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Abstract

Some students tasked with mandatory programming assignments lack the time or dedi-
cation to solve the assignment themselves. Instead, they might plagiarize a solution by
slightly modifying their peer’s code. To counteract this, there exist numerous tools that
assist in detecting this kind of plagiarism. These tools can be used by instructors to identify
plagiarized programs among the set of all submissions. The most used type of plagiarism
detection tool is token-based plagiarism detectors. They are resilient against many types
of obfuscation attacks, such as renaming variables or whitespace modifications. However,
they are susceptible to the insertion of code that does not affect the program flow or result.

The current working assumption was that the successful obfuscation of plagiarism
takes more effort and skill than solving the assignment itself. This assumption was
broken by automated plagiarism generators, which exploit this weakness. This work
aims to develop mechanisms against code insertions that can be directly integrated into
existing token-based plagiarism detectors. For this, we first develop mechanisms to
negate the negative effect of many types of code insertion. Then we implement these
mechanisms prototypically into a state-of-the-art plagiarism detector. We evaluate our
implementation by running it on a dataset consisting of real student submissions and
automatically generated plagiarism. We show that with our mechanisms, the similarity
rating of automatically generated plagiarism increases drastically. Consequently, the
plagiarism generator we use fails to create usable plagiarisms.






Zusammenfassung

Manchen Studierenden fehlt die Zeit oder Arbeitsbereitschaft, ihre Programmieraufgaben
selbst zu 16sen. Stattdessen plagiieren sie Abgaben ihre Kommilitonen, indem sie deren
Code iibernehmen und leicht verandern. Um dem vorzubeugen, existieren Programme, die
beim Finden von Plagiaten unterstiitzen. Die geldufigste Art dieser Plagiatserkenner sind
Token-basierte Plagiatserkenner. Diese sind resistent gegen viele Verschleierungsversuche,
wie beispielsweise Variablenumbenennungen oder Umformatierung des Quelltextes. Sie
sind jedoch generell anfillig gegen das Einfiigen von Codezeilen, die den Programmfluss
und das Ergebnis nicht beeinflussen.

Die bisherige Annahme war, dass das erfolgreiche Verschleiern von Plagiaten mehr Zeit
und Konnen erfordert, als die Aufgabe selbst zu 16sen. Automatisierte Plagiatsgeneratoren
brechen diese Annahme, indem sie die Anfilligkeit gegen Codeeinfiigungen ausnutzten,
um automatisiert Plagiate zu erstellen. Ziel dieser Arbeit ist es, Mechanismen zu finden, die
in bestehende Token-basierte Plagiatserkenner integriert werden kénnen, um die Resilienz
gegen Codeeinfiigung zu verbessern. Dazu entwerfen wir zunachst Mechanismen, die den
negativen Effekt vieler Codeeinfiigungen auf die Plagiatserkennung reduzieren kénnen.
Anschlieflend implementieren wir diese Mechanismen prototypisch in einem modernen
Token-basierte Plagiatserkenner. Wir evaluieren unsere Implementierung anhand eines
Datensatzes aus echten Programmierabgaben und aus Plagiaten, die wir automatisch
generiert haben. Damit zeigen wir, dass die Verwendung unserer Mechanismen die gemes-
sene Ahnlichkeit automatisch generierter Plagiate stark erhoht. Dadurch ist der von uns
verwendete Plagiatsgenerator nicht mehr in der Lage, verwendbare Plagiate zu erstellen.
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1. Introduction

When assigned programming exercises, many students lack the time or the knowledge
to solve these assignments by themselves. Instead, they sometimes collude in groups or
directly plagiarize their solutions, even if neither is allowed. To avoid detection, students
usually try to obfuscate their plagiarised submissions through techniques like renaming,
reordering, or even exchanging similar control structures like for and while loops.

Today, multiple systems for detecting plagiarisms among student submissions exist,
such as JPlag [14], MOSS [1], or Sherlock [25]. Until recently, the working assumption
was that fooling these plagiarism detection systems required more work and knowledge
than actually doing the assignment without plagiarising [7, p. 138:1]. However, Devore-
McDonald and Berger [7] challenged this working assumption by introducing Mossad, an
automatic and non-deterministic system for generating multiple plagiarisms based on a
single correct solution [7]. Although this software is not available to the public, similar
tools could be developed and released to students in the future. This motivates the need
for further research and improvements to existing plagiarism detection systems in order
to prevent such obfuscation attacks.

In this bachelor’s thesis, we analyze how Mossad creates plagiarisms that exploit those
weaknesses. Based on this analysis, we design three defense mechanisms that aim to
reduce the attack vector on token-based plagiarism detectors. The first two mechanisms
remove unused variables and some unreachable sections during tokenization. These
mechanisms can be adapted for different languages, but our main focus is on the C and
C++ programming languages because Mossad only works for those languages. Our third
mechanism is a language-independent prefiltering algorithm for the comparison algorithm.

To empirically validate the effectiveness of our implementation, we evaluate it by
running the original version of JPlag and our modified version on a custom-made dataset
and compare their key metrics. This dataset consists of real, unplagiarized submissions,
plagiarisms created using common obfuscation techniques, and plagiarisms created by
Mossad. While we design these improvements for JPlag and its preexisting features, like
visually comparing suspicious code, we designed them in a generic way. This way, they
can be implemented in similar plagiarism detectors as well.

The main contribution of the thesis is presenting different mechanisms that can be
included in existing plagiarism detectors. Additionally, we evaluate our defense mecha-
nisms based on a prototypical implementation in JPlag. Further contributions include a
framework for automatically evaluating modifications to JPlag and a Mossad wrapper that
allows multi process creation of plagiarism for faster dataset creation.






2. Foundations

This chapter defines the key terminology we use in the later chapters. It also explains
the foundations required to understand our defense mechanisms, their prototypical im-
plementation, and their evaluation. First, we define the term plagiarism in Section 2.1,
both in general and for software in particular. Then, in Section 2.2 we give an abstract
overview of software plagiarism detectors, including the different types. In Section 2.3,
we go into more detail about token-based plagiarism detectors and their fundamental
weakness. Lastly, in Section 2.4, we introduce jPlag, the software plagiarism detector we
extend in our implementation and on which we base our evaluation.

2.1. Plagiarism

Plagiarism is "the act of taking the writings of another person and passing them off as
one’s own [2]." In general, this definition is broad but often used in the context of academic
texts lacking proper citation. This thesis focuses on software plagiarism, which limits the
definition above to using other people’s source code or binaries without permission or
attribution. One example of this is taking code from open-source repositories without
respecting their license. In this case, the source code of the plagiarized source can be
located anywhere, and the source code of the potential plagiarism is usually not available
at all. This type of plagiarism is relevant primarily in the industrial sector [32, 3].

Another type of software plagiarism is found in programming courses, where many
students try to solve the same, well-defined assignment and submit their solution. Students
who lack time, skill, or dedication to solve the assignment themselves might take parts or
even the entirety of another student’s solution and submit it as their own. We limit our
thesis to this kind of software plagiarism. We will refer to the task given to students as
assignment and their respective solutions to one assignment as submissions. Plagiarized
submissions take their plagiarized code sections from what we refer to as the originals.
Students might try to obfuscate their plagiarism by changing aspects of a plagiarized
submission. The goal is to escape detection from plagiarism detectors. We will call every
single change made to the plagiarism a mutation and the process of mutating a plagiarism
to escape detection plagiarism obfuscation.

2.2. Software Plagiarism Detectors

Software that can detect plagiarism is called a plagiarism detector. Like there are different
types of plagiarism, there are corresponding types of plagiarism detectors. We limit this
thesis to software plagiarism detection, but note that considerable effort has gone into
researching the detection of academic plagiarism [11].



2. Foundations

As mentioned above, a key differentiating factor is the necessity for access to the source
code of the potential plagiarism. When no source code is available, plagiarism detection
has to be performed on the programs binaries. This can be done by performing a static
analysis or a dynamic analysis. During static analysis, a set of features is extracted out
of the binaries and then compared to the possible originals. An example feature is the
sequence of calls to the operating system APIs. For dynamic analysis, the program is
executed, and the runtime behavior is inspected. However, the execution can change
between environments, and there is no guarantee about the coverage of possible execution
paths [3].

When the complete source code is available, the source code is usually tokenized and
then compared. Sometimes, the source code or the tokenization result is filtered to achieve
better results. The tokenization steps goal is to abstract away easily changeable source code
aspects, for example, whitespace, comments, or variable names. This means that ideally,
the result of the tokenization step is mostly invariant during a plagiarism attempt. The
concrete tokenization method and the corresponding comparison algorithm vary between
plagiarism detectors. Examples of tokenization include source code token sequences,
low-level token sequences, abstract syntax trees, or program dependence graphs. The
most common one is the tokenization into source code tokens [16]. In this thesis, we
refer to software plagiarism detectors that utilize this method as token-based plagiarism
detectors. JPlag [14] and MOSS [1], two commonly used plagiarism detectors, both fall
under this category.

2.3. Token-Based Software Plagiarism Detectors

As previously said, token-based plagiarism detectors generally utilize tokenization followed
by comparison. The tokenization usually occurs by parsing or scanning the source code
and creating a token sequence, in which each token corresponds to a syntactic concept of
the language. Easily changeable semantic information, like variable names, is abstracted
away. In a limited capacity, these tokens can also include unchangeable semantic meaning.
One example is differentiating braces belonging to a class definition, an if statement or
other language concepts requiring braces [14, 22, 23].

The comparison algorithm assigns a similarity score to a token sequence pair and is
usually based on string matching [14, 31, 16] or document fingerprinting [24]. These algo-
rithms try to find identical subsequences shared by both token sequences. The similarity
score is then calculated from the relative share of tokens that could be matched to the
other sequence. In order to avoid random matches, identical subsequences have to be of a
certain length in order to be regarded. Otherwise, commonly used code like iterating over
array values and reassigning them would be detected as a match. The exact mechanism
for preventing these short matches differs depending on implementation. Additionally,
the value for this minimum length of a match depends on the concrete tokenization and
target language. For this thesis, we will refer to this parameter as minimum token match,
which is the term JPlag uses internally [14].

The existence of a minimum token match reveals a fundamental weakness of token-
based plagiarism detectors: They are susceptible to code insertion attacks [17]. In the
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A X B X € X D X E X F

A X B X € X D X E X F
AB<X><CDEF
A X B C X D X E X F
DENED N ENE ENE
A X B —( C D — E X F

Figure 2.1.: Schematic impact of how code insertions can decrease the similarity of two
submissions. Assuming a minimum token match of three, the attacker can
prevent every match by decreasing the length of identical subsequences.

context of this thesis, we define code insertion attacks as plagiarism obfuscation attempts
by inserting short parts of code into the plagiarism. This additional code does not change
the execution behavior of the code, and we will also refer to the additional tokens resulting
from the mutation as inserted tokens. While a single inserted token simply splits the match
into two, inserting many tokens can cause the length of the matches to fall below the
minimum token match. As a result, an otherwise matching subsequence is ignored, and
the overall similarity is lowered. Figure 2.1 illustrates this issue with an example minimum
token match of three. The gray tokens represent a token resulting from code insertion,
the blue tokens represent a token match, and the orange tokens represent unmatched
tokens. The inserted tokens prevent every match and lower the similarity to 0%. Other
comparison algorithms try to combat this issue, for example, the smith waterman algorithm
[26] used by Nichols et al. [21] in their work. Initially designed for matching common
molecular subsequences, this algorithm considers gaps that are created by tokens inserted
in the other sequence. However, increasing the amount of inserted tokens evens out this
advantage [7].

2.4. JPlag

Developed in 1996 at the University of Karlsruhe, JPlag [14] provides an open-source
solution for locally checking a set of software for plagiarism. Independent studies have
proven JPlag’s high effectiveness at detecting common plagiarism techniques [5]. JPlag
can be built and run entirely locally, which eliminates privacy concerns. As of September
2022, JPlag supports multiple languages, including C, C++, C#, Java, Python 3 [14]. By
operating on the parse tree, JPlag is resistant to many obfuscation techniques by design,
for example, whitespace insertion or changes in comments. JPlag’s uses the same two main
phases we described in the previous section [22, p. 5ff], as it is visible in figure Figure 2.2.
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Figure 2.2.: Internal structure and dataflow in JPlag. JPlag can be called using a CLI or as a
Java Library. Therefore, the output is either a directory containing JSON files
or a Java Object.

2.4.1. Tokenization

JPlag parses or scans the input and creates a token sequence for each submission. This
phase is highly language-dependent, and each language module can use whatever method is
most suited to create the token sequence. For example, the Java module uses the JavaC API,
the C/C++ module uses a JavaCC grammar, and the C# module uses an ANTLR grammar.
In parsed languages, JPlag tries to maintain some level of semantic information, like
differentiating between ends of methods or ends of classes. For the most part, behavioral
details that mainly describe the operational semantics are abstracted away, so the tokens
resemble the structure of a program. For example, each method call results in one apply
token, while information, like parameters, is ignored. This prevents many common
obfuscation techniques, like parameter reordering. Each language module can decide
what types of tokens there are and how the source code is transformed into these tokens.
Unfortunately, the design decisions behind the token selection for each module are not
well documented. Although each token type resembles a syntactic concept of the language,
like assignments or loops, the semantic meaning of each token is irrelevant for the next
phase. Because of this, we refer to these tokens as language-independent tokens.

2.4.2. Sequence Comparison

JPlag iterates over each possible submission pair and tries to cover one token sequence with
sections of the other using a modified version of Greedy String Tiling [31]. An important
parameter for this algorithm is the previously discussed minimum token match, which
is set differently for each supported language. This value holds the minimum amount of
tokens that must be identical to mark it as a match. This prevents detecting very short
identical sections, like multiple variable declarations, which is common in programs and
does not indicate plagiarism. The minimum token match plays a crucial role in attacking
JPlag.



2.4. JPlag

2.4.3. Limitations

It is important to clarify that JPlag is not a black box that classifies software as either
genuine or plagiarism. Depending on the assignment and size of the submissions, a certain
degree of overlap is expected. However, it provides a tool to detect anomalies of higher than
average code similarity and manually inspect them. JPlag helps instructors by displaying
the suspicious code and coloring matching sections. They can then manually inspect
and compare the student’s code to confirm plagiarism. Additionally, plagiarisms taken
from sources outside the submission set, like GitHub and other online sources, can not be
detected.






3. Threat Modelling

The process of creating and detecting plagiarism can fundamentally be classified as an
attacker-defender scenario. It is therefore essential to define the attacker’s capabilities for
the remainder of this thesis. In the following chapter, we define the primary type of attack
we aim to defend against. We then introduce Mossad [7], a tool that students can potentially
use to create plagiarisms that escape detection by common software plagiarism detectors.
Based on Mossad, we define our threat model, explaining how students plagiarize, how
they could use Mossad, and what limitations apply in the context of this thesis.

3.1. Automated Code Insertion

As mentioned in Section 2.3, token-based plagiarism detectors are generally susceptible to
code insertion attacks [17]. Previously, these attacks had to be done manually and could
require significant time investment [7]. Recent work [7] has shown that it is possible to
automate the process of creating a plagiarism only by utilizing code insertion. This type of
obfuscator is, although simple, highly effective against token-based plagiarism detectors
because of their inherent weakness against code insertion attacks. We define the qualities
of a plagiarism obfuscator based on code insertions as follows:

« The obfuscator can insert an arbitrary amount of lines at arbitrary locations.

« The obfuscator can check if its current variant is semantically equivalent to the
original.

+ The obfuscator has access to the current similarity score of the current variant and
the original.

« The obfuscator has access to an arbitrary but fixed set of lines it can insert.

3.2. Mossad

Mossad is a program transformation framework introduced by Devore-McDonald and
Berger [7] in their paper "Mossad: Defeating Software Plagiarism Detection" in 2020.
Mossad allows the creation of one or multiple plagiarisms from one original. MOSS [1],
another token-based software plagiarism detector we introduced briefly in Chapter 2, can
not detect this plagiarism. Additionally, the authors claim that the fabricated plagiarisms
are unsuspicious during a manual inspection. Although it was developed to attack MOSS,
it is also effective against JPlag. Section 3.2.2 further elaborates on why Mossad can be
used against JPlag with minimal modifications.
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3.2.1. Method of Creating Plagiarism

Because it was developed to attack MOSS, the main idea is to disrupt the hashes created in
MOSS’ algorithm. Mossad achieves this by inserting new lines of code at regular intervals.
However, this has a similar effect on JPlag, because it splits up matching sections and
keeps the length of the sections below the minimum token match. These new lines are
taken from within the submission or provided in an external file and do not affect the
program’s results.

In practice, Mossad uses an iterative approach: During Initialization, Mossad compiles
the source file to object code using Clang with high optimization enabled. The generated
object code is later used to ensure the semantic equality of the original and the generated
plagiarism. Mossad then uses a copy of the source file as the starting point. Every source
file line is added to the pool, which is used for generating mutations. Users can use an
entropy file to provide custom additions to the pool or allow Mossad to add successful
mutations to the entropy file for future use.

During the generation phase, Mossad selects lines from the pool and performs basic
semantic checks. These checks ensure the line can be used without causing a compiler
error and speed up the next step. After selecting a line, it is sent to the mutation module.
Mossad inserts the selection into copies of the current variant at random locations and
checks if the resulting program is still equivalent. To check whether the variant’s program
semantics are different, Mossad compiles the variant to object code using Clang [20] with
high optimization enabled. When high optimization is enabled, Clang tries to find code
that has no effect on the execution or result of the program and omits it from the object
code. Mossad utilizes this to ensure semantic equality by comparing the originals object
code generated in the initialization phase to the object code of the current mutation. If
both are not equal, Mossad assumes the mutation has changed the semantics and discards
the mutation.

Source file

Mossad .| Variant

source file

Target Score

. v

A

Y
l JPlag l
Entropy
file

Figure 3.1.: The basic dataflow of Mossad (Simplified version of Figure 3 in [7]). This
schematic depicts the ingoing and outgoing data for the JPlag variant of Mossad.
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3.3. Threat Model

For semantics preserving variants, Mossad then checks if the target MOSS score has
been reached by calling the MOSS web service. If this is not the case, the current variant is
used in the next iteration. If the target MOSS score is reached, Mossad outputs the current
variant and terminates [7], as MOSS can no longer sufficiently distinguish the generated
plagiarism from real solutions.

Figure 3.1 shows the data flow when using Mossad. Mossad receives one original
submission source file and a target similarity score. While it runs, lines are read from and
written to the entropy file, and after every mutation JPlag is called to determine the current
similarity score. After Mossad terminates, the current variant has a lower similarity score
than the target when comparing it to the original file.

3.2.2. Applicability to JPlag Rather Than MOSS

Although Mossad was created to defeat MOSS, it attacks a weakness that exists in both
MOSS and JPlag similarly. While the inserted tokens disrupt the hashes in MOSS, they
interrupt matching sequences in JPlag and reduce their length below the Minimum Token
Match. We have already illustrated this weakness in Section 2.3. Mossad does not regard
the explicit tokens corresponding to the inserted lines. Instead, the effectiveness of the
random mutations is checked by calling MOSS and checking if the similarity is below the
preset threshold. The mutations done by Mossad are, therefore, identical against MOSS
and JPlag.

To adapt Mossad for JPlag, we only need to exchange the similarity check call. Devore-
McDonald and Berger [7] already provide an adapted version for JPlag 2.11, which we
modified to work on newer JPlag versions.

3.3. Threat Model

We base our new threat model on the following threat model created by Devore-McDonald
and Berger (7, 138:7]:

Threat Model

« "Students are incentivized to minimize the time spent on assignments
while maximizing their grade. Therefore, students will not spend more
time attempting to defeat the plagiarism detector than actually doing the
assignment.”

« "Students have arbitrary access to peers’ assignment solutions or solutions
found online. Students may use these solutions as the basis for their
plagiarized assignment solution."

« "In addition, all solutions are also available to the instructor; attacks that
depend on outsourcing (hiring someone to write an entirely new program
that is not available online) are to our knowledge beyond the scope of ex-
isting plagiarism detection tools, since the original program is unavailable."

11



3. Threat Modelling

+ "Course staff relies primarily on software plagiarism detection, beyond the
lightweight manual inspection described below"

+ "Course staff will only examine student code for spot-checking or for those
assignments that receive high similarity scores with another assignment.
[...]" [7, 138:7]

In the context of this thesis, we assume that the students have access to Mossad or a
similar plagiarism obfuscator utilizing code insertion. We, therefore, extend the threat
model to include:

« Students have access to Mossad or other software that performs automatic obfusca-
tion attacks using code insertion.

« Students have access to our modified version of JPlag and know how to use it with
Mossad. As a result, Mossad knows if the plagiarisms it creates are detected by our
modified version of JPlag. Mossad can then keep mutating the variants until JPlag
can not detect them anymore.

Additionally, we set the following limitations:

« Students cannot construct complex entropy files and mainly rely on entropy auto-
matically introduced by other submissions. We assume that students would take
longer to construct entropy files than to solve the assignment themselves.

« Students only use Mossad to create their plagiarism. Creating a Mossad plagiarism
out of pre-existing plagiarism or further obfuscating the result of Mossad is outside
the scope of this thesis.

« Students can remove lines introduced by Mossad that reduce readability without
decreasing the similarity. Mossad inserts more lines than are necessary to reduce
the similarity below the threshold, which can raise suspiciousness during manual
inspections.

3.4. Role of Manual Inspection for Plagiarism Detection

A survey conducted by Devore-McDonald and Berger [7, 138:6-7] indicates that many
respondents only manually inspect submission pairs that receive high similarity by plagia-
rism detectors. This is supported by the fact that the amount of submission pairs is equal
to (g] ) =3 151\]—!2)! = N(Azl_l), where N is the total amount of submissions. This quadratic
scaling means that even for relatively small courses, the number of submission pairs can
quickly reach thousands. For example, 50 submissions mean a total of 1225 combinations.
We can therefore assume that plagiarism that does not receive a high similarity rating is
not detected during spot checking.

As stated above, it is essential to recognize that software plagiarism detectors can not
classify student submissions as plagiarism with absolute certainty. Whenever a pair of
student submissions receive a high similarity value, instructors must take further steps to

12



3.4. Role of Manual Inspection for Plagiarism Detection

investigate the case. This should always include a manual inspection of the source code in
question. JPlag provides a user interface for directly comparing the sections recognized
as similar. Should the instructor find that the submissions contain identical or similar
sections, he or she can request the students in question to defend their code.

Because of this, our primary goal is to maximize the similarity of Mossad plagiarism,
so instructors are likely to check them manually. A small number of false positives can
be discarded and merely increase the required effort. This means we have to keep the
precision high enough to make a manual inspection of all high similarity pairs feasible.
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Resilience against obfuscation attacks means that the obfuscation does not decrease the
similarity of a plagiarism pair. In order to improve resilience against the attacks defined in
Chapter 3, our primary goal is to remove tokens from plagiarism token sequences that
belong to inserted lines. We can do this in two different ways:

« Remove or ignore tokens during parsing. Because this action requires the language’s
explicit token types and semantic meaning, this is language specific.

« Ignore tokens during the comparison of two submissions. Ideally, this can be per-
formed on generic token types, meaning the semantic meaning of a token is irrele-
vant, and only differentiation between types is required. This limitation makes this
language independent.

The following chapter describes two common types of code insertions and mechanisms
to counteract them. We found that these code insertions make up a large share of automat-
ically inserted lines of code. Additionally, we propose an algorithm that iteratively checks
if two token sequences can be made equal by deleting one short token subsequence. This
algorithm aims to delete code insertions for arbitrary programming languages.

4.1. Deleting Unused Variables

Deciding if a variable is unused is trivial in specific cases but very complex in other cases.
Variables that are only declared or written to but never read from have no impact on the
execution and result of a program and are, therefore, always unused. However, more
complex cases are hard or impossible to decide. A selection of these cases includes:

« Public class members that are not read directly but are part of the class’s public
interface.

« Private class members that are only read in an access method.

+ Class members could be read in derived classes that are not available to the plagiarism
detector.

« Variable reads that are located in unreachable code. The problem of classification of
unreachable is described in section Section 4.2.

« Variables that are read, but their contained value does not affect program execution
or result. A simple example is adding an unused variable to another unused variable.
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Considering these complex cases would exceed the scope of this thesis. Instead, we
limit our scope to declared but unread local variables. Local variables are strictly limited
in access to their local scope, which means that all read accesses to the variable must be
contained within the local scope. Therefore, checking for the mere existence of read access
is straightforward. The reachability of the read access is much more complex. For example,
Chen, Gansner, and Koutsofios [4] elaborate on the complex relations that can occur in
C++ code and the difficulty of determining if a statement is executed. Therefore, we restrict
this thesis to the existence of read access. Future research can lift this restriction to detect
more sophisticated plagiarism.

Because the insertion of unused variables and the resulting check for semantic similarity
are easy to perform automatically, mutations of this kind occurred very frequently when
we ran Mossad. For a valid mutation, the declaration must only be in a valid location and
not shadow an existing variable with the same name.

The term shadowing refers to the situation in which a variable is declared in an inner
scope, although there already exists a variable in an outer scope with the same name. The
value of the wider scoped variable is then inaccessible within the smaller scope, and the
execution behavior changes [28, p. 158f].

We suspect that single variable insertions with ambiguous names like count, status, or
common single-letter names like n, k, or i are easily missed during manual inspection. We
base this suspicion on the study by Devore-McDonald and Berger [7]. In their experiment,
they presented plagiarism created by Mossad to programming instructors and asked for
any suspicious findings. Since we found that a large share of Mossad’s mutations is
insertions of unused local variables, we conclude that this type of code insertion is easily
missed during manual inspection. It is, therefore, crucial to prevent declarations of unused
variables from affecting plagiarism detection. How tools can implement this defense
mechanism is described in Chapter 5.

4.2, Deleting Tokens in Unreachable Code

Another way of adding lines that do not change semantics is inserting dead or unreachable
lines of code. In general, code is defined as "unreachable if there is no control flow path to it
from the rest of the program" [6, p. 382]. This is commonly the case when the propagation
of parameter values guarantees that a conditional branch is never taken. A rarer and
more obvious occurrence is code located after guaranteed jumps, like return or break
statements. [6, p. 382]

In contrast, "dead code refers to computations whose results are never used" [6, p. 382].
This includes computations whose only usage lies within unreachable code. Both concepts
are, therefore, closely coupled. When classifying code as dead, it is important to consider
side effects like exceptions or raised signals. Any side effect can impact the execution or
result of the program; thus, any code that includes side effects is not dead, even if the
computational result is not used directly. [6, p. 382]

These concepts are commonly used in compilers when performing code compaction,
which is the act of reducing the size of the resulting executables. This can allow the
program to run on lower-memory devices [6, p. 379]. In the context of software plagiarism,
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Jump Block End

Block End ‘

Unreachable

Figure 4.1.: Naive state machine for detecting tokens after guaranteed jump tokens.

dead and unreachable code can either reduce the relative similarity by increasing the
total amount of tokens or even break up continuous tokens to prevent a match. Because
unreachable code will never be executed, all valid code insertions in the unreachable
section will yield a semantically equal mutation.

4.2.1. Naive State Machine

In this section, we will introduce a state machine that detects tokens inserted after guaran-
teed jumps in linear time on the token level. Although this state machine is designed for
C++, it can be adapted for other languages that do not prohibit tokens after guaranteed
jumps, for example, Python. Based on JPlag’s implementation, we also assume that the
C++ code is only scanned and not fully parsed. This state machine is much simpler for
fully parsed language that introduces more semantic information into the token level. This
means our assumption is not a restriction but a generalization.

We construct our state machine by starting with a naive state machine that can detect
code insertions after guaranteed jumps but is prone to exploits. Figure 4.1 shows a
representation of this naive state machine. The state machine uses token type categories
instead of explicit token types to keep generality because token types vary between
implementations or languages. Jump includes all guaranteed jump tokens, like return,
break, throw, or continue. Block End refers to tokens that indicate the end of a code block.
This can be a closing brace, or should the tokenizer support full parsing, a token indicating
the closing of this specific block.

We can use the state machine by starting in the initial state and reading each token in
the sequence sequentially. Should a token lead into the accepting state, this token should
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be deleted, and the state machine resumed for the next token without leaving the current
state.

Since our state machine expects Block End types of tokens to leave the unreachable state,
it is susceptible to large blocks of inserted code containing if, while, or other control
structures that can contain explicit code blocks. Modifications to our formal state machine
can not fix this issue directly because it cannot count the depth of nested code blocks
within the unreachable section. A simple fix we can apply in practice is introducing a
depth counter. This counter is initialized as 0 when entering the unreachable state. Every
Block Begin token increases the depth counter by one, and every Block End token decreases
the counter by one. Whenever the state machine is in the unreachable state and encounters
a Block End, it checks the value of the depth counter and bases the state transition on it.
Should the value be 0, then it simply transitions like usual. Should the value be higher
than 0, then the state machine remains in the unreachable state, the token is deleted, and
the machine continues. We leave this modification out of our graphical state machine
representations, as the concept of variables theoretically does not exist for state machines.

4.2.2. Limitations and Addition for Scanned Languages

Many C-like languages like Java, C#, and C++ allow the omission of braces in control
structures when the block only contains a single statement. This is usually not an issue
in parsed languages because end-of-block tokens are possible without braces. Scanned
languages, however, present the issue that they can only create tokens from explicit source
code. This is especially dangerous because the end of blocks is not always represented
as a token and can be missed. The code example shown in Listing 4.1 shows a situation
where the naive state machine wrongly deletes tokens.

int main()
{
int a = 10;
if (a == 0)
return;

// All tokens below are wrongly deleted until
// the end of the function
}

Listing 4.1: Code example illustrating an exploit in C++ when using the naive state machine
illustrated in Figure 4.1

A first idea for fixing this issue might be to check whether the if is followed by an
opening brace. If not, the token after the if-token could be expected as a single statement
in the implicit code block. This, however, is not viable because an arbitrary amount of
tokens can belong to the condition. Listing 4.2 illustrates the issue with two code examples
that yield the same token sequence when scanned. This proves that the tokens do not
contain enough semantic information to differentiate both situations fully. The lack of
semantic information about the start and ends of code blocks is caused by the assumption
that a scanner instead of a parser for tokenization.
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int main() int main()
{ {

int a = 10; int a = 10;

if (a == (b = c)) if (a == 0)

return; b =c;
return;

// reachable code // unreachable code

} }

Listing 4.2: Two code examples can result in equal tokens in scanned languages, depending
on tokenization implementation.

To safeguard against this exploit, we add the necessity for explicit starts and ends of blocks.
Figure 4.2 shows the change to our state machine. We introduce a Block Beginning state
that is traversed whenever a block starts. This state ensures that only blocks with explicit
start and end tokens are regarded for unreachable code sections. A negative side effect is
that the state machine can remain in the Block Beginning state, even if the corresponding
code is directly after a jump token. As a result, unreachable code, like shown in Listing 4.3,
will not be filtered out of the resulting token sequence. This situation is only resolved
when the next Block Beginning or Block End token is encountered since these tokens ensure
that the block without braces has ended.

Jump Block End

Block End i ‘

Unreachable

Figure 4.2.: State machine that fixes the token deletion exploit of the naive implementation
of Figure 4.1 as shown in Listing 4.2
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int main()
{
int a = 10;
if (a == 0)
a =5;
return;

// The following tokens are wrongly not deleted
int n =0

Listing 4.3: Code example that contains an undetected inserted token.

There are cases where the blocks’ ends are explicit without bracing, even in scanned
languages. One specific example we regularly encountered in C++ were inserted lines
after breaks in switch statements. Because the case keyword acts as block start and end,
we add a state to include this as an edge case. Figure 4.3 depicts the full state machine.

Jump Block End

Block End i
Jump

Unreachable

Figure 4.3.: The final state machine.

4.3. Directly Reverting Token Insertions

As mentioned above, the critical weakness of Token-Based Detectors is that they require
long identical sequences of tokens to detect matches. As a result, even single token in-
sertions break up two otherwise identical sections. If the resulting match length is below
a certain threshold, it is discarded and not recognized as plagiarism. This is especially
dangerous because minimal changes can result in an extra token depending on the tok-
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enization step. Carefully placed, this can reduce the similarity of a submission pair down
to 0% without considerably affecting readability.

A practical example of this is the usage of fully qualified names in C++. We found that
in the original tokenization implementation of JPlag 3.0.0, using explicit namespaces (: :)
resulted in scope tokens. Consequently, std: : cout and cout differ after tokenization, so
manually adding or removing explicit namespaces is equivalent to token insertion or
deletion. We will not further discuss the effects of tokenization implementations and token
types in this thesis, but we mention it in Chapter 8 as future work. This nevertheless
motivates the need for directly addressing this fundamental weakness.

4.3.1. Naive Algorithm

To detect short but arbitrary token insertion like this, we examined the viability of an
algorithm that tries to revert the insertion directly. We do this by comparing two token
sequences and looking if the deletion of a short coherent subsequence makes the two
sequences equal. The explicit token types are irrelevant; we only need to be able to discern
different token types, which makes this algorithm applicable to every language. Figure 4.4
depicts two token sequences and shows the basic concept of the algorithm, which is
explained in the following. The second sequence was created by inserting a token marked
with x into the first token sequence.

<XXXXHXXX>

Window1 |

Window 2 I

<XXXXX><XXX>

Figure 4.4.: Basic concept of using running windows for detecting similar sequences.

We start by trying to find inserted tokens in the first sequence and will then swap the
sequences and rerun the algorithm. To detect and revert this insertion, we use two different
running windows, one for each token sequence. We iterate the first window over the first
token sequence. We iterate the second window over the second sequence for every first
window position. Both windows have a set length, and their position on their respective
token sequence is incremented with a predefined increment value. We will refer to these
configurable values as Window Length and Window Increment.

For every window combination, we search for inserted tokens in the entire window. We
do this by iterating over the tokens in both windows simultaneously and checking for
equality. After the first occurrence of a difference in token types, we skip and count tokens
in the first window until the token types are identical again. We limit the length of skipped
tokens to a maximum value called maximum insertion length. Should the token mismatch
be longer than this value, or should multiple mismatching sections occur, we skip to the
next second window. Otherwise, we delete the mismatching section.
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X X X X e Xev X2 Xr X e
P X X e Xee X Xe Xe Xn X

Figure 4.5.: Two slightly offset windows with repeating subsequence at the beginning. The
gray tokens are wrongly detected as code insertion.

4.3.2. Key Considerations

When thinking about this algorithm, one quickly discovers edge cases that prohibit the
expected function. In the following, we will explain edge cases that must be considered
when implementing this algorithm.

When dealing with two identical token sequences and windows that offset by n, where n
is limited by the maximum insertion length, the first n tokens will be detected as insertion
and Therefore removed. This occurs multiple times and ultimately prevents the detection
of verbatim copies. It is, therefore, essential to ignore tokens equivalent to the maximum
insertion length at the beginning and end of the window. Furthermore, certain situations
where the edges of the sequences have repeating subsequences, as shown in Figure 4.5,
can cause this phenomenon to extend beyond the maximum insertion length. Therefore,
we introduce padding at the start and end of the window to reduce the frequency of this
occurring. While this reduces the likelihood of a false positive, it also increases the required
space between token insertions. Although we cannot eliminate the risk of false-positive
deletions, since a single token difference of otherwise identical sequences might even
occur on semantically completely different code, we evaluate the frequency with which
this occurs in Chapter 6.
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5. Implementation

To evaluate our defense mechanisms, we implemented them prototypically into JPlag.
This allows us to evaluate our approaches’ effectiveness and showcases how they can be
integrated into existing token-based software plagiarism detectors. Token-based plagiarism
detectors generally use a tokenization phase followed by a comparison algorithm [1, 21, 29].
Therefore, we expect our implementation approach to be transferable to other token-based
detectors. We also created a framework for automatically running our implementations
on different datasets and different versions and configurations of JPlag. In the following
chapter, we explain how we implemented our prototypes and give insight into how our
findings can be transferred.

5.1. Implementing the Approaches in JPlag

JPlags’ two main phases, tokenization and comparison (see Section 2.4) allow us to imple-
ment our defense mechanisms as preprocessing steps for each phase. The tokenization
step is done in the language modules and handled differently for each language. Conse-
quently, we can limit our language-specific modifications to the C++ language module.
Our preprocessing on the generic tokens can be done directly before each call to the core
algorithm, encapsulated in a class.

5.1.1. C++ Scanner Extensions

The C++ Scanner class accepts scanned tokens and collects them into a TokenList object
for further processing in the JPlag core. The tokens are passed to the scanner by the
CPPScanner generated by JavaCC [13], which is a "parser generator for use with Java
applications. A parser generator is a tool that reads a grammar specification and converts
it to a Java program that can recognize matches to the grammar [13]." It is important
to distinguish between the Scanner and CPPScanner classes, especially since both are
contained in the de. jplag. cpp package. The CPPScanner performs the language parsing,
but because it is generated by JavaCC, we cannot modify it directly. We implement our
language-specific defense mechanisms by intercepting tokens when they are passed to the
Scanner object and by filtering the list before it is built into the TokenList.

5.1.1.1. Deleting unused variables

In order to delete unused variables, we could implement our own source analysis tool to
scan the code directly and remove the declarations from the source code. In practice, this
is not feasible due to time constraints and the general complexity of the C++ programming
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language. Instead, we use pre-existing tools to analyze the code before parsing and find
unused variables this way. We configure the tools to output warnings about unused
variables and parse their output to receive the lines that contain them. The Scanner can
then discard the tokens belonging to the declaration before they are added to the token
list.

We decided to use compilers and their warnings for our implementations. Specifically,
GCC is a robust and proven compiler that also scans the code for possible user errors,
including unused variables. Listing 5.1 shows an excerpt of an example output produced
by GCC. The warning contains the file name, line and column, severity, and the type of the
warning, in this case, "unused variable" followed by the variable’s name. A colon separates
this information, making it easy to extract from the output string.

We encapsulate our source analysis in a new SourceAnalysis class. Its public interface
consists of only two methods. The first method starts the analysis on one submission,
reads the compiler output, and caches the line numbers that contain unused variables.
The second method checks if the passed token belongs to a line detected in the previous
method and returns the result as a boolean. A new SourceAnalysis instance is created for
every submission the scanner scans. The scanner then issues the analysis. Whenever the
CPPScanner passes a token to the Scanner instance, the latter checks the SourceAnalysis
instance if the token should be ignored. If it should, the token is discarded and not added
to the token list.

plagiarism.cpp:122:21: warning: unused variable ’result’ [-Wunused-variable]
int result = 4;

plagiarism.cpp:123:21: warning: unused variable ’status’ [-Wunused-variable]
int status;

Listing 5.1: Example output warnings about unused variables. Generated by Clang [20] or
GCC [12] using the -Wall or -Wunused-variables option [8, 9].

This prototypical implementation works well for basic, single-line code insertions. How-
ever, certain edge cases can prevent the detection of unused variables and even reduce the
quality of plagiarism detection entirely. These issues are partly caused by our approach
of only modifying the token level and not the source code directly. Our token-level ap-
proach causes issues when multiple variables are declared in the same line, only some
of which are unused. JPlag produces one token for the type, regardless of the number of
variables declared. This means that the token belongs to both used and unused variables
simultaneously. Since we discard entire lines, the used variable is wrongly ignored. This
is not an issue when we assume that only self-contained lines are inserted. However, a
clever plagiarist knowing of this flaw, could introduce new variables into existing variable
declarations and essentially delete tokens. Deletion of tokens is equivalent to the insertion
of tokens, which means the core algorithm misses an otherwise detectable match.

Additionally, the JPlag tokenization step handles line numbers belonging to tokens dif-
ferently than the GCC compiler warnings. The tokenizer assigns the line numbers to the
location of the type identifier, while the GCC compiler warnings include the line number
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of the variable name. For code that is formatted like expected, these line numbers are
identical. The issue presents itself when the code is formatted as follows:

int // tokenizer saves this line number
unused = 0; // compiler warnings give this line number

The lines of the compiler warning and token differ. Therefore our source analysis allows
the token to be added to the token sequence - the code insertion attack is not prevented.
Working on copies of the source code and preprocessing them in the future could solve
both issues. The preprocessing step would include separating every declaration of multiple
variables into multiple declarations of single variables. Additionally, we could integrate a
code formatter so that the line numbers always match the compiler warnings.

5.1.1.2. Deleting unreachable code

In order to delete unreachable code, the scanner also utilizes an implementation of the
state machine described in Section 4.2. The entire state machine is encapsulated in the
new BasicTokenFilter class and is invisible to the caller. The class’s public interface is a
sole static applyTo function, which receives a generic list of CPPToken. The token filtering
occurs in-place on the referenced list because the Scanner works on a LinkedList, rather
than the usually recommended ArrayList. We justify this loss of cache efficiency because
the list is only used for inserting and deleting. After the token sequence is formed, it is
transferred to an ArrayList within the TokenList.

The state machine implementation uses an enum nested within the BasicTokenFilter
class. Enums are usually used to define variables with a fixed amount of possible values.
In Java, the enum values are class instances, which allows us to declare a method in the
base class and override it in each possible enum value. Conceptually, each state of the
enum corresponds to one state of the state machine. We define the state transitions by
defining the nextState(int tokenType) in the base enum and overriding it in each state.
The token type is encoded using the CPPTokenConstants interface, and the method returns
the new state corresponding to the token input. To define the accepting state, we declare
a method in the enum base class that returns false by default and overwrite it in the
accepting state’s subclass. This results in a very concise and readable implementation, as
the entire implementation basically only consists of the states and a if chain deciding
the new state. To further increase readability and maintainability in case of a change
in the token set, we group some explicit token types. Instead of handling the explicit
types, the nextState method can instead query the methods to determine if the current
token belongs to the corresponding group. Figure 5.1 shows an extract of an UML class
diagram representation of our state machine implementation. The additional states are
implemented like defined in Figure 4.3.

5.1.2. Core Algorithm Extension

Our implementation of the generic token filtering algorithm described in Section 4.3 is
also encapsulated in a class called GenericTokenFilter. The public interface only consists
of the constructor, the method that performs the filtering, and two getters for retrieving
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Scanner <<enumeration>>
AbstracFilterState

|- - -

+ shouldTokenBeDeleted() : boolean
BasicTokenFilter + nextState(int nextType) : TokenFilterState

- isBlockStartToken(int type) : boolean
- isdumpToken(int type) : boolean

/\

+ applyTo(List<CPPToken> tokenList)

DEFAULT

+ nextState(int nextType) : TokenFilterState

return switch(nextType) {
case(...) > ... ;

DEAD_BLOCK

+ shouldTokenBeDeleted() : boolean
+ nextState(int nextType) : TokenFilterState

Figure 5.1.: Incomplete UML representation of the token filter and the state machine
implementation. The subclasses are the enum values and correspond to one
state each. Most states are missing but are implemented similarly.

the result. The constructor expects the two TokenList objects and an object containing
options. The algorithm itself creates copies of the provided TokenList objects because the
deletions done are exclusive to one specific pair.

The encapsulated algorithm is called directly in the GreedyStringTiling, which is the
core algorithm of JPlag. There, it is checked if the additional filtering is enabled. If it is,
the GenericTokenFilter is instantiated, the TokenList objects are passed, the algorithm
is called, and the results are retrieved for further use in the core algorithm.

5.2. Framework for Automatically Evaluating JPlag

In addition to our prototypical defense mechanisms, we also implemented a program for
automatically evaluating JPlag. We will henceforth refer to this program as the Evalua-
tion Framework. Although it is not our main contribution, we believe it benefits future
research and implementation work based on JPlag. Therefore, we will briefly introduce
the evaluation framework’s basic concepts.

The Evaluation Framework is a Java program that allows us to run different versions of
JPlag with different configuration options on different labeled datasets. The results of
the individual JPlag runs are then written to CSV files for further analysis. It simulates
the manual use of the JPlag Java API, so the configuration possibilities are limited by the
JPlagOptions Java object.
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5.2.1. Configuration

To use the Evaluation Framework, the user has to provide JPlag JAR files and assignments
containing student submissions. Then the run configurations have to be written into a
configuration JSON file. A configuration is a set of JPlag options and is always connected
to one JAR file. An arbitrary number of JPlag versions and configurations for them can be
used to compare the impact of implementation changes or different JPlag settings.

The run configurations have to be set by providing the name of the JAR file and an
array of options overrides. One option override represents a method call on the JPlagOp-
tions object and therefore contains the name of an access method, the parameters data
type, and the value. The data type and value must match the parameter of the access
method. We currently support integers, floats, boolean, and enumerations. The enumer-
ation data type corresponds to the full classpath of the enumeration, and the possible
values are string representations of the enumeration values. For example, to enable par-
allel comparison we can set the access method to "setComparisonMode", the data type
to "de.jplag.strategy.ComparisonMode”, and the value to "PARALLEL". Although this
approach to configuration is unsafe, it gives us great flexibility and allows us to set newly
added JPlag options without extending the Evaluation Framework implementation.

The different datasets containing the student submissions must be labeled using a truth
file for each. In these, the user lists the pairs or tuples of submissions for each possible

pair type.

5.2.2. Running the Framework

When running the Evaluation Framework, first, the configuration is loaded. This means
parsing the configuration file and the dataset truth files. The truth files are cached in a
map that provides a quick lookup of the type of a submission pair.

To run a JPlag jar using a configuration, we have to pass the JAR path and configuration to a
JPlagWrapper class. This class encapsulates the entire API usage of JPlag so that no objects
from JPlag leave the wrapper. It handles the loading of the JAR file and uses reflection to
load all classes that would be required during the usage of JPlag via its Java API This also
includes possible enumeration types used for the option overrides. During initialization,
the wrapper also sets the desired values in the JPlagOptions using the accessors provided
in the option overrides. If the initialization is successful, JPlag can now be run by calling
the wrappers run() method, which takes the dataset as a parameter.

The results are contained in a class mirroring JPlags JPlagComparison class. The Evaluation
Framework handles the instantiation of the wrapper for each configuration and calls it
for every dataset. The resulting data is then cleaned up and written into CSV files. An
additional summary file provides a quick comparison between the different configurations.
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In order to evaluate the effectiveness of our defense mechanisms and their prototypical
implementation in JPlag, we created a dataset containing original plagiarized submissions.
We ran our modified version of JPlag using different parameters. Section 6.1 describes how
we conducted our validation. This includes creating the dataset and using our previously
described evaluation framework to get our data. Section 6.2 then showcases our findings,
using the defense mechanisms individually and in combination. In Section 6.3, we discuss
how our implementation affects the generation of new plagiarism. Lastly in Section 6.4
we assess and discuss threats to the validity of our evaluation.

6.1. Methodology

We evaluate our implementation using a Goal Question Metric (GQM) approach [27], which
we perform using the GQM plan depicted in Table 6.1. Mossad checks the similarity of
its current variant by calling JPlag; therefore, we have two main goals: Our first goal
is to improve the detection efficacy for already existing Mossad plagiarism. To obtain
the metrics for this goal, we run our improved JPlag version on the dataset described in
Section 6.1.1. This dataset contains original submissions and plagiarism Mossad created
without access to our defense mechanisms.

For the second part of our evaluation, we give Mossad access to our defense mechanisms
and try to create new plagiarism. Mossad only terminates when the similarity is below a
threshold, so achieving a high similarity is impossible. Therefore, our second goal is to
increase Mossad’s runtime and line insertions required to create a low similarity variant
when Mossad uses JPlag with all our mechanisms enabled.

6.1.1. Dataset

The creation of our dataset consists of two main parts: finding suitable collections of
student submissions as a basis and then creating plagiarism out of them. The basis for our
dataset must qualify some key requirements:

« Multiple different assignments with many submissions for each

« Each assignment should yield submissions of about 100 lines or longer in order to
reduce the likeliness and effect of random code similarity.

« Every submission must be written in C or C++

We use a dataset created by Ljubovic [18] for their paper "Plagiarism Detection in Computer
Programming Using Feature Extraction From Ultra-Fine-Grained Repositories [19]" as a
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basis. This dataset contains assignments from multiple years, including many anonymized
student submissions for each assignment. Additionally, the entire edit history of each
file is included to enable experiments about plagiarism detection with this information
available.

The three provided ground truth files list potential plagiarism due to failure of doing an oral
defense by the student in or for submission pairs yielding high similarity scores when using
plagiarism detection tools. Unfortunately, we found that the ground truth files are not
reliable for our purpose: Some submission pairs contained identical sections without being
listed in the truth file; some cases were even completely identical. Additionally, submissions
of students who failed to do an oral defense are listed as plagiarism without mentioning the
original. Therefore we cannot use this information to determine the success of plagiarism
detection for pairs of submissions. In order to still label the dataset, we manually inspected
large parts of the dataset and removed verbatim copies and pairs containing identical
code sections. As a result, the similarity of non-plagiarized submissions seems to be
lower than what can be usually expected from assignments this size. However, we are
confident that no actual common plagiarism pair is wrongly labeled as non-plagiarism.
The pairs we removed were similar enough that even if they are, in fact, not plagiarism, a
manual inspection would still be advised. After inspecting the size and number of available
submissions for each assignment, we chose four assignments.

To create the Mossad plagiarisms, we wrote a python script that can run multiple Mossad
processes in parallel. To retain validity, we designed this script not to alter the functionality
of Mossad itself. Each instance picks a random submission from one of the four assignments
and creates a Mossad plagiarism using a current version of JPlag. After Mossad successfully
creates a variant, our script saves it, cleans the instance, and randomly picks a new
submission. The entropy file is preserved, meaning Mossad has access to successful
mutations from multiple submissions for the same assignment. This follows the threat
model we defined in Section 3.3, which states that students have arbitrary access to their
peers’ solutions. At this stage, Mossad has no access to our JPlag version and its defense
mechanisms. We evaluate the effect of our prototype on new plagiarism generation in the
second part of our evaluation.

When inspecting Mossad’s plagiarisms, we found that many of them had long sections of
mutated lines without any original code. This is highly suspicious, so we believe students
would manually inspect their plagiarism and try to shorten it as much as possible without
affecting the similarity. Therefore, we limited the maximum length of these mutated blocks
to two lines for some of the Mossad plagiarisms, which we will call minimized. To ensure
this restriction, we manually deleted the lines between the section’s first and last line of the
section. In some cases, this reduced the total lines of code by up to 50% while only affecting
the similarity by a small amount. We believe students might be willing to take this tradeoff
in suspiciousness between manual and automatic detection methods. Nevertheless, we
will treat the original and minimized Mossad files separately in the following evaluation.

6.1.2. GQMPlan

We evaluate our first goal by running our JPlag version on our dataset with different sets
of defense mechanisms enabled. In our first question, 1.1, we test the similarities achieved
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Goal Question Metric
. 1.1 Is the detection efficacy 1.1.1 Similarity score of Mossad pla-
Improve detection . . o .
. increased when using ev- giarism pairs
1 efficacy using new . .
. ery mechanism simultane-
defense mechanism
ously?
1.2 How much do the single 1.2.1 Similarity score increase when
mechanisms contribute? enabling single mechanisms
13 Are the mechanisms 1.3.1 Runtime overhead of using ev-
" applicable to everyday ery mechanism
?
use! 1.3.2 Share of non-plagiarism pairs
that receive a high similarity
Impede the creation of 2.1 Is plagiarism creation 2.1.1 Increase in iterations required
new plagiarism using harder for plagiarism for finding a low similarity
plagiarism obfuscators obfuscators? variant
2.2 Is Mossad still applicable?  2.2.1 Time investment for creating a

low-similarity variant that re-
tains readability

Table 6.1.: GQM-Plan

by enabling all mechanisms simultaneously. This gives us a first idea of whether the
defense mechanisms we implemented succeeded in assigning Mossad plagiarisms a high
similarity score. In an ideal scenario, the similarity of the Mossad pairs should be 100%,
as this would mean all inserted tokens were deleted. To answer question 1.2, we must
determine the single mechanisms’ impact. We do this by activating only one mechanism
at a time and looking at the change in the similarities. This allows us to estimates the
impact of each defense mechanism. Additionaly, it can uncover potential faults in our
concepts or implementations if we find that single mechanisms have no effect at all or
are hindering the detection more than they help. Our final question for goal 1 is how the
mechanisms affect non-plagiarism pairs by measuring the share of non-plagiarisms that
wrongly receive a similarity. This ensures that we do not just shift the entire similarity
upward by a similar amount. Instead, only Mossad plagiarism should be significantly
affected.

Because students trying to create plagiarism can gain access to all our implementations,
creating new plagiarism must be significantly more difficult. Otherwise, Mossad can
add mutations until the desired similarity score is reached. Since Mossad uses a non-
deterministic approach, we have to measure the number of iterations and unsuccessful
mutations it takes before a plagiarism is created successfully. The average number of
iterations is our metric 2.1.1. To estimate the applicability, we also measure the time
Mossad took to create plagiarism as our metric 2.1.2. Additionally, we assess the quality of
the plagiarism by measuring the ratio of mutations to original lines.
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6.2. Effect on Plagiarism Detection

Our most important goal, 1.1, is to increase the efficacy of plagiarism detection. For this
reason, we have designed our three defense mechanisms to delete the largest possible
amount of mutation types. In the following sections, we analyze how our prototypical
implementation of these mechanisms in JPlag can improve plagiarism detection for Mossad
plagiarism and what configurations work best. To increase readability, we will sometimes
call the deletion of unused variables A, the deletion of tokens in unreachable sections B, and
the generic token filtering C. The combination of two or more mechanisms is represented
by the corresponding letters, separated by a plus, e.g., A+C means running JPlag with the
detection of unused variables and generic token filtering enabled.

We used JPlag on each dataset separately, but we found that all assignmets behaved
similarly. Therefore, we plot the pairs in the same diagram for each assignment to increase
readability.

6.2.1. Effect of Using All Mechanisms

The simplest configuration is enabling all mechanisms at the same time. Figure 6.1 depicts
the similarity scores of our three different pair types when running on the default version
of JPlag and then again with all our mechanisms enabled. Most non-plagiarism pairs
(66.4%) have a similarity of 0%, so we omit them from the plot. As stated above, only pairs
where one is the original and the other is its variant are labeled as Mossad pairs. We,
therefore, do not omit any 0% Mossad pairs because each pair labeled as Mossad is a case
of plagiarism.

100 T Submission Pair Type
No Plagiarism
Mossad
80 [ Mossad (Minimized)

s

> 60
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=
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= 40
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None A+B+C

20
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Figure 6.1.: Effect on similarity when using no mechanisms compared to using all mecha-
nisms. Non-plagiarism pairs with 0% similarity are omitted.

It quickly becomes apparent that both Mossad plagiarism types’ similarity scores have been
greatly increased. The median similarity of default and minimized Mossad plagiarism pairs
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6.2. Effect on Plagiarism Detection

has increased from 20.79% and 22.51% respectively to 88.68% and 92.12%, with individual
pairs now reaching up to 100%. The similarities’ deviation has increased overall, indicating
that not all types of code insertion are detected. Nevertheless, the similarity of Mossad
plagiarism was generally above 50%, except for a few outliers. We inspected the outliers
that can be seen and found that the original source files taken from the dataset [18]
described in Section 6.1.1 contained so many syntax errors that GCC was unable to detect
any unused variables. We think it is reasonable to assume that this poses no issue for
practical use, as plagiarising a broken submission is of no use to a plagiarist trying to pass
an assignment.

Because students want to be as unsuspicious as possible, we assume that a minimized
Mossad plagiarism is more likely to be submitted. The similarity increase when minimizing
is relatively low without using any mechanisms. When all mechanisms are enabled, the
minimum similarity for minimized Mossad plagiarism is about 10 percent of similarity
higher than for unaltered Mossad plagiarism. These results show that programming
instructors would likely find current Mossad plagiarism when the creation is performed
using a JPlag version without our mechanisms.

Ideally, our mechanisms should not affect the similarity of non-plagiarism pairs. We can
see that this is mostly the case, but there is a minor similarity increase if a pair already
had a higher similarity score without our mechanisms enabled. As a result, we can see an
overlap between non-plagiarism and unaltered Mossad plagiarism. Overall, we believe
this effect is negligible compared to the drastic increase in similarity for the Mossad pairs.

Submission Pair Type No Plagiarism Mossad [ Mossad (Minimized)

100

80

[o)
S

Similarity (%)

(1]

20

None Unused Variables (A) Unreachable Code (B) Generic Filtering (C)
Activated Mechanisms

Figure 6.2.: Effect of the single defense mechanisms on the similarity score for the different
types of pairs. Pairs with 0% similarity are omitted.

6.2.2. Impact of the Specific Mechanisms

As we have seen in the previous section, the combination of deleting unused variables,
deleting unreachable code, and our custom generic token filtering algorithm drastically
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increases the similarity of Mossad plagiarism pairs. This begs the question if all the
mechanisms evenly contributed to this result, if some are more effective than others, or if
they only work together. Looking at the dataset, we suspected that the deletion of unused
variables would have the biggest impact, as a large portion of the mutations is variable
declarations. This might be different for other plagiarism generators that choose their
code insertions differently. We also know that the generic token filtering algorithm only
works with a limited amount of inserted tokens and should therefore have little effect in
isolation.

Figure 6.2 mostly confirms our assumptions by showing the similarity assigned to pairs
of different plagiarism types when only one mechanism is enabled. Like above, non-
plagiarism pairs with 0% similarity are omitted. By far the most effective mechanism is the
deletion of unused variables. Compared to when all mechanisms are enabled, the median
scores for Mossad and minimized Mossad plagiarism lies only 6.73 and 2.13 percent of
similarity lower, respectively. Consequently, the deletion of unreachable code has almost
no impact, only raising the median by 1.36 and 1.53 percent of similarity. We can see that
the generic token filtering causes a moderate increase in plagiarism similarity, raising
the median from 20.79% and 22.51% to 35.92% and 39.5%. However, the similarity of
non-plagiarisms is more affected than by the other mechanisms, albeit by a small amount.
The spread of plagiarism similarities is fairly wide for unused variable deletion and generic
token filtering, with their minimum and maximum lying over 60% apart.

Submission Pair Type No Plagiarism Mossad [ Mossad (Minimized)
40
30

20

e o

Similarity Change (%, absolute)

|
(=)

A+B A+C A+B+C
Mechanisms in Addition to Unused Variables (A)

Figure 6.3.: Additional contribution of other mechanisms after deleting unused variables.

These results show that the deletion of unused variables is the major factor in detect-
ing Mossad plagiarism when all mechanisms are enabled. We will now examine each
mechanism’s contributions when they are used together. Figure 6.3 shows the change in
similarity when enabling unreachable code deletion and generic token filtering in addition
to unused variable deletion.

Deleting tokens in unreachable sections has almost no effect on plagiarism detection when
activated in addition to deleting unused variables. Because unused variables are likely
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Figure 6.4.: The similarity changes generic token filtering causes when used in addition
to deleting unused variables. Almost all similarity decreases for Mossad pairs
occur when the pair is already above 80% similarity. The dashed lines mark 0%
and 100% similarity after generic token filtering is used.

to be successful mutations, they are the most common type of code insertion Mossad
adds to the entropy file. As a result, a large number of line insertions in unreachable
sections are also unused variables and consequently covered by the deletion of unused
variables. This reduces the positive impact of unreachable code detection. However, there
is almost no negative effect either. In one case, this mechanism was crucial in detecting a
Mossad plagiarism by raising its pair’s similarity from 32.61% to 77.37%. The similarity
stayed at 32.61% for the other mechanisms, which proves that there are cases where this
mechanism is essential in detecting the plagiarism. During a manual inspection of the
plagiarism in question, we found that most mutations were chains of multiple break or
return statements, which only this mechanism can detect. We cannot answer whether
students would actually submit plagiarism containing multiple break or return statements
in a row because these can be instantly spotted during a manual inspection. Nevertheless,
this mechanism has no noticeable runtime overhead and minimal negative worst-case
effects.

Enabling generic token filtering in addition to deletion of unused variables shows much
higher increases in similarity for Mossad plagiarism while not affecting the vast majority
(77.83%) of non-plagiarism pairs. Figure 6.4 shows the change in similarity when enabling
generic token filtering depending on the initial similarity. Before using generic token
filtering, there is an overlap between plagiarism and non-plagiarism at 20% to 40%. We
can see that in this section, the similarity of Mossad plagiarisms is increased by a higher
amount than that of non-plagiarisms. As a result, the similarity overlap between non-
plagiarism and plagiarism is reduced. We suspect the validity of this finding depends on the
dataset and could be different for higher non-plagiarism baseline similarity. Therefore, the
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positive impact of generic token filtering should be reevaluated on more diverse datasets
in the future.

6.2.3. Generic Token Filtering Impact on Non-Plagiarisms

Our generic token filtering algorithm introduced in Section 4.3 searches for tokens that
can be deleted to create a larger matching section. This relies on the assumption that
accidental similarities are rare enough that actual code insertion removals outweigh the
wrongly deleted tokens. To evaluate the validity of this assumption, we first examine the
frequency of code deletions by our algorithm within pairs of non-plagiarized submissions.
Then we set this in relation to the impact it has on the similarity of the pairs.
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Figure 6.5.: Similarity change of non-plagiarisms depending on LOC. The points fall into
groups depending on the number of new matches.

Out of all the non-plagiarism submission pairs, the vast majority (91.1%) are unaffected
by the generic token filtering when any combination of mechanisms is enabled. Of the
remaining 8.9%, the mean absolute change was 4.16% with a 2.0% median. Nevertheless,
the maximum similarity changes were up to 37.36%, from a baseline value of 0%. A manual
inspection shows no signs of plagiarism, which would have implicated a wrongly labeled
pair. This shows that, although rare, some pairs can experience multiple token deletions
by the generic token filtering algorithm purely by chance. However, there was not one
case where JPlag assigned a non-plagiarism pair a similarity high enough that it could be
considered a false positive.

Figure 6.5 shows a plot of the similarity change in non-plagiarism pairs when using generic
token filtering depending on lines of code in the submission files. The x-axis represents a
pair’s average lines of code, while the y-axis shows the similarity increase. The two plots
allow the following conclusions:

The frequency of similarity increases can be separated into two groups, as more easily
visible in the violin plot. A submission pair falls within the group at around 2.5%, when no
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new matches are found due to the token filtering. This can happen when the surrounding
tokens are already part of two different matches. The change in total tokens then causes
the similarity change.

The assumption that similarity changes in this group are not the result of new matches is
further supported by Figure 6.4. Here we can see that pairs that had 0% similarity before
have no similarity increases below 5% because a change in total token number has no effect
when there are no matching tokens. Should the removal of the token create a new match
that was not previously part of another match, the similarity increases more drastically by
around 12% Notably, there is also a group forming, albeit much less dense on the negative
side. This is because our generic token filtering is designed only to remove a token if its
removal creates an identical sequence longer than the minimum token match. As a result,
even if the token removal breaks an existing match, a new one is generally found in its
stead. In some rare cases, however, both token sequences are already part of other matches.
As a result, removing a token from the first sequence breaks up its match but does not
form a new one because the second sequence is already matched to another subsequence.
The total number of matched tokens decreases and, consequently, the similarity.

When no new matches are created, distinct parallel lines can be seen in the scatter plot
around the x-axis. These lines mark the similarity change caused by removing one or two
tokens from the token sequence. Although these deletions do not create new matches,
they alter the total number of tokens and can increase or decrease the relative similarity
by fixed increments. Because the impact of a single token removal becomes smaller with
increasingly larger files, these lines converge towards the x-axis.

6.3. Effect on New Plagiarism Generation by Mossad

Mossad creates plagiarism by indeterministically inserting lines, checking for semantic
equivalence, and then checking the similarity score by calling the plagiarism detector
it tries to defeat. This means that unless every single type of code insertion can be
detected, Mossad can keep adding new lines until the similarity is low enough. That is
why examining how our mechanisms impede Mossad’s plagiarism creation process is
crucial. We measure the time it takes to create plagiarism and assess its quality.

To reduce external factors and increase comparability, we measure the number of iterations
in Mossad’s main loop in addition to the actual execution time. Mossad inserts one line
during each iteration and assesses whether it is successful. In simpler terms, the iterations
are the number of line insertions Mossad has to try before the plagiarism is finished.
Evaluating iterations instead of execution time eliminates the impact of external factors
like other processes and increases comparability between systems. Nevertheless, we will
assess the applicability based on the time it took to create a Mossad variant on our system.
To establish a baseline, we measured the iterations Mossad needs to create plagiarism with-
out calling JPlag with our defense mechanisms enabled. We then enabled our mechanisms
and re-ran Mossad. Figure 6.6 shows the results we measured, differentiating between
a successful run and terminations because of uncaught exceptions. With our defense
mechanisms enabled, Mossad generally takes an order of magnitude more iterations to
create plagiarism. The exact amount of additional iterations is mostly random because of
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the indeterministic nature of Mossad. However, the worst case took more than 10 times
more iterations than the maximum iterations in our baseline.
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Figure 6.6.: Iterations needed for successful plagiarism or until an unhandled exception
within Mossad occurs.

We examined the plagiarisms created and found that they are practically unusable without
major additional effort. The reason for this is the drastic size increase, ranging from 40% up
to 4000% in one case where Mossad kept adding lines into a block comment. Even without
these extreme cases, the median size increase is 322.5%. Additionally, we found that
Mossad frequently fails entirely to create a plagiarism and instead throws an unhandled
exception. This termination generally takes a long time to occur, and the user has to restart
Mossad. Figure 6.7 shows the runtimes we measured on an AMD Ryzen 7 3700X CPU.
We generally had to run Mossad multiple times before a plagiarism was created. Even if
Mossad terminates successfully, the plagiarizer must invest much time dissecting which
code insertions are required and which they can delete. Overall we suspect the additional
effort and time investment for plagiarism creation is higher than solving the assignment.
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Figure 6.7.: Total execution time needed for a successful plagiarism or until an unhandled
exception within Mossad occurs. Measured on a Ryzen 7 3700X Processor.
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6.4. Threats to Validity

Our evaluation is subjected to limitations that might threaten its validity. Our dataset is
fairly limited because, to our knowledge, there are no well labeled C++ datasets available
in literature. As we mentioned in Section 6.1.1, the dataset by Ljubovic and Pajic [19]
did not provide a reliable ground truth. As a result, we had to create our own ground
truth. Therefore, we may have missed some cases of plagiarism, which we labeled as no
plagiarism. Mislabeled pairs only have a small effect on our evaluation, only increasing the
higher end of non-plagiarism similarities. The Mossad pairs, which are the most important
part of our evaluation, are labeled correctly, so the central argument of our evaluation
remains valid.

Another possible threat to validity concerning the dataset is the risk of possible overfitting.
We only take our dataset from one source [18] due to a lack of suitable datasets. This poses
the risk that our mechanisms perform worse on other datasets, decreasing the value of our
evaluation. We reduced this risk by designing our mechanisms mostly independently from
our dataset. Additionally, we used four different assignments, containing a total of 709
original submissions and 148 Mossad plagiarisms, resulting in a total of 80.421 submission
pairs. This high number of submissions taken from different courses and years should
counteract possible bias within the dataset.

During the creation of the Mossad plagiarisms, we relied on the default entropy file and the
additions added by Mossad from other files. This poses the threat that other entropy files
could circumvent our defense mechanisms. In Section 3.3, we assume that students who
lack the skill or time to solve the assignments are also unable to create a better entropy
file. This leaves the option of using an entropy file created by a third person, which could
be published on the internet. Mossad is not publicly available, so to our knowledge, no file
of this type exists at the moment. In its current form, Mossad has severe limitations for
multiline mutations and does not support semantic context between mutations. This is
why we assess the risk of powerful universal entropy files in the future as low.

Like all prototypical implementations, it is possible that our mechanisms contain unhandled
edge cases or flaws that plagiarizers could exploit. Should plagiarizers find a type of code
insertion our mechanisms cannot find, they can add them to the entropy file. Therefore it
is important to recognize that our implementation is mainly for theoretical evaluation of
the applicability of our mechanisms. In future implementations, new mechanisms can be
included to find more types of code insertions and edge cases can be fixed.
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7. Related Work

While our work aims to make existing software plagiarism detectors more robust to
obfuscation attacks, others have done research on entirely new types of detectors. These
are generally prototypes built from the ground up and impractical to transfer to existing
plagiarism detectors.

GPLAG: Detection of Software Plagiarism by Program Dependence Graph Analysis [17]
introduces GPlag, a software plagiarism detector based on program dependence graphs
(PDGs). A PDG is a graph representation of a program, depicting the control and data
dependencies between basic statements [10]. The graphs are then checked for identical
subgraphs, and a similarity score is calculated. The usage of a PDG can be seen as a
generalization of the deletion of unreachable code and unused variables. Because these
code insertions do not change the semantics of the program, they have no dependencies
on the rest of the program. Therefore, GPlag is resilient to these code insertion attacks by
default.

Dead and unreachable code detection is mainly relevant for code compaction in compilers.
Therefore, most work in this regard is done in the context of compilers [6]. However, any
code insertion that does not affect the program’s execution is, by definition, dead. Wang
et al. [30] provide a method for detecting dead code using program slicing. The dead code
includes unused variables and the unreachable code we considered in this thesis, so their
method is a valuable starting point for implementing a more sophisticated source analysis.
Mossad: Defeating Software Plagiarism Detection [7] is the work that challenges the working
assumption that plagiarism creation can be automated and mainly motivated this thesis.
Besides introducing Mossad as a plagiarism creation framework, the paper also analyzes
the weakness of token-based plagiarism detectors, especially MOSS [1]. Furthermore, the
authors suggest the comparison of assembly in addition to source files, which motivated our
prototypical implementation. This is related to the work of Karnalim [15], who researched
a bytecode-based approach to detecting plagiarism in Java files.

In addition to JPlag, many other similar token-based plagiarism detectors have been created
using different tokenization and comparison approaches. We already mentioned MOSS
[1] in Chapter 2. Nichols et al. [21] introduced a new token-based plagiarism detector
utilizing parse trees for tokenization and the Smith-Waterman algorithm [26]. This algo-
rithm specifically considers insertions and deletions during comparison and is, therefore,
interesting for raising resilience against code insertions. Although Mossad inserts enough
lines to defeat this comparison algorithm still, the Smith-Waterman algorithm could be an
alternative to our generic token filtering.

41






8. Future Work

While our defense mechanisms can increase the difficulty of single-line code insertions,
more sophisticated attempts at creating plagiarism using multiple semantically dependant
lines will not be detected. Since a plagiarism must not alter the execution result of its
original, any code inserted to create the plagiarism is by definition dead. This opens
up opportunities for future improvements, especially in dead code detection. Although
highly complex, implementing a sophisticated dead code detection and deletion should
counteract most types of code insertions. Alternatively, concepts like GPlags [17] program
dependence graph could be adapted for use with JPlag. As explained in Chapter 7, PDGs
are invariant under the code insertions considered in this thesis.

Another major opportunity for future improvements is the token types. A prominent
example is the scope, created whenever the namespace is explicitly stated in C++ code
using the :: keyword. We found that manually adding or removing explicit namespaces
wherever possibly causes a significant amount of tokens inserted or deleted. The goal of
tokenization is to be as invariant as possible under plagiarism creation. This is sufficient
for comment modifications, whitespace insertions or removal, or modifier renaming. The
previous example illustrates the need for further research on the best token choice.

Our evaluation was performed on plagiarism containing only plagiarism created using
Mossad. However, this leaves the possibility that simple manual modifications to the
plagiarism defeat our defense mechanisms. Ideally, there should be a comprehensive
labeled dataset containing a variety of assignments containing original submissions and
plagiarism created using various methods. To our knowledge, there currently is a lack
of such a suitable dataset in literature. Creating it as a benchmark would be a helpful
contribution to future research and enable better comparability between different research
papers.

During our experiments, we found that Mossad utilizes a reasonably simple approach to
plagiarism creation. For example, our observations of continuous mutations within block
comments could be easily mitigated. Additionally, logically interconnected mutations
could defeat a whole class of defense mechanisms by increasing the difficulty of dead
code detection. Further improving plagiarism obfuscators, although potentially dangerous,
would also help raise the resilience of plagiarism detectors.
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9. Conclusion

To detect plagiarism among students, many programming instructors use token-based
plagiarism detectors. To improve their resilience against code-insertion obfuscation attacks,
we introduced three mechanisms: The first mechanism uses the source code to find unused
variables and removes them from the token sequence. Our second mechanism looks for
tokens in the language-specific token sequence that belong to unreachable code. The
detection of unreachable code is limited to code after guaranteed jumps, like return or
continue. Both of these mechanisms extend the tokenization phase. Our third mechanism
acts as a pre-filtering step for the comparison algorithm. The filtering compares two
submission’s token sequences and tries to find subsequences that can be made equal by
deleting a small number of sequential tokens. We call this pre-filtering algorithm generic
token filtering. All these mechanisms could be added to token-based plagiarism detectors
with only minor adjustments.

To evaluate the validity of our mechanisms, we first implemented them into JPlag, a state-
of-the-art token-based plagiarism detector. We then extended a dataset from literature by
adding automatically generated plagiarism using Mossad, a software plagiarism obfuscator.
Mossad creates plagiarism by iteratively inserting single lines of code into an original
submission of another student. To obtain the data for our evaluation, we implemented
a framework for automatically running different versions of JPlag using different user
settings on different datasets. Utilizing this framework, we ran JPlag on our dataset with
different combinations of mechanisms activated.

Our results show a significant increase in detected code similarity when all mechanisms are
activated. As a result, Mossad takes significantly more time to create plagiarism, and the
readability of the resulting plagiarism decreases. Deleting unused variables has the most
significant impact on plagiarism similarity increase in our dataset. The unreachable code
detection is negligible for most plagiarism pairs but can be crucial in detecting plagiarism in
certain cases. Our generic token filtering raises the similarity of non-plagiarism pairs more
than we expected, but our results indicate that the increase is even higher for plagiarism
pairs. As a result, the generic token filtering was able to separate plagiarism from non-
plagiarism when there previously was an overlap. To further confirm our findings, we
should evaluate this with other datasets.
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A. Appendix

Project Type Count LOC Avg. LOC Median Similarity Avg.
Original 64 100.45 85 0.29%
A MOSSAD (automatic) 5 259.6 184 23.27%
MOSSAD (minimized) 4 145.75 123 36.38%
Original 189 140.35 135 2.79%
B MOSSAD (automatic) 19 196.16 212 19.56%
MOSSAD (minimized) 18 195.89 173.5 21.45%
Original 162 140.22 136 2.59%
C MOSSAD (automatic) 18 209.06 194 16.85%
MOSSAD (minimized) 15 195.33 187 18.16%
Original 294 137.02 134.5 2.44%
D MOSSAD (automatic) 35 177.46 173 17.61%
MOSSAD (minimized) 34 190.44 183 20.78%

Table A.1.: Dataset
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