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Conclusions

▪ Composition modulation increases low temperature TWC performance [1]

▪ Optimal period decreases with increasing temperature [1]

▪ Optimal period decreases with increasing amplitude [2]

Introduction

Experiments

Modelling

▪ Increase the frequency of pulses reaching the catalyst by reduction of 

dead volumes in the setup.

▪ Experimental parameter study on variation of temperature, period, 

amplitude and GHSV.

▪ Increasing the complexity of the model by adding other TWC reactions.

Outlook
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Scope of our present study:

Systematic numerical and experimental studies on 

the influence of period τ, amplitude A, temperature T 

on composition modulation 
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Fig. 2: Scheme of experimental setup for composition modulation.

▪ Cordierite monoliths coated with     

2 wt.-% Pd/Al2O3 powder catalyst

▪ 400 cpsi

▪ d = 16 mm, l = 30 mm

▪ LWC = 100 g/lcat

▪ Main line: N2, CO2, C3H6, C3H8, NO 

Lean/ Rich line: CO, H2, O2, N2

▪ Analytics: FTIR (5 Hz), Lambda 

sensor (10 Hz)

▪ Setup characteristics: fmax = 2.5 Hz, 

λ = 0.93 – 1.07, T = 100 – 600 °C, 

GHSV = 50,000 – 100,000 h-1

▪ CSTR Reactor Model:
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▪ Mikrokinetic Model 

(CO oxidation part) [3]:

1) 𝑂2 + 2∗ ⇄ 2𝑂∗

2) 𝐶𝑂 + ∗ ⇄ 𝐶𝑂∗

3) 𝐶𝑂2 + ∗ ⇄ 𝐶𝑂2
∗

4) 𝐶𝑂∗ + 𝑂∗ ⇄ 𝐶𝑂2
∗

Fig. 1: Concept of composition modulation. Period τ : Time between repetitions of the change 

in the input condition. Amplitude A: Change in the value of the input condition compared to its 

mean value M.

Fig. 4: CO conversion versus 

temperature for different periods τ. 

GHSV = 60,000 h-1, AO2 = 5 %, xCO,0 = 

0.02, xO2,0 = 0.01.

Fig. 5: CO conversion versus periods for 

different temperatures T. GHSV = 60,000 

h-1, AO2 = 5 %, xCO,0 = 0.02, xO2,0 = 0.01.

Fig. 6: CO conversion versus periods for 

different O2-amplitudes A. GHSV = 

60,000 h-1, T = 384 °C, xCO,0 = 0.02, xO2,0 

= 0.01.

▪ Model predicts decreasing optimal 

period with increasing 

temperature and amplitude,  

respectively.

▪ Surface is covered by O-ads 

during the lean phase and 

poisoned by CO-ads during the 

rich phase.

▪ Free surface sites for reaction 

after switching conditions.

Fig. 7: Temporal concentration and 

surface coverage profiles during 

composition modulation. T = 377 °C 

GHSV = 38,000 h-1

▪ Signal smoothing in the FTIR due 

to low-pass dynamics [4].

▪ Average concentration can be 

determined.

▪ The analysis of the lambda 

sensors shows that up to a 

frequency of 0.2 Hz the amplitude 

arrives at the catalytic converter.

Fig. 3: CO FTIR signal and lambda 

sensor respond to different frequencies 

with inert monolith. xCO,Rich = 0.9 %, 

xCO,Lean =0.1 %. 
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▪ Surface sites are poisoned by adsorbates during steady state operation.

▪ Switching conditions can increase free surface sites and improve catalytic 

performance.

▪ The use of detailed chemistry allows the description of composition 

modulation effects observed in literature.


