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Abstract Anomaly detection with machine learning in industrial
inspection systems for manufactured products relies on labelled
data. This rises the question how the labelling by humans should
be conducted. We consider the case where we want to optimise
the cost of the combined inspection process done by humans and
an algorithm. This also influences the combined performance of
the trained model as well as the knowledge of the performance
of this model. We focus on so called one-class classification prob-
lem models which produce a continuous outlier score. We estab-
lish some cost model for human and machine combined inspec-
tion of samples. We then discuss in this cost model how to select
two optimal boundaries of the outlier score where in between
these two boundaries human inspection takes place. We also
frame this established knowledge into an applicable algorithm.

Keywords Mathematical methods and models, artificial intelli-
gence and machine learning, quality control

1 Introduction

The detection of non-common patterns in a batch of samples is a strong
point of human visual cognition. Still there are many known limita-
tions to human visual inspection as well as cost issues in real world pro-
duction systems. The training of machine learning models for anomaly
detection of industrial inspection problems is often done as a one-class
classification problem where only good samples are presented to the
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algorithm. The background for this is that it is in general easy to ac-
quire good samples but difficult and expensive to find anomalous sam-
ples. A dataset for benchmarking this type of algorithm is the MVTec-
dataset [1] [2]. The best performing model3 on this dataset is “Patch-
core” [3]. For a given picture sample a “Patchcore”-model after training
produces an outlier score together with a heat map on the likelihood of
being an anomalous area. This is done by performing outlier-detection
on the deep-features of a pretrained neural network of the images. The
cutoff values for an anomaly in the outlier score of “Patchcore” are op-
timised in the paper by finding the cutoff-value with the highest F1-
score. This already assumes that there are known outliers which are
potentially very costly to acquire. Although we think of models de-
signed for the MVTec dataset like “Patchcore” as the main application,
our method of finding two boundaries for the outlier score, where in-
between human inspection will take place, will work for any model of
an one-class classification problem [4] with a continuous score.

More precisely, in this paper we formulate the problem of optimal
usage of human inspection after acquiring of initial data for training.
For this we assume that there are certain costs for inspection and costs
for falsely classified samples. We are not are aware that such a human-
in-the-loop machine learning consideration exists in the literature, al-
though more generic considerations about iterative machine teaching
and active learning can be found in [5]. A similar process by giving
the human some sort of optimal presentation of data for labelling was
done in [6]. However, this method is not applicable for the one-class
outlier classification problems on images we consider here. In [7] it is
shown, that for one-class classification models one can train an addi-
tional model on the bad samples and use a combined score on the good
and bad sample models to find the most promising new samples for la-
belling. The authors show that using one of their active learning meth-
ods one can achieve faster convergence and better overall performance
of the model. We refer to Munro’s book [8] for a general overview of
human-in-the-loop machine learning.

Another important concept which we will discuss and use is that
of probabilistic classifiers. Probabilistic classifiers are classifiers which
output a probability distribution on the target classes instead of just a

3 https://paperswithcode.com/sota/anomaly-detection-on-mvtec-ad
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score. Model calibration is a technique which achieves that a classifier
will have a probabilistic output [9] [10]. A calibrated one-class classifier
will give out a probability p which will represent the probability of
being in the one class. In safety-critical applications it is important
to have an idea of uncertainty of the model. Hence a probabilistic
output is of great help with regard to such problems. Even in situations
which are just cost-critical we will show that we can exploit having an
uncertainty estimate of the classifier for a given sample to make better
decisions.

2 Model

In this section we will describe the necessary pre-conditions and cost
assumptions. Further we describe how, after initial training of our
one-class classifier, we can establish our first optimal boundaries. We
do describe multiple alternatives here. Then we pass on to acquiring
more knowledge about the outliers we will encounter and their outlier
scores. This will then be used to establish optimal decisions for the
cutoff parameters of human inspection in the sense of our pre-made
cost assumptions.

2.1 Pre-conditions

First we introduce a few more preliminary and formal assumptions
and notations. We assume that there exists a set of images or more
general data I which each have a hidden label {0, 1} where images
with label 0 are good samples and images with label 1 are anomalous
samples. We will observe these samples in some process such as an
industrial inspection task one after another. For our cost considerations
we assume that the process of labelling a sample by a human has a
cost cl associated with it. Further we assume that human labelling
perfectly assigns the correct label to the data. With N initially labelled
data points we train and test a model M which will then produce an
outlier-score M(i) ∈ R for every (new) image i we observe. We set a
lower and upper decision boundary for manual inspection bl and bu
such that any image i with outlier score M(i), where bl < M(i) < bu
holds, will be inspected by a human.
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2.2 A priori cost and anomalous data

For our cost considerations we further assume that there is a known
(possibly non-linear4) cost-function C f such that the absolute cost of
missed outliers can be calculated as C f (FOR) · K where FOR is the
false omission rate, i.e. the percentage of anomalies in the accepted
samples, and K the absolute number of accepted samples. The cost of
false positive samples are associated with a cost per sample of cr. This
could be for example lost revenue and disposal costs of an unnecessar-
ily disposed sample of good state.

2.3 Initial cut-off boundaries

We assume now that the initial sampling and labelling of data D and
the training of a model M is conducted. We update our initial belief
po of the outlier percentage by taking the percentage of outliers in the
sampled D into account. We are now interested in finding optimal
cutoff parameters bl , bu in this stage. We discuss multiple alternatives
now.

A priori anomaly distribution

In the first case we assume that the distribution of the outlier score of
samples with label 0 and also of the samples with label 1 is both Gaus-
sian5. For the good samples we can directly estimate this distribution.
We get some distribution gg with mean µg and variance σg. For the
bad samples we also get some Gaussian distribution gb. In the case
where there are no bad samples available, we take some initial belief
about the distribution, which we could take from former observations
such as the MVTec dataset or a similar product line (see Figure 1), as
our distribution. We can find the optimal parameters bl , bu in terms of
cost. In order to find these parameters one would minimise Equation 1
of Section 2.4.

4 One reason for non-linearity could be reputation costs, i.e., due to network effects
reputation falls non-linearly with increasing fault-rate.

5 A non-Gaussian distribution could also easily be considered here.
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(a) Hazelnut

(b) Bottle

(c) Leather

Figure 1: These are the Gaussian distributions of anomaly scores for different items from
the MVTec Dataset. Blue represents the good sample distribution and red
represents the bad sample distribution. The model where the anomaly score
stems from was Patchcore [3] and it was trained with training sample split of
the MVTec dataset. Then the anomaly score output of the trained model on
the good and bad samples of the test dataset split was used to find the shown
Gaussian distributions. On these data-sets the established model has an AUC-
score of 0.9996 for Hazelnut, 1.0 for Bottle and 1.0 for Leather on the test dataset
samples.
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Optimal cut-off sigma

Another approach would be to omit to define an a priori distribution of
gb and instead take a cutoff parameter x such that any sample with out-
lier score higher than µg + x · σg is considered anomalous. The choice
of the parameter x can be done as follows. We assume that we cannot
inspect every piece which we observe but only some percentage pi of
it. Hence we have to find x in such a way that the expected amount
of samples classified as anomalous is at most the amount that can be
handled. Hence we have to pick x such that

pi ≥ (1− po)
∫ ∞

µg+x · σg
gg + po

holds. Note that we omitted the expected false negative classified sam-
ples in our considerations, but we assume that this amount is negligibly
small. In case there is no sample to classify at the moment we might
pick a random sample. In case we acquired enough bad samples we
can infer the distribution gb or update our initial belief about it. More
details on the belief update of a Gaussian distribution can be found
in [11].

Calibrated output

In some cases the model comes with a calibrated probabilistic output.
This roughly means that the output value of the model M(∗) is a prob-
ability of being an outlier, e.g. we expect to find q ∗ 100-many outliers of
100-samples i′ with score M(i′) = q. With such a calibrated model we
can directly use the model output as our probability. We will not fur-
ther assume that our model is calibrated although the following should
be straightforward to adapt for directly using this output instead of
learning some probability as in the previous paragraph.

Now we have found a priori parameters bl , bu or just bl(= µg + x · σg).
With these we can set up our initial human in the loop process. After
some time we will enrich our dataset of labelled pieces and therefore
can update our believe about the Gaussian curves gg, gb as described
in [11] or interfere the distributions gg, gb directly from all the gathered
data. There is some caveat with the selection of the samples: Because
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of our parameters the selection of the samples is biased. This either
needs to be corrected through enough random samples or giving the
unlabelled data some pseudo label with continuous value greater 0 and
smaller than 1. Additionally we could use the gathered data to further
improve the model M or respectively re-train a new M with the new
data and old data depending on the algorithm in use. In any case we
now fix some model M, some p0 and the Gaussian distributions gg, gb
associated with it as well as the gathered data. In case we observed
and classified a new sample we could continue to do a belief update of
our estimated values po, gg and gb and retrain our model M in order to
keep improving it. But we omit such considerations in the rest of the
paper.

2.4 Cost-calculation

We calculate the cost associated for some fixed bl and bu for the
next samples. We expect to see po-percent outliers which we have
updated from the observations D. Additionally we can calculate
the expected percentage that the next sample will be true positive:
TP(bl) = po

∫ ∞
bl

gb, true negative: TN(bu) = (1− po)
∫ bu
−∞ gg, false neg-

ative: FN(bl) = po
∫ bl
−∞ gb and false positive: FP(bu) = (1− po)

∫ ∞
bu

gg.
From this we can calculate the false omission rate FOR = FN

FN+TN . Now
for the next sample have the cost function C(bl , bu) defined as follows:

C f (FOR(bl)) · [TN(bu) + FN(bl)] + cr · FP(bu)+

cl · (1− po)
∫ bu

bl

gg + cl · po

∫ bu

bl

gb.
(1)

This function is our minimisation target for which we choose bl and bu
accordingly:

min
bl ,bu

C(bl , bu, gb, gg, p0)

s.t. bl ≤ bu

bl , bu ∈ R

(2)

where R is the set of the extended real numbers which additionally
contains plus and minus infinity, i.e. R∪ {−∞,+∞}.
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In case of a very low outlier rate po we can simplify the cost by
setting bu = ∞ and the optimisation problem becomes a single variable
problem. Often it will be the case that we have a fixed percentage
of images, say p f , which we can inspect due to such things as fixed
amount of available human labour. In this case the lower part of the
cost function 1 will be replaced by the constraint

p f = (1− po)
∫ bu

bl

gg + po

∫ bu

bl

gb.

If we additionally set bu = ∞ we can already find the optimal bl by just
using this constraint. But these considerations are still useful as we can
now estimate the cost of our system and further estimate whether it is
useful to employ or dismiss a human at a certain cost or estimate the
cost saving for a higher or lower rate of inspection of samples.

2.5 Non independence of outlier observations

In the case where we believe there is a non-independence of the series
of observed data6 we could increase the believed percentage of outliers
po for the next few observed samples after observing an outlier. This
ensures that the costs stay optimal for the next observed samples with
higher anomaly probability. Note that in more complicated production
environments we may observe pieces from multiple different machines.
If possible one should keep track of the machines a piece went through
to get more individual assessment of the anomalous probabilities.

3 Algorithm

In this section we combine the observations established in the last sec-
tion into an combined algorithm (see Algorithm 1). As an input to
our algorithm there is a one-class classification model M that needs N-
many samples for initial training and testing, and there is also a belief
about the percentage of outliers po in the samples to be observed. Ad-
ditionally we have the cost function C f and a real value cr representing
the cost of a false positive sample. Moreover we fix an amount of out-
liers we want to observe L. The algorithm starts by letting a human

6 A broken machine could for example produce a sudden stream of defect parts.
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label samples till we receive a set D containing N-many labelled sam-
ples with label 0. We use this dataset D to train some model MD which
then is used to produce some outlier scores for the test data split of
D. This is then used to find more anamalous samples in order to form
a probabilistic model by inferring a Guassian curve of the good and
a Gaussian curve of the bad samples. With this we are finally able to
find the cost optimal parameters bl and bu which mark the outlier score
interval where human inspection takes place.

Algorithm 1 Find optimal interval for human inspection
1: initialization: po, C f , cr, cl , N, L
2: n← 0
3: for n < N do
4: wait for next sample s
5: get label l(s) (by human)
6: n← n + 1− l(s)
7: po ← belief update through observed l(s)
8: end for
9: return training dataset D , p0

10: MD ←train model with D
11: b′l ← (see Section 2.3 for possible computations)
12: k← 0
13: for k < L do
14: get next sample s
15: if bl < MD(s) then
16: get label l(s) (by human)
17: end if
18: k← k + l(s)
19: po ← belief update through observed l(s)
20: end for
21: return updated dataset D, p0
22: gg, gb ← interfere Gaussian from data D
23: solve minbl ,bu C(bl , bu, gb, gg, p0)
24: return Model MD and inspection interval values bl , bu
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4 Discussion and future work

We establish theory for the cost-optimal selection of samples of one-
class classifications models. For this we established a cost-model and
showed how to infer probabilistic knowledge of the samples online and
offline in order to establish a cost-optimal decision for a human inspec-
tion boundary in the outlier score. Moreover, we have merged this into
an algorithm which can be applied in production. For now we have not
considered the case of retraining the model and we can assume that this
will be done occasionally till the economic evaluation stabilises or the
performance is satisfactory. Also the problem of a timely dependence
of the occurrence of outliers which could stem from faulty machines
was discussed. At worst there could be no outlier samples or only
a very biased selection of them. A detailed analysis of the practical
relevance of this problem could be an interesting topic for future inves-
tigation. There could also be potential for future work especially in the
case where the one-class problem is a moving target, i.e. the golden
sample changes over time. The case for selecting valuable examples
for improving the model performance also seems an interesting area
not yet considered and will probably require an extra model which is
also trained with the outliers. Another not yet used feature is utilising
the presentation of anomalous areas on the image for better outlier vi-
sualisation for the user decision. There, another optimisation problem
arises which is the optimisation of the cutoff parameter for the selec-
tion of the anomalous area. A more general question is the question of
a good visualisation to improve human performance.
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