
AIP/123-QED

The stressful way of droplets along single fibre strands – A computational analysis

Francisco Bodziony,1 Martin Wörner,2 and Holger Marschall1

1)Computational Multiphase Flow Group, Mathematical Modeling and Analysis,

Department of Mathematics, Technical University Darmstadt, Darmstadt, Hessen, 64289,

Germany

2)Institute of Catalysis Research and Technology (IKFT), Karlsruhe

Institute of Technology (KIT), Karlsruhe, Baden-Württemberg, 76131,

Germany

(*Electronic mail: marschall@mma.tu-darmstadt.de)

(Dated: 9 December 2022)

Droplets wetting and moving on fibres are omnipresent in both nature and industry. How-

ever, little is known on the local stresses the fibre substrates experiences and, in turn, the

local forces acting on those droplets while moving on vertical fibre strands. This work

is concerned with disclosing the influence of droplet volume, viscosity and chemical sub-

strate heterogeneity on droplet motion. For this purpose, we pursue a computational sim-

ulation campaign by means of direct numerical simulations resolving all relevant spatial

and temporal scales. On the basis of local simulation data, we evaluate and analyse effec-

tive viscous dissipation rates as well as viscous and capillary forces. We also assess the

validity of an assumption which is frequently used in correlations for droplets moving on

single fibre strands – neglecting the capillary force. Our computational analysis allows to

falsify/verify this assumption for different scenarios and reveals that such correlations have

to be applied with care, particularly when it comes to chemical heterogeneity of the fibre

substrates.
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I. Introduction

Droplets wetting and moving on fibres are omnipresent in both nature and industry – from spider

web arrangement to engineering applications in the textile1,2, filters3,4 and the paper industry.

Plateau5 has been the first to study droplets spreading on fibres. He has observed that only due

to surface tension, a liquid covering a fibre would turn into a string of beads, taking the shape

of unduloids. Following up on these studies, many physicists have started investigating the flow

of liquid films on threads, notably Lord Rayleigh6, who has studied liquid film instabilities for

falling cylindrical jets which has been later expanded upon by Yarin et al.7 and conversely studied

by Kliakhandler8, Craster9, Duprat10. The analytical solution to the unduloidal shape studied by

Plateau has been later derived by Carroll11–13 who has analysed droplets which are molded by

capillary forces. This analytical solution has been validated in the same paper for various systems

and has been shown to be accurate for droplets that are not influenced by gravitational forces, are

axisymmetrical and present a so-called "barrel shape", as opposed to a "clam-shell shape".

The motion of single droplets on fibres has also been extensively studied, where the droplet is set in

motion due to gravitational effects14,15, asymmetric slug in a tube16, temperature gradients17 and

also due to radius gradients18. However, to the best of the authors’ knowledge, no studies exist

which investigate the transient droplet motion on fibres by means of Direct Numerical Simulations

(DNS), i.e. resolving all relevant spatio-temporal scales. Thus far, numerical studies have been

concerned with the equilibrium shape of droplet at fibres only. Venkateshan et al.19 have studied

the 3D shape of water droplets with different volumes on various fibrous structures, using the finite

element code Surface Evolver. Also using the same approach, Aziz et al.20–22 have investigated

wetting of a liquid droplet on a fibre and fibrous coatings. In particular, the authors have studied

the shape of a droplet deposited on a single fibre, the effect of the capillary force exerted on a

fibre by a droplet and the volume residue after the droplet detachment. Modern manufacturing

techniques allow now to produce fibers with controlled heterogeneous wettability23 which are of

interest for various applications including oil-water separation24 and catalysis25. The motion of a

droplet on a fiber with controlled heterogeneous wettability due to a chemically inhomogeneous

surface has not been studied numerically at all so far.

This contribution is concerned with a detailed numerical investigation of the transient spreading

and motion of three-dimensional droplets on single fibres using Direct Numerical Simulations.
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We aim to analyse the contribution of the local forces acting on a sliding droplet on a chemically

homogeneous as well as heterogeneous (patterned) fibre strand. For this purpose, we deploy a

phase-field method which has been shown to be particularly suited for accurately describing tran-

sient wetting processes with contact line dynamics26–28, particularly since the underlying diffuse

interface model inherently allows for a moving three-phase contact line in combination with the

no-slip condition at solid walls29–31.

Our diffuse interface phase-field solver is used – phaseFieldFoam, implemented in OpenFOAM

(FOAM-extend 4.0 and 4.1). The solver phaseFieldFoam has been extensively validated for several

cases of static and dynamic wetting, on both simple and complex substrates, such as chemically

patterned surfaces32–35. The objective of this work is two-fold, viz.

• to detail on crucial methodological aspects to devise a high-fidelity simulation of wetting

processes using the phase-field approach and finite-volume discretisation with particular

focus on non-planar substrates such as fibres,

• to provide local insights into the hydrodynamics of droplets spreading and moving on single

fibres, in particular on the influence of wettability of chemically homogeneous substrates as

well as of patterns of chemically heterogeneous substrates on local stresses and forces.

II. Mathematical Model

A. Cahn-Hilliard Navier-Stokes Equations

We assume two immiscible Newtonian fluid phases under isochoric and isothermal conditions.

Then, the coupled Cahn-Hilliard Navier-Stokes equations read in semi-closed formulation (see

[36]),

∂tC+∇ · (Cu) =−∇ ·J , (1a)

∇ ·u= 0, (1b)

∂t (ρu)+∇ · (ρuu) =−∇ p̃+∇ ·τ −∇ · (uJ)−Φ ∇C+fb, (1c)

where C denotes the phase-field order parameter, p̃ is a modified pressure, since parts of the known

Korteweg tensor term accounting for interfacial capillarity have been absorbed into the pressure

gradient term. Assuming a liquid of Newtonian fluid rheology, τ = 2µ devD, where D is the
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rate-of-deformation (rate-of-strain) tensor, D= 1
2
(∇u+(∇u)T) and devD denotes the deviatoric,

trace-free part (tr(devD) = 0). Moreover, ρ and µ are the volumetric average density and dynamic

viscosity of the fluids, given from the phasic densities and viscosities as ρ = 1+C
2

ρ1 +
1−C

2
ρ2 and

µ = 1+C
2

µ1 +
1−C

2
µ2, and fb = ρg is the body force due to gravity. Note that herein we are using

the contrast of volumetric phase fractions as order parameter C that is C ∈ [−1,1], opposed to

concentrations in some other treatises.

With this, the set of governing equations (1) is closed – apart from J which denotes the phase-field

flux. Following Landau & Lifshitz37, it is governed by generalizing Fick’s law as J = −M ∇Φ ,

where Φ is the chemical potential and M the mobility. In other words, under the above assump-

tions, the dynamics of the phase-field system is fundamentally driven by the gradient in the local

chemical potential Φ . Note that the term ∇ ·(uJ) is required for thermodynamic consistency29,38.

Within the diffuse-interface model framework, following Cahn and Hilliard39, the local chemical

potential arises from the variational derivative of the total free energy F (Helmholtz free energy),

which is considered as a functional of the order parameter C, viz.

Φ =
δFm(C,∇C)

δC
, (2)

where Fm denotes the bulk (mixing) contribution to the total free energy of the system,

F = Fm +Fw =
∫

Ω
fm(C,∇C) dx+

∫

∂Ω
fw(C) ds . (3)

Herein, Ω is the fluid domain and ∂Ω its boundary, a solid surface not permeable to fluids. The

local mixing energy and the local wall energy densities are denoted fm and fw, respectively. The

mixing energy density (Helmholtz free energy density)39 can be written as

fm =
1

2
λ |∇C|2 + λ

ε2
Ψ(C). (4)

The first term on the r.h.s. of (4) is the gradient energy, which represents the interfacial energy

density describing non-local interactions between the two components promoting complete mixing

of the fluids, while the second term is the so-called bulk energy density, which models the counter

tendency to separate28.
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B. Wetting Condition

The wall free energy density in (3) can be written as

fw = σSL +(σSG −σSL)Ψw(C), (5)

where Ψw(C) obeys the bulk limits Ψw(C =−1) = 0 and Ψw(C = 1) = 1, respectively.

A variational procedure, i.e. variation in Fw and intergration by parts, reveals that

λ∂nC+ f ′w(C) = 0, (6)

where λ is the mixing energy coefficient and f ′w(C) = (σSG −σSL)Ψ
′

w(C) denotes the derivative

of the wall free energy density with respect to the order parameter. Effectively (5) postulates that

the wall free energy density is a function only of the fluid composition next to the wall28. Eq. (6)

is commonly referred to as wetting condition. It describes the diffusive relaxation process of the

dynamic contact angle locally constraining towards the equilibrium angle to leading order28,30.

Now, choosing a particular double-well potential function Ψ(C) allows closure. Using the phe-

nomenological double-well function of polynomial form according Ginzburg and Landau, Ψ(C) =

1
4
(C2 − 1)2, the equilibrium profile of the order parameter can be derived by minimisation of the

free energy: requiring Φ := δF
δC

= λ
ε2Ψ ′(C)−λ∆C

!
= 0, where Φ denotes the chemical potential,

and assuming a planar interface, leads to

C(n) = tanh

(

n√
2ε

)

, (7)

where n denotes the interfacial normal vector and ε is a measure of the width of the diffuse in-

terface, commonly referred to as interfacial capillary width. Within 3/
√

2ε the order parameter C

varies from about −0.9 to 0.9. Under these assumptions, one can also show that the mixing energy

coefficient λ within the diffuse interface context can be related to the surface tension coefficient

employed in sharp interface models by

λ =
3

2
√

2
σε . (8)

With this, we can exploit fundamental geometrical relations: if the interface makes a contact angle

θ0 with a wall (see Fig. 1), using a coordinate system which holds the wall normal nw as one
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coordinate and tw as the other, gives

n = nw cos(θ0)+ tw sin(θ0). (9)

Differentiating the equilibrium profile C(n) along the coordinate normal to the wall as

∂nC =
∂C(n)

∂nw
=

∂C(n)

∂n

dn

dnw
, (10)

allows us to recognise

∂C(n)

∂n
=

1√
2ε

(

1− tanh2

(

n√
2ε

))

=
1√
2ε

(

1−C2(n)
)

,

from (7) and

dn

dnw
= cosθ0,

from a simple geometrical observation. Thus, we finally arrive at the wetting boundary condition,

∂nC =
cosθ0√

2ε

(

1−C2(n)
)

. (11)

Using the Young-Dupré equation40,

(σSG −σSL) = σGL cosθ0, (12)

it can be shown that (5) can be written in closed form as30

fw = σ cosθ0

C
(

C2 −3
)

4
+

σSL +σSG

2
. (13)

Here, we have used the wetting condition (6), since Ψw(C) = C(C2−3)−2
4

is a closure restoring (11),

inserting λ according to (8) and (σSG −σSL) according to (12) into (6). Note carefully how the

particular choice of the double-well function Ψ(C) according to Ginzburg and Landau has allowed

us to consistently close for the phase-field transport equation and the wetting boundary condition.

Both closures are indeed connected.

∂nΦ = 0 (14)
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FIG. 1: Contact line in the diffuse-interface setting: n is the inward normal to the wall, ni is the

normal to the interface in the direction of ∇C, and ε is the capillary width.

C. No-Slip Condition

The Navier-Stokes equations are supplemented by the no-slip wall boundary conditions on the

solid substrate ∂Ωw, viz.

u|w
!
= uw (15)

intuitively requiring that the velocity of the fluid at the wall u|w is equal to the velocity of the wall

uw. Equivalently, one can demand for the normal velocity component that

ṁw = ρ(u−uw) ·nw
!
= , (16)

i.e. to fulfill a no-penetration condition due to impermeability of the wall, and for the tangential

velocity component that

Pw ·(u−uw) = , (17)

where Pw := I−nwnw is the projection operator onto the tangent plane of the boundary with outer

unit normal nw, and I denotes the identity or unit diagonal tensor. Moreover, it is

K− (nw ·K)nw = τw, (18)

where K denotes the wall-tangential contribution of the viscous boundary force per unit area,

K := µ
(

∇u+(∇u)T
)

nw, which amounts to the viscous wall stress τw exerted to the wall.
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FIG. 2: Finite volume notation for equation discretisation on unstructured meshes. (a) Polyhedral

Control Volume and (b) Boundary Control Volume.

III. Numerical Method

In the following we attempt to provide an overview of the numerical method of the phaseField-

Foam solver. One focus shall be on the discretisation of the Cahn-Hilliard equation, since it is a

non-linear fourth-order partial differential equation (PDE) and thus challenging to treat numeri-

cally in an accurate yet robust manner. Hence, special care must be taken in the solution method as

set out in the reminder. Moreover, the Moving Reference Frame (MRF) technique and its imple-

mentation is described, since it is crucial for an efficient deployment of computational resources

by significantly reducing the required size of the computation domain. Moreover, we detail on the

requirement of a consistent no-slip boundary condition at fibre walls which is different from the

de-facto standard Dirichlet boundary condition imposing a zero velocity field at walls in the linear

momentum equation.

A. Cahn-Hilliard Equation Discretisation

The Cahn-Hilliard equation is a non-linear fourth-order PDE and thus challenging to treat numer-

ically in an accurate yet robust manner. The difficulty originates from its right-hand-side. Illus-

tratively, this can be seen by considering the mechanism of interfacial evolution, which within the

diffuse-interface model theory is governed by dissipation of the free energy functional according
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to (3) as41

∂tC =−δF

δC
. (19)

Note that (19) is void of the advection term which is not needed here for making this point: in order

to promote numerical stability, it is desirable to employ a temporal discretization which satisfies

the discrete energy stability condition, viz. the decay of energy with time as

F(Cn)≤ F(Co), (20)

where the superscripts n and o denote the new and old time levels, respectively. It is a common

practice to devise a splitting technique to avoid implicit schemes which come at the cost of solving

a non-linear non-convex problem, i.e. to incorporate the r.h.s. of (19) at the new time level. While

such schemes enjoy stability when solving the inherently stiff phase-field equations, there are al-

ternative schemes offering a better performance. Depending on the approximation of the potential

terms in fm(C
n,Co) and fw(C

n,Co), see (3), one arrives at different schemes with distinct stability

properties. One distinguishes linear and non-linear approximations of the potential terms. We

shall continue to focus on linear schemes, since they do not suffer from the significant computa-

tional overhead of non-linear schemes, which require iterative methods. More particular, in the

remainder we consider the well-established linear Eyre approximation, dating back to the work of

Elliott and Stuart42 but named after Eyre43, and the optimal dissipation approximation44. For the

sake of brevity, we shall refer to these schemes as stable and optimal, according to their properties,

namely unconditional energy-stability due the existence of numerical dissipation, and conditional

energy-stability but optimal dissipation, respectively. For an overview and detailed discussion the

reader is referred to the work of Tierra and Guillén-González41. Since [41] details on the mixing

energy potential fm term, we shall further restrict ourselves in the remainder to the wall energy

potential fw and its numerical treatment in the boundary condition for the order parameter. It is

important to note that both terms have to be approximated consistently, i.e. using the same scheme,

so as to simulate wetting processes at high physical fidelity by phase-field methods.

For the discretization of the temporal term (ddtSchemes), a first order accurate Euler scheme

is employed. Regarding the advection term discretization (divSchemes), for the divergence term

of the scalar transport of the order parameter a high-resolution scheme (Gamma) is used, while

the convection term of the momentum equation is discretized using limitedLinearV scheme,

which is second order accurate. The gradient term (gradSchemes) is discretized with the sec-
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ond order accurate (linear) scheme and the laplacian term (laplacianSchemes) with (linear

corrected).

Discretisation of the wetting condition

The wetting boundary condition (11) for the phase-field evolution equation can be also stated in

general notation as so-called convective boundary condition (or boundary condition of third kind),

viz.

k∂nφ +h(φ −φref) = 0. (21)

For implementation, we cast this as Robin or mixed-type boundary condition, viz.

φb = ωbφref +(1−ωb)(φP +gref ·dn), (22)

where φb refers to the boundary patch value (i.e. the value on the boundary face b) and φP is the

internal cell value adjacent to the boundary face, cp. Fig. 2. Moreover, ωb ∈ [0,1] are weights,

dn is face-normal component of the distance vector between the boundary face centre and the

adjacent cell centre, and φref and gref denote a reference value and reference gradient, respectively.

To deploy a Robin (mixed) boundary condition, appropriate values for φref, gref and ωb must be

found. For this, (21) is linearized as

k
φb −φP

|dn|
+h(φb −φref) = 0. (23)

With this, we obtain

φb =
h

k
|dn| +h

φref +

k
|dn|

k
|dn| +h

φP. (24)

From comparison with (22) we find ωb =
h

k/|dn|+h
and gref = . It remains to determine k, h and

φref as well as φP from comparing with (6). Immediately, one identifies k = λ . To take advantage

from a semi-implicit discretization in a linear scheme we note that φb = Cn
b , where n denotes the

new time level. Moreover, with the wall free energy density, cf. (5), which is repeated here for

convenience,

fw = σSL +(σSG −σSL)Ψw(C),

where the non-linear wall potential is Ψw(C) = C3−3C
4

for the chosen phenomenological Ginzburg-

Landau potential, and where σSG −σSL = σ cosθ0 (cf. (12)), the first derivative of fw(C) with

respect to the order parameter C can be written as

f ′w(C) =−3

4
σ cosθ0(1−C2). (25)
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TABLE I: Splitting scheme parameters for wetting boundary condition

scheme ωb k h φref gref

stable
h

k
|dn| +h

λ β
3

4
σ cosθ0

1

β
(1+βCo − (Co)2) 0

optimal
h

k
|dn| +h

λ
3

4
σ cosθ0Co 1

Co
0

no splitting 0 – – –

√
2

2

cosθ0

ε
(1− (Co)2)

Adding dissipation to this yields the stable scheme, which is of first order in time,

f ′w(C
n,Co) = β

3

4
σ cosθ0Cn − 3

4
σ cosθ0(1−βCo − (Co)2), (26)

and choosing the parameter β =Co leads to the optimal scheme, a second order in time scheme,

f ′w(C
n,Co) =−3

4
σ cosθ0(1−CoCn). (27)

Comparison of (6) and (21) then allows to eventually determine h and φref. The parameters are

summarized in Table I. It is noteworthy that these parameters are valid only for the chosen phe-

nomenological Ginzburg-Landau potential and must be changed upon choice of other potentials.

11

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
1
3
1
0
3
2



Tierra and Guillén-González41 have noted that the energy stability condition is only satisfied for

appropriate values of β , viz. β ≥ (3(Cn)2 −1)/2. With such a condition a value of β can be

determined large enough to assure that the scheme is energy-stable. However, this has limits: it

has been shown in [44] that wrong equilibrium solutions can be the consequence of introducing

too much numerical dissipation.

B. No-Slip Boundary Condition

From Section II C it is evident that special attention has to be devoted when discretising the viscous

stress term in the momentum equation. In particular, (18) must be enforced on discrete level.

For Newtonian fluids the viscous stress tensor can be closed as τ = µ(∇u+ (∇u)T). Then,

deploying the finite volume method,
∫

Vp

∇ ·τ dx=
∫

Vp

∇ ·
[

µ(∇u+(∇u)T)
]

dx

=
n f ,i

∑
f ,i=1

µ fS f · (∇u) f +
n f ,b

∑
f ,b=1

µ fS f · (∇u) f +[(∇u) ·∇µ]Vp,
(28)

where i and b denote inner and boundary faces, respectively. Here, we have used that

∇ ·
(

µ(∇u)T
)

= (∇u) ·∇µ +µ∇(∇ ·u). For a single boundary face b, finite volume discreti-

sation yields

µbSb · (∇u)b = µb|Sb|
ub −uP

|dn|

= µb|Sb|
1

|dn|
ub +µb|Sb|

−1

|dn|
uP,

(29)

where the last identity shows the split into explicit contribution to the source vector (first term)

and the implicit contribution to the system matrix (second term), repectively.

However, while this is accurate for orthoghonal Cartesian boundary cells, for non-planar boundary

patches (skewed meshes) one must ensure that the applied boundary condition guarantees that the

wall shear stress τw is tangent to the wall along with uw
45, cp. (18),

µbSb · (∇u)b = µb|Sb|
(ub −uP)‖

|dn|

= µb|Sb|
(ub −uP)− [(ub −uP) ·nb]nb

|dn|

= µb|Sb|
Pw(ub −uP)

|dn|
.

(30)
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FIG. 3: Sketch of the Moving Reference Frame (MRF) technique.

C. Moving Reference Frame Technique

In order to reduce computational costs, a Moving Reference Frame (MRF) technique has been

employed. Following the droplet’s center of mass during the simulation, such a technique allows

to significantly reduce the computational domain size.

Here, we are dealing with a non-inertial non-rotating reference frame. This method has been

successfully used in rising bubble simulations46,47 and is convenient to implement due to its sim-

plicity.

Fig. 3 depicts the situation for a droplet sliding on the surface of a vertically aligned fibre: the

droplet slides with respect to the inertial reference frame (x,y,z) but remains centred within the

computational domain in the non-inertial frame of reference (x̂, ŷ, ẑ).

For this, we add the frame acceleration aF to the momentum equation (1) as

∂ (ρuF)

∂ t
+ρaF +∇ · (ρuF ⊗uF) =−∇ p̃+∇ ·τ +Φ∇C+fb. (31)

The acceleration aF and velocity uF of the moving reference frame relative to the inertial reference

frame are given by

aF =
duF

dt
and uF =

dxF

dt
. (32)

Herein, xF is the droplet centre of mass relative to the moving reference frame.

The velocity of the moving reference frame is adjusted at the beginning of each time step so as

to keep the droplet barycentre at a fixed location within the computational domain. This is done

by applying a velocity correction ∆uF for each time step. This correction is computed using a
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PID controller where the control variable is the droplet’s centre position vector. This vector is

compared to a given constant target position. The applied velocity correction is

∆uF =

(

KP eF +KI

∫ t

0
eF dt +KD

eF −eo
F

δ t

)

1

∆ t
, (33)

where

eF = xF −xo
F . (34)

Following the proposal in [46], a PID controller suffers significantly less from oscillations com-

pared to a PD controller which has been used in [47].

At every time step, the frame velocity field is then updated

uF = uo
F +∆uF , (35)

and used according to (32) for the calculation of the reference frame acceleration.

Since there also exists a solid wall in contact with the droplet, we impose a wall velocity which is

equal in value to the frame velocity but opposite in sign, viz.

uw =−uF . (36)

Effectively, this ensures that the droplet barycentre is kept in place.

IV. Validation

Note that our phase-field solver has been previously subject to significant validation efforts re-

garding wetting and de-wetting processes48 and applied to different complex wetting physics32,49.

Here, we focus on three-dimensional cases relevant to droplets wetting on fibers such as the evolu-

tion of the spreading diameter and equilibrium shape of a droplet on flat and particularly spherical

surfaces50, as well as the spreading of a droplet on single fibre strand, where the dimensions of the

equilibrium shape of an axisymmetric droplet on a cylinder are compared with literature-known

reference data15,51,52.

For model calibration, we have initially pursued a parameter study based on the first case (see

Section IV A) in order to determine free model parameters of the phase-field method, which

have been then fixed for all further simulations in this study. Because all the cases examined

are capillary-dominated transient flows with low Reynolds numbers, we use an adaptive time-step
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FIG. 4: Schematic representation of the initial (left) and equilibrium (right) shapes of a droplet on

a flat surface with static contact angle θ0, in the absence of gravity.

TABLE II: Physical properties.

property oil water

density (kg/m3) 950 1000

kinematic viscosity (m2/s) 2e-5 1e-6

surface tension (N/m) 0.02

criteria, where the time-steps are adjusted based on the maximum Brackbill-Kothe-Zemach (BKZ)

criterion ∆ tBKZ
max = 1+

√
5

2

√

ρ
σ h3, as proposed in [53]. In this work, we set CFLBKZ = 1. For time

accuracy, we further restrict the maximum time step size computed according this BKZ criterion

and require ∆ tmax = 2 ·10−6 s.

A. Droplet spreading on a flat surface

1. Computational setup and physical properties

The equilibrium shape of an oil droplet in water on a flat surface with static contact angle, θ0, is

investigated. A schematic representation of the initial and equilibrium shapes of the droplet on a

flat surface with static contact angle is shown in Fig. 4. Table II lists the physical properties of the

system50.

For initialization, a droplet with radius R0 = 1 ·10−3 m is placed on a smooth flat surface such that

its center is at the distance of the initial droplet radius R0 from the surface. The computational

domain is of size 0.004× 0.004× 0.004m3. Since the initial contact angle is different from the
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equilibrium contact angle, the droplet will start spreading until it reaches its equilibrium shape.

Due to absence of gravity in this case, the Eötvös number, which describes the ratio between

gravitational and capillary forces, is zero, Eo := ∆ρ gR2
0/σ = 0. The no-slip boundary condition

is applied at the bottom boundary with free-slip boundary conditions being applied on every other

boundary.

2. Model Calibration

In order to calibrate the underlying diffuse-interface model for all subsequent simulations, we

determine the minimum number of cells NC := 4 ε
dx

(where dx is the cell size at the interface)

required to sufficiently resolve the diffuse interface and the highest Cahn number Cn := ε
D0

, which

relates the capillary width to reference length scale, that correctly models interface dynamics.

Here, the spreading diameter is investigated for various values of the above-mentioned parameters.

Too low numbers of cells NC to resolve the diffuse interface results result with non-physical inter-

face evolution, and consequently wrong spreading diameters as can be seen in Fig. 5. We show the

evolution of the dimensionless spreading diameter S/D0 as a function of the dimensionless time

t/τ with τ :=
√

ρR3
0/σ , where σ is the surface tension coefficient, for a contact angle θ0 = 60°

and Cn = 0.02, with varying NC.

From this, we conclude that at least six cells are required to resolve the interface sufficiently, which

is in accordance our previous study48 where simulations of a rising bubble were performed.

Fixing NC = 6, the effect of the Cahn number can be studied. We have varied the Cahn number

as Cn ∈ {0.01,0.02,0.04}. Results are shown in Fig. 6. As the Cahn number decreases, the

simulations start to converge. More specifically, Yue30 showed that for Cn ≤ 0.02 the simulated

results are independent of Cn. Thus, we choose Cn = 0.02 to calculate the value of the capillary

width ε that is used in simulations.

Fixing Cn = 0.02, the final parameter to be determined is the scalar mobility M, cp. (1). Yue et

al.30 have shown that the mobility should be adjusted by a scaling formula. The mobility used

in our simulations can be calculated based on Cn = 4S = 4
√

Mµe/D0, where µe =
√

µ1µ2 is the

effective viscosity, which is used due to the highly dissimilar viscosities. Here, S reflects the

diffusion length scale at the contact line30.
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FIG. 5: Influence of the interface resolution on the droplet spreading diameter.

FIG. 6: Influence of the Cahn number on the droplet spreading diameter.

3. Spreading Dynamics

The spreading of a droplet has two stages – an initial stage where inertial-capillary forces are

controlling droplet motion and a second stage where spreading is dominated by viscous forces. It

has been observed that the spreading radius follows a power-law scaling in time54,
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FIG. 7: Evolution of the equivalent spreading diameter (left) and the variation of the pre-factor c

and exponent n (right) for various equilibrium contact angles.

S

D
= c(t/τ)n, (37)

where S is the spreading diameter, c is a scaling factor which depends on equilibrium contact angle

and n is a scaling exponent, which has been observed by Winkels et al.55 to not be influenced by

wetting properties. Other authors54,56 have seen that the contact angle does influence the scaling

exponent, and report that it decreases with increasing contact angle. Das et al.57 have noted that

this discrepancy may be due to the fact that system’s properties are different and as such, the

contribution of the viscous forces is changed with each study.

We investigate the variation of the normalized spreading diameter for five values of equilibrium

contact angles, θ0 ∈ {30,60,90,120,150}°. The equivalent spreading diameter S/D is displayed

in Fig. 7a). Fig. 7b) shows the variation of n and c when changing the equilibrium contact angle.

By fitting Eq. (37) to the monotonic regime of data points obtained used in Fig. 7a), the values of

wetting pre-factor c and the scaling exponent n have been computed for the various contact angles,

both of which are influenced by the changes in equilibrium contact angle θ0, shown in Fig. 7b).

We have found that n decreases linearly with increasing θ0, except for contact angles lower than

90°, where the exponent’s value stabilizes at n ≈ 1/2. This agrees with the observations by Biance
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et al.51, who conduced experiments of water droplets spreading on treated glass plates. Bird et

al.54 observed a similar behaviour, where they have seen the scaling exponent monotonically de-

creases with increasing equilibrium contact angle.

Despite this, the results obtained by us and the previously mentioned authors do not agree with the

observation made by Legendre et al.56 where numerical simulations of spreading droplets were

performed and Das et al.57 who investigated the spreading behaviour of droplets over a bundle of

fibres: they found that n is independent of θ0.

Das et al.57 have used the Laplace number La := σρR0/µ2, where µ is the dynamic viscosity of

the oil droplet, which relates the inertial and surface tension forces to viscous forces, to explain

these discrepancies. They have adopted the hypothesis that for La ∼ 101 and lower, the effect of

the contact angle on the spreading dynamics was negligible. Legendre et al.56 showed that n varies

from 2/3 to 1/2 when La varies from 100 to 104, for a contact angle of 65°.

For our simulation setup, La ∼ 102, which could indicate that for these Laplace numbers and for

non-wetting liquids (θ0 < 90°), the scaling exponent value is close to 1/2, as it is seen in Fig. 7b).

Moreover, in the studies of Bird et al.54, it was observed the scaling exponent gives values close

to 1/2 for La ∼ 102, much like the results we obtain.

Regarding the pre-factor c, it demonstrated that it also decreases with increasing contact angle,

which was also noted in [54, 56, 55, 57].

One should note that the droplet’s spreading diameter is not zero upon initialization. This is

due to grid resolution in our numerical simulation, causing an overlap between the droplet and

the surface. This can be fixed by simply increasing the grid resolution such that S/D(t/τ = 0)

tends to zero. Nevertheless, we have shown that our simulated results agree with experimental

observations, by capturing the scaling S/D ∼ τn where n varies from ∼ 1/2 to ∼ 1/4, across the

various equilibrium contact angles chosen.

4. Equilibrium Shapes

The equilibrium shape of the droplet spreading in the absence of gravity can be derived analyt-

ically, where the equilibrium contact radius r f , curvature radius R f and droplet height h f are

calculated from50
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FIG. 8: Comparison of analytical and simulated equilibrium shape of a droplet spreading on a flat

surface, for contact angles of 30°, 60°, 90°, 120° and 150°.

ΩL =
4

3
πR3

0 = πR3
f

(

2

3
− cos(θ0)+

1

3
cos3(θ0)

)

(38a)

r f = R f sin(θ0) (38b)

h f = R f (1− cos(θ0)) (38c)

Fig. 8 displays the characteristic radii and heights of the droplets from simulations against the

ones obtained analytically, for the same equilibrium contact angles. The results show a very good

agreement between simulated and analytical results, also substantiating that the parameter values

for NC, Cn and M are appropriate.

B. Droplet spreading on a spherical surface

For further validation, we consider a case of particular relevance for spreading on non-planar

substrates such as fibres: we perform simulations to study the equilibrium shapes of droplets

spreading on a spherical surface.

As shown in Fig. 9, a solid sphere with a radius equal to the droplet radius is introduced in the

centre of the previous computational domain. The droplet is initialized in such a way that its center

is at a distance equal to R0 from the spherical surface, just touching it. Since the initial contact
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FIG. 9: Schematic representation of the initial (left) and equilibrium (right) shapes of the a

droplet on a curved surface with static contact angle, in the absence of gravity.

angle is different from the static contact angle, the droplet will spread until it reaches equilibrium.

Physical properties of the system are the same as in the previous section.

The equilibrium shapes of droplets on spherical surfaces can be obtained by solving the following

non-linear system50:

α +β = 180−θ0 (39a)

4

3
πR3

0 =
πR3

f

3
(1+ cos(β ))2 (2− cos(β ))+

πR3
0

3
(1+ cos(α))2 (2− cos(α))− 4

3
πR3

0 (39b)

r = R f sin(β ) = R0 sin(α) (39c)

h = R f (1+ cos(β ))−R0 (1− cos(α)) (39d)

For the five contact angles considered, the simulated results of the characteristic dimensions of the

spreading droplet are compared with the ones obtained analytically, as shown in Fig. 10. Simula-

tion results are in very good agreement with analytical results.

C. Droplet spreading on fibre strands

In a final validation study we investigate the equilibrium shape of droplets spreading on a fibre.

The unduloidal shape of a wetting droplet on a fibre cannot be describe with simple analytical

equations. Despite this, looking at the asymptotic regimes of very large droplets (Ω ≫ d3
v ) and
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FIG. 10: Comparison of analytical and simulated equilibrium shape of a droplet spreading on a

spherical surface, for contact angles of 30°, 60°, 90°, 120° and 150°.

very small ones (Ω ≪ d3
v ), where Ω is the droplet volume and dv is the fiber diameter, one can

derive analytical results of the full transition region between these two cases15,52.

Large droplets tend to keep their spherical shape when they are placed on a fibre, thus W ≈ R0,

with W being the system width and R0 the deposited droplet diameter. For small droplet sizes,

the droplet spreads on the fibre in such a way that the curvature of its interface is only slightly

lower than the fibre curvature 2/dv, for which a shape approximates to that of a cylinder. Gilet et

al.15 have derived a asymptotics for these two scenarios, which are succinctly shown in Table III.

Herein, X is the total length of the droplet.

With the asymptotics from Table III, the dimensions of both large and small droplets on a verti-

cal fibre can be assessed quantitatively. Gilet et al.14 have demonstrated an excellent agreement

between the theoretical and experimental results for various Ω/d3
v .

We perform simulations of droplets spreading on fibres for various Ω/dv, where both the width

W and extension X are compared to the asymptotic solutions – see Fig. 11, for a contact angle of

15°. It can be seen that the simulations results are in very good agreement with the theoretical
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TABLE III: Scaling laws for the equilibrium shape of very large and very small droplets

spreading on a fibre.

length width

droplet size

(large) X = 2W W = dv

(

3Ω
4πd3

v

)1/3

(small) X = dvπ W = dv
8Ω

π2d3
v

FIG. 11: Equilibrium shape of an axisymmetrical droplet spreading on a smooth fibre, for various

droplet sizes smaller than the capillary length (≈ 1.5 mm): (a) dimensionless Length and (b)

dimensionless width. The dashed lines represent the asymptotic solutions, see Table III. The

solid lines refer to the approximate solution corresponding to an unduloid droplet shape15.

predictions, substantiating the capability of our solver to predict the equilibrium shapes of large

and small droplets spreading on a fibre.

V. Motion of droplets on a vertical fibre strand

Varying the droplet’s volume and viscosity, we study the terminal velocities of droplets moving on

a vertical fibre strand, their accelerations and also the viscous energy dissipation rates during the
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TABLE IV: Physical properties of fluids.

property oil air

density (kg/m3) 950 1

kinematic viscosity (m2/s) 1e-5, 2e-5 1.5e-6

surface tension (N/m) 0.02

FIG. 12: Computational domain and adaptive mesh refinement.

early stages of motion. Table IV lists the physical properties of the oil-air system.

The computational setup for the present problem is shown in Fig. 12, where a droplet is placed

onto a fibre. The same boundary conditions have been used for the sides of the domain, and for the

fiber, a no-slip boundary condition is employed, as shown in Fig. 12. We consider droplets placed

on smooth, chemically homogeneous and heterogeneous fibres of diameter dv = 200µm. Local

insights are gained by evaluating the volumetric energy densities in particular regarding viscous

dissipation. To reduce the computational effort, the solver has also been enhanced to use the

moving reference-frame technique as described in Section III C. Furthermore, an adaptive mesh

refinement technique has been employed, where we use refinement criteria based on the order

parameter so as to dynamically refine the mesh at the interface and inside the liquid phase.

A. Motion on homogeneous fibres

The motion of droplets is governed by viscous and capillary forces (neglecting charge effects here),

where the viscous force Fv arises due to viscous fluid flow inside the droplet and the capillary

forces Fc originates due to the capillarity of the interface and the difference of its advancing and

receding contact angles at the contact line. With this, one can analyse the equation of motion of
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a sliding droplet. On a vertical fibre strand, the motion of a droplet with volume Ω and density

ρL is driven by the gravitational force Fg = Fgêg of constant magnitude Fg = ρLΩg, where êg is

the unit vector in direction of gravity and g = ‖g‖= 9.81 m/s2 is the magnitude of the gravitational

acceleration. The component of the full equation of motion in direction of gravity is

ρLΩ
dUp

dt
= ρLΩg−Fv +Fc (40)

Here, Fv = −Fv · êg and Fc = Fc · êg are components of the viscous and capillary forces, respec-

tively. Note, that the sign of the viscous force in Eq. (40) is taken negative by convention as this

force is expected to act opposite to the direction of droplet motion and gravity. The sign of the

capillary force Fc can be positive or negative, as the capillary force may act along or against the

direction of gravity.

To gain further insights, we invesitigate the rate at which work is done on a fluid element in the

droplet while moving on the fibre strand changing its shape and volume. In general,

σ : ∇u=−p∇ ·u+τ : ∇u, (41)

where σ =−pI+τ with p =−1
3

trσ denotes the total stress tensor, with p being the mechanical

pressure. Since we assume isochoric flow, ∇ ·u ≡ 0, we are left with the so-called dissipation

function,

φ := τ : ∇u. (42)

Assuming a liquid of Newtonian fluid rheology, we can compute the total dissipation rate within

the moving droplet, viz.

εφ =
∫

Ω
φ dV. (43)

With this, the viscous force in (40) can be approximated as

Fv =
εφ

Up
, (44)

where Up is the droplet barycenter velocity.

The capillary force Fc in (40) is computed from

Fc =
∫

∂Ω
λ∂nC∇C dS, (45)

i.e. the force the diffuse interface exerts on the substrate surface ∂Ω due to its capillarity58.
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FIG. 13: Comparison between correlation (46) and results from simulations regarding the

terminal velocity of a droplet sliding on a smooth fibre for various droplet volumes and

viscosities.

1. Droplet velocity

Due to the small size of the fibre (and thus small contact line perimeter), the effect of capillary

force is assumed to be negligible and the droplet motion is controlled by the effect of viscous

forces. Based on this, Gilet et al.15 have proposed a correlation for the droplet’s velocity as a

function of the normalized volume, for a highly wetting liquid, viz.

Up =
1

απCν

gd3
v

ν

W

X

Ω

d3
v

, (46)

where Cν is a proportionality factor that accounts for the effect of surface tension. For a liquid

spreading on a dry surface Hoffman59 showed that α = 15, which is used here to predict the

droplets’ terminal velocity. One should note that despite the complex dependence of W/X with

Ω/d3
v , for sufficiently large ratios of Ω/d3

v , one finds that W/X → 0.552.

Simulation results of the terminal droplet velocities are shown to be in very good agreement with

the correlation (46), for all considered droplet volumes and viscosities, as seen in Fig. 13. For our

simulations, the equilibrium contact angle has been set to θ0 = 15°.

Fig. 14 displays the temporal evolution of the droplets’ barycenter velocities. Overshoots in ve-
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FIG. 14: Velocity profiles of a droplet moving on a smooth substrate, for various droplet volumes

and viscosities. Full lines represent the high viscosity case of 20 cSt, dashed ones the low

viscosity case of 10 cSt.

locities are observed at t ∼ 1ms, after which the velocities decrease and reach quasi-steady-state

values.

The times it takes for droplets to reach their respective quasi-steady-state velocities have also been

evaluated. Gilet et al. have proposed that the terminal velocity can be estimated using (46), where

ts−s ∼ Up/g. Our results show that the actual times to achieve steady-state velocities are higher:

we observe that ts−s ∼ (Up/g)n, with n ≈ 0.7 resulting in a much better agreement with simulated

results. This discrepancy may be caused by the way the droplet is initially placed onto the fibre in

experiments compared to how it is initialized for simulations. Moreover, the equilibrium contact

angle used in simulations may not the same as the one observed experimentally, which would

affect the time to reach quasi-steady-state motion.

2. Viscous Dissipation & Viscous Force

Gilet’s assumption proposes that the droplet motion is governed by viscous forces, making it vital

to study the viscous dissipation processes during the droplets’ motion at the fibre strands in more
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FIG. 15: Comparison of viscous forces obtained from correlation (47) and from simulation data,

for various terminal velocities and viscosities.

detail. Several correlations to calculate the viscous force have been proposed in [15, 52, 60, and

61], we decide to use the one by [15] due to its simplicity,

Fv =
1

απCν
µdv

X

W
Up, (47)

where Up is the droplets’ terminal velocity.

Fig. 15 shows the viscous force as processed from simulation results over the droplets’ velocities

for kinematic viscosities of 10cSt and 20cSt, comparing it with the values obtained from (47),

with the error bars indicating relative deviations of 10%.

A good agreement is observed. However, for the higher droplet velocities and for the lower vis-

cosities the simulation results start to deviate slightly from the expected values.

To identify the processes which govern dynamic wetting of droplets on fibres, the viscous dissi-

pation rate has been compared between simulations. Here, the dissipation arising from contact

line relaxation is neglected62. Fig. 16 shows the rate of dissipation for a droplet moving on a fibre

strand with an equilibrium contact angle θ0 = 15°, for a dynamic viscosity of 10cSt and 20cSt.

Initially, the droplets experience very rapid spreading over the fibre, driven by the difference be-

tween the equilibrium and its initial contact angle. In this initial stage, the viscous dissipation
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FIG. 16: Dissipation rates of a droplet moving on a fibre strand, for various droplet volumes and

viscosities. A semi-logarithmic plot is used to include the evolution of the dissipation rate at the

early stage of droplet motion.
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increases very rapidly due to the formation of a small cusp at the contact line which has been also

observed for the case of droplet spreading on flat substrates63. Here we confirm the same phenom-

ena extends to cylinder-shaped surfaces. One can also see that this behaviour is quite similar for

the various droplet volumes studied, only changing when the viscosity is also varied, which may

indicate that the cusp formation is not significantly affected by the droplet volume as it happens

over a very short span of time and it may be only influenced by the physical properties of the fluid

and equilibrium contact angle.

After the initial spreading stage, the dissipation rate will increase up to a maximum and then

decreases to a lower constant value, when the droplet reaches quasi-steady-state. We observe that

the dissipation rate is larger the larger the droplets, which is expected due to their larger terminal

velocities. Interestingly, simulations with the higher viscous oil (20cSt) exhibit lower dissipation

rates. This is because viscosity influences the fluid velocity (cp. (46)), and a more viscous fluid

will have a lower velocity in average, leading to lower dissipation rates at the bulk and wedge.

Furthermore, this lower velocity promotes lower X/W ratios, which also contributes to the lower

dissipation rate.

3. Capillary Force

To verify or falsify the assumption the capillary force was negligible when compared to the viscous

force, we compute the capillary force according to (45). Fig. 17 shows the capillary force that has

been computed from our simulation results using (45), for all cases previously studied.

Looking at the capillary force, it is several orders of magnitude smaller than the viscous force

and thus its contribution to the overall droplet motion is indeed negligible, as assumed by Gilet

et al. Certainly, this is because the contact line perimeter is small, which is then reflected on the

capillary force.

Since the perimeter of the contact line is kept the same, because the fibre diameter is also the same

throughout simulations, the observed changes in the capillary force are only due to the difference

in the advancing and receding contact angles which increases with increasing droplet volume (and

thus velocities), leading to higher capillary forces64. We also observe that lower viscosities in

general lead to higher capillary forces.
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FIG. 17: Magnitude of the capillary force obtained for the various droplet volumes and

viscosities.

B. Motion on chemically heterogeneous fibres

The focus of this study is to investigate the influence that locally varying wettability and also stripe

periodicity have on the droplets’ velocity profile, dissipation rate, viscous force and capillary force

(which is assumed to be negligible compared to the viscous force), and quasi-steady-state motion.

To investigate the motion of droplets on chemically heterogeneous fibres, the same computational

domain is used as depicted in Fig. 12. However, instead of applying a homogeneous wetting

boundary condition with one equilibrium contact angle, the fibre’s substrate is considered pat-

terned with stripes of alternating wettability, where the equilibrium contact angle values have been

locally varied between θ0 = 55° and θ0 = 105°, respectively, as shown in Fig. 18. For the simula-

tions, a droplet with volume Ω = 2.1µL and νL = 10cSt is chosen.

Fig. 19 shows the velocity and dissipation rate profiles over time, as well as the gravitational,

viscous and capillary forces. Figure 20 shows the evolution of the dissipation rate density and

velocity vectors for the case with θ0 ∈ {55◦,105◦}.
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FIG. 18: Sketch of case setup, for an oil droplet sliding on a chemically patterned fibre in

ambient air.

FIG. 19: Simulation of a droplet moving on a chemically patterned fiber: a) barycenter velocity,

dissipation rate and b) viscous and capillary forces profiles, as well as the gravitational force and

the acceleration term, calculated using (40).
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FIG. 20: Dissipation energy density and velocity vectors for the case with θ0 ∈ {55◦,105◦}, at

various dimensionless times: (a) t/τ = 2.80, (b) t/τ = 4.05, (c) t/τ = 4.40, (d) t/τ = 8.05, (e)

t/τ = 12.80, (f) t/τ = 18.65.
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FIG. 20: Dissipation energy density and velocity vectors for the case with θ0 ∈ {55◦,105◦}, at

various dimensionless times: (a) t/τ = 2.80, (b) t/τ = 4.05, (c) t/τ = 4.40, (d) t/τ = 8.05, (e)

t/τ = 12.80, (f) t/τ = 18.65. (cont.)

Comparing the dissipation rates depicted in Fig. 19 with the ones from Fig. 16, they are similar

in the early stages of droplet motion – one observes a rapid increase of the dissipation rate due to

the formation of a cusp during the initial spreading stage. The dissipation rate is biased when the

transition from philic to phobic surfaces (and vice-versa) happens. Here, the capillary force may

contribute to both droplet acceleration and deceleration, depending on the local contact angle and

droplet shape at the contact line.

Initially, the droplet is moving exclusively on a phobic stripe, where an overshoot of the velocity

and dissipation rate can be seen, at around t/τ = 1. The change in the viscous force, being a

function of the dissipation rate and velocity, will be similar. The capillary force at this stage is
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orders of magnitude smaller than the viscous force. Following this overshoot, the droplet velocity

will decrease until t/τ = 4, where the front of the droplet passes through a philic stripe, forcing the

front edge of the droplet to spread further. This can be seen as a rapid increase of both the velocity

and dissipation rate as well as the viscous and capillary force. The magnitude of the capillary force

is now much larger than before due to the deformation of the contact line. Since the front and rear

of the droplet now have very different contact angles, contributions from the capillary force are

larger. This increase in capillary force acts in the direction of the gravitational force, accelerating

the droplet. At around t/τ = 6.5, the rear edge of the droplet finally approaches the philic region.

Since the spreading occurs in the direction that is opposite to the droplet motion, the droplet

decelerates, which also leads to a decrease of the dissipation rate and viscous force. The capillary

force will also decrease since the "hysteresis" effect is now much smaller than before, reaching

values that are once again much smaller than the viscous force. At this stage, the capillary force

contributes to the deceleration of the droplet, as the trailing edge is pulled in the direction opposite

of gravity. At around t/τ = 18.5, the front of the droplet will pass through a phobic region forcing

the contact line region to bend, further decreasing the droplet’s velocity and dissipation rate and

increasing the capillary force due the increasingly different contact angles at the rear and front

edges. The capillary force has contributed to the deceleration of the droplet.

This process repeats as the droplet is moving over the stripped patterns. Thus, its velocity will

oscillate around its mean quasi-steady-state value. Thus, when compared to the homogeneous

cases, the influence of the capillary force is indeed not negligible. Local deformations at the

contact line as well as the difference in rear and front contact angles lead to larger values of the

capillary force, which significantly affects the overall motion of the droplet.

To further investigate under which conditions the capillary force acts with or against the gravita-

tional force, we decompose the contribution of the capillary force as

Fc = Fa
c +Fr

c , (48)

where Fa
c = F a

c · êg and Fr
c = F r

c · êg are the capillary force contributions at the advancing and

receding edge of the droplet. Fig. 21 shows the time evolution of both contributions to the capillary

force. As the front edge passes to a philic region, the capillary force at the advancing and receding

edges increases, which leads to a positive contribution to the capillary force in the direction of

the droplet motion – accelerating the droplet. As the trailing edge of the droplet is also passing

the philic region, starting at around t/τ = 6, the receding contact line will move in the direction
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FIG. 21: Contribution of the capillary force at the leading and trailing edge during droplet motion.

opposite of the droplet motion, leading to the decrease of the receding capillary force. This leads

to a decrease of the capillary force and thus the droplet decelerates, until it reaches a quasi-steady-

state. At t/τ = 18.5 the front edge passes to the phobic region. The decrease of the advancing

capillary force decelerates the droplet once more.

We can infer that the value of the capillary force will be positive when the contact line accelerates

in the direction of motion, making the droplet accelerate, and negative for a contact line that

accelerates opposite to the direction of motion, decelerating the droplet. Moreover, one can see

that since the droplet is initialized in the phobic region, the contribution of the capillary force at the

front of the droplet is negative, and the capillary force at the rear is positive – this is the opposite

in the philic region.

In order to also assess the accuracy of our force computation from DNS data, the right-hand-

side (RHS) and left-hand-side (LHS) of (40) are calculated and compared – see Fig. 22. A good

agreement between the terms in the RHS and LHS of (40) is observed, substantiating that the

computation of the forces from DNS is reliable. A maximum deviation of about 38% occurs at

the very early stages of motion, at around t/τ = 0.15 - this can be attributed to the initialization
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FIG. 22: Comparison between the RHS and LHS terms of Eq. (40) (left) and the deviation

associated (right), for the case with θ0 ∈ {55◦,105◦}.

setup, where an un-physical pressure field is initially used (assumed to be uniform and with a

value of zero) and so the diffuse interface must first relax, which leads to a larger error at the onset

of motion. Despite this, one more notable deviation occurs at t/τ = 4, when the front edge of

the droplet passes to the philic stripe. This deviation between the acceleration term and the sum

of the forces can be attributed to the deviation from the tangent hyperbolic profile of the phase-

field: as the front edge of the droplet passes to the philic stripe, the profile of the diffuse interface

is deteriorated. Therefore, the interfacial profile can no longer be assumed to be of equilibrium

tangent-hyperbolic shape. However, our analysis using Eq. (45) is based on this assumption.

This explains the deviation in Fig. 22 to be largest at the point where the contact line passes the

wettability step on the fibre surface. The faster this transition happens the more the deterioration

of the equilibrium profile, and the greater the deviation. This is substantiated by the later droplet

transition, at time t/τ = 18, where the droplet velocity is lower and so is the deviation between

LHS and RHS. Certainly, one could use the new relaxation model accounting for highly dynamic

diffuse interface deformations36, but this is not within the scope of this work and shall be subject

to future research.

Since the focus here is to study the influence that chemical heterogeneities have on the droplet mo-
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FIG. 23: Droplet velocity, dissipation rate and magnitude of viscous and capillary forces profile,

for three cases of a droplet sliding down a chemically patterned fibre strand.

tion and the forces acting on the droplet, another case with θ0 ∈ {65◦,95◦} has been investigated,

for the same stripe length in order to disclose the influence of the wettability range. Moreover,

the periodicity of the stripes has been doubled, to investigate its effect on motion. Fig. 23 shows

the sliding velocity and dissipation rate profiles during the simulation. Both the magnitude of the

capillary force and viscous dissipation force profiles are shown.

From Fig. 23 it is evident that changing the wettability range influences sliding velocity, dissipation

rate and the forces acting on the droplet significantly. For the case with θ0 ∈ {65◦,95◦}, it can be

seen that the profile of the plots resembles the ones for the case of θ0 ∈ {55◦,105◦}. Because the
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wettability range is now smaller when compared to the case with θ0 ∈ {55◦,105◦}, the spreading

motion of the droplet as it passes through the philic stripe is not as intense and the increase in

sliding velocity is not as large. Conversely, this also leads to lower contact angle hysteresis and so

the capillary force is slightly smaller as well. Since the contact angle of the philic region is larger

as well, the droplet velocity becomes larger for the case with θ0 ∈ {65◦,95◦}, which becomes

noticeable at around t/τ = 8. Thus, the front edge of the droplet will also reach the phobic region

faster for the case of θ0 ∈ {65◦,95◦}, at around t/τ = 17. After this, the capillary force will once

again increase to the values seen before (since the difference in contact angles is almost the same),

although slower than previously because the contact line is also moving slower.

Another case where the same wetting range is used, but the periodicity of the stripes is doubled

(by halving their length) is investigated. Initially, the rear and front edges of the droplet are in

different regions, and the capillary force is initially large and has the same value as for the case

initially described. Hence, the initial overshoot of the sliding velocity is smaller. The front of the

droplet quickly encounters a philic stripe, forcing the advancing edge of the droplet to spread in

the same way as for the case with the regular periodicity, just at a shorter time. Around the time

the droplet velocity starts decreasing, the front edge passes through a phobic region, a decrease of

velocity, dissipation energy and viscous force is observed. The capillary force steadily increases

as the front edge slowly passes from the philic to the phobic region. Thus, the terminal droplet

velocity is lower when compared to the other cases. Since the droplet velocity is so low, the

viscous force will be smaller than the capillary force, which opposite to the assumption by Gilet et

al.14. This showcases that the choice of surface chemistry can greatly affect the droplet’s motion

and shape and correlations must be applied with care.

VI. Summary and Outlook

We discuss the motion of droplets moving along vertically arranged, chemically homogeneous

and heterogeneous fibres based on local insights gained by Direct Numerical Simulations. For

this, we have utilized a diffuse interface phase-field method implemented in our in-house solver,

phaseFieldFoam, in OpenFOAM (FOAM-extend 4.0/4.1). For validation, we compare (inter alia)

the equilibrium shapes of droplets spreading on fibres with results obtained from analytical ex-

pressions, for various volume-to-fibre-diameter ratios.

For the homogeneous fibres we compare our simulation results regarding the terminal velocity and
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the viscous force with existing correlations. We observe that simulation results are in very good

agreement with these correlations. Moreover, we study the motion until the droplets have reached

terminal velocities, where we observe an overshoot in the droplet velocity in the beginning for all

situations. From our computational analysis, we could improve a correlation by Gilet et al.15 for

the time until the droplets reach their terminal velocities. We further investigate the effect that the

capillary force has on the overall droplet motion, and confirm the assumption made by Gilet et al.

for cases of chemically homogeneous surfaces – that its influence is negligible when compared

to the viscous dissipation. Eventually, the dissipation rates during the droplets’ motion have been

studied in detail. We observe a rapid increase in the dissipation rates, due to the formation of a

cusp at the contact line. This observation holds for all volumes. For the less viscous liquid the

dissipation rate is found to be larger than for the more viscous liquid.

For the heterogeneous fibres, we investigate the evolution of the dissipation rates, droplet velocities

and viscous and capillary forces as the droplet slides through the phobic and philic regions. Here,

surface chemistry has a significant influence on both the droplet’s velocity and shape, as well as the

forces that act on the droplet. Notably, we observed that the capillary force, which we showed to be

negligible when compared to the viscous force for a droplet moving on a chemically homogeneous

fibre, can reach values that are at the same order of magnitude, and in some cases larger than, as the

viscous force. Thus, correlations must be applied with care in cases of chemically heterogeneous

fibre substrates.
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