hydroxyl group in position 5 of 

the A benzene ring and less often in position 7 of the A benzene ring or 3′ and 4′ of the B 

ring [61]. The most important flavones are luteolin and apigenin.  

Luteolin is mainly found in carrots, olive oil, peppers, and in medicinal plants such 

as thyme, rosemary, and oregano [62]. Luteolin has shown several biological effects, in-

cluding the prevention and treatment of cancer through both pro-apoptotic and anti-an-

giogenic effects [63,64]. Additionally, luteolin has high antioxidant power and radical 

scavenging activity as the basis of its neuroprotective action [65].  

Apigenin (Figure 1), however, is present in tea, chamomile, onions, oranges, and 

many other fruits and vegetables and is responsible for its anti-inflammatory, anti-bacte-

rial, and anti-spasmodic action [66,67]. In recent years, interest in apigenin has grown, 

especially for its chemopreventive and anti-cancer properties and its capacities to modu-

late phosphoinositide-3-kinase (PI3K)/protein kinase B (Akt), mitogen-activated protein 

kinase (MAPK)/extracellular signal-regulated kinase (ERK), nuclear transcription factor-

κB (NF-κB), and Wnt/β-catenin pathways, involved in cell proliferation and survival, as 

well as in the processes of migration and metastasis [68].  
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2.1.4. Flavanones 

Flavanones (dihydroflavones) have a skeleton of 2,3-dihydro in flavonoids C6–C3–C6 

structure and, unlike flavones, lack the double bond between positions 2 and 3 (Figure 1). 

They can be multi-hydroxylated, and the hydroxyl groups, in turn, can be methylated and 

glycosylated [69]. They are found in many plant species, especially in Compositae, Legu-

minosae, and Rutaceae, and can be detected in all parts of the plant: roots, branches, bark, 

leaves, fruits, seeds, and peel. The most important flavanones are eriodictyol, hesperetin 

and naringenin. 

The antioxidant activity of flavanones depends on the number and spatial position 

of phenolic OH groups. Hesperetin and naringenin, the aglycones of the flavanone glyco-

sides hesperidin and naringin, occur naturally in citrus species such as lemon, orange, 

lime, grapefruit, and bergamot. Hesperidin and its aglycone hesperetin have shown a 

great capacity to reduce oxidative stress and inflammation by regulating the nuclear factor 

erythroid 2- related factor 2 (Nrf2)/Toll-like receptor 4 (TLR4)/NF-κB signaling pathways 

[70]. 

Naringenin and its glycoside naringin as well exert a potent anti-oxidant effect, yet 

naringenin aglycone has shown greater antioxidant capacity than its glycoside [71]. Be-

sides its antioxidant effects, naringenin effectively contrasts the inflammatory processes 

by reducing the expression of pro-inflammatory cytokines such as interleukin-1β(IL-1β), 

IL-6, IL-8, and tumor necrosis factor-alpha (TNF-α) [72], and targeting cell death in tu-

mors, via increased expression of caspase-3 and subsequent activation of the caspase cas-

cade, and inhibiting cell migration by reducing matrix metalloproteinase-2 (MMP-2) and 

MMP-9 expression and regulating cell migration [73]. 

2.1.5. Flavanols  

Flavanols (flavan-3-ol), often called catechins, are characterized by the absence of the 

carbonyl group at position 4, and a saturated and disubstituted at positions 2 and 3 pyran 

ring [69]. They are found in foods and beverages of plant origin, such as cocoa, berries, 

apples, red grapes, and tea, usually accumulated in seeds or in the peel; for this reason, 

the diet intake of flavanols is limited.  

Among flavanols, catechin, a (2R,3S)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-

chromene-3,5,7-triol with two steric forms of (+)-catechin and its enantiomer, is one of the 

most common. Several studies show the effects of cocoa flavanols in the reduction of the 

risk of developing chronic pathologies, including cardiovascular diseases [74,75], meta-

bolic diseases [76], and cancer [77]. The preventive and therapeutic effects of catechins 

against chronic diseases are exerted via their antioxidant properties. These antioxidant 

capacities are related to the redox properties of their phenolic hydroxyl groups [78]or to 

the increase in the activity of key enzymes in the scavenging of ROS, such as catalase 

(CAT), SOD, and glutathione peroxidase (GSH) (Figure 1) [79]. 

2.1.6. Anthocyanidins 

Anthocyanidins are a class of water-soluble flavonoids characterized by a specific 

absorption in the visible range. They are naturally present as glycosides called structural 

derivatives of the flavylium cation (2-phenylbenzopyrilium ion), containing a C-15 back-

bone structure arranged in two C-6 benzyl rings (A and B) and a heterocyclic ring (C) [80]. 

They provide pH-dependent colors to the plant parts, such as red, blue, and purple [81]. 

Anthocyanidins are found abundantly in red fruits such as berries (blackcurrants, blue-

berries, and strawberries), vegetables, tea, nuts, olive oil, cocoa, and cereals. The most 

common anthocyanidins are cyanidin, pelargonidin, delphinidin, malvidin, petunidin, 

and peonidin. They are currently studied for their antioxidant [82], anti-angiogenic action 

[83], and the capacity to improve neuronal and cognitive brain function [84].  

2.2. Bioavailability of Flavonoid in the Brain 
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The free exchange between blood and interstitial fluid occurs in nearly all organs of 

the body except the brain capillaries. The cerebral endothelial cells exhibit tight junctions 

(i.e., claudin 5, zona occludens 1, and occludins) and form with pericytes and astrocytes 

the brain blood-barrier (BBB), a physiological barrier restricting the movement of mole-

cules and cells between the blood and the brain. This important interface has a protective 

function, preventing toxic and infectious substances from entering the brain [85,86]. Fla-

vonoids have been detected in the blood after consumption of foods rich in these compo-

nents, suggesting their bioavailability also in the periphery of tissues. However, this evi-

dence is not sufficient to prove their presence in the brain and CNS and, consequently, 

their ability to overcome the BBB [85].  

Bioavailability studies using orally supplemented flavonoids or flavonoids rich diet 

demonstrated their presence in various brain tissues such as the hypothalamus, superior 

colliculus, cerebellum, and striatum, and in limbic system structures such as the cortex 

and hippocampus [87,88]. Both the cortex and hippocampus are important for memory 

formation and adversely affected by aging and neurodegenerative diseases [89]. Recent 

studies in the CNS system indicated the presence of flavonol (e.g., (−)-epicatechin), fla-

vanones (e.g., hesperetin), and flavone (e. g. baicalein) and their metabolites in the CNS 

system following their oral administration [88]. These encouraging data suggest that we 

can advance the study of flavonoid bioavailability into a new area where CNS disorders 

may be the real target of their biological activity in vivo.  

Many studies have explored the kinetics and extent of flavonoid absorption by meas-

uring plasma concentrations after the ingestion of a single dose of flavonoids provided as 

whole food/beverage, plant extract, or pure compound [90–99]. We have summarized the 

different bioavailability measures, including the maximal plasma concentration (Cmax), 

time to reach Cmax, and the elimination half-life reported in the above-mentioned studies 

(Table 1). The results show wide variability in the bioavailability of the different flavo-

noids. 

Table 1. Bioavailability of flavonoids or flavonoid-containing foods. 

Flavonoid Subclasses Cmax Time to Reach Cmax (h) The Elimination Half-Life (h) 

Isoflavones 0.21–4.05 7.4–8.4 4.7–8.4 

Flavonols <0.33–7.6 <0.5–9.3 10.3–28.3 

Flavanones 0.06–5.99 2–5.8 1.3–2.9 

Flavanols 0.077–7.8 0.5–4.1 1–6.9 

Anthocyanidins 0.011–0.041 2 - 

Notes: Cmax: The maximal plasma concentration; h: hours. 

Isoflavones, followed by catechins, flavanones, and quercetin glucosides, are the 

most well-absorbed polyphenols, with different kinetics depending on the site of intesti-

nal absorption. The least well-absorbed flavonoids are the anthocyanins. These data could 

be useful for the design and interpretation of studies investigating the health effects of 

flavonoids [99]. Quercetin glucosides, catechins, and anthocyanins, which are absorbed in 

the stomach or the small intestine, reached Cmax at ~1.5–2 h, while rutin and the flavanones 

hesperidin and naringin, which are absorbed after the release of the aglycones by the mi-

croflora, reached Cmax at ~5.5 h [99].  

3. The Roles of Flavonoids in Neurodegenerative Diseases 

Neurodegenerative diseases affect nerve cells and NS, as well as non-neuronal cells, 

impacting motor, sensory, and/or cognitive functions [30,100]. Currently, the specific 

causes underlying neurodegenerative disease are not well understood. Several cellular 

and molecular mechanisms are thought to underlie age-related neurodegeneration, in-

cluding oxidative stress, mitochondrial dysfunction, deposition of neurotoxic protein ag-

gregates, and chronic neuroinflammation leading to excitotoxicity and neuronal apoptosis 

[101,102]. Given the pleiotropic effects of flavonoids, they could be considered interesting 
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molecules that scavenge free radicals, modulate the brain’s immune system, inhibit neu-

roinflammation, enhance neuroplasticity and promote neuronal survival and differentia-

tion (Table 2). The molecular mechanisms underlying the neuroprotective and neurogenic 

effects of this polyphenolic subclass are described in detail below. 
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Table 2. Summary of the potential effects of some flavonoids on neurodegenerative diseases. 

Flavonoid 

Subclass 
Flavonoid 

Antioxidant  

Potential 

Anti-Inflammatory Po-

tential 

Neuroplasticity  

Potential 

Anti- Neuropathological Pro-

tein Accumulation Potential 
References 

Flavonol Quercetin 

High capacity 

to scavenge 

ROS 

Reduce the expression of 

inflammatory cytokines 

such as IL-6 and IL-1α 

Increase of FoxG1, p-CREB 

and BDNF expression in DG 

promoting AHN 

High affinity binding α-synu-

clein 
[103,104] 

Flavone  Apigenin - - - 
Reduced the expression and ag-

gregation of α-synuclein 
[105] 

Flavanone  Hesperidin 
Antioxidant  

action 
- - 

Reduction of hippocampal Aβ 

levels 
[70,106] 

Flavonone Hesperitin - - 

Prevent neuronal apoptosis 

(inhibition of ASK1, caspases 

3 and 9); 

Activation/phosphorylation 

of both Akt/PKB and ERK1/2 

Affect the expression of antioxi-

dant enzymes such as GSH and 

SOD by modulating the nuclear 

factor erythroid 2-related factor 

2 (Nrf2)-ARE pathway 

[107,108] 

Flavonol Fisetin 

Phosphoryla-

tion of ERK and 

3-fold in CREB 

- - - [109] 

Flavones 

3,5,6,7,8,3′,4′-

heptameth-

oxyflavone 

- - 

Inducing BDNF expression; 

Activation of 

cAMP/ERK/CREB signaling 

pathway 

- [110] 

Flavone Baicalin - - 

Regulating the 

ERK/CREB/BDNF signaling 

pathway 

- [111] 

Flavanols Catechins  - - Increasing AHN - [112] 

 
Curcumin 

flavonoids 
- - 

Increasing AHN; 

Promotes hippocampal neu-

rogenesis via the Wnt-β 

catenin pathway; 

Increasing the expression of 

Ngn2 and NeuroD1 (in-

volved in neurogenesis); 

Promoted differentiation and 

maturation of new neurons 

- [113] 

 Flavonol  Myricetin   Increasing AHN  [114] 

Isoflavones Genistein - 

Decrease the expression 

of Toll-Like 4 (TLR-4), in-

hibits microglial polariza-

tion and promoting the 

phenotypic switch from 

M1 to M2. 

- - [115] 

Flavone Luteolin - 

Inhibit microglia activa-

tion by; 

Reducing the release of 

inflammatory mediators; 

Down-regulating  TLR-

4/TNF receptor-associ-

ated factor 6 

(TRAF6)/NF-κB signaling 

- - [116] 
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3.1. Neuroinflammation in Neurodegenerative Disorders 

Inflammation appears to be one of the fundamental mechanisms involved in the pro-

gression of neurodegenerative diseases [117]. Although inflammation is not a direct trig-

ger of neurodegenerative diseases, it is not surprising that persistent inflammation influ-

ences their progression through several mechanisms, such as initiating inflammatory re-

sponses that contribute to neuronal dysfunction and death [117] and proteostasis disturb-

ances through the induction of ROS or reactive nitrogen species (RNS), leading to protein 

misfolding [118]. Furthermore, activated microglia release pro-inflammatory cytokines 

such as TNFα and IL-1β, which can have direct excitotoxic effects on synapses inducing 

synapse loss [119,120]. Uncontrolled activation of astrocytes (versatil CNS cells) and mi-

croglia (the resident macrophages of the brain parenchyma) under brain injury induces 

their active participation in self-enduring neuronal damage cycles (Figure 2) [121–125]. 

Several critical mechanisms through which damaged neurons activate microglia were re-

ported. In diseased brain, resting microglial cells proliferate quickly and persistently in-

crease the expression of a significant number of marker molecules, including CD11b, 

CD68, and major histocompatibility complex I and II (MHC-I and II) molecules, and may 

be transformed into M1 or M2 macrophages [122]. Indeed, neurons are able to control 

microglial activation. Both direct excitatory signals and/or loss of inhibitory signals by 

neurons incite activation of microglia under pathological conditions and contribute to the 

inflammatory milieu of neurodegenerative disease. The released excitatory signals, listed 

as chemokines (CX3CL1, CCL21, and CXCL10), glutamate, purines (ATP and UTP), or 

MMP-3, control various aspects of microglia function [122]. Proteases, such as MMP-3, 

released following neuronal damage, are known to degrade the extracellular matrix 

(ECM) components and activate microglia to further propagate neuronal cell death. Be-

sides MMP-3, damaged dopaminergic neurons release neuromelanin-activating microglia 

in the substantia nigra. Neuromelanin can be neurotoxic, inhibiting the function of dopa-

minergic neurons and proteasomes and inducing the production of toxic factors, namely 

TNF-α, IL-6, and nitric oxide (NO) (Figure 2) [122,126]. Astrocytes detect neuron-derived 

α-synuclein released by neurons and get activated. Such reactive astrocytes, as well as 

microglia, express proinflammatory cytokines (IL-1α, IL-1β, IL-6, IL-18, and colony-stim-

ulating factors-1, 2, and 3), resulting in a strong inflammatory response beside changes in 

chemokine expression, such as CXC-type (CXCL-1, 2, 5, 10, 11, 12, 16), CC-type (CCL-3, 4, 

5, 12, 20), and CX3C-type (CX3CL1) chemokines, which in turn incite glutamate release 

and the synthesis of cytokines and chemokines restart in astrocytes (Figure 2) [127,128].  

Activated CD4+ T cells release multiple inflammatory factors, such as the Fas ligand. 

This aforementioned binds with the Fas receptor of astrocytes, causing the release of mon-

ocyte chemoattractant protein-1, one of the key chemokines, and various cytokines, in-

cluding IL-6 and IL-8 [122,129]. Numerous scientific studies have shown that a chronic 

inflammatory state promotes the evolution of neurodegenerative diseases, such as Par-

kinson’s disease (PD), AD, Multiple Sclerosis, and Amyotrophic lateral sclerosis (ALS) 

[130–133]. In PD, for example, it has been postulated that the course of the disease worsens 

in case of excessive activation of microglia, overproduction of cytokines and other inflam-

matory mediators, as well as ROS (Figure 2) [134]. Further support for this theory comes 

from studies of in vivo imaging of microglial activation with the peripheral benzodiaze-

pine receptor binding I and [11C]-(R)-PK11195 in positron emission tomography (PET) 

scan [135].  
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Figure 2. The different biological processes involved in the development of neurodegenerative dis-

eases.  

ROS can cause lipid peroxidation and protein oxidative modification at the cellular 

level, leading to the generation of 4-hydroxy-2-nonenal (4-HNE) [136]. Owing to its high 

reactivity, 4-HNE forms protein adducts that cause protein misfolding and disturbances 

in their function [118]. Furthermore, 4-HNE can induce carbonyl stress and reduce the 

cell’s antioxidant capacity. In AD, PD, ALS, and Huntington’s disease (HD), lipid peroxi-

dation has been documented, and elevated levels of 4-HNE have been reported in AD 

patients [137]. Additionally, 4-HNE affects the enzymes implicated in the elimination of 

amyloid β-protein (Aβ), which are key enzymes of energy metabolism, including aldolase, 

enolase, aconitase, and ATP synthase [138], as well as enzymes involved in antioxidant 

defense, such as superoxide dismutase, heme oxygenase, and peroxiredoxins [118,139]. 

3.2. Neuroinflammation: Modulation by Flavonoids 

Flavonoids could be useful to prevent and treat neuroinflammation by reducing mi-

croglial activation, modulating the mRNA and protein expression of inflammatory cyto-

kines [140], inhibiting inducible nitric oxide synthase (iNOS) induction and subsequent 

NO production [141,142], as well as inhibiting reduced nicotinamide adenine dinucleotide 

phosphate (NADPH) oxidase in activated glia [143]. Additionally, flavonoids have been 

reported to reduce the expression of COX-2 [144] and increase the expression of BDNF, a 

key player of brain plasticity. 

In a recent study performed in chicken brain, the flavonol quercetin inhibited the 

ROS/iNOS/ NF-κB pathway, counteracting Cadmium treatment-induced neurotoxicity 

and thereby reducing necroptosis [145]. In addition, quercetin has been shown to signifi-

cantly reduce the expression of inflammatory cytokines such as IL-6 and IL-1 [103].  
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It has also been reported extensively in the literature that estrogens play a role in 

protecting against inflammation and thus reduce the neuroinflammatory process [146] 

through the reduction of pro-inflammatory molecules and the regulation of microglial re-

activity [147,148]. For this reason, particular focus was paid to the isoflavone genistein, a 

phytoestrogen, which has been shown to reduce neuroinflammation by decreasing the 

expression of Toll-Like 4 (TLR-4) and consequently inhibiting microglial polarization and 

promoting the phenotypic switch from M1 (phenotype associated with neurotoxicity) to 

M2 (phenotype that promotes the recovery of homeostasis) [115]. The polyphenolic fla-

vone Luteolin has shown the capacity to inhibit microglia activation by reducing the re-

lease of inflammatory mediators and alleviate neuroinflammation induced in an in vivo 

brain hemorrhage model by downregulating TLR-4/TNF receptor-associated factor 6 

(TRAF6)/NF-κB signaling [116]. 

3.3. Oxidative Stress in Neurodegenerative Diseases 

The brain has a heavy demand for oxygen and thus consumes 20% more oxygen than 

other parts of the body. Additionally, it is well enriched in redox-active metals (copper 

and iron) that actively participate in ROS generation [149]. Although oxygen is involved 

in many cellular activities, coincidently, when present in excess, it has deleterious effects 

on neuronal cells via modulating the function of biomolecules, resulting from its univalent 

metabolic reduction status at the origin of ROS. Besides ROS (hydrogen peroxide (H2O2), 

superoxide anion (O2), and highly reactive hydroxyl radical (HO•), RNS such as NO are 

found to be actively involved in neurodegenerative disease (Figure 2) [149,150]. The RNS, 

such as NO, are also found to have a deleterious effect on neurons. Among the array of 

mediators released, increased ROS release and oxidative stress have been implicated in 

the induction and amplification of neurotoxicity and, consequently, in the pathogenesis 

of numerous neurodegenerative conditions [151,152]. Under circumstances of oxidative 

stress, the generation of the O2− in the mitochondria is the first step in the formation and 

proliferation of other reactive oxygen species (Figure 2). These free radicals react with 

hydrogen peroxide through the iron-catalyzed Haber-Weiss reaction that generates the 

hydroxyl radical (OH•) [153]. ROS cause mitochondrial dysfunction and apoptosis 

through irreversible damage to the cellular macro-molecules that are associated with the 

alteration of mitochondrial membrane functions [154,155]. 

In addition, oxidative stress causes proteotoxicity by altering protein structure or af-

fecting the nascent polypeptide chain folding (Figure 2) [156,157]. For example, exposure 

to pesticides induces aggregation of α-synuclein and amyloid beta, as well as an increase 

in tau hyperphosphorylation, thereby raising the risk of developing neurodegenerative 

diseases [158]. 

3.4. Antioxidant Effect of Flavonoids in Neurodegenerative Diseases 

Considering the above-mentioned data, antioxidants would seem to be useful in pre-

venting and counteracting neurodegenerative diseases. In recent years, numerous studies 

have pointed up the antioxidant properties of flavonoids due to their chemical character-

istics. In fact, as mentioned earlier, flavonoids possess in their chemical structure numer-

ous -OH groups that allow them to act as H or electron donors (low potential redox). For 

this reason, they act as free radicals scavengers and metal chelators [159]. In addition, fla-

vonoids, such as hesperetin, affect the expression of antioxidant enzymes such as GSH 

and SOD by modulating the nuclear factor erythroid 2-related factor 2 (Nrf2)-ARE path-

way [107]. 

A recent study compared the in vitro and in vivo antioxidant activity of six different 

flavonoids with similar structures, including quercetin, rutin, taxifolin, epicatechin, epi-

gallocatechin, and procyanidin B2 [104]. The antioxidant activities of the six flavonoids 

were estimated in vitro by DPPH and ABTS+ free radical scavenging assays and compared 

with the antioxidant action of Vitamin C. The results demonstrate a high capacity of fla-

vonoids to scavenge ROS in a dose-dependent manner, which was significantly greater 
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than that of Vitamin C. Among the six flavonoids tested, procyanidin B2 showed the high-

est scavenging capacity in relation to the number of -OH groups present, thus confirming 

the correlation of antioxidant activity with chemical structure. To evaluate the antioxidant 

potentials of flavonoids in vivo, mice with premature aging induced by six weeks of in-

traperitoneal injection of D-galactose were used [160]. The activities of the antioxidant 

defense enzymes SOD, CAT, and glutathione peroxidase (GSH-Px) were significantly de-

creased in D-galactose-treated mice compared with control mice, while there is evidence 

of increased serum levels of NO and malondialdehyde (MDA). However, these changes 

were reversed differently by treatment with the flavonoids, revealing that the six flavo-

noids have different antioxidant potentials in D-galactose-treated mice, in the following 

order: procyanidin B2 > epicatechin, epigallocatechin > epicatechin, quercetin > taxifolin, 

quercetin > rutin [104]. Overall, the in vitro and in vivo findings are coherent and show a 

close correlation between the characteristic chemical structure of the individual flavonoid 

and its antioxidant capacity. 

3.5. Neuroplasticity: A Combined Process of Neurogenesis and Synaptogenesis 

Neuroplasticity is a combined physiological process taking place in the brain for its 

entire life to reestablish the functional and structural organization of neurovascular net-

works in response to intrinsic or extrinsic stimuli regulated by the qualities of the tissue 

environment. This process includes a synergistic effect between neurogenesis, synapto-

genesis, and neurochemical changes in the CNS [161]. Structural plasticity, which refers 

to the diverse modifications in the anatomical properties of the neural tissue (the number, 

location, and size of spines, dendritic and axonal branching patterns), has been reported 

in the developing brain and/or as a result of several weeks or much shorter time scale 

learning [162–164]. The compensatory functional plasticity, however, occurring in a dam-

aged brain, begins in critical conditions related to inflammation, degeneration of nerve 

fibers, apoptosis, edema, and metabolic disorders. Synaptogenesis is based on improving 

existing synaptic pathways and forming new connections resulting in restored functions 

of the damage [165]. Several brain diseases, such as neurological and psychiatric ones, are 

the consequences of the dysregulation of adult hippocampal neurogenesis [166–168].  

The phospholipase C/inositol trisphosphate/Ca2+/calmodulin-dependent protein ki-

nase II (PLC/IP3/CAMKII), MAPK/ ERK, and PI3K/Akt pathways are among the most 

important signaling pathways involved in brain plasticity, which are activated by divers 

growth factors namely BDNF, nerve growth factor (NGF), insulin-like growth factor 1 

(IGF1), fibroblast growth factor (FGF), and Wnt [161,169]. Neurotrophic factors bind to 

two classes of receptor tropomyosin receptor kinase (Trk) and the p75 receptor belonging 

to the tyrosine kinase receptors family and the tumor necrosis factor receptor superfamily, 

respectively. The p75 receptor exercises its functions mainly via interactions with other 

effector proteins [161,170]. Through these two receptor classes, neurotrophins regulate the 

neuron’s survival and ensure their proper development and normal function. The binding 

of growth factors to Trk receptors induces their dimerization and phosphorylation of their 

cytoplasmic domain, which in turn activates the cytoplasmic domain tyrosine kinases 

[161,171]. The activation of signaling pathways through Trk receptors involves adapter 

proteins containing Src Homology 2 (SH2) or phosphotyrosine-binding (PTB) domains, 

which induce intracellular signaling PI3K and PKB/Akt pathways. These pathways lead 

to the activation of the expression of genes implicated in brain plasticity, promoting cell 

survival through the activation of anti-apoptotic mechanisms [17,161,172]. The phosphor-

ylation of the Trk receptor pilot, as well as the activation of PLC-1, which successively 

catalyzes the hydrolysis of phosphatidylinositol-4,5-bisphosphate (PIP2), leads to the for-

mation of the following transmitters: diacylglycerol (DAG) and inositol triphosphate 

(IP3). The production of DAG induces the activity of DAG-dependent protein kinase C 

isoforms (PKCδ), which induces the MAPK/ERK pathway [161]. IP3, besides, promotes 

neuronal survival by repressing pro-apoptotic gene expression. This signaling cascade ac-

tivates casein kinase 1 (CK1) and AKT, targeting forkhead Box G1 (FoxG1). The 
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phosphorylation of FoxG1 by CK1 or Akt promotes neural progenitor cell differentiation 

into neurons in the adult hippocampus (AHN) and exerts neuroprotective effects 

[173,174]. Activation of the MAPK/Erk pathway conducts the transcription of CREB, Myc, 

and ribosomal S6 kinase (RSK), protein factors involved in synaptogenesis and neurito-

genesis. The stimulation of MAPK/Erk is caused as well by the activation of Ras, which in 

turn is stimulated by the Src homology and containing protein (Shc)/growth factor recep-

tor-bound protein 2 (Grb-2)/son of sevenless (SOS). Next, Erk kinase, through the RSK and 

MAP pathway, phosphorylates CREB and other transcription factors, leading to the mod-

ulation of the expression of genes responsible, among others, for the neurons’ survival 

[175].  

Another process of brain plasticity requires the activation of the PI3K pathway gen-

erating phosphatidyl inositides, responsible for the stimulation of PKB/Akt. Akt kinase 

plays a crucial role in modulating the functionality of various proteins involved in the 

regulation of cell survival. Among others, Akt inhibits apoptosis by phosphorylation of 

the Bcl2-associated agonist of cell death (BAD) [161,176]. Converging the therapy on sup-

porting neuroplastic processes seems to be a promising strategy where natural substances, 

especially flavonoids, can be used as enhancers of neuroplasticity on conteracting CNS 

diseases. 

3.6. Neuroplasticity and Effects of Flavonoids 

Other than the antioxidant and anti-inflammatory properties of flavonoids in neuro-

degenerative diseases, reported in previous sections of this review, recent results have 

revealed synaptogenesis and neurogenesis promoting properties of these compounds in 

CNS. Over the last decades, a growing concern has been devoted to the improvement of 

potential cognitive abilities attributed to phytochemical compounds, particularly flavo-

noids, and the molecular mechanisms underlying their biological action on neuronal sig-

naling pathways.  

In an epidemiological study (PAQUID), a group of subjects (aged ≥ 65 years), free 

from dementia and with reliable dietary assessment for flavonoids, was examined for cog-

nitive performance (Mini-Mental State Examination, Benton’s Visual Retention Test, 

“Isaacs Set Test”) raised an association between dietary flavonoid intake and better cog-

nitive performance and evolution [177]. Flavonoids exert their effects through the modu-

lation of neural pro-survival and apoptosis pathways, and the expression of specific genes 

related to neuronal differentiation, synaptic plasticity, and memory by upstreaming sev-

eral transcription factors, in vitro [178,179]. 

Indeed, treatment with the flavonol fisetin [1 μM] in rat hippocampal slices led to an 

increase in the phosphorylation of approximately 2-fold ERK and 3-fold in CREB, result-

ing in improved memory and a long-term potentiation (LTP), a neurophysiological mech-

anism responsible of memory [109]. The 3,5,6,7,8,3′,4′-heptamethoxyflavone, a Citrus fla-

vonoid, as well, exerts neuroprotective effects by inducing BDNF expression in an in vitro 

model of astrocytes C6 cells via the activation of cAMP/ERK/CREB signaling pathway 

[110]. As heptamethoxyflavone, Baicalin, a widely distributed flavone in various species 

of the genus Scutellaria, exercises its neuroprotective effect and improves depressive 

symptoms and cognitive function in models of mice with chronic unpredictable mild 

stress (CUMS) by regulating the ERK/CREB/BDNF signaling pathway [111]. Hesperitin, a 

citrus fruit flavonone, has shown a great capacity to prevent neuronal apoptosis, inhibit-

ing apoptosis signal-regulating kinase 1 (ASK1), caspases 3 and 9 pro-apoptotic molecules 

by involving the activation/phosphorylation of both Akt/PKB and ERK1/2 [180]. These 

bibliographic data shed light on flavonoids’ capacities to modulate neuronal plasticity and 

to improve cognitive and psychomotor performance [108,181] by stimulating pathways 

involved in neuronal differentiation, cell survival, and inhibiting apoptosis.  

In addition, several flavonoids, such as catechins, curcumin, and myricetin, have 

been observed to have antidepressant-like effects in rodents and humans [112,114,182]. 

This suggests that flavonoids might act by increasing AHN and improving mood as well 
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as cognitive ability. A study conducted in 2009 demonstrated the positive effects of a diet 

enriched in polyphenols and fatty acids (LMN diet) on neurogenesis in adult mice [183]. 

After 40 days on the LMN diet, an increase in several markers of AHN was found com-

pared with mice on the control diet, with significantly more cells expressing the neuro-

blastic marker doublecortin (DCX) [183]. These results suggest that the LMN diet influ-

enced neuronal differentiation. This hypothesis was confirmed by the increased co-local-

ization of the DNA synthesis marker 5-bromo-2′-deoxyuridine (BrdU) and NeuN 

(postmitotic neurons marker) in the granule layer neurons of animals subjected to the 

LMN diet. The positive effects of the LMN diet were further confirmed by another study 

conducted in a mouse model of Alzheimer’s disease (Tg2576 mice) [184]. The 13-month-

old mice were fed an LMN diet for 5 months and subjected during the last 2 months to 

various behavioral tests. It was observed that the LMN diet did not have positive effects 

on sensorimotor reflexes but reversed the effects of aging and especially of the Tg2576 

genotype. This improvement was attributed to the 70% increase in cell proliferation in the 

SVZ of the brain. The neurogenic power attributed to flavonoids and the mechanism of 

action by which these phytochemical compounds would increase AHN were investigated 

in mice subjected to CUMS [185]. The animals were treated with the flavonoid quercetin, 

and the chronic treatment restored the weight loss of the mice caused by CUMS and alle-

viated CUMS-induced depression-like behaviors, such as increased sucrose consumption, 

ameliorate locomotor activity, and reduced immobility time. In addition, to evaluate the 

effects on AHN, neurogenesis markers were detected in the dentate gyrus (DG) of the 

hippocampus. The results showed that chronic quercetin treatment significantly increased 

the number of DCX (Neuronal Migration marker) and BrdU-NeuN double-positive cells 

(proliferating cells marker/postmitotic neurons marker), the expression levels of FoxG1, 

p-CREB, and BDNF in DG. These results suggest that quercetin might exert antidepres-

sant effects through promoting AHN from the FoxG1/CREB/BDNF signaling pathway 

[185]. 

Another study conducted in 2021 shows that the flavonoid curcumin promotes hip-

pocampal neurogenesis via the Wnt-β catenin pathway by increasing the expression of 

proteins involved in neurogenesis, namely, Ngn2 and NeuroD1 [113]. The mice with cer-

ebral ischemia (CI) induced via bilateral common carotid arteries occlusion (BCCAO) 

were treated with curcumin, and the Morris water maze test was conducted to assess spa-

tial learning and memory. Flavonoid treatment significantly alleviated cognitive dysfunc-

tion due to brain ischemia and promoted differentiation and maturation of new neurons 

in a dose-dependent manner. 

These results, taken together, indicate that polyphenols, and particularly flavonoids, 

act by stimulating neuronal survival and proliferation, increasing AHN, and improving 

conditions of anxiety and depression. Thus, flavonoids could represent an important all-

natural therapeutic strategy that modulates synaptic plasticity and enhances cognitive 

abilities in the different kinds of brain dysfunction. 

3.7. Reduction of Neuropathological Protein Accumulation  

Neurodegenerative disorders are often associated with the accumulation of protein 

aggregates, which are thought to have a neurotoxic effect. Markers of neuronal degener-

ation in PD include Lewi bodies, cytoplasmic inclusions composed of fibrils formed from 

the aggregated protein α-synuclein [186]. α-synuclein is involved in numerous cytoskele-

tal and vesicular trafficking mechanisms, including synaptic vesicles [187]. Two identified 

mutations associated with early hereditary PD caused by α-synuclein loss of binding ac-

tivity to vesicle [188]. In PD, the formation of 4-HNE-alpha-synuclein adduct, generated 

by a high level of ROS, increases the oligomerization potential, thus triggering alpha-

synuclein (α-SYN) aggregation [189]. In AD studies, Aβ neurotoxicity was proved, and 

the implication of the amyloidogenic proteins in AD pathogenesis was demonstrated. This 

neurotoxicity is dependent on Aβ’s primary structure and aggregation state. Aβ1-40 and 

Aβ1-42 are two predominant forms comprised of 40 and 42 amino acid residues, 
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respectively. The relative proportion of Aβ1-42 appears to be particularly responsible for 

AD progression, as this longer form is more predisposed to aggregation [190,191]. The 

aggregation of A protein was associated with neuronal death. Additionally, 4-HNE is 

able to affect the enzymes involved in the elimination of Aβ [138].  

Moreover, accumulation of Aβ was linked to a significant reduction in synapse num-

ber and plasticity and, consequently, to a reduced cognitive ability due to inhibition of 

LTP at the hippocampal level [192–194]. Considering the deleterious effects of neurotoxic 

protein aggregates in the pathogenesis of neurodegenerative diseases, different therapeu-

tic candidates able to inhibit or reduce their accumulation and aggregation, preventing or 

delaying the neurodegeneration process, have been evaluated in recent years. The effects 

of several flavonoids on reducing protein aggregates accumulation and consequently re-

ducing neurotoxicity have been reported in many studies [195,196]. The molecular inter-

actions of some flavonoids with α-synuclein have been reported in an in silico study, and 

quercetin has shown a high affinity binding for α-synuclein [197]. This finding suggests 

quercetin and its analogs as potential targeted therapeutic strategies for PD. Furthermore, 

in a study performed on a rotenone (ROT) induced rat model of PD, apigenin significantly 

reduced the expression and aggregation of α-synuclein and increased the expression of 

dopamine D2 receptor (D2R) compared to control rats treated with ROT [105]. Regarding 

senile Aβ plaques in AD as well, numerous studies prove the efficacy of several flavonoids 

in reducing Aβ42 aggregation by inhibiting the expression of the enzyme β-secretase 

(BACE1) responsible for the cleavage of amyloid precursor protein (APP) and the conse-

quent formation of Aβ42 [198–202]. Moreover, a study conducted on a PC12 cell line (de-

rived from rat pheochromocytoma) showed that dihydromyricetin, a flavonoid extracted 

from vine tea (Ampelopsis grossedentata), had an inhibitory effect on Aβ fibrillation [203]. 

In another study conducted on Albino Wistar rats undergoing chronic mild stress, hes-

peridin effects on memory and learning were evaluated. Hesperidin antioxidant action 

and reduction of hippocampal Aβ levels and consequently the preservation of cognitive 

function and histological architecture of the hippocampus was proved [204]. 

Taken together, all these results suggest that flavonoids represent potential agents in 

the treatment of neurodegeneration and neurotoxicity induced by neurotoxic protein ag-

gregates [205,206]. 

4. Zebrafish as Neurodegenerative Model in Translational Research 

In the last 20 years, zebrafish have been widely used to address key questions raised 

in different biomedical fields: sensory systems  [207–210], developmental biology [211], 

digestive tract [212–214], neurodegenerative disorders [106,215], lymphatic development 

[216], cutaneous wound healing [217], calcium dynamics in cardiac cells behavior [218], 

and for assessing new drugs [219,220]. It is a fast-expanding and extremely valuable 

model system whose popularity is accounted by several attributes, including breeding in 

captivity providing more accurate and reproducible data sets [221–224], external fertiliza-

tion allowing the manipulation of embryos ex utero, optical transparency from the mo-

ment of external fertilization until organogenesis permitting the direct observation of liv-

ing cells and developing tissues, using non-invasive imaging techniques [223,225], rapid 

development, and the availability of genomic resources. Moreover, during organogenesis, 

zebrafish embryos are permeable to small molecules and drugs, so to screen a drug for 

toxicity is fairly easy [226]. 

The complete zebrafish genome sequencing highlighted that 71.4% of human genes 

have a minimum of one zebrafish orthologue [227] and that 2601 (82%) of the total 3176 

human genes bearing morbidity can be related to at least one zebrafish orthologue [228–

230]. Indeed, zebrafish have genes orthologous to the human AD genes, including gamma 

secretase complex components psen1 [231], psen2 [232], ncstn (nicastrin), aph-1 and pen-2 

[233]. Two APP homologs have been found in zebrafish, appa and appb [234]. The β secre-

tase gene orthologues in zebrafish include bace1 [235] and bace2 [236]. The MAPT gene, 

encoding tau protein, has two associated orthologues in zebrafish, mapta and maptb [237], 
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while APOE has two co-orthologues, apoea and apoeb [238]. Combined with next-gener-

ation sequencing techniques, it has revolutionized the discovery of new mutations and 

new candidate genes for various diseases [40], especially those involved in clinical AD 

and other neurodegenerative disorders [239–241]. 

Familial AD is associated with mutant APP, PSEN (Presenelin)1 and PSEN2 genes, 

E693Q mutation [242], p.Ser132Ala mutation [243], R62H mutation [244], respectively, 

that encode proteins for APP cleavage and Aβ generation [245]. Common genetic risk fac-

tors of sporadic AD include genetic mutant in the ε4 allele of apolipoprotein E (APOE4) 

[246], sortilin-related receptor, L 1 (SORL1), triggering receptor expressed on myeloid cells 

2 (TREM2), and ATP-binding cassette transporter 7 (ABCA7) (p.E709fs mutation [247]) 

[242]. 

In addition, recently available tools for stable gene knockout (CRISPR/Cas9) or 

knockdown (morpholino) have further increased the zebrafish attractivity in the study of 

human disease [248], generating new transgenic models for many human diseases, 

namely neurodegeneration, such as familial ALS model [249], polyglutamine models [250] 

and tauopathy models [251,252], allowing the deduction of information on genes of inter-

est and optimizing the discovery of preliminary notions for the improvement of the ther-

apies currently applied. These fundamental findings and research tools invigorated the 

position of zebrafish as an important tool supporting mouse genetic approaches for un-

derstanding neural function in vertebrates. 

APP has essential functions involving synapse formation, neural plasticity, antero-

grade neuronal transport, and counteracts metal-catalyzed oxidative stress [253], which 

explains the APP zebrafish knock-down embryos phenotype with impaired neural net-

works, especially in the hindbrain [254]. In zebrafish, an AD phenotype is easily induced 

by the insertion of the human mutant APP gene, engendering Aβ accumulation, cognitive 

impairments, neuronal loss, and enlarged perivascular space [255]. Hypoxia-exposed 

zebrafish show increased transcription of several genes, namely bace1, psen1, and psen2, 

linked to Aβ toxicity [235]. Additionally, bace zebrafish knockouts exhibited hypomye-

lination in the peripheral nervous system [236] and induced the accumulation of appa and 

appb proteins contributing to Aβ plaques formation [256]. Similarly, zebrafish TILLING 

(psen1 −/ − mutants) display more histaminergic neurons associated with changes in his-

tamine-driven behaviors [257]. 

Zebrafish mutants with morpholino knockdown of splicing sites in psen1 transcripts 

display hydrocephalic phenotype, resulting from an increased and ectopic cyclin G1 

(ccng1) mRNA expression, among others [258]. The decreased PSEN1 activity through 

aberrant splicing of the transcript might contribute to pathological changes underlying 

sporadic AD [259]. The knockdown of psen2, however, induces a p53-dependent apop-

totic pathway that, in turn, contributes to massive neuronal loss in zebrafish embryos 

[260]. 

Functional orthologues of the human SNCA gene encoding α-synuclein highly asso-

ciated with PD pathogenesis, β-, γ1-, and γ2-synucleins have been identified in zebrafish 

[261]. The knockdown of β- or γ1-synucleins induces PD-like motor impairments in 

zebrafish [262], which are more severe when the expression of both synucleins is abol-

ished [261]. Moreover, it was proved that the lack of both synucleins in zebrafish could 

induce abnormal development of the dopaminergic system, including a delay in the dif-

ferentiation of dopaminergic neurons and a reduction in dopamine levels [261]. 

PARK is another PD-associated gene family, including PARK2 and PARK6 (PINK1), 

responsible for the mitochondrial motility of striatal dopaminergic neurons [263]. Mor-

pholino knockdown of the PINK1 orthologue in zebrafish induces developmental delay 

and loss of neurons, principally dopaminergic ones recapitulating the human PD pheno-

types better than mice [262,264,265]. PARK2 knockdown zebrafish exhibit a phenotype 

similar to that of PINK1 knockdown zebrafish [266]. This phenotype includes impaired 

mitochondrial function, loss of dopaminergic neurons in the posterior tuberculum, and 

increased sensitivity to the toxic effects of 1–methyl-4–phenylpyridinium (MPP+), which 
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induces oxidative stress by disturbing the electron transport chain in mitochondrial com-

plex I [266]. The (PARK7/ DJ-1) is a Versatile protein whose protective role has been 

broadly validated [267]. The increased amount of overoxidized form of PARK7/DJ-1 was 

reported in the brain of patients with several neurodegenerative disorders, namely AD, 

PD, and Huntington’s disease [268]. Indeed, PARK7 knockdown in zebrafish activates 

apoptotic regulators, p53, and Bax proteins, which induces death of dopaminergic neu-

rons via interaction with the mouse double minute 2 homolog protein [269]. 

Huntington’s disease is the most widespread monogenic neurodegenerative disor-

der, characterized by severe motor discoordination, cognitive deficits, and neurodegener-

ation [270]. 

IT15, the isolated homolog for the HD gene in zebrafish, shares 70% homology with 

its human counterpart [271]. Zebrafish with aberrant IT15 revealed neurotoxicity and ab-

normal HD-related protein aggregation [272,273]. 

Specific deletion in the 17 N-terminus amino acids (N17) area of the first HTT exon 

causes severe motor deficits, simulating mammalian HD-like states in zebrafish [273]. 

It is possible to induce a useful pharmacological model of HD by injecting quinolinic 

acid into zebrafish telencephalon [262]. 

Using zebrafish genetic models is a promising avenue of translational AD, PD, and 

ALS research [274]. ALS models are commonly based on mutant superoxide dismutase 1 

(SOD1), TAR DNA-binding protein 43 (TDP-43), fused in sarcoma or translocated in lipo-

sarcoma (FUS), the chromosome 9 open reading frame 72 (C9orf72) gene, ubiquilin 2 

(UBQLN2), matrin 3 (MATR3), and senataxin (SETX) [275]. In fact, the zebrafish SOD1 

mutant shows a loss of motor neurons, muscle atrophy, and premature death [276]. In 

zebrafish embryos, the overexpression of mutant human SOD1 induces shortened axons 

and aberrant branches dose-dependent [249]. The Zebrafish ALS T70I reproduces the hu-

man ALS clinical phenotype [277]. Transgenic zebrafish expressing human TDP-43, with 

ALS-causative G348C mutation, recapitulate ALS phenotype by exhibiting hypolocomo-

tion linked to spinal motor neuron axonopathy [278]. 

Fus is one of the RNA-binding proteins whose aggregate was associated with ALS 

[279]. FUS-transgenic zebrafish are characterized by a dysregulation in the cholinergic 

system and histone deacetylase 4, leading to the denervation and abnormal reinnervation 

in ALS subjects [280]. Finally, zebrafish VCP MO knockdown shows skeletal and cardiac 

muscle tissue degeneration via autophagy-mediated proteostasis under ALS [281]. 

C9orf72 is another highly promising candidate underlying ALS. A morpholino trans-

genic Knockdown C9orf72 zebrafish line exhibits ALS motor neuron axonopathy induc-

ing cognitive deficits and hypolocomotion [282]. Another ALS-like phenotype transgenic 

line was made by injecting a DNA construct containing 89 C9orf72 hexanucleotide repeats 

drive in zebrafish embryos [283]. Swinnen et al. have demonstrated that the transient 

C9orf72 repeat RNA overexpression can be involved in the pathogenesis of C9orf72-asso-

ciated ALS [284]. 

Moreover, mutations on the microtubule-associated protein tau (MAPT) gene have 

been implicated in many neurological disorders, including AD, corticobasal degeneration 

(CBD), progressive supranuclear palsy (PSP), Pick’s disease (PiD), chronic traumatic en-

cephalopathy (CTE), and frontotemporal dementia with parkinsonism linked to chromo-

some 17 (FTDP-17) [285,286]. Studies in zebrafish have shown that expression of human 

tau (tau-GFP gene (htGFP) under the control of a neural-specific variant of the GATA2 

promoter results within 2 days in hyperphosphorylation of tau protein and subsequent 

disruption of cytoskeletal structure [287]. The aggregation of hyperphosphorylated pro-

teins is one of the characteristic neuropathological lesions of AD and other neurodegen-

erative disorders [288]. Recent studies have shown how the use of stable transgenic 

zebrafish expressing mutated human tau P301L and a fluorescent reporter (driven pan-

neuronally by the HuC promoter) has allowed in vivo imaging of defective axonal growth, 

hyperphosphorylation of tau, and screening of novel therapeutic molecules [252]. Moreo-

ver, the AD transgenic Swedish mutant APP zebrafish with appb promoter show 
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behavioral symptoms similar to AD and cerebral β-amyloidosis, with neuronal loss and 

enlarged perivascular space [255]. Another transgenic zebrafish model was made to study 

the development and maintenance of the blood-brain barrier due to the functional and 

molecular similarities with those of higher vertebrates [289]. In fact, the transgenic 

zebrafish line Tg (l-fabp:DBP-EGFP) expresses a vitamin D binding protein fused with an 

enhanced green fluorescent protein (DBP-EGFP) in the blood plasma, that could be used 

as an endogenous tracer for BBB breakdown allowing the monitoring of this important 

vascular structure in vivo [290]. 

The Comparative Neuroanatomy and Neurochemistry of Zebrafish NS of Relevance to Other 

Vertebrates NS 

The main difference observed between teleosts and mammals is the neuroepithelium 

organization during the developmental stage that undergoes an eversion in teleost telen-

cephalon, while mammals and non-teleost vertebrates go through an evagination [291]. 

Despite these, it has been shown how the zebrafish brain has functionally and morpho-

logically overlapping zones to those of humans, such as the presence of the cerebellum, 

telencephalon, diencephalon, spinal cord, and enteric-autonomic nervous systems (Figure 

3) [285,292–294]. The dorsal nucleus of the ventral telencephalic area, arising from the em-

bryonic subpallium, is thought to be the zebrafish homologue of the mammalian striatum 

[295]. Same for stem niches, since the ventral nucleus of the ventral telencephalon (Vv) 

and the lateral zone (Dl) and/or the posterior zone (Dp) of the dorsal telencephalon of the 

zebrafish are considered homologous to the SVZ of the lateral ventricles and the SGZ of 

the DG of the hippocampus, respectively, in mammals (Figure 3). 

 

Figure 3. Schematic drawing of (A) a sagittal section of rodent (left), zebrafish (middle), and human 

(right) brains with the main neurogenic niches indicated in red. The mammalian brain displays only 

two main neurogenic niches: the subventricular zone (SVZ) of the lateral ventricles and subgranular 

zone (SGZ) of the dentate gyrus (DG) of the hippocampus. The black lines correspond to coronal 

sections. (B, C): Transversal sections through the brain, marking the major neurogenic niches of the 

respective species shown in A. In zebrafish, the red dots correspond to slow-cycling progenitors 

(mainly radial glial cells, type 2), and the green ones to fast-cycling progenitors (mainly neuroblasts, 

type 3). OB, olfactory bulbs; Ce, cerebellum; D, telencephalic dorsal area; Hyp, hypothalamus; RMS, 

rostral migratory stream; Dm, dorsomedial zone of the dorsal telencephalon; Dc, central zone of the 

dorsal telencephalon; Dl, lateral zone of the dorsal telencephalon; Dp, posterior zone of the dorsal 

telencephalon; Vd, dorsal nucleus of the ventral telencephalon; Vv, ventral nucleus of the ventral 

telencephalon. This figure is adapted from [296,297]. 
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In these areas, the levels of neurogenic potential depend on the phylogenetic deriva-

tion, which affects the distribution of progenitor cells [298–300]. In adult rodents, neuro-

genesis occurs in highly restricted spatial domains close to the forebrain ventricles, from 

which originate new cells destined for distinct telencephalic regions [301]. These regions 

are (i) the subventricular zone of the lateral ventricle leading to the generation of new 

interneurons reaching the olfactory and (ii) the DG in the hippocampus, where new gran-

ule neurons are produced during adulthood (Figure 3) [302–305]. In human and non-hu-

man primates, the formation of new neurons is especially evident in two regions: the SGZ 

and the SVZ of the telencephalon (Figure 3). Still, neurogenesis has equally been reported 

in several other brain regions outside the SGZ and SVZ [306], such as the basal forebrain 

[307], striatum [308,309], amygdala [310], SN [311], subcortical white matter [312], and at 

the hypothalamus [313–315]. Regarding synaptic transmission, teleosts show well-pre-

served neurotransmitter structures and systems, compared with humans, such as gamma-

aminobutyric acid, glutamate, dopamine, serotonin, noradrenaline, histamine, and acetyl-

choline [292,316], and the endothelial blood-brain barrier similar structurally to that in 

higher vertebrates [289]. 

In contrast to mammals, zebrafish showed strong neurogenic activity supported by 

numerous neurogenic sites all over the brain subdivisions, including the telencephalon, 

the diencephalon, the mesencephalon, and the metencephalon (Figure 3). Thus, almost all 

sub-domains of the brain are competent for generating new neurons, while those sites are 

limited to only two in mammals, the hippocampus and olfactory bulb [296,297]. Both re-

gions have consistently shown neurogenesis in all species examined thus far [317,318]. 

In the telencephalon, the proliferative areas are found along the ventricle in the ven-

tral, dorsal, dorsolateral, and posterolateral domains. At the same time, in the diencepha-

lon, they are situated in the anterior and posterior parts of the preoptic area and the ante-

rior, mediobasal, and caudal hypothalamus. In the posterior part of the encephalon, the 

proliferation was reported close to the rhombencephalic ventricle. The thalamus, the pre-

tectal periventricular region (a subdomain close to the optic tectum), the regions sur-

rounding the habenula, and the three subdivisions of the cerebellum, including the corpus 

cerebelli, valvula cerebelli, and the lobus caudalis cerebelli, all harbor substantial prolif-

eration [297,318]. 

The neuroepithelial cells (NECs) are the early neurogenic cells of the developing NS 

and transform into radial glial cells (RGCs) [319]. They are very peculiar cells with small 

ovoid soma whose bodies neighbor the ventricle and extend long cytoplasmic processes 

that reach all the path to the pial surface of the telencephalon, crossing the brain paren-

chyma to reach the periphery of the brain. RGCs give rise to glial progeny (oligodendro-

cytes and ependymal cells) but can also act as NSCs and generate almost all neurons of 

the brain, providing support to newly generated neurons that migrate along their radial 

processes [320]. They are known as true neural stem cells, able to generate new neurons 

through asymmetrical divisions [321,322]. 

In adult mammals, the RGCs maintain their neurogenic activity mainly in the SVZ of 

the lateral ventricles and in the SGZ of the DG of the hippocampus [323], while in the 

adult zebrafish telencephalon, RGCs are still able to proliferate to self-renewal and to dif-

ferentiate generating new neurons [324]. Thus, the adult zebrafish appears to have kept 

embryonic characteristics. Indeed, the radial glial cells of adult zebrafish express similar 

genes and proteins to the embryonic counterparts, such as the brain lipid-binding protein 

(BLBP), the glial fibrillary acidic protein (GFAP), and the calcium-binding protein S100β, 

which is used as the standard marker for mature nongerminal astrocytes in rodents 

[318,325–329]. In adult zebrafish, up to 16 proliferating regions were detected, including 

those equivalents to the mammalian SVZ and SGZ, occurring from 6 months to at least 

2.5 years of age [329–331]. Around 6000 cells are generated every 30 min in the brain of 

adult zebrafish, representing around 0.06% of the estimated cells of its brain 

[299,301,332,333]. Approximately half of the new cells escape apoptosis and survive for 

the rest of the fish’s life [334,335]. This is how the generation of new cells, together with 
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the elimination of damaged cells through apoptosis, enables teleost fish rapid and efficient 

neuronal regeneration after brain injuries [317]. 

After brain injury in teleost and mammals, activated microglia, and invading leuko-

cytes, release factors required to activate and proliferate neural stem cells, defining the 

injury-induced neurogenesis. An uncontrolled increase in NSCs proliferation will induce 

premature neurogenesis and, consequently, an early depletion of the NSC pool. However, 

a shallow proliferation will result in decreased neuronal compensation, which is neces-

sary for brain homeostasis and regeneration [336]. 

A compared study conducted on the nuclear transcriptomic data from a zebrafish Aβ 

toxicity model and the datasets of two human adult brains and one fetal brain showed 

that approximately 95.4% of the human and zebrafish cells co-clustered [337]. Those clus-

ters included 15 neuronal clusters (45.4% of all cells) and nine astroglial clusters (18.1% of 

all cells) [337]. Comparing the identified cell clusters from the zebrafish telencephalon, 

human entorhinal cortex, and human superior frontal gyrus separately, authors were able 

to determine the differentially expressed genes (DEGs) between the disease and control 

conditions. For instance, neuronal clusters had 801 DEGs in zebrafish and 1823 genes in 

the human entorhinal cortex. Among those genes, 198 were shared between both species, 

and 117 showed the same directionality. The AD locus, MEF2C, a protective factor against 

neurodegeneration, synergistically upregulated DEGs in neurons in both organisms. 

However, RBFOX1, an RNA-binding protein involved in Aβ clearance, was down regu-

lated in humans, while in zebrafish neurons, it was upregulated [337]. The investigation 

of the molecular pathways affected in humans and zebrafish using the Kyoto Encyclope-

dia of Genes and Genomes (KEGG) pathway analysis of the DEGs in zebrafish neuronal 

clusters showed that most of the pathways are present in the human brain, including those 

implicated in AD [337]. However, in the astroglial clusters, authors observed more spe-

cies-specific pathways [337]. Indeed, zebrafish astroglia differed from humans in the side 

of the neurogenic pathways [337]. 

Moreover, in adult zebrafish brain, the injection of human Aβ42 coupled to transpor-

tan (TR-Aβ42) form β sheets and leads to immune response and pro-inflammatory gene 

expression, synapses degeneration, and neurons death in zebrafish brain recording Aβ 

deposition-effects on mammalian brain [338]. Additionally, TR-Aβ42 administration in-

creases progenitor proliferation leading to neurogenesis despite the prevailing toxic envi-

ronment [338]. The transcriptome analysis showed that, after Aβ42 injection, the interleu-

kin-4 (IL4) is upregulated in fish brain, suggesting the specific signaling associated with 

the neurodegeneration role of IL4 in zebrafish brain [338]. Moreover, Bhattarai et al. 

proved that the injection of interleukin-4 (IL4) through cerebroventricular promotes NSC 

proliferation by suppressing the tryptophan metabolism and decreasing the production 

of serotonin, which in turn suppresses the production of the brain-derived neurotrophic 

factor (BDNF) in periventricular neurons juxtaposing the NSCs [338]. In mammals, the 

effects of BDNF in AD are principally on neuronal survival rather than neurogenesis, 

while in zebrafish, BDNF directly regulates NSC plasticity [339,340]. The Aβ42 toxicity-

induced neuron-glia-immune crosstalk mediated by IL4/STAT6 signaling was proved as 

well [341]. The same study demonstrated that the amyloid toxicity-induced interleukin-4 

effects are specific to the serotonergic system [341]. 

These characteristics highlight the potential of zebrafish as an alternative model to 

better understand the constitutive and regenerative neurogenesis, as well as for the 

screening of new drugs that could improve the regeneration process. 

5. Effects of Flavonoids against Neurodegenerative Disorders in Zebrafish Model 

Neurodegenerative diseases comprise a wide class of disorders, such as AD, tauopa-

thy, and α-Synucleinopathy [342], that significantly affect the quality of human life. The 

onset of many neurodegenerative problems depends on the interaction between genetic 

risk factors, environment, and aging [343,344]. The increase in the average age of the 

Mondial population strongly drives research in this area, combined with the limited 
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therapeutic effectiveness of drugs currently in use due to the low bioavailability and sol-

ubility through the BBB [345]. Therefore, the scientific community is focusing on the ef-

fects of pharmacologically active molecules, medicinal herbs, and natural compounds 

with chemical characteristics that allow the study of new therapeutic targets. It was shown 

that phytochemicals, such as polyphenols and their metabolites, could pass efficiently 

through BBB [70,346] and also exert good effects on oxidative stress, neuroinflammation, 

protein aggregation, and mitochondrial dysfunction, determinants that usually increase 

the incidence of brain disorders [347–349]. In particular, the antioxidant potential of fla-

vonoids would be a strong basis for neuron-protective activity in the brain [350,351]. Their 

general bioavailability and capacity to reach the brain in vivo, besides their strong binding 

affinity, high efficacy, less toxicity, and fewer side effects, compared to synthetic drugs 

[2,3], appear to play a crucial role in the expression of the neuroprotective capacity 

[352,353]. 

Together with metabolic and oxidative stress-linked diseases, neurodegenerative dis-

orders constitute a potential application for the benefits of polyphenols [38,354–357]. Con-

sidering that most neurodegenerative diseases remain asymptomatic for nearly all the 

phases, the interventions initiated in advanced stages cannot repair induced damages. It 

has been reported that flavonoids and flavonoids rich food daily consumption, without a 

prior hospital diagnosis may prevent or halt the disease progression at the initial stage of 

the disease. Such therapies may restore neuronal function by reducing and counteracting 

the primary stressor. Flavonoids are crucial compounds for developing a new generation 

of therapeutic agents that are clinically effective in counteracting neurodegenerative dis-

orders [358]. Studies on the effectiveness of these compounds are increasingly investi-

gated on the zebrafish model, which has proved to be a species suitable for translational 

medicine research both for the genetic and functional affinity to the human NS [359]. Kim 

et al. showed the strong antioxidant effect of turmeric leaf extract (TLE), rich in flavonoids, 

due to the protective effect against H2O2-induced cell death in zebrafish embryos [360]. 

Similarly, in a population of zebrafish treated with H2O2 that showed cognitive im-

pairment, the flavonoid biophenol morin significantly reduced ROS levels and increased 

antioxidant enzyme activity [361], improving also the behavioral activity. Two other phy-

tochemicals, quercetin, and rutin, in addition to showing free radical scavenging activity 

[362,363] and anticarcinogenic effects [364], prevented scopolamine-induced memory def-

icits in adult zebrafish and mice [365,366], suggesting their role in the preventive strategy 

against Alzheimer’s progression [367]. Indeed, in another study conducted on (MPP+)-

induced Parkinsonian-like locomotor impairment in zebrafish larvae, quercetin rescued 

MPP+-induced motor defects. This positive effect may be correlated with alleviating oxi-

dative stress in the dopaminergic neurons by quercetin [368]. 

In his study published in 2019, Pan et al. created a zebrafish model with AlCl3-in-

duced Alzheimer’s disease and tested the effects of linarine, a flavonoid glycoside from 

Flos chrysanthemi indici, on counteracting zebrafish AD dyskinesia. Thus, linarine’s ef-

fects on AChE inhibition were compared to donepezil (DPZ), a drug used in the AD treat-

ment (positive control). The results reported that linarine at 50 µg/mL might significantly 

increase the dyskinesia recovery rate in the AD zebrafish model by 8.7% higher than DPZ 

at 8 µM [369]. Recently, in a zebrafish embryo model of Bisphenol A-induced neurotoxi-

city (BPA), the protective effect and potential mechanism of cyanidin-3-O-glucoside (C3), 

the most prevalent natural anthocyanin were examined [370]. The results showed that 

BPA-induced defects in central nervous development, downregulating neurogenesis-re-

lated genes (Elavl3, Gap43, Zn5, α1-tubulin, Syn2a, and Mbp). C3G exerts protective effects 

on BPA-induced neurodevelopmental toxicity through improving transcription of neuro-

genesis-related genes dose-dependently, enhancing antioxidative defense by reducing 

GSH, SOD, GPx, and CAT activity via the Nrf2/ARE pathway and reducing cell apoptosis 

by regulation of apoptotic genes in zebrafish larvae [370]. In addition, it has been reported 

that the neuroprotective mechanisms of anthocyanins involve the activation of multiple 

signal pathways, such as Akt, ERK1/2, CREB, BDNF, and Nrf2 signaling pathways [371]. 
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Consistent with these results, two flavonoids, silibinin (10 µM) and naringenin (10 

µM) were shown to have neuroprotective effects in zebrafish BPA-induced neurotoxicity 

[372]. The novel tank diving test (NTDT) and the light-dark preference test (LDPT) were 

performed for neurobehavioral analyses after 21 days of therapy. According to the results, 

co-supplementation of silibinin and naringenin significantly reduced changes in the time 

spent in the upper zone of the tank and the latency of entry, reduced the number of tran-

sitions to the light zone and the time spent there and thus prevented the BPA-induced 

change in LDPT’s scotaxis behavior [372]. 

Hesperidin, an abundant flavonoid of citrus fruits, interacts with several pathways 

involved in neurodegeneration processes, including the central CREB-BDNF pathway 

[373]. In a study conducted in 2021, the anticonvulsant effect of hesperidin was demon-

strated in a zebrafish model of pentylentetrazole (PTZ)-induced seizures. Treatment with 

hesperidin significantly reduced PTZ-induced hyperactive responses and prolonged sei-

zure latency. Indeed, the inhibition of neuronal excitation after hesperidin incubation in 

PTZ-exposed larvae was concomitant with decreased c-fos expression. Additionally, the 

treatment elevated BDNF expression and reduced interleukin-10 expression (IL-10). 

Those findings were supported by in silico docking analysis, which demonstrated hesper-

idin’s affinity for IL-10, BDNF receptor TrkB, gamma-aminobutyric acid (GABA) receptor, 

and N-methyl-D-aspartate (NMDA) receptor [374]. 

Recently the extracts of Eucommia ulmoides Olive (EUO), a traditional Chinese herb 

rich in polyphenols, were tested on zebrafish AD model, showing mitigating AD-like 

symptoms possibly through inhibiting excessive autophagy and the abnormal expres-

sions of ache and slc6a3 genes [375]. In summary, polyphenols have shown promising 

results in zebrafish models of neuroinflammation and AD, laying the foundation for fur-

ther studies on their applications. The richness of bioptives in nature, which in many cases 

show high permeability through the BBB, and greater neuroprotective potential, makes 

these compounds a resource for new therapeutic perspectives. 

6. Conclusions 

Neurodegenerative disorders, such as PD, AD, ALS, and HD, are the most worrying 

disorders due to the dramatic increase of affected cases, but also due to the lack of effective 

therapy and the presence of numerous side effects of the current therapies. Therefore, it is 

necessary to find an alternative therapeutic solution through translational pharmacologi-

cal studies in vivo. 

Zebrafish could represent the ideal experimental model to study human neurodegen-

erative pathologies, thanks to their high genetic and neuroanatomical homology to hu-

mans. Moreover, the high neurogenic activity maintained in the adult brain of zebrafish 

allows a better understanding of the regenerative and neuroprotective mechanisms ex-

erted by flavonoids, providing potential support to develop alternative and natural ther-

apeutic strategies against neurodegenerative diseases. Many studies have confirmed the 

neuropharmacological properties of flavonoids, indicating them as potential adjuvant 

agents in the prevention and treatment of neurodegenerative diseases. Given the abun-

dance of these compounds in nature, research in this area should be expanded to clarify 

the mechanisms underlying the effects observed to date and discover possible new phy-

tochemical compounds. 
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