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Abstract

Fog and low stratus clouds (FLS) are a key component of the climate system, as

they directly modify EarthŠs radiation balance and provide nutrients and water

to ecosystems. They further have economic impacts via affecting traffic on land,

at sea and in the air and pose a challenge for solar power prediction. FLS are

inĆuenced by a myriad of atmospheric and land surface processes, with magnitude,

direction and interactions of these processes varying across temporal and spatial

scales. Understanding the effect of environmental conditions on spatial and temporal

patterns of FLS is critical for their prediction and also for parameterizations of land-

atmosphere processes inweather and climatemodels. This thesis aims to advance the

scientiĄc understanding of the inĆuence of meteorological and land surface drivers

on FLS occurrence and life cycle. FLSprocesses are investigated in the context of land-

atmosphere interactions and the inĆuence of land cover types on FLS occurrence is

analyzed.With a spatial focus on central Europe, four research questions are targeted

in the research presented in this thesis:

1. What are the main drivers of large-scale spatial and temporal fog and low stratus

patterns?

2. How does the land surface inĆuence spatial variations in fog and low stratus

occurrence?

3. What are the climatological patterns of fog and low stratus formation and dissipation

time?

4. What are fog and low stratus formation and dissipation regimes on regional to sub-

regional scales?

These research questions are addressed in four studies using satellite and reanalysis

data sets and a set of statistical methods. Using satellite and reanalysis data allows

to investigate how environmental conditions inĆuence FLS on spatial and temporal

scales previously not considered. The main Ąndings of the thesis are described in

the following.
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For a study area spanning continental Europe, a statistical model is set up to predict

daily means of FLS occurrence using meteorological and land surface predictors.

The sensitivity analysis reveals that atmospheric proxies, in particular mean sea

level pressure, wind speed and FLS occurrence on the previous day, are more

important determinants of the FLS presence than land surface characteristics. The

importance of evapotranspiration and land surface temperature for FLS prediction

increases in high pressure conditions. The analysis reveals not only the importance

of atmospheric proxies for the prediction of FLS occurrence but also highlights the

potential for the analysis of land surface effects on FLS occurrence by Ąltering for

speciĄc weather situations.

In a sub-regional approach, the mean climatological nighttime FLS occurrence

over a large European forest area compared to its surrounding agricultural land is

investigated. The two independent satellite-based FLS data sets used in the analysis

show signiĄcantly higher nighttime FLS occurrence over the forest area, especially

in summer and fall. Lower wind speeds and land surface temperatures, together

with a temperature inversion and biogenic organic compounds serving as cloud

condensation nuclei are identiĄed as potential drivers for higher FLS occurrence

over the forest area. The results suggest that the land surface signiĄcantly inĆuences

FLS occurrence on the climatological scale considered.

Besides FLS occurrence, the FLS life cycle is analyzed by extracting FLS formation

and dissipation time via the application of logistic regression to an existing satellite-

based FLS data set spanning the central European land mass. The climatological

analysis reveals distinct geographic patterns of FLS formation and dissipation

pertaining to topography, distance to the coast and the solar cycle. The seasonal cycle

reveals similar patterns in spring and summer and inwinter and fall, with higher FLS

persistence found in the latter two seasons. The therein created novel FLS formation

and dissipation time data set provides a basis for the analysis of drivers inĆuencing

the FLS life cycle, from daily to decadal time scales.

From this novel data set, regional FLS life cycle regimes are analyzed by applying a

hierarchical clustering approach to correlations of FLS formation and dissipation

time with environmental conditions. The clustering approach reveals four main

FLS formation and dissipation regimes across the central European land mass:

central, maritime, Mediterranean and Baltic-Scandinavian. Sub-regional regimes are

analyzed in terms of their average monthly mean correlations of FLS formation and

dissipation time with mean surface pressure, wind speed, land surface temperature

and evapotranspiration. The correlations display the sensitivities of the FLS life

cycle to changes in environmental conditions and indicate a strong dependency
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on the climatological and geographic background of the regime. Furthermore, the

prevailing FLS type of a regime might be a main determinant of the observed

sensitivity patterns, thus Ąltering for speciĄc FLS types is critical going forward.

The Ąndings of this thesis advance the understanding of the effect of atmospheric

and land surface drivers and their interactions on fog and low stratus cloud

occurrence and life cycle. The speciĄc inĆuences of these drivers vary depending on

geographic position and also with the temporal scales considered: Meteorological

inĆuences dominate on daily to seasonal time scales, whereas by considering multi-

year means or Ąltering for speciĄc weather situations, meteorological variations

decrease, making it possible to distill land cover inĆuences on FLS occurrence. A

promising path forward is the set-up of regionally speciĄc models to investigate

drivers of FLS persistence, which further holds promise to include previously not

considered variables. Results of a preliminary study using such an approach were

presented in the outlook of this thesis: In the Po valley region, meteorological

conditions are found to be the main drivers of FLS persistence, but the aerosol

loading of the previous day can prolong FLS duration up to 60 minutes during

high pollution events. Regional speciĄc evaluations of the effect of environmental

conditions on the FLS life cycle thus have implications and learnings for regional

FLS predictions, traffic safety and solar energy production.
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Kurzfassung

Nebel und niedrige Stratuswolken (fog and low stratus, FLS) sind ein wichtiger Teil

des Klimasystems, da sie die Strahlungsbilanz der Erde direkt beeinĆussen und als

Wasser- und Nährstoffquellen für Ökosysteme dienen. Darüber hinaus haben sie

wirtschaftliche Auswirkungen, da sie den Verkehr beeinträchtigen und eine Heraus-

forderung für die Erzeugung von Solarenergie darstellen. FLS werden durch eine

Vielzahl von Prozessen in der Atmosphäre und auf der LandoberĆäche beeinĆusst,

wobei die Stärke, Richtung und Wechselwirkungen dieser Prozesse auf zeitlichen

und räumlichen Skalen variieren. Das Verständnis des EinĆusses von Umweltfakto-

ren auf die räumlichen und zeitlichen Muster von Nebel und niedrigem Stratus ist

für ihre Vorhersage sowie für die Parametrisierung derWechselwirkungen zwischen

LandoberĆäche und Atmosphäre in Wetter- und Klimamodellen unerlässlich. Ziel

der vorliegenden Arbeit ist es das wissenschaftliche Verständnis des EinĆusses

von meteorologischen und landoberĆächenbasierten Faktoren auf das Auftreten

und den Lebenszyklus von FLS zu verbessern. Hierbei werden FLS Prozesse im

Kontext von Interaktionen zwischen LandoberĆäche und Atmosphäre untersucht

sowie der EinĆuss der LandoberoberĆäche auf das Vorkommen von Nebel und

niedrigem Stratus analysiert. Die zentralenOrientierungspunkte der Teilstudien,mit

räumlichen Fokus auf Mitteleuropa, sind vier Hauptforschungsfragen:

1. Welche Faktoren beeinĆussen die großskaligen räumlichen und zeitlichen Muster von

Nebel und niedrigem Stratus?

2. Wie beeinĆusst die LandoberĆäche räumliche Variationen des Vorkommens von Nebel

und niedrigem Stratus?

3. Was sind klimatologischeMuster der Bildung undAuĆösung vonNebel und niedrigem

Stratus?

4. Was sind regionale und subregionale Regime der Bildung und AuĆösung von Nebel

und niedrigem Stratus?
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Diese Forschungsfragen werden in vier separaten Studien behandelt, in denen

Satellitendatensätze und Reanalysedaten in Kombination mit verschiedenen stati-

stischen Methoden verwendet werden. Durch die Verwendung von Satelliten- und

Reanalysedaten ist es möglich den EinĆuss von Umweltfaktoren auf FLS auf großen

räumlichen und zeitlichen Skalen zu untersuchen, die in der bisherigen Forschung

nicht berücksichtigt wurden. Die wichtigsten Ergebnisse werden im Folgenden

erläutert.

In einer für Kontinentaleuropa durchgeführten Studie wird ein statistisches Modell

aufgesetzt, welches Tagesmittel der FLS Bedeckung mithilfe von meteorologi-

schen und landoberĆächenbasierten Prädiktoren vorhersagt. Die anschließende

Sensitivitätsstudie zeigt, dass atmosphärische Prädiktoren, insbesondere Luftdruck,

Windgeschwindigkeit und die FLS Bedeckung des Vortages, für die Vorhersage der

FLS Bedeckungwichtiger sind als Charakteristika der LandoberĆäche. Verdunstung

und LandoberĆächentemperatur gewinnen an Bedeutung für dasModell, wenn aus-

schließlich Hochdruckwetterlagen berücksichtigt werden. Die Analyse zeigt nicht

nur die Bedeutung von atmosphärischen Prädiktoren für das statistischeModell auf,

sondern verdeutlicht auch das Potential der Auswahl vonHochdruckwetterlagen für

die Analyse des EinĆusses der LandoberĆächen auf Nebel und niedrigen Stratus.

In einem subregionalen Ansatz wird die mittlere nächtliche FLS Bedeckung

über einem großen Waldgebiet in Europa mit derjenigen über dem umliegenden

landwirtschaftlichen Gebiet verglichen. Unter Verwendung zweier unabhängiger

satellitengestützter FLS Datensätze Ąndet sich über demWaldgebiet eine signiĄkant

höhere nächtliche FLS Bedeckung. Mögliche Gründe hierfür sind niedrige Windge-

schwindigkeiten und LandoberĆächentemperaturen sowie eine Temperaturinver-

sion und eine höhere Konzentration von biogenen Kondensationskernen über dem

Waldgebiet. Die Ergebnisse deuten darauf hin, dass die LandoberĆäche auf den

untersuchten klimatologischen Skalen einen erheblichen EinĆuss auf das Auftreten

von Nebel und niedrigem Stratus hat.

Zusätzlich zur Analyse der FLS Bedeckung folgt eine Analyse des FLS-Lebenszyklus

hinsichtlich dessen Bildungs- und AuĆösungszeitpunktes. Zu diesem Zweck wird

eine logistische Regression auf einen bestehenden satellitengestützten FLSDatensatz

über Mitteleuropa angewendet. Die klimatologische Analyse zeigt ausgeprägte

geographische Muster der FLS-Bildung und AuĆösung, die von der Topographie,

der Nähe zur Küste und der Sonneneinstrahlung abhängen. Die saisonalen Muster

ähneln sich in Frühling und Sommer und in Herbst und Winter, wobei die FLS-

Persistenz in den letztgenannten Jahreszeiten höher ist. Der so entstandene neue

Datensatz bildet die Grundlage für Analysen von Faktoren des Lebenszyklus von
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Nebel und niedrigem Stratus von Fallstudien bis hin zu klimatologischen Analysen.

AusdiesemDatensatzwerden regionale Regimedes FLSLebenszyklus abgeleitet, in-

dem ein hierarchischer Clustering Algorithmus auf Sensitivitäten der FLS Bildungs-

und AuĆösungzeit hinsichtlich Umweltfaktoren angewandt wird. In Mitteleuropa

werden vier Hauptregime der FLS Bildung und AuĆösung identiĄziert: zentral,

maritim, Mediterran und Baltisch-Skandinavisch. Subregionale Regime werden

hinsichtlich ihrer mittleren monatlichen Sensitivitäten von Bildungs- und Auf-

lösungszeitpunkt gegenüber Veränderungen in Luftdruck, Windgeschwindigkeit,

LandoberĆächentemperatur und Verdunstung analysiert. Die Sensitivitäten zeigen

eine deutliche Abhängigkeit vom klimatischen und geographischen Hintergrund

des Regimes. Darüber hinaus könnte der vorherrschende FLS Typ der bestimmende

Faktor für die beobachteten Sensitivitätsmuster sein, sodass künftig eine Filterung

nach speziĄschen FLS Typen von Bedeutung sein wird.

Die Ergebnisse dieser Arbeit verbessern das Verständnis der EinĆüsse atmosphä-

rischer und landoberĆächenbasierter Faktoren und ihrer Wechselwirkungen auf

das Auftreten und den Lebenszyklus von Nebel und niedrigen Stratuswolken. Die

speziĄschen EinĆüsse variieren standortabhängig und auf zeitlichen Skalen: EinĆüs-

se meteorologischer Faktoren dominieren auf kürzeren Zeitskalen (mehrere Tage

bis Monate), während die Verwendung von Jahresmittelwerten oder die Filterung

speziĄscher Wettersituationen die meteorologischen Schwankungen verringert und

die Analyse von LandoberĆächeneinĆüssen auf die FLS Bedeckung ermöglicht.

Ein vielversprechender Ansatz ist die Verwendung von regionalen Modellregionen

und von zusätzlichen Variablen, um Faktoren der FLS-Persistenz zu untersuchen.

VorläuĄge Ergebnisse einer solchen Studie für die Po-Ebene zeigen, dass meteorolo-

gische Faktoren hauptverantwortlich für die Persistenz von Nebel und niedrigem

Stratus sind, wobei die Aerosolbelastung des Vortages die Persistenz bei starker

Luftverschmutzung um bis zu 60Minuten erhöht. Mithilfe von regional speziĄschen

Studien über die Auswirkungen von Umweltfaktoren auf den Lebenszyklus von

Nebel und niedrigen Stratus können somit Rückschlüsse und Lehren für deren

regionale Vorhersage, die Verkehrssicherheit und die Erzeugung von Solarenergie

gezogen werden.
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1 Introduction and general motivation

1.1 General Motivation

Land surface and climate interact in complex ways through Ćuxes of water and

energy, greenhouse gases and aerosols with interactions occurring across different

spatial and temporal scales (Pielke and Avissar, 1990; Pielke, 2001; Pitman, 2003;

Pielke et al., 2011; Jia et al., 2019a). They can be described as biophysical interactions

(exchanges of water and energy) and biogeochemical interactions (emissions of

greenhouse gases and aerosols) (Jia et al., 2019a). The former strongly depend on

reĆectivity (albedo) of the earthŠs surface, the emissivity of longwave radiation by

vegetation and soils, surface roughness and soilwater (Jia et al., 2019a). These factors

vary spatially and temporally, among land cover and land use types (Anderson

et al., 2011; Jia et al., 2019a) and in magnitude and direction, leading to warming

or cooling of the earth (Duveiller et al., 2018) (Fig. 1.1). Apart from the current

state of the land surface, land use and land cover change (LULCC) strongly impact

these biophysical and biogeochemical interactions, especially in the atmospheric

boundary layer (Pielke and Avissar, 1990; Pielke, 2001; Pielke et al., 2011) but

magnitude and direction depend on geographic location and season (Jia et al.,

2019a).

The redistribution of water and energy through differences in landscape structure

and changes in land cover affect the horizontal and vertical gradients of temperature,

pressure and moisture. This consequently leads to changes in wind patterns,

moisture transport, temperature advection and convection, resulting in different

cloud and precipitation patterns (Avissar and Liu, 1996; Jia et al., 2019a). A cloud

positioned directly at the earthŠs surface and heavily linked to surface-atmosphere

exchanges (Bergot et al., 2005) is fog. Fog affects everyday human life, as the timing

of its formation and dissipation is important for traffic on land, at sea and in the

air (Leigh et al., 1998; Pagowski et al., 2004), and is critical for the quality of the

prediction of solar power production (Köhler et al., 2017). Fog is also a crucial water

source for various ecosystems around the world (Bruijnzeel et al., 2005; Gottlieb
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1 Introduction and general motivation

et al., 2019) and plays an important role in climate processes (Vautard et al., 2009).

From the satellite perspective and for conceptual purposes, fog can be viewed as a

cloud touching the ground and is thus frequently allocated to one category with low

stratus: Fog and low stratus (FLS) (Cermak and Bendix, 2011). In this thesis the

terms fog and FLS are used interchangeably.

Figure 1.1: Processes of the coupled land-atmosphere system (Jia et al., 2019a).

In general, FLS is inĆuenced by amyriad of atmospheric and land-surface processes:

At large scales, the weather type (Bendix, 1994; Gultepe et al., 2007; Egli et al.,

2019), particularly the pressure Ąeld (van Oldenborgh et al., 2010) inĆuences FLS

occurrence. On the local and small scale, low wind speeds, low temperatures and

a stable boundary layer are beneĄcial for FLS formation (Cuxart and Jiménez, 2012;

Pérez-Díaz et al., 2017; Price, 2019). Local to regional variations in FLS occurrence

result from land surface effects on the FLS life cycle: FLS forms earlier in valleys

whereas the mountain ranges stay FLS free (Fig. 1.2) (Bendix, 1994; Scherrer and

Appenzeller, 2014). Higher temperatures over cities lead to a decrease in fog and low

stratus occurrence over urban areas (Bendix, 1994; Sachweh and Koepke, 1995, 1997;

Williams et al., 2015; Gautam and Singh, 2018; Izett et al., 2019; Fuchs et al., 2022).

FLS can form earlier over Ąelds compared to bare soil (Roach, 1995) and earlier over

a homogeneous grass surface compared to a surfacewith trees (Mazoyer et al., 2017).

A further important component of processes in the land-atmosphere system is the

presence of aerosols (Fig. 1.1). Aerosols serve as cloud condensation nuclei (CCN)

which act as the substrate on which water vapor condenses and fog droplets form

(Ramanathan et al., 2001; Poku et al., 2019). Depending on the underlying land

surface, different types of aerosols are present, for example mineral dust, black and

organic carbon and biovolatile organic compounds (BVOCs). As the growth rate of
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1.1 General Motivation

the fog droplet depends on the initial size of the aerosol and its solubility (Lamb

and Verlinde, 2011; Poku et al., 2019), it is thus also indirectly dependent on the

underlying land surface.

Figure 1.2: MODIS Aqua Scene from 2022-01-15 over southern Germany displaying a large FLS Ąeld
(NASA Worldview, 2022).

While some insights on atmospheric and land surface effects on the FLS life

cycle exist, these effects and their interactions are manifold, most likely vary

across different temporal and spatial scales and are still loaded with considerable

uncertainty. To identify potential important pathways between the land surface

and FLS, patterns and processes of other boundary layer clouds, such as convective

cumulus clouds, might give some insights. Convective cumulus clouds are, similar

to FLS, in close proximity to the surface, thus pathways of land surface effects on

convective cumulus clouds might be important for FLS as well.

In boreal and temperate regions, an enhancement of convective cumulus cloud cover

over forests compared to the adjacent open land has been found (Teuling et al., 2017;

Cerasoli et al., 2021; Petäjä et al., 2022; Xu et al., 2022). Possible pathways of the

impact of those forests on clouds are the development of a mesoscale circulation

(Avissar and Liu, 1996; Carleton et al., 2001; Bonan, 2008; Wang et al., 2009; Gambill

and Mecikalski, 2011), a higher amount of cloud condensation nuclei (Spracklen

et al., 2008; Petäjä et al., 2022), enhanced evapotranspiration (Petäjä et al., 2022) and

the underlyingmoisture conditions (Rabin andMartin, 1996) (Fig. 1.3). Contrasting

patterns have been detected over the tropics, in particular less convective cumulus

cloud cover over forests and an enhancement over deforested areas (Durieux et al.,
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2003; Wang et al., 2009; Xu et al., 2022). Here, the magnitude of the sensible heat Ćux

has been found to be higher over open land than over forests, as in humid climates

most available energy over forests goes into the latent heat Ćux (Xu et al., 2022).

The stronger sensible heat Ćux over the non-forest area can lead to a development

of a mesoscale circulation and an enhancement of cloud cover over deforested areas

(Durieux et al., 2003; Bonan, 2008; Wang et al., 2009; Xu et al., 2022). Cumulus cloud

cover enhancement has also been detected over cities (Theeuwes et al., 2019) and

over agricultural areas (Ray et al., 2003). To sum up, the inĆuence of the land-

atmosphere interactions on convective cumulus clouds varies depending on region,

season, land surface type and heterogeneity, water availability and the amount of

BVOCs (Duveiller et al., 2021).

Figure 1.3: Potential processes leading to an enhancement of convective cloud cover over temperate
forests based on Teuling et al. (2017). ABL is the atmospheric boundary layer.

The processes depicted for convective cumulus clouds are potentially important

for FLS as well, but are most likely highly nonlinear and depend on the spatial

and temporal scales considered. This thesis aims to quantitatively analyze FLS

occurrence and life cycle in the context of land-atmosphere interactions across central

Europe and over a large temporal extent (10 years). The following section 1.2

gives an overview on fog droplet formation, fog types and outlines the fog life

cycle. The subsequent section (1.3) describes measurement techniques of fog

and low stratus occurrence, with a focus on satellite observations, followed by

a description of the applied data sets (section 1.4). Following the identiĄcation

of open research questions derived from the existing literature, the scientiĄc
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aims are outlined in section 1.5. The chapters 2, 3, 4 and 5 contain the main

research. Initially, the main atmospheric and land surface based drivers of FLS

occurrence are identiĄed and their individual and combined inĆuences on FLS

occurrence are analyzed (chapter 2). The focus of chapter 3 is the analysis of

land-surface induced variations in FLS occurrence, particularly differences between

forest and surrounding agricultural land. In chapter 4, a climatological analysis

of FLS formation and dissipation time over central Europe provides the basis for

investigations of the FLS life cycle in context of land-atmosphere interactions. The

sensitivities of formation and dissipation times to environmental conditions and the

regimes identiĄed therein are analyzed in chapter 5. The Ąndings of the research

chapters are discussed and contrasted with the current literature in chapter 6 and an

outlook on current and planned research is given.

1.2 Scientific basis

Fog is generally deĄned as a suspension of water droplets leading to visibilities

< 1000 m (Glickman, 2000) and can be treated as a cloud touching the ground

(compare Fig. 1.2). Thus, the microphysical processes of fog droplet formation are

similar to those of cloud droplet formation, which are described in section 1.2.1.

Differences in the evolution of different fog types and the radiation fog life cycle

are outlined in section 1.2.2 and 1.2.3.

1.2.1 A microphysical perspective: Fog droplet formation

The basic requirements for fog formation, and all cloud formation in general, are

the availability of moisture and aerosols and a process of cooling the air (Lamb

and Verlinde, 2011). The latter is described by the Clausius Clapeyron equation

(Manton, 1983) as the saturation vapor pressure of water es [hPa] strongly depends

on temperature T [K]:

es(T ) = e0 ∗ exp(
lv
Rv

∗ (
1

T0

−
1

T
)) [hPa] (1.1)

(Manton, 1983; Lamb andVerlinde, 2011), where e0 is the equilibriumvapor pressure

(6.108 hPa), lv [J kg-1] is the latent heat of vaporization, Rv [J kg-1 K-1] is the gas

constant for water vapor and T0 is the freezing point temperature (273.15 K).
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A phase diagram (Fig. 1.4) describes this relationship graphically, where the vapor

pressure is plotted as a function of temperature. Both the saturation vapor pressure

for ice (ei) and for liquid (es) increase exponentially with temperature, as higher

temperatures cause vibrations of water molecules, which break the bonds that hold

water in its condensed phase (Lamb and Verlinde, 2011). Thus warmer air can take

up more water vapor until it reaches saturation.

Figure 1.4: Phase diagram of water from Lamb andVerlinde (2011). es is the saturation vapor pressure
of liquid water, ei is the saturation vapor pressure of ice. T0 depicts the freezing point
temperature at 273.15 K, alas 0 °C with the respective saturation vapor pressure e0. em is
the hypothetical vapor pressure of the melt water in equilibrium with ice.

As the Clausius-Clapeyron equation describes a plane water surface, it needs to be

modiĄed for cloud droplets by considering the effect of curvature (Kelvin effect) and

the effects of solutes, i.e. aerosols (Raoult effect) (Manton, 1983). These effects are

summarized in the Köhler theory and the combination of effects can be seen in a so

called Köhler curve (Fig. 1.5). The Kelvin effect describes the increase in saturation

vapor pressure due to the higher surface tension of droplets compared to a plane

surface. The Raoult effect describes the decrease in saturation vapor pressure when

soluble substances in an aerosol particle are present. This leads to a lower critical

supersaturation and water vapor can condense even if the relative humidity does

not exceed 100% and a cloud droplet becomes activated (Lamb and Verlinde, 2011).
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Figure 1.5: Köhler curve for a droplet containing an ammonium sulfate particle with a dry diameter
of 200 nm (McFiggans et al., 2006). The contribution of both the Kelvin term (dashed
line) and Raoult term (dot-dashed line) are shown. Sc is the critical supersaturation with
the corresponding critical radius rc. If one of these is exceeded, the cloud droplet becomes
activated.

1.2.2 A geographic perspective: Fog types

Themicrophysical perspective on fog droplet formation has shown that an air parcel

has to reach saturation for fog formation to occur. There are threemain processes that

lead to saturation, which dominate in the major fog types described below (Gultepe

et al., 2007; Cotton et al., 2011):

• Cooling the air to its dewpoint (Radiation fog)

• Horizontal movement of air resulting in vertical mixing of moist air parcels

with different temperatures (Advection fog)

• Addition of water vapor to the air (Frontal fog)

While the main process for the speciĄc fog type might dominate, all processes

described above (cooling, mixing, addition of water) occur in most fogs. The three

fog types listed above, aswell as speciĄc sub-typeswhich aremost common in central

Europe and relevant for the presented research are presented in the following.

Radiation fog is the most frequent fog type in central Europe (Fuzzi et al., 1992;

Gultepe et al., 2007) and occurs mostly in the lower Ćatland regions of Europe

(Egli et al., 2019). It forms through radiative cooling of the ground, a build-up of

a temperature inversion and subsequent condensation of the excess water vapor
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on aerosol particles present, and is sustained by radiative heat loss at the fog top

(Roach, 1995; Bruijnzeel et al., 2005; Cotton et al., 2011; Pérez-Díaz et al., 2017).

Clear skies, low wind speeds and anticyclonic conditions are beneĄcial for these

processes (Gultepe et al., 2007; Pérez-Díaz et al., 2017). Geographically, radiation

fog occurs more frequently in valleys (valley fog), compared to mountainous areas,

as shown by Scherrer and Appenzeller (2014) for the Swiss Plateau and Fuzzi et al.

(1992) and Bendix (1994) for the Po valley. Radiation fog occurs mostly in fall and

winter, when the conditions described above are present (Bendix, 2002; Bruijnzeel

et al., 2005; Cermak et al., 2009; Egli et al., 2017). Orographic fog, or upslope fog, can

theoretically be considered as a sub-type of radiation fog (Cotton et al., 2011) since

adiabatic cooling occurs as an air parcel rises along a mountain slope which results

in cooling of the air to its dewpoint (Bruijnzeel et al., 2005).

Figure 1.6: Types of fog based on Bruijnzeel et al. (2005).

Advection fog forms when a moist air mass is advected over a surface with a different

temperature, resulting in vertical mixing and condensation (Gultepe et al., 2007;

Cotton et al., 2011; Pérez-Díaz et al., 2017). In contrast to radiation fog formation,

steadywinds are necessary for the formation of advection fog (Bruijnzeel et al., 2005)

and it is usually thicker than radiation fog and can persist for days. An example of an

advection fog is sea fog, when humid air moves over a cold water surface and is thus

cooled to its dew point (Bruijnzeel et al., 2005; Gultepe et al., 2007; Eugster, 2008).

Steam fog can also be considered a type of advection fog, as it forms when cold air

Ćows over warm water and condensation occurs since the cold air can not take up

the evaporated water fast enough (Bruijnzeel et al., 2005; Eugster, 2008).

Mountain fog is a cloud which is being advected onto a mountain, with the land-

surface positioned at or above the lifting condensation level and thus the cloud

touches the ground (Eugster, 2008). This type of fog is of great importance for

tropical montane cloud forests where it strongly affects the hydrologic, nutrient and

pollution budget (Bruijnzeel, 2001; Bruijnzeel et al., 2005; Berry et al., 2015;Weathers

et al., 2019).
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Frontal fog forms, when water is added to a near saturated layer, for example by

precipitation from an overlying layer (Cotton et al., 2011). Frontal fog occurs in

warm and cold fronts and is strongly coupled to the large-scale weather situation

(Egli et al., 2019).

While all fog types described above occur in central Europe, the focal point of this

thesis is (lifted) radiation fog, as it is strongly coupled to the surface. To focus on

radiation fog, speciĄc Ąltering methods are applied in the research chapters. In the

following, the life cycle of radiation fog is described.

1.2.3 A life cycle perspective: The role of the atmosphere and the

land surface for the radiation fog life cycle

The development of a deep adiabatic radiation fog event can be subdivided into three

stages, as shown in Ągure 1.7. The formation of radiation fog usually begins after

sunset, when radiative cooling sets in and a temperature inversion develops near the

surface (Roach, 1995; Smith et al., 2018) (Fig. 1.7a). Initially, the condensate thereby

formed is deposited as dew due to turbulence (Roach, 1995; Cermak and Bendix,

2011) but as the inversion deepens, the static stability suppresses turbulence and fog

droplets begin to form (Roach, 1995; Smith et al., 2018). This state of fog is referred

to as shallow stable radiation fog (Smith et al., 2018; Toledo et al., 2021) (Fig. 1.7b)

and contains a small amount of liquid water (Toledo et al., 2021). It can last up to 10

hours (Price, 2019) and usually dissipates after sunrise (Price, 2011).

When a substantial fraction of aerosols activate into fog droplets, the fog becomes

optically thick and the primary location of radiative cooling is at the fog top (Roach,

1995; Price, 2011; Boutle et al., 2018; Smith et al., 2018; Poku et al., 2019) (Fig. 1.7c).

The radiation inversion is detached from the ground (Roach et al., 1976) and the

surface warms due to a positive heat Ćux from the soil (Price, 2011). Turbulence

levels increase and the cooled air from the top of the fog layer sinks down to the

bottom, which leads to the development of an adiabatic temperature proĄle (Roach

et al., 1976; Price, 2011; Smith et al., 2018; Poku et al., 2019). This deepening takes

approximately 2 hours (Smith et al., 2018) and the resulting deep adiabatic fog

layer can persist throughout the day for up to 24 hours and more (Price, 2019). A

development from shallow stable radiation fog to deep adiabatic radiation fog occurs

in approximately 50% of all cases (Price, 2011).
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Figure 1.7: Development of a deep adiabatic radiation fog event starting from pre-fog conditions
(Smith et al., 2018). The red arrows depict the region of largest longwave (LW) cooling,
U is the u-wind component, T the temperature, RH the relative humidity. The blue arrows
show turbulent mixing.

Dissipation of radiation fog can occur through various pathways: After sunrise, the

increasing solar radiation leads to a Şburn-offŤ of fog due to warming of air and

mixing of the boundary layer (Roach, 1995; Haeffelin et al., 2010; Maalick et al.,

2016). Shortwave radiative warming can also lead to a transition of fog into a low

stratus cloudvia fog dissipation at the ground and lifting of the stratus layer (Maalick

et al., 2016). Turbulent heat Ćuxes can contribute strongly to the loss of liquid

water content in the fog layer and thus to fog dissipation (Wærsted et al., 2019).

Furthermore, higher wind speeds can lead to the erosion of fog at its top (Bergot,

2016), and high cloudsmoving over the fog can reduce radiative cooling of the cloud

top, resulting in dissipation of the fog layer (Roach, 1995).

The role of the atmosphere

The radiation fog life cycle is the result of non-linear interactions of simultaneously

occurring processes (Haeffelin et al., 2010), with interactions varying along the

temporal course of the fog life cycle (Haeffelin et al., 2013). Along its life cycle,

radiation fog can be inĆuenced by multiple meteorological factors. In general,

low temperatures in combination with sufficient moisture are beneĄcial for fog

formation (Underwood et al., 2004; Ye, 2009; Cuxart and Jiménez, 2012; Pérez-Díaz

et al., 2017; Boutle et al., 2018; Gray et al., 2019; Price, 2019; Mühlig et al., 2020).
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A temperature decrease in the evening together with a dry layer above the boundary

layer strengthens radiative cooling (Underwood et al., 2004; Haeffelin et al., 2010,

2013). The importance of temperature and moisture for fog occurrence can also be

seen over urban areas, where an increase in temperature and a decrease in moisture

leads to a reduction of fog and fog holes (Williams et al., 2015; Klemm and Lin, 2016;

Gautam and Singh, 2018; Gray et al., 2019; Yan et al., 2020).

Low wind speeds and a stable boundary layer further improve the conditions for

radiation fog formation (Cuxart and Jiménez, 2012; Pérez-Díaz et al., 2017; Price,

2019). The inĆuence of wind direction greatly depends on the speciĄc location

and its topography (Wrzesinsky and Klemm, 2000; Bşaś et al., 2002; Klemm and

Wrzesinsky, 2007). In addition, the distribution of the atmospheric pressure Ąelds

as well as general weather situations associated with strong high pressure Ąelds can

be beneĄcial for fog formation (Ye, 2009; Egli et al., 2019).

The role of the land surface

Still, the short-term variability in meteorology can not explain the long-term trends

in fog frequency (Gray et al., 2019), thus, other non-meteorological drivers have to

be considered. A driver situated at the interface of the atmosphere and the land

surface are aerosols, which can serve as CCN in fog (Roach, 1995; Haeffelin et al.,

2010; Maalick et al., 2016; Boutle et al., 2018; Poku et al., 2019; Mühlig et al., 2020).

When the relative humidity increases due to radiative cooling, aerosol particles grow

hygroscopically into fog droplets (Haeffelin et al., 2010; Boutle et al., 2018). A higher

amount of aerosols and thus available CCN has been shown to increase fog lifetime

by delaying its dissipation (Maalick et al., 2016) and increase the likelihood of a deep

adiabatic radiation fog (Poku et al., 2019). In addition, through aerosol-radiation

interactions, aerosols can induce a more stable atmosphere, leading to favorable

conditions for the accumulation of pollutants and fog formation (Gao et al., 2015).

On geographic scales, topography and landform strongly inĆuence FLS patterns by

modifying the inĆuence of atmospheric dynamics on FLS occurrence, leading to

a higher FLS cover in valleys compared to mountainous areas (Bendix, 1994; van

Oldenborgh et al., 2010; Scherrer and Appenzeller, 2014). Gravity Ćows generated

by mountain ranges inĆuence the variability of wind and temperature at the local

scale and thus the presence of fog (Cuxart et al., 2021). Furthermore, advection

slightly above the fog layer, which is strongly linked to topography, controls the

growing phase of radiation fog (Cuxart and Jiménez, 2012). Besides topography,

surface induced turbulent mixing, soil temperature, conductivity and moisture
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Ćuxes inĆuence the fog life cycle (Maronga and Bosveld, 2017; Steeneveld and

de Bode, 2018; Adhikari and Wang, 2020). Dew evaporation can lead to a longer

persistence of fog (Pilié et al., 1975) and higher relative humidity values over

irrigated cultivated areas can potentially induce fog formation (Montecinos et al.,

2008). Similarly, an earlier onset of fog formation has been observed over Ąelds

compared to bare soil (Roach, 1995).

The formation of fog is also sensitive to the surface type as the location of larger

roughness elements inĆuences the local wind, temperature and humidity Ąeld

(Roach, 1995). Large buildings have been found to delay fog formation (Bergot

et al., 2015) and trees have been found to elevate fog formation to higher levels as

the induced drag mixes the lower levels and fog water is deposited onto the trees

(Mazoyer et al., 2017). In addition, an increase in forest area and water availability

can lead to an increase in fog occurrence, but their inĆuence is considerably lower

than the inĆuence of altitude or seasonality (Hůnová et al., 2021a, 2022).

Changing the perspective to investigate the inĆuence of fog on the land surface

shows that fog supplies water and nutrients to various ecosystems around theworld,

such as coastal deserts (Ebner et al., 2011; Roth-Nebelsick et al., 2012; Eckardt et al.,

2013; Lehnert et al., 2018; Mitchell et al., 2020), tropical montane cloud forests (Berry

et al., 2015), Californian redwood forests (Dawson, 1998) and temperate grasslands

during dry spells (Li et al., 2021). Furthermore, fog can inĆuence the productivity in

cultivated crops by modifying radiation, e.g. leading to a higher water use efficiency

in strawberries on foggy days (Baguskas et al., 2018).

While meteorology, topography and seasonality strongly inĆuence the fog life cycle,

additional factors, such as aerosols and the land surface, should not be left out of

consideration. Interactions between these factors are complex and vary both in time

and space. Studies on drivers of factors inĆuencing the fog life cycle should ideally

look at a combination of these drivers simultaneously to analyze their contributions

in a quantitative manner.
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1.3 Observing fog and low stratus cloud occurrence

1.3 Observing fog and low stratus cloud occurrence

From the ground, fog presence is traditionally measured by determining visibility,

as per deĄnition, fog is present if visibility drops below 1000 m (Glickman,

2000). The meteorological quantity to measure visibility is the transparency of the

atmosphere or the Meteorological Optical Range (MOR), which is measured using

transmissometers (WMO, 2018). Besides visibility measurements, the cloud base

height and cloud top height, as well as vertical dynamics, can be determined using

cloud radar and ceilometer measurements (Haeffelin et al., 2010). These ground-

based measurements of fog and low stratus have a high accuracy and high temporal

resolution, but they suffer from drawbacks such as sparse spatial sampling and high

maintenance.

Compared to ground-based measurements, satellite data can provide information

on fog over larger areas not covered by weather stations and has a large potential for

automation. It has to be considered though, that from the satellite perspective, fog is

frequently deĄned as a cloud touching the ground and a discrimination between

(ground) fog and elevated fog (low stratus) is not possible with most sensors.

Satellite-based fog studies thus consider fog and low stratus as one category, which,

as previously indicated, summarizes fog and low stratus as FLS.

Early satellite-based fog detection algorithms have been created for low earth

orbiting (LEO) satellite systems such as the Advanced Very High Resolution

Radiometer (AVHRR) sensor using the brightness temperature difference between

the IR3.7 µm and IR11 µm channel (Eyre et al., 1984; Bendix and Bachmann, 1991;

Bendix, 2002). These channels are used since land or sea have the same brightness

temperature in both the IR3.7 µm and IR11 µm channel, but fog has a lower

emissivity in the IR3.7 µm channel and thus a lower brightness temperature (Turner

et al., 1986). Similarly, fog can be detected during the day using a combination of

solar and infrared bands from the Moderate Resolution Imaging Spectroradiometer

(MODIS) onboard the LEO-satellites Terra and Aqua (Bendix et al., 2006).

A drawback of using sensors on LEO-satellites, such as AVHRR and MODIS, is

their low repeat rate, thus, the observation of the fog life cycle is not possible.

Consequently, fog detection algorithms have been developed for geostationary

satellites, which provide a high temporal resolution (15-minute repeat rate) and

cover a large area. The Ąrst fog detection algorithm on a geostationary system

has been implemented on the Geostationary Operational Environmental Satellite

(GOES) system using the channel differences between the IR3.9 µm and IR11 µm

channel at night (Ellrod, 1995) similar to the AVHRR fog detection algorithm. More
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extensive algorithms have been developed for the geostationary Meteosat Spinning

EnhancedVisible and Infrared Imager (SEVIRI), and have been successfully used for

the detection of fog and low stratus in Europe (Cermak, 2006; Cermak et al., 2009;

Cermak and Bendix, 2011; Egli et al., 2017) and the Namib desert (Andersen and

Cermak, 2018).

The FLS product for Europe by Egli et al. (2017) is based on the Satellite-based

Operational Fog Observation Scheme (SOFOS) algorithm by Cermak (2006). The

SOFOS algorithmuses several threshold tests as depicted in Ągure 1.8 to detect pixels

covered by fog or low stratus clouds. The SEVIRI data used as an input for the

algorithm has a temporal resolution of 15 minutes and a spatial resolution of 3 km

at nadir.

Figure 1.8: FLS detection scheme by Egli et al. (2017), based on the SOFOS scheme by Cermak
(2006). Steps marked with a * have been adapted by Egli et al. (2017). The original
illustration of the scheme can be found in Egli et al. (2017)

.

In a Ąrst step, cloudy pixels are separated from clear sky pixels by using the

reĆectivity properties in the 3.9 µm and 10.8 µm channel, as cloudy pixels have a

higher reĆectivity in the 3.9 µm channel. Pixels covered by snow are excluded using

the Normalized Difference Snow Index (NDSI) (Dozier, 1989). In the subsequent

cloud phase test, non-liquid clouds are removed by making use of the difference in

blackbody temperatures between the 8.7 µm and 12.0 µm channel. This difference

is smaller for ice clouds, as ice absorbs much stronger in the 12.0 µm channel.

Then pixels with large sized cloud droplets are removed by using the emissive

characteristics in the 3.9 µmchannel. The stratiformity of the cloud layer is eventually

tested using the standard deviation of brightness temperature in the 10.8 µm channel

before a plausibility check is conducted which compares the brightness temperature

of each cloud with the one of its surrounding cloud-free pixels.
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The resulting FLS data set shows good agreement with Meteorological Aviation

Routine Weather Reports (METAR), provides a new level of spatial detail and

agrees well with previous studies. However, classiĄcation errors, small-scale FLS

features and multiple cloud layers can lead to misclassiĄcations (Cermak and

Bendix, 2008; Cermak, 2018). These classiĄcation errors can be minimized when

using active satellite data such as LiDAR (Light Detection And Ranging) data from

CALIPSO (Cloud-Aerosol LiDAR and Infrared PathĄnder Satellite Observations)

which also makes it possible to discriminate between ground fog and elevated fog,

as information on the cloud base height is available (Vaughan et al., 2009; Cermak,

2018). Despite its low temporal sampling rate, CALIPSO data is still highly valuable

for the study of fog and low cloud patterns, especially when combined with passive

satellite data. While patterns of FLS found with passive and active satellite data

are similar, about one quarter of FLS situations are not detected by passive satellite

data due to multi-layer cloud situations (Cermak, 2018). Nevertheless, FLS data

sets based on geostationary satellite data currently provide the best combination

of temporal and spatial resolution, which makes them ideal for the study of FLS

occurrence and life cycle on the continental scale.
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1.4 Overview of suitable data sets

The choice of the data sets for this thesis is primarily motivated by the research

questions but also inherently determined by the spatial and temporal coverage,

as well as data accuracy. The study region of this thesis is central Europe, but

the analysis is conducted at three different spatial scales: Regional (continental

Europe, chapter 2), sub-regional (Western France, chapter 3) and continental

(central Europe, chapter 4 and 5). At these scales, satellite and re-analysis data

sets are the ideal choice due to their spatial coverage, as well as similar spatial and

temporal resolution. It is further beneĄcial to use data sets derived from the same

satellite sensor to ensure the same spatial and temporal resolution, since spatial and

temporal resampling always introduces a certain level of uncertainty to the data.

Table 1.1 provides an overview of the data sets used in this thesis.

The basis of this thesis is the FLS data set by Egli et al. (2017) which is currently

available for 10 years (2006Ű2015). From this data set, a novel FLS formation and

dissipation time data set is derived (Pauli et al., 2021). As the FLS data set by Egli

et al. (2017) is based on passive satellite data it allocates fog and low stratus in one

category. In the thesis at hand and in the analyses conducted therein, the results

thus relate to both fog and low stratus processes. Nevertheless, Ąlteringmethods are

applied to speciĄcally concentrate on fog events. The results are discussed focusing

on fog processes while considering also the impact of treating both fog and low

stratus as one category.

For the quantitative analyses in the research chapters, the FLS data set is combined

with other satellite data sets and with reanalysis data. Data on land surface

temperature (LST), evapotranspiration (ET), fraction of vegetation cover (FVC) and

albedo (ALB) is taken from the Land-Surface Analysis Satellite Applications Facility

(LSA-SAF) and is based on Meteosat SEVIRI. The CALIPSO cloud layer product is

based on the LiDAR aboard the polar-orbiting CALIPSO system. Meteorological

data is taken from the ERA5-land and ERA5-pressure reanalysis data sets. As their

spatial resolution differs from the FLS data, they are rescaled to SEVIRI resolution

using nearest neighbor. This is also done for the HILDA (HIstoric Land Dynamics

Assessment) land cover data.
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Table 1.1: Overview of data sets used in this thesis.

Data set & Publication Parameter Chapter

FLS data set, Egli et al. (2017) Fog and low stratus occurrence 2, 3, 4

FLS formation and dissipation
time data set, Pauli et al. (2021)

Fog and low stratus formation
and dissipation time

5, 6

CALIPSO level 2 1 km
cloud layer product,
NASA/LARC/SD/ASDC (2018)

Cloud top height, Cloud base
height

3

ERA5-land, Muñoz Sabater
(2019)

Surface pressure, Temperature,
SpeciĄc humidity, u and v wind
components

2, 3, 5, 6

ERA5-pressure, Hersbach et al.
(2018)

Temperature, SpeciĄc humidity,
u, v and w wind components

3, 6

LSA-SAF, Trigo et al. (2011) Land surface temperature,
Evapotranspiration, Fraction of
vegetation cover, Albedo

2, 3*, 5

WorldClim, Hijmans et al.
(2005)

Height above sea level (Digital
Elevation Model: DEM)

2, 3, 4

HILDA, Winkler et al. (2021) Land cover 4

CM SAF, Clerbaux et al. (2017) Aerosol optical depth 6

*Fraction of vegetation cover map as background used in chapter 3
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1.5 Scientific aims and outline

The fog life cycle is inĆuenced by various meteorological and land surface drivers

as shown in chapter 1.2.3. While local process studies of the inĆuences of different

drivers on the fog life cycle in Europe exist (e.g. Haeffelin et al., 2010; Cuxart and

Jiménez, 2012; Steeneveld and de Bode, 2018; Price, 2019; Wærsted et al., 2019),

their spatial and temporal scales considered are small. In addition, studies on how

the land surface modulates meteorological conditions and thus fog occurrence are

lacking. This is of high importance, as LULCC as well as climate change modulates

the land surface, leading to land-atmosphere feedbacks whose magnitude and

direction still have considerable uncertainty as feedbacks vary in time and space (Li

et al., 2015; Jia et al., 2019a; Xu et al., 2022).

Therefore, the primary target of this thesis is to quantify the inĆuence of

meteorological and land surface drivers on FLS occurrence and life cycle over central

Europe. A regional analysis of these drivers is complemented by a site speciĄc

analysis of the inĆuence of speciĄc land cover types on FLS occurrence. To explicitly

analyze the fog life cycle, a novel FLS formation and dissipation data set is developed

and FLS formation and dissipation time regimes are investigated. By combining

different data sets, the application of different methods and the development of new

data sets, different processes of fog and low stratus can be evaluated and speciĄc

patterns found in central Europe can be analyzed closely. The described objectives

are targeted in the following research chapters:

1. Meteorological and land surface drivers of fog and low stratus occurrence

2. Land surface driven variations in fog and low stratus occurrence

3. Climatological patterns of fog and low stratus formation and dissipation times

4. Identifying and understanding fog and low stratus formation and dissipation

regimes

The research questions and associated hypotheses are presented below and are

summarized in Ągure 1.9.
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(1) Meteorological and land surface drivers of fog and low stratus

occurrence

Local measurement campaigns andmodeling studies have identiĄedmeteorological

drivers, such as wind speed and temperature, and land surface drivers, such as

topography and soil moisture content, as important determinants of FLS occurrence

(Bendix, 1994; Cuxart and Jiménez, 2012; Scherrer and Appenzeller, 2014; Pérez-

Díaz et al., 2017; Steeneveld and de Bode, 2018; Price, 2019; Cuxart et al., 2021).

Still, analyses over a large spatial and temporal scale and studies considering the

interaction of these drivers are lacking. The analysis presented in chapter 2 provides

an overview of the main drivers of FLS occurrence over continental central Europe,

laying the foundation for further site-speciĄc or process-speciĄc analyses in the

subsequent chapters. The main research question of this chapter is as follows:

What are the main drivers of large-scale spatial and temporal fog and low stratus patterns?

The guiding hypothesis is that meteorological drivers are the most important

determinants of fog and low stratus occurrence. It is further hypothesized that land

surface drivers are more important in spring and summer than in fall in winter, as

they are strongly inĆuenced by the growing season.

The following more speciĄc research questions are derived from the main research

question:

• What are the magnitude and direction of the main drivers of FLS patterns?

• What are spatial and temporal patterns of these inĆuences?

• What are the combined effects of multiple drivers on FLS occurrence?

These research questions are targeted by constructing a machine-learning model

to predict daily FLS occurrence over 10 years over continental central Europe. As

the amount of data is large and interactions between FLS and its drivers are non-

linear and complex, machine-learning is an ideal tool for such amultivariate analysis

(Olden et al., 2008; Lary et al., 2016). Spatially explicit model units and seasonal

models are created, which are quantitatively analyzed and compared considering

their predictive power and sensitivities. In the study, daily means of meteorological

and land surface drivers based on satellite and reanalysis data are used.
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(2) Land surface driven variations in fog and low stratus

occurrence

After the preceding analysis of the main drivers of FLS occurrence, this chapter

presents a site-speciĄc analysis of land surface effects on fog and low stratus

occurrence. Land surface effects on cloud cover have been found for convective

clouds, with variation both in time and space (Teuling et al., 2017; Theeuwes et al.,

2019; Xu et al., 2022), but no study looking at the land surface effects on fog and low

stratus clouds has been conducted to date. Thus, the following research question is

the foci point of chapter 3:

How does the land surface inĆuence spatial variations in fog and low stratus occurrence?

The guiding hypothesis is that when meteorological and topographic effects are

minimized, the land surface signiĄcantly inĆuences FLS occurrence. This should

lead to a higher FLS occurrence over land cover types with lower wind speed, lower

temperatures and a higher availability of CCN. The analysis is speciĄcally conducted

for a large forest area and the surrounding agricultural land.

On this basis, the following speciĄc questions are addressed:

• How does FLS occurrence vary spatially over forest compared to surrounding

agricultural land?

• Are there seasonal variations?

• What are potential drivers of the patterns found?

To answer the outlined questions, nighttime (0Ű6 UTC) FLS cover over a forested

area in western France is compared with the surrounding agricultural land.

To decrease the inĆuence of misclassiĄcations on the results, two independent

FLS classiĄcations, based on passive (Egli et al., 2017) and active satellite data

(NASA/LARC/SD/ASDC, 2018; Cermak, 2018) are used. The inĆuences of wind

speed and temperature are analyzed and discussed.
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(3) Climatological patterns of fog and low stratus formation and

dissipation times

While the preceding research chapters focused on the analysis of mean FLS

occurrence, the FLS life cycle, speciĄcally its formation and dissipation time are the

central point of chapter 4. Formation anddissipation time are usually analyzed using

ground-based measurements and modeling studies (Duynkerke, 1991; Haeffelin

et al., 2010; Dupont et al., 2012; Steeneveld and de Bode, 2018; Wærsted et al., 2019;

Karimi, 2020). A satellite-based analysis of FLS formation and dissipation time

spanning a large spatial and temporal scale does not exist. By creating a novel FLS

formation and dissipation time data set and analyzing the climatological patterns,

the research presented in this chapter lays the foundation of the further analysis

of drivers inĆuencing the observed formation and dissipation time patterns. The

following main research question is targeted:

What are the climatological patterns of fog and low stratus formation and dissipation time?

The guiding hypothesis is that the spatial patterns of fog and low stratus formation

and dissipation time show a strong dependency on topography and the distance

to the coast. Local to regional modulations of the meteorological situation further

modify the observed timing of FLS formation and dissipation.

The following speciĄc research questions are addressed:

• What are the spatial and seasonal patterns of the timing of FLS formation and

dissipation?

• How do these patterns relate to the geography of the study area?

To obtain the FLS formation and dissipation time, logistic regression is applied to

the existing FLS data set by Egli et al. (2017) spanning central Europe. The resulting

FLS formation and dissipation times are converted into distinct day- and nighttime

classes relative to sunrise and sunset and the analysis of climatological patterns of

FLS formation and dissipation time is based on these classes. The spatial detail of

the novel data set is shown in a regional case study over southern Germany.
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(4) Identifying and understanding fog and low stratus formation

and dissipation regimes

While FLS occurrence can be related to different meteorological and land surface

based drivers (chapter 2), the inĆuence of these drivers on FLS formation and

dissipation processes varies in magnitude and direction across central Europe and

different FLS types. Investigations of the inĆuence of environmental conditions on

the FLS life cycle are usually region- and FLS type speciĄc. A further comparison of

those site speciĄc FLS life cycle sensitivities to other regions is lacking, especially

on the continental scale. Fog and other cloud occurrence patterns have been

grouped into speciĄc regimes on the regional (Knerr et al., 2021), continental (Egli

et al., 2019) and global (Douglas and Stier, 2021) scale using different clustering

approaches on either FLS occurrence patterns (Egli et al., 2019; Knerr et al.,

2021) or cloud controlling factors (Douglas and Stier, 2021). Transferring these

approaches to group areas of similar sensitivities of FLS formation and dissipation

to meteorological and land surface conditions allows to analyze the FLS life cycle in

respect to FLS type, background climate and geographic location. In this research

chapter, the following main research question is targeted:

What are fog and low stratus formation and dissipation regimes on regional to sub-regional

scales?

The guiding hypothesis is that the sensitivities of the identiĄed FLS regimes to

changes in meteorological and land surface conditions depend on background

climate and FLS type.

The following speciĄc research questions are derived from the main research

question:

• What are the underlying regime-speciĄc sensitivities of FLS formation and dissipation

time to changes in meteorological and land surface conditions?

• How do these sensitivities vary depending on geographic position?

The FLS formation and dissipation regimes are extracted by applying a hierarchical

clustering algorithm to monthly correlations of FLS formation and dissipation time

with meteorological and land surface variables. This is done for each land pixel over

central Europe, making it possible to create distinct geographic clusters of similar

sensitivities of FLS formation and dissipation time to variations in environmental

conditions. The geographic position and relation to the background climate is
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1.5 ScientiĄc aims and outline

analyzed for the obtained FLS life cycle regimes on different hierarchy levels. Sub-

regional FLS life cycle regimes are investigated according to their cluster-average

monthly sensitivities of FLS formation and dissipation time to meteorological and

land surface conditions. Possible FLS type speciĄc formation and dissipation

pathways are discussed.

The four main objectives constitute the four research chapters of this thesis, which

aim to answer the research questions stated above. A schematic illustration of the

research chapters is shown in Ągure 1.9. The results of the individual chapters are

merged and discussed in chapter 6, followed by a conclusion and outlook for future

work. The research presented in this thesis has already been published (chapter 2-

4) or is ready for peer-reviewing (chapter 5) in scientiĄc journals. The original

publications are attached at the end of this thesis.

Regional Scale

Meteorological 
conditions

Sub-Regional Scale Continental Scale

Land Surface

Chapter 2 Chapter 3 Chapter 4

Discussion, Conclusions and Outlook

State of the art

Research Questions

Sensitivities
Time

FLS

no 
FLS

Formation Dissipation

FLSnon-forest

Meteorological 
conditions

FLS life 
cycle

Land Surface

FLS
FLSforest

Chapter 5

Continental Scale

FLS life 
cycle

Environmental
conditions

Clustering

FLS regimes

Figure 1.9: Schematic illustration of the four research chapters. The blue and red arrows depict
moisture and energy Ćuxes from the land surface. The black arrows illustrate the wind
and the green dots illustrate BVOCs. The length of the arrows is not to scale.
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2 Meteorological and land surface

drivers of fog and low stratus

occurrence

2.1 Specific Motivation and Aim

FLS processes occur across a large range of different scales, from small scales of

aerosol activation (10-7 m) to synoptic scales (106 m). These processes are inĆuenced

by various drivers relating to atmospheric and land surface processes (as described

in chapter 1.2.3). Low temperatures, low wind speeds and a stable boundary layer

are drivers beneĄcial for fog formation (Cuxart and Jiménez, 2012; Pérez-Díaz et al.,

2017; Price, 2019), leading to a peak in fog and low stratus occurrence in winter and

fall over continental Europe (Cermak and Bendix, 2007, 2008; Egli et al., 2017). The

atmospheric drivers are further modulated by the land surface, speciĄcally through

inĆuences of topography and landform (van Oldenborgh et al., 2010; Price, 2019;

Ball and Tzanopoulos, 2020). Advected fog can accumulate in steep windward

slopes (Ball and Tzanopoulos, 2020) and lower advected fog densities are found

in leeward locations (Torregrosa et al., 2016; Ball and Tzanopoulos, 2020). The

formation and persistence of radiation fog can also be inĆuenced by topographically

induced drainage Ćows and turbulence (Price, 2019). In addition, soil temperature

andmoisture (Maronga andBosveld, 2017), aswell as the availability of aerosols that

can act as cloud condensation nuclei (Ramanathan et al., 2001; Stolaki et al., 2015),

inĆuence fog formation and dissipation.

While investigations about temporal and spatial FLS patterns over Europe exist

(Cermak, 2006, 2018; Cermak and Bendix, 2007, 2008; Haeffelin et al., 2010; Egli et al.,

2017), as well as many insights on speciĄc local and non-local processes determining

FLS formation and development (Roach, 1995; Haeffelin et al., 2010; Bergot, 2016),

no explicit satellite-based investigation of the determinants of FLS development

spanning multiple years and a large spatially coherent region exists to date.
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2 Meteorological and land surface drivers of fog and low stratus occurrence

The aim of this study is to quantitatively determine the relative importance of several

land-cover and meteorological parameters for FLS occurrence in a large central

European domain. This is done by using amachine learning technique, investigating

its predictive performance concerning FLS occurrence, as well as analyzing model

sensitivities. The high occurrence frequencies of FLS in central Europe duringwinter

provide a good database for conducting this analysis. This study aims to unravel the

question of what the main drivers of large-scale spatial and temporal FLS patterns

in central Europe are and how these drivers inĆuence FLS patterns. The guiding

hypothesis is that meteorological drivers are the most important determinants of

fog and low stratus occurrence in central Europe. It is further hypothesized that

land surface drivers inĆuence FLS occurrence more in spring and summer than in

fall andwinter due to their distinct seasonal cycle and close relation to the vegetation

cycle.

2.2 Data and methods

2.2.1 Study area

The study is conducted in a large domain in continental Europe, from 48° N to

53° N and 5° E to 15° E including parts of the countries Austria, Belarus, Belgium,

Czech Republic, France, Germany, Luxembourg, Netherlands, Poland, Slovakia and

Ukraine (see Fig. 2.1). This continental study area was chosen to allow for a focus

on continental situations unimpaired by the effects of local circulations such as land-

sea and mountain breeze systems. Thus, large mountain ranges, such as the Alps

and areas close to the coast, were excluded. Nonetheless, small local topographic

differences and smaller topography-induced circulations still exist in the presented

study area. The effects of such local-scale modulations on FLS occurrence and FLS-

land surface interactions are reduced by subdividing the study area into a number of

smaller units. In this study, twomodel unit sizes are tested (10x10 and 15x15 SEVIRI

pixels), which are further described in chapter 2.2.5.

2.2.2 Data sets

The FLS product used in this study presented by Egli et al. (2017) is based

on geostationary satellite data from the Meteosat Second Generation platforms

Meteosat 8, 9 and 10. The SEVIRI system on board of the satellites scans the full

hemisphere every 15 minutes. The sub-satellite resolution is 3 km in 11 spectral
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bands with an additional high-resolution visible channel with 1 km resolution. The

FLS product is a modiĄcation of the Satellite-based Operational Fog Observation

Scheme (SOFOS) by Cermak (2006) and covers the years 2006 to 2015. To produce a

data set of daily FLS occurrence, the original 15-minute product is locally averaged

into FLS hours day-1, which serves as the target quantity in this study. Themean FLS

distribution for the chosen study area over the complete time period can be seen in

Ągure 2.1.

Figure 2.1: Average fog and low stratus hours per day from 2006-2015 in the central European study
area based on the product by Egli et al. (2017).

To describe the physical state of the land surface and its possible inĆuence on

FLS distribution, several land surface features are included in this study, based on

products from the Land-Surface Analysis Satellite Applications Facility (LSA-SAF)

(Trigo et al., 2011). All of these products are created using data from Meteosat

SEVIRI and thus have the same spatial resolution as the FLS product. To describe

temperature andmoisture availability of the surface, land surface temperature (LST)

and evapotranspiration (ET) are included. Additional land surface characteristics

relevant for energy and moisture Ćuxes are described by the fraction of vegetation

cover (FVC) and the bi-hemispherical albedo for the total shortwave range (ALB).

To describe atmospheric conditions, ERA5 reanalysis data from the European Centre

for Medium-Range Weather Forecasts (ECMWF) is used. ERA5 is the follow-up

of ERA-interim (Dee et al., 2011) and provides higher spatial resolution (0.25°)

(Hersbach, 2016) which is especially useful for investigating land-atmosphere
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2 Meteorological and land surface drivers of fog and low stratus occurrence

interactions. In this study,mean sea level pressure (MSP) and the u andv component

of wind at 10meters are included. The u and v component of the wind are combined

to calculate the near surface wind speed (WS). As a measure for the persistence of

meteorological conditions that can lead to FLS, the FLS value of the previous day

(FLSprev) is included.

Additional information on the height above sea level, geographical position or land

cover type were tested but are not included in the Ąnal model, as they did not lead

to marked improvements in model performance and, equally to a location ID, could

lead to overĄtting (Meyer et al., 2018, 2019). Meyer et al. (2019) further assume

that using predictor variables that describe the spatial location prevent the model

from making reliable spatial predictions. As such, the Ąnal models are based on

7 predictors (ALB, ET, FLSprev, FVC, LST, MSP, WS) to predict the duration of FLS

cover.

2.2.3 Machine learning model technique

Interactions between the atmosphere and the land surface are often highly

dimensional. Withmachine learning, non-linear and complexmultivariate problems

can be handled (Olden et al., 2008; Lary et al., 2016). Especially for problems where

theoretical knowledge is limited but the amount of available observational data is

large, machine learning can be an ideal tool for addressing these problems (Lary

et al., 2016). In this study, a model was constructed using the machine learning

technique Gradient Boosting Regression Trees (GBRT), aiming at predicting FLS

hours per day on the basis of the meteorological and surface predictors described

above. GBRTs use an ensemble of weak base learners (decision trees) which follow

the negative gradient of the loss function (Friedman, 2001; Natekin and Knoll,

2013). They are Ćexible when using categorical and numerical data and have large

predictive power, being able to represent nonlinear relationships between predictors

and the predictand (Hastie et al., 2001). Furthermore, one of the key strengths of

this machine learning technique is its high level of interpretability, since a number

of interpretation methods exist for GBRTs (Elith et al., 2008). These properties have

been exploited in recent studies to analyze complex atmospheric systemswithGBRTs

(Fuchs et al., 2018; Stirnberg et al., 2020). For this study, the GBRT implementation

of the scikit-learn library in python was used (Pedregosa et al., 2011).
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2.2.4 Data preprocessing

In a Ąrst step (Fig. 2.2 I)), the ERA5 data sets are rescaled to the SEVIRI pixel

resolution of 3x3 km at nadir of the FLS data set using a nearest-neighbor approach.

As described above, wind speed at 10 m height is calculated using the u and v

components of the wind at 10 m height. Furthermore, daily averages are calculated

for FLS, LST, ET, MSP and WS. FVC and ALB are already in the form of daily

means. Daily averages are used, as the focus lies on the day-to-day variability of

FLS occurrence.

Poor quality data and data with high error values, e.g. due to adjacent cloud-covered

areas, is excluded using the following data quality control steps. For FVC, only data

that is free of snow andwater andwith reliable input ranges for the FVC algorithm is

included, as well as data with an absolute error smaller than 0.2. For ALB, data with

an absolute error greater than 0.2 is excluded. For ET, data where input variables

for the ET algorithm have insufficient quality or are missing, is excluded. For LST,

cloud-Ąlled pixels or pixels partly contaminated by clouds, snow or ice are excluded.

Since some cloud-covered or cloud adjacent pixels with either implausible high or

low surface temperatures are not caught by the quality Ćag, they are removed by

setting the valid LST range depending on the month. For the full year, the valid data

range is set to -60 °C to 60 °C. This range is then adjusted depending on the time of

year: the maximum is adjusted to +40 °C from October to March and the minimum

to -50 °C from March to September. With this, plausible LST data at the upper or

lower ends of the temperature range can be kept in each season. The data excluded

in the quality control as described above are marked as invalid in each data set. Any

such Ćagging leads to the exclusion of the data point, as the model only considers

data points with valid data in all data sets.

Since seasonal inĆuence on FLS as well as on numerous other parameters is large,

the models are run with two seasonality settings: 1) The seasonality is kept in the

data and 2) the seasonal cycle is subtracted from the data. These two seasonality

settings are used to investigate to what extent model performance and sensitivities

are dependent on seasonal effects. When removing the seasonality, only the day-to-

day variability is modeled, whereas keeping the seasonality in the data also models

the seasonal interactions of FLS and its predictors. Here, the seasonality is deĄned

as the mean over the investigated time period for every pixel for every day of the

year and then smoothing this time series using a Savitzky-Golay Ąlter (Savitzky and

Golay, 1964). The seasonality is then subtracted from the data sets of each speciĄc

feature.
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2 Meteorological and land surface drivers of fog and low stratus occurrence

2.2.5 Study design

The study area is subdivided into spatially explicit model units, in which data

is treated summarily at the SEVIRI resolution for training, testing and sensitivity

analyses (compare Fig. 2.2 II)). Two spatial sizes of the model units are tested,

with model units containing either 10x10 or 15x15 SEVIRI pixels. Due to the high

latitudinal position and the rather shallow satellite viewing angle of 45° in the study

area, one SEVIRI pixel corresponds to about a width of 4 km and a height of 7 km

(EUMETSAT, 2013). For the 10x10 model unit, this leads to a mean model unit

area of roughly 2800 km2 and 6300 km2 for the 15x15 unit, respectively. This model

unit set-up is chosen to account for regional differences in the study area, while still

choosing a unit size where some variability in land cover is present. Furthermore,

this set-up allows for the evaluation of spatial differences in model performance and

sensitivities. Thus, the 15x15 pixel units contain more data for training and testing,

whereas the 10x10 units provide smaller and thus more homogeneous model units.

To account for seasonal differences, seasonal model runs are conducted as well as

full-year runs. These seasonal runs are winter (December, January and February:

DJF), spring (March, April and May: MAM), summer (June, July and August: JJA)

and fall (September, October and November: SON). In the considered time periods

(full-year or seasons), separate models are trained using either all data or only the

20% highest pressure situations in each model unit to focus on situations where FLS

is favored. The pressure threshold is calculated from the distribution of pressure

values for every model unit and model time period separately.

In each model unit, data is split into separate training and test data sets, containing

70% and 30% of the data, respectively. To ensure that training and test data contain

comparable FLS distributions, the test-training split is coupled with a stratiĄcation

of the FLS data set. In general, the number of available data points varies frommodel

unit to model unit e.g. due to cloud contamination e.g. for LST and FVC data, but

can be higher than 400000 (full-year, all pressure situations, 15x15 pixel model unit

size), but also as low as 3800 (seasonal model, with pressure Ąlter in a 10x10 pixel

model unit).

Considering different seasonality and pressure Ąlters, model unit sizes and

modeling time periods (seasons or full-year), 30 different model settings are

investigated in this study.
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II) Training

Analysis of training and test performance, comparison of performance results using 
different pressure filters, treatments of seasonality, model unit sizes and modeling time periods

III) Validation

I) Input data and data preprocessing

Predictand: FLS 

Seasonal or 
full-year run

In each model unit

Comparison of model results with different pressure exclusion
and seasonality subtraction settings

Analysis of mean feature importance, feature importance per model unit
and partial dependencies

IV) Sensitivity Analysis

Splitting in test data set (30 %) 
and training data set (70 %) 

Grid search in every 5th unit 
or

use set GBRT hyperparameters to train model 

Calculation of performance measures (R², MSE), 
feature importances and partial dependencies 

all measures are saved for each model unit 

Pressure exclusion (optional)

Model unit size: 
10x10 or 15x15

With seasonality or
deseasonalized

Final predictors: 
ALB, ET, 

FLS
prev

, FVC, LST, 

MSP, WS

Predictors

Meteorological 
parameters

Geographical 
parameters

Land cover type 
percentage

Land surface 
parameters

● Scaling to 3 km pixel size ● Daily averaging

● Calculation of seasonality ● Quality control

Figure 2.2: Schematic of the model workĆow. Step II and III are conducted multiple times for
different settings concerning pressure Ąlters, treatments of seasonality, model unit sizes
and modeling time periods.
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Hyperparameter tuning

Hyperparameter tuning is conducted using grid search with a small range of

possible values to avoid overĄtting, e.g. by using only low values for the maximum

depth (Tab. 2.1). Since grid search is computationally expensive, it is conducted

in every 5th model unit over a range of feature combinations and model settings to

investigate the inĆuence on the hyperparameters. The hyperparameters proposed

in the grid search are similar over model units, feature combinations and model

settings, and the most common hyperparameters are used as the Ąnal settings.

Table 2.1: Parameter grid for the grid search and Ąnal hyperparameters used for model training.

Number of
estimators

Learning
rate

Maximum
depth

Minimum
samples per
leaf

parameter
grid

500, 1000,
1500, 2000,
2500, 3000

0.1, 0.05,
0.03, 0.02,
0.01

2, 3 10, 14, 18

Ąnal
settings

3000 0.1 3 10

Validation and sensitivity analysis

To test the inĆuence of different model settings on model performance and

sensitivities, the validation (Fig. 2.2 III)) and sensitivity analyses (Fig. 2.2 IV)) are

conducted for all model settings described above. Model performance is evaluated

using the coefficient of determination (R2) and the mean squared error (MSE)

between observed and predicted FLS in each model unit. The validation results are

then evaluated concerning the differences between settings for each unit separately

and over all units. Potential overĄtting is analyzed by comparing R2 andMSE for the

test and training data sets. Correlations between variables are quantiĄed using the

SpearmanŠs rho coefficient to account for effects of outliers and non-linearity in the

investigated correlation.

To investigate the most important features for model performance, the permutation

feature importance is calculated for all model units. The permutation feature

importance measures the increase in prediction error after permuting (randomly

shuffling) one feature (Breiman, 2001). This breaks the relationship between the

feature and the target, thus indicating howmuch the model depends on that feature
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(Strobl et al., 2007; Molnar, 2019). Compared to the often used impurity based

feature importance (gini importance), the permutation importance is not as strongly

biased towards variables with many categories and the continuous variable (Strobl

et al., 2007). Thus, the term feature importance relates to permutation importance

in this paper. The mean feature importance is calculated over all model units, but

is also investigated for each model unit separately. To improve comparability, the

permutation feature importance is scaled, so the sum of permutation importance

over all features equals 1.

While the feature importance only displays the relative importance of a feature,

the sign and nonlinearity of the predictand response relative to changes of each

predictor variable can be analyzed using the partial dependence. In the context of

this paper, the partial dependencies quantify the average change of the predicted

FLS values relative to either one or two features (one-variable partial dependence

and two-variable partial dependence) while accounting for the average effects of all

other variables (Friedman, 2001; Elith et al., 2008; Fuchs et al., 2018). The partial

dependence is calculated by gridding the investigated feature and calculating the

corresponding average FLSpredictionwhile the complement features are varied over

their distribution (Molnar, 2019).

2.3 Results

2.3.1 Model performance

As a Ąrst overview of model performance, GBRT performance during training and

validation with independent data is analyzed for all different model unit sizes as

well as seasonality and pressure settings. The results of this validation are shown in

Ągure 2.3. R2 values are generally higher when Ąltering for high pressure situations,

but are similar for runs containing seasonality versus runs that use deseasonalized

data. The mean R2 values of the model units in the 15x15 runs tend to be lower

than in the 10x10 runs. The highest mean R2 (averaged over all model units)

is found in the pressure-Ąltered, deseasonalized 10x10 spring run (0.94), but is

similarly high (∼ 0.93) in other runs (e.g. in the pressure-Ąltered 15x15 winter run

with seasonality). A clear seasonal pattern in model performance exists, with skill

generally lowest in summer and highest in winter, albeit this seasonal pattern is

weakened when only high pressure situations are considered. The difference in

R2 between the model runs with all pressure values (Fig. 2.3 A & C) versus those

considering only high pressure situations (Fig. 2.3 B & D) is therefore lowest in
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winter. The full-year models feature the lowest R2 of runs without a pressure Ąlter

(mean R2 0.6Ű0.7), but also reach values ∼ 0.9 in the pressure-Ąltered runs.

The regional variability of model performance, expressed as the spread in R2 values,

is highest in winter and for the full-year run, and lowest in spring and fall. The

training R2 is signiĄcantly (p<0.01) higher than the test R2 indicating some level of

overĄtting in the statistical models. Depending on the season, the training R2 is on

average slightly (4Ű8%) higher over all model units, and smaller than that in the

15x15 and full-year models. Still, the high test R2 shows the ability of the models

to generalize relationships between the predictors and FLS patterns learned during

training. The difference between test and train R2 is higher in the 10x10 model units

and lowest in the full-year runs. The model predictions do not feature a noticeable

bias (mean bias = 0.0, median bias ∼ -0.3).

Figure 2.3: R2 of training and test set over all grid sizes and seasons using either all pressure situations
(left) or only high-pressure situations (right). The top row shows the results using the
data with seasonality, while the bottom row displays the model results using deseasonalized
data.
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MSE patterns are similar to R2, with higherMSE values (thus worse performance) in

the 15x15 runs and a larger difference of MSE between seasons than between model

runs with different seasonality subtraction settings (Fig. A1.1). This means that

model performance is more dependent on the modeled season than on seasonality

subtraction settings. As the MSE is dependent on the absolute values, MSE patterns

are inĆuenced by the seasonal FLS distribution, thus leading to high MSE values in

winter and fall, and lower MSE in spring and summer.

To investigate the reasons for overĄtting, the difference between training and test

R2 and MSE is correlated with the number of data points available for training and

testing. For the correlation with the absolute difference between training and test R2

the SpearmanŠs rho is approximately -0.5 (p<0.01) especially in the full-year and

winter run. For the MSE correlation, the SpearmanŠs rho is -0.5 (p<0.01) in the

full-year, spring and fall runs. Thus, overĄtting is partly controlled by the number

of available data points, and models generalize better when more data points are

available for training and testing.

Due to the good overall performance in the 10x10 model units and the higher spatial

resolution, only the results of the 10x10 model units are presented in the following

sections. Where not speciĄcally pointed out, results of the 15x15 model units are

similar, though.

Figure 2.4 shows spatial patterns of R2 relative to the domain average R2 for two

different model settings (full-year models including seasonality with (Fig. 2.4 A)

and without (Fig. 2.4 B) pressure Ąlter). This highlights model units that either

have distinctly better or worse performance than the overall mean. Additionally,

in Ągure 2.4 C a topographic map is shown for the study area, together with two

scatterplots of the R2 deviation with the mean height per model unit (Fig. 2.4 D)

for values west and east of 10° E separately. The corresponding SpearmanŠs rho, p-

value and R2 for the complete correlations (negative and positive R2 deviation values

together) are added in the top right corner of the (Fig. 2.4 D) plot.

The domain average R2 for the model run including all pressure situations is 0.71,

for the model run using only high pressure situations it is 0.89. While the spatial

patterns of skill are similar for both model settings, the models using only high-

pressure situations feature a lower deviation from the domain average R2. Generally,

in the north-eastern part of the model region, e.g. in Poland and the central Czech

Republic and the south-eastern and north-eastern parts of Germany, the R2 in the

model units shows a positive deviation from the domain average.
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Figure 2.4: Map of deviation from the mean R2 over all model units (domain average) in%, a
topographic map (based on Hijmans et al. (2005)) of the study area and a correlation of
these two. The left upper panel (A) shows the results from the model run using all pressure
situations, the right upper panel (B) shows the results from the high pressure model run.
Both include the seasonality. The domain average R2 is computed for all model settings
separately. For better visibility, the colormap is scaled logarithmic. In (C) the topographic
map for the study area is shown. In (D) the results from (A) are correlated with the
mean height per model unit for model units values west and east of 10° E separately. The
corresponding SpearmanŠs rho, p-value and R2 of the correlation of the combined negative
(blue) and positive (red) R2 deviation values are plotted in each subplot.

In the western part of the model region (western Germany), as well as in parts of

the south western part of the model region (northern parts of the Vosges, the upper

Rhine valley, Black Forest) the R2 is lower than the domain average. This is also

the case for the mountain ranges surrounding the Czech Republic as well as in the

south eastern part of the model region (High Tatras). The relationship between R2

deviation and topography is visible in a) the visual relationship between the two

(e.g. compare Fig. 2.4 A & C) and b) the correlation of the two (Fig. 2.4 D). With

a SpearmanŠs rho of -0.36 the latter is especially strong for values east of 10° E. A

correlation of A and B with the distance to the coastline produced a SpearmanŠs
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rho close to 0 with a p-value>0.05. Small differences between pressure settings are

visible in the north eastern and south western part of the model region, as well as

the border triangle between Germany, Poland and the Czech Republic at 15° E. The

apparent spatial patterns of skill are similar during all seasons, and independent of

skill measure (R2 or MSE) and training or test data set.

2.3.2 Feature importance

In Ągure 2.5 the domain-average feature importance is shown for all seasons and

speciĄc model settings as stacked barplots. The left-hand panel (Fig. 2.5 A) shows

results for themodel run that contains seasonality, while the right-hand panel shows

the results of the deseasonalized model (Fig. 2.5 B). In these subplots, the darker-

colored bars on the left display the results of the model runs containing all pressure

situations, while the lighter-colored bars on the right show the results of the model

using only high-pressure situations. Since results in the 15x15 model unit runs are

similar, only 10x10 model unit results are shown and described here.

In general, clear similarities but also some distinct differences in mean feature

importance are apparent: MSP, FLSprev, WS and ET are among the most important

features in all model runs. During winter and summer, MSP and WS are the most

important features, while in the spring, fall and full-year run, ET and FLSprev gain

importance. When Ąltering for high pressure situations, ET becomesmore important

while the importance ofMSP decreases. This is especially apparent in the spring, fall

and full-year runs. LST reaches its highest feature importance in summer, but overall

has little importance for model performance. ALB and FVC have little importance

in all model runs however, this is slightly increased when Ąltering for high pressure

situations in summer.

Differences between the model runs containing seasonality and the deseasonalized

model runs are present in the exact values of feature importance but general patterns

are similar. The largest differences in feature importance are apparent between the

different seasons and the pressure exclusion runs. Model unit size and subtraction

of seasonality only produce small differences in the mean permutation feature

importance over all model units.
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Figure 2.5: Mean 10x10 feature importance over all model units for all features and all seasons. The
darker, left bars display the feature importance of the model runwith all pressure situations,
the right, brighter bars display the feature importance of the model run with high pressure
situations. The left subplot (A) shows the feature importance from themodel run including
the seasonality, the right subplot (B) the one of the deseasonalized model run.

2.3.3 Spatial patterns of relevant features

In Ągure 2.6 the most important feature per model unit of the full-year run is

shown for four different model settings. In general, the spatial patterns of the

most important feature show clear differences between the model runs using all

pressure situations (Fig. 2.6 A & C) versus those using the 20% highest pressure

values (Fig. 2.6 B & D). When all pressure situations are used, MSP is the most

important feature in most model units. This pattern is especially prevalent in the

deseasonalized model run. Here, MSP is the most important feature in all model

units except for some units in the eastern part of the study area, where ET is themost

important feature. In the model run that contains seasonality (Fig. 2.6 A), ET is the

most important feature in numerous model units east of 10° E, in parts of eastern

Germany, most of the Czech Republic and parts of Poland. In three model units in

the Czech Republic, FLSprev is the most important feature.

As expected, in the high-pressure Ąltered model runs MSP is much less important.

Instead, ET is the most important feature in large parts of the eastern study area.

Other than ET, MSP, FLSprev and WS are the most important features in numerous
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model units across both seasonality settings (Fig. 2.6 B & D). MSP is the dominant

feature in most parts of western Germany and eastern France and in some units in

the Czech Republic and Poland. FLSprev is dominant in the north western part of the

Czech Republic, western Germany as well as parts of France and Poland. WS is the

most important feature in some scattered model units of the model run including

seasonality. In the deseasonalized model run, WS is dominant in more model units

mostly in the western and the north western part of the study area.

Figure 2.6: Most important feature per 10x10 model unit in the full-year run over all model settings.
The left column shows the model runs including all pressure situations (A & C) while
the right column shows the model runs using only the 20% highest pressure situations
(B & D). In the model runs of the top row, seasonality is included, in the bottom row it is
subtracted.

The seasonal patterns of the most important feature (Fig. 2.7) are similar to the

patterns observed in the full-year run. In the model runs using all pressure values

(Fig. 2.7 A), MSP is dominant over all seasons, with only some exceptions in

winter and fall. In high-pressure situations, though, seasonal differences are more

pronounced (Fig. 2.7 B): in winter, FLSprev is dominant in the western part of the

study area (Germany and parts of France) and WS is dominant in the eastern part

of the study area. MSP is the most important feature in between WS and FLSprev
in central and north western parts of the study area. Other than these three, ET

and LST are the most important features in some scattered model units as well. In
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spring, the most important features are FLSprev in south western and ET in north

eastern parts of the study area. Other than that,MSP is dominant inmost of the study

region, with some scattered model units where LST and WS are the most dominant

features. In summer, MSP is the most important feature in most model units, with

WS being dominant on the border of Germany and France, in Poland, in the Czech

Republic and in some scattered model units in central Germany. Apart from that,

only a few model units are dominated by FLSprev and LST. In fall, MSP is dominant

in the western part of the study area and ET is dominant in the eastern part of the

study area (east of 10° E). WS is dominant in parts of eastern Germany and Poland

and FLSprev is the most important feature in some scattered model units in Germany,

Poland and the Czech Republic.

Figure 2.7: Most important feature per 10x10 model unit for different seasons. The top row shows
the model run using all pressure situations while the bottom row shows high-pressure
situations. Both model runs use the data that includes the seasonality.

2.3.4 One-variable partial dependence

In Ągure 2.8 the predictand responses relative to changes in all predictors are

displayed as partial dependencies (see Sec. 2.2.5) for all considered time periods.

Since the partial dependencies are calculated for each model unit separately, the

mean and the interquartile ranges of the partial dependencies of all model units are

presented here. Additionally, the distribution of values of each predictor is plotted

below the corresponding partial dependence as a qualitative assessment of the

representativeness of the obtained partial dependencies. The partial dependencies
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presented here are from themodel runwhere seasonality and all pressure values are

included, since the partial dependencies are similar over seasonality and pressure-

exclusion settings. The effect of the high pressure Ąlter on the partial dependence of

MSP is shown in the bottom right panel (all other partial dependencies of this run

are similar to the ones shown).

The partial dependence can be understood as the deviation from the mean of the

predictand (here FLS occurrence) that can be attributed to a speciĄc predictor.

Thus, a positive partial dependence at a given feature value indicates a positive

inĆuence on modeled FLS occurrence. Similarly, a negative partial dependence at

a given feature value indicates a negative inĆuence onmodeled FLS occurrence. The

magnitude of the partial dependence determines the magnitude of the inĆuence. A

partial dependence close to zero indicates very little or no inĆuence onmodeled FLS

occurrence at the given feature value.

As a sensitivity measure, the range of the mean partial dependence over all model

units for the full-year run is given in the text, together with the corresponding slope

direction of the partial dependence curve. This provides a measure of inĆuence on

modeled FLS occurrence for each feature over the corresponding value distribution

with a greater sensitivitymeasure indicating a large positive or negative inĆuence on

modeled FLS occurrence. Seasonal differences of sensitivity are shortly described.

The partial dependence of MSP (Fig. 2.8 A) is nonlinear, following a clear

pattern: in low pressure situations (980 hPaŰ1005 hPa) the partial dependence

is low, however, not many cases fall into this value range. In situations with

1005 hPa < MSP < 1030 hPa, where most of the cases occur, the partial dependence

increases substantially, reaching its maximum at∼ 1030 hPa or even higher pressure

situations during winter, before it decreases again for pressure situations around

1040 hPa. However, only a few cases (most of them in winter) exist with such high

pressure of ≈ 1040 hPa. The full-year sensitivity of MSP is +3.64 and the seasonal

sensitivity is highest in winter and fall (+3.63) and lowest in summer (+1.73).

FLS on the previous day (Fig. 2.8 B) shows themost pronounced partial dependence

pattern over all seasons and the full-year run with increasing values over the

complete value distribution. The minimum partial dependence is thus reached for

small FLSprev values and the maximum partial dependence for high FLSprev values.

The sensitivity of FLSprev also shows the strong inĆuence of FLSprev on modeled FLS

occurrence and lies at +7.04 for the full-year run. The FLSprev sensitivity reaches its

seasonal maximum in fall (+7.94) and its minimum in spring (+4.95).
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Figure 2.8: Partial dependence plot showing the mean response in modeled FLS occurrence to changes
in all input features over all seasons, for the model run using data with seasonality. The
top plot displays the partial dependence, the bottom plot shows a kernel density estimation
of the data distribution. The shown features are: MSP in the model run using all
pressure values (A), FLSprev (B), WS (C), ET (D), LST (E), ALB (F) and FVC (G).
In the additional (H) plot, the mean model response to changes in MSP in high pressure
situations is shown.
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The pattern of partial dependence of FLS onWS (Fig. 2.8 C) is strongly dependent on

season and the distribution of values. At low wind speeds (0 to 2 m s-1) the partial

dependence decreases in winter, fall and the full-year run. In spring and summer

it remains more or less constant at such low WS. In summer, it increases slowly, in

spring and the full-year run it increases around 8 m s-1 and for the winter and fall

run it remains more or less constant. Still it has to be considered that any WS values

greater than 6 m s-1 are rare and the corresponding partial dependence pattern may

not be as reliable and due to the low occurrence frequency not that relevant. The

full-year sensitivity ofWS is, compared toMSP and FLSprev relatively low at -1.33 but

reaches higher values in winter (-4.75). The seasonal minimum of WS sensitivity is

reached in spring (+1.65).

The partial dependencies of the ET and LST are also both strongly dependent on

the investigated season. In summer, the partial dependence of FLS on ET (Fig. 2.8

D) is more or less constant at a partial dependence of 0 predicted FLS h day-1 over

the complete value distribution. In all other seasons and the full-year run the partial

dependence decreases at ET values from 0.0 to 0.1mmh-1. In spring and the full-year

run it then slightly increases again at 0.4 mm h-1. Due to the low distribution of ET

values greater than 0.3 mm h-1 the corresponding partial dependence values might

be less reliable. The full-year sensitivity for ET is at -2.90, the seasonal maximum of

sensitivity is found in fall (-4.09) and the minimum is found in summer (-0.94). The

partial dependence of FLS on LST (Fig. 2.8 E) is highest when LSTs are below the

freezing point, reaching a maximum at around -10 °C. At higher LSTs, the partial

dependence of FLS on LST decreases. In summer, the LST value range and also

these partial dependence patterns are shifted to higher temperatures. The full-year

sensitivity of LST is similar to the ET sensitivity at -2.93. The seasonal maximum

of LST sensitivity is found in fall (-3.06), the seasonal minimum is found in winter

(-1.85).

Similar to their low feature importance, ALB (Fig. 2.8 F) and FVC (Fig. 2.8 G)

both have small partial dependence values. The partial dependence of ALB slightly

increases over the complete value distribution of all seasons and the full-year run.

The partial dependence of FVC is low and constant over all seasons. Interestingly,

the full-year sensitivity of ALB reaches +2.56, a similar high value to the sensitivity

of ET and LST. The seasonal maximum is found in winter (+2.19) and the minimum

is found in summer (+1.24). The full-year sensitivity of FVC is at +0.87 and thus the

lowest of all features. The seasonal FVC sensitivity is highest in winter (+0.73) and

lowest in fall (-0.19).
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In the pressure-Ąltered model run, all partial dependencies show a similar pattern,

except for the partial dependencies of MSP (Fig. 2.8 H). This is due to the reduced

value range of the MSP values, thus only the decrease in the partial dependencies

starting from around 1035 hPa is visible. The MSP sensitivity changes direction in

the pressure Ąltered model and lies at -4.33 for the full-year run and is strongest in

winter (-4.03) and lowest in spring (-0.74).

All in all, the response in modeled FLS occurrence is distinctive for the features

FLSprev, ET, LST, WS and MSP, with the latter showing a clear dependency on

the application of the pressure Ąlter. For changes in FVC and ALB, the response

in modeled FLS occurrence is small. These partial dependence patterns conĄrm

the feature importance patterns discussed above, with FLSprev, MSP and ET being

important features for model performance.

2.3.5 Two-variable partial dependence

While the isolated impacts of individual features can be investigated with the one-

variable partial dependencies, two-variable partial dependence plots can show the

combined effects of two variables on the response of modeled FLS occurrence,

allowing for the analysis of possible co-dependencies. Based on the one-variable

partial dependencies described above, six combinations of the most important

features are presented in Ągure 2.9. These are MSP-WS (A), FLSprev-MSP (B),

FLSprev-ET (C), ET-MSP (D), FLSprev-WS (E) and ET-LST (F). In Ągure 2.9,

the two-variable partial dependencies of the full-year run using all pressure

situations including the seasonality are shown. Similar to the one-variable partial

dependencies, the exact data preprocessing pertaining to seasonality treatment

or pressure Ąltering does not substantially inĆuence the two-variable partial

dependencies. To outline characteristics of the distribution of the considered features

and as an assessment for the representativeness of the results, two distribution

borders are marked in the plots below: inside the outer dashed line 99% of the data

can be found, inside the inner dashed line 75% of the data is present. Additionally,

on the equivalent axes of the feature combinations, the 1st, 50th and 99th percentiles

are marked as short lines.
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The two-variable partial dependence of MSP and WS is displayed in Ągure 2.9 A.

The values of the partial dependence are low over the complete value range of both

features. A diagonal pattern, where low wind speeds and high pressure values lead

to higher predicted FLS values is indicated. The combined effects of FLSprev andMSP

in Ągure 2.9 B are stronger, with FLSprev being the more dominant variable. Still, a

weak combined effect of higher MSP values and higher FLSprev values leading to

higher predicted FLS is visible.

Figure 2.9: Two-variable partial dependence on FLS (hours day-1) for six feature combinations for the
10x10 full-year run including the seasonality. The feature combinations are MSP andWS
(A), FLSprev and MSP (B), FLSprev and ET (C), ET and MSP (D), FLSprev and WS (E)
and ET and LST (F) . The outer dashed circle contains 99% of the data, the inner dashed
circle contains 75% of the data. On the x and y axes of the feature combinations, the 1st,
50th and 99th percentile are marked as short lines.
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In Ągure 2.9 C the combined effects of FLSprev and ET are visible. While low FLSprev
values in combination with high ET values have a negative effect on predicted FLS,

a positive effect on predicted FLS is visible for high FLSprev and low ET values. The

two-variable partial dependence of ET and MSP (Fig. 2.9 D) also shows a diagonal

pattern of the combined effect of high MSP values with low ET values leading to

higher predicted FLS. The combined effects of FLSprev andWS (Fig. 2.9 E) are similar

to FLSprev andMSP: FLSprev dominates the combined effects, with stronger inĆuence

of WS when FLSprev values are higher, indicated by the more diagonal patterns of

the two-variable partial dependence at FLSprev values larger than 5 hours day-1. For

the two-variable partial dependencies of ET and LST (Fig. 2.9 F) low ET values with

low LST values lead to high predicted FLS values.

In general, the seasonal differences of the two-variable partial dependence are

governed by the seasonal differences in FLS occurrence as well as the range of values

of the features. Since FLS occurrence is higher in winter and fall, the magnitude of

the two-variable partial dependence is higher in winter and fall. Furthermore, the

combined effects of MSP and WS are stronger in fall and winter thus conĄrm the

combination of high MSP - lowWS leading to higher predicted FLS indicated in the

full-year plot. In summer and spring, two-variable partial dependencies are low.

Considering the patterns seen in the one-variable and two-variable partial

dependence plots FLSprev shows the most pronounced and clear effect on modeled

FLS occurrence and dominates the combined effects in the two-variable partial

dependence plots. This is especially interesting since MSP is the most important

feature in most model runs (compare Fig. 2.5).

2.4 Discussion

2.4.1 Model performance

In general, the statistical models are capable of accurately predicting FLS using

meteorological and land-cover predictors. While subtracting seasonality does not

inĆuence model performance substantially, Ąltering for high pressure situations

boosts model performance signiĄcantly. Filtering for high pressure situations also

leads to a higher relative frequency of radiation fog situations, which helps themodel

learn the relevant patterns, and thus improves its performance. Performance is best

in winter and worst in summer. These patterns might both be due to more frequent

high pressure situations in winter (e.g. Bartoszek, 2017), which can also be seen by

signiĄcantly higher MSP values in winter compared to the other seasons (winter
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mean MSP being 5 hPa higher) in the ERA5 data used in this study. Additionally,

Ąltering for high pressure values makes it easier for the model to generalize and

predict FLS. In summer and when using all pressure values, FLS occurrence may

be due to local processes more frequently, such as orographic lifting (Egli et al.,

2019) and not speciĄcally tied to large-scale weather systems. This is in line with the

results shown in vanOldenborgh et al. (2010)who found that atmospheric dynamics

contribute up to 40% to the variability of fog occurrences in winter, whereas in

summer, the contribution of circulations on fog occurrence is more dependent on

local factors.

The spatial differences of R2 show lower model performance in units with high

topographic variability such as parts of the mountain ranges surrounding the Czech

Republic and the High Tatras. Furthermore, the deviation from the mean R2

(Fig. 2.4) and MSE per model unit is greater in areas with greater height above

sea level and with greater standard deviation of height in that model unit. The

correlation between themean height above sea level and deviation from themean R2

permodel unit is especially prevalent east of 10° E,with a stronger negative deviation

from the mean R2 at larger heights (compare Fig. 2.4 D). This correlation is strongest

in spring and fall. The decreasing performance in these either high altitude or

topographically highly variablemodel units could be due tomore pronounced small-

scale, local processes that the model is not capable of reproducing. This could be

also due to the missing terrain information in the selected predictors, e.g. according

to Cuxart and Jiménez (2012) the advection Ćows generated by the topography are

crucial for the growing phase of radiation fog. As stated in the Methods, using static

geolocation variables such as height above sea level or geographic position can lead

to overĄtting andmight be useful in training but not inmaking spatial predictions, as

stated in Meyer et al. (2018) and Meyer et al. (2019). Terrain information (as height

above sea level) is left out for this reason.

Besides the missing terrain information, the low resolution of the ERA5 data might

lead to worse performance in topographically highly variable model units. In these

units, the ERA5 data might be less accurate in general due to grid averaging. Here,

the quality of the ERA5may be improved by using a different interpolation technique

like kriging or bicubic interpolation during data preprocessing. However, such

a change is not expected to markedly change the results. Generally, the model

performance in the eastern parts of the study area is high, likely due to rather low

variability in terrain and a large inĆuence of large-scale circulation patterns on fog

occurrence leading to mostly radiation or advection fog. These processes are well

captured by the chosen predictors and therefore well represented in the models.
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Interestingly, the high-pressure Ąlter can also lead to lower performance in some

model units in winter, such as near the Harz and in parts of Poland. This is not

the case at any other time of year, though. Two things might be responsible for this

pattern: First, in the high pressure situations inwinter, available data for training and

testing has been reduced strongly. Thus, false predictions have a stronger inĆuence

on the R2 of the model unit when less predictions are made in general. In model

units with more available data points, false predictions have less inĆuence on the

model unit R2. Secondly, the lower performance in these units may indicate that in

these regions, fog occurrence during winter may be caused by processes that are not

inherently captured by the set of predictors. For example, terrain-induced processes

may play a role as stated above, such as on the Mt. Brocken at 1142 m asl which is

immersed in clouds about 50% of the time (Acker et al., 2002).

A thorough investigation of the inĆuence of the FLS distribution on model

performance shows that in model units with higher FLS occurrence, model

performance is better. The relationship of model performance and mean FLS

occurrence for each model unit over all seasons is strong (SpearmanŠs rho = 0.8)

and signiĄcant (p<0.01) especially in the model runs using all pressure situations.

This conĄrms the previously stated relationship of better performance in winter

and worse performance in summer. These Ąndings underline the inĆuence of data

availability and distribution on model performance.

OverĄtting is apparent in all models, with larger differences between test and

training performance in the 10x10 units than in the 15x15 units. This is likely due

to the higher number of available data points in the 15x15 units for training and

testing, shownwith the decreasing difference between training and test performance

with increasing number of data available in the model unit. More data thus makes it

possible to learn more FLS situations and the subsequent behavior of the predictor

variables. Furthermore, in a larger domain, a model needs to be able to represent

rather general FLS patterns instead of speciĄc local FLS patterns. A highly localized

modelmight be also prone to overĄtting. This could be investigated in future studies,

by varying themodel unit size while keeping the number of available training points

constant. The different model unit sizes show the conĆict between sufficient data

for training and testing and small enough regional models to model smaller scale,

regional FLS patterns. This conĆict between data availability and spatial resolution

is frequently encountered in observational studies. Conducting hyperparameter

tuning in all model units for all model unit sizes in combination with regularization

would lead to higher computation times, but could reduce the observed overĄtting.
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2.4.2 FLS drivers and their temporal and spatial patterns

Generally, fog formation and presence depend on multiple factors, such as the

synoptic situation, smaller-scale atmospheric circulations and local orographic

factors (Pérez-Díaz et al., 2017). The important role of the synoptic situation is

underscored by the results of this study, with the high feature importance of MSP

and WS, which are used as proxies for atmospheric dynamics. In high-pressure

situations, often related to anticyclonic conditions, an inversion can develop during

nighttime which is a prerequisite for the formation of radiation fog. The results

obtained from the sensitivity analysis indicate that lower wind speed together with

high pressure leads to a stronger stability and thus persisting FLS. This interplay

of MSP and WS is also visible in Ągure 2.9. The inĆuence of low wind speeds

on turbulence generation during FLS development is not visible here as such

phenomena occur below the spatial resolution of the ERA5 data. Wind direction has

not been included in this study, since creating a general FLS - land surfacemodelwith

a low number of predictors andminimum amount of rescaling has been a priority in

this study, to Ąrst create a general model framework which can be further developed

based on its Ąrst results in the future. For example, more detailed treatments of wind

speed and direction in different atmospheric layers will be investigated in further

studies. In the investigated study area, especially humid airmasses from thewest are

important for fog occurrence (Wrzesinsky and Klemm, 2000; Bşaś et al., 2002; Klemm

and Wrzesinsky, 2007). The importance of atmospheric dynamics and air masses is

also visible by the higher frequency of model units with WS and MSP as the most

important feature in the western parts of the study region, which possibly indicates

a decreasing relevance of westerly (moist) air masses with increasing continentality.

As noted above, wind direction should thus be added as a predictor in further

studies.

The positive relationship of FLS coverwith FLSprev ismost likely due to persisting FLS

over several days due to persisting atmospheric conditions. Additionally, feedback

processes between FLS and the surface exist: in the presence of FLS, surface heating

due to solar radiation is reduced during daytime which leads to lower near-surface

temperatures in the subsequent night and a reduction of the difference between air

anddewpoint temperature. This relationshipmight be stronger in basins and valleys

where FLS tends to persist longer due to lower wind speeds inside the FLS layer and

inversions or cold pool situations that can last for several days (Cuxart and Jiménez,

2012; Scherrer and Appenzeller, 2014). To investigate processes and sensitivities

in larger river valleys, model units could be delineated speciĄcally considering
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topographic information in further studies. In these larger model units, SHAP

(SHapley Additive exPlanations) values, introduced by Lundberg and Lee (2017)

could be investigated, which allow for the investigation of individual predictions

leading to a global understanding of the model (Lundberg et al., 2020), providing a

tool to distinguish and individually analyze different FLS regimes.

Two land-surface based predictors that are closely related to each other due to

the dependence of the saturation vapor pressure on temperature, described by the

Clausius-Clapeyron equation (see chapter 1.2.1), are LST and ET. This means that

higher land surface temperatures lead to higher evapotranspiration, with the latter

being constrained by moisture availability (especially in summer), but also by solar

radiation aswell as the vapor pressure deĄcit. Concerning FLS processes, onewould

expect LST to have a negative relationship with FLS occurrence and ET to have a

positive inĆuence on FLS occurrence due to the moisture input into the boundary

layer. However, in this study, both LST and ET show a negative relationship with

modeled FLS, the latter one likely confounded by temperature, but also winds. FLS

occurrence might be lower in high ET situations due to the larger vapor pressure

deĄcit and thus drier air. Generally, ET is strongly inĆuenced by the variability

of atmospheric conditions (Teuling et al., 2010; Seneviratne et al., 2012) e.g. with

anticyclonic circulation patterns leading to high ET values in Poland (Bogawski and

Bednorz, 2016). At the scales considered in this study, the inĆuence of atmospheric

conditions on ET-FLS patterns is likely larger than the effects of moisture input via

ET on FLS formation.

In general, temperature and humidity during FLS formation are connected via

the process of condensation: Cooling leads to a rise in relative humidity, a

reduction of the atmospheric saturation vapor pressure, and, once saturation is

reached, condensation of water vapor to available cloud condensation nuclei and

fog formation (Steeneveld and de Bode, 2018; Bergot and Lestringant, 2019). This

effect is especially prevalent in winter, where fog formation is favored by a higher

frequency of low temperatures together with high relative humidity conditions

(Wrzesinsky and Klemm, 2000). Hůnová et al. (2018) list relative humidity and air

pollutants as the most important features whenmodeling fog in the Czech Republic.

As the presented statistical model presents a general working ground, a proxy for

CCN has not been included yet but will be in further studies. The negative inĆuence

of higher LST on FLS cover in urban areas (Williams et al., 2015; Izett et al., 2019) can

be suspected here, but is not visible in the results due to the size of the model units.

Still, compared to LST, ET plays a stronger role in this study, especially in spring

and fall, where the combined effects of low temperatures favorable for FLS and a
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higher soil moisture leading to moderate evapotranspiration are prevalent. This is

mainly visible in the eastern part of the study area, where ET is the most important

feature in most model units in spring and fall. In these units, the moisture input

by maritime westerly air masses might be limited, which could lead to a higher

importance of local moisture sources. According to van Oldenborgh et al. (2010) fog

during summer in the Netherlands only forms when enough moisture is present,

with higher summer fog occurrences when moisture input in the preceding early

summer or spring months has been larger. Here, in high pressure situations, day to

day variations in ET are more important for predicting FLS occurrence than day to

day variations in MSP, which is visible in the feature importance of ET and MSP in

the deseasonalized model run.

In this study, the inĆuence of radiative properties of the surface on FLS occurrence

is only indicated by the small positive inĆuence of increasing ALB values on FLS

occurrence. Still, the feature importance and partial dependence of ALB is rather low

anddoes not feature a clear pattern. The small effect of ALB on FLS occurrencemight

also be due to the multiple directions in which ALBmight inĆuence FLS occurrence.

While surfaces with high ALB absorb less radiation during daytime and thus might

lead to a lower air temperature and higher relative humidity above these surfaces,

during nighttime, when radiation fog usually forms, darker surfaces might provide

more moisture initially (such as water bodies or forests). Furthermore, FLS reduces

the incoming solar radiation thusmasking some expected radiative effects of ALB on

FLS occurrence. In further studies, the effects of radiation on FLS occurrence could

be further investigated by adding radiation Ćuxes as predictors to the model.

Similar to ALB, the inĆuence of FVC on FLS occurrence is also not clearly visible in

the results obtained from the study. Duynkerke (1991) lists vegetation as a driver for

FLS occurrence, but this might not be visible here due to the spatial resolution and

the stronger inĆuence ofmeteorological drivers thatmask such inĆuences of the land

surface and cover. Still, with the exclusion of low pressure situations and subsequent

decreasing the inĆuence of atmospheric dynamics can help the investigation of

the inĆuence of land surface parameters on FLS distribution. Filtering for speciĄc

weather situations, as in Egli et al. (2019) could decrease the variability and inĆuence

of the considered atmospheric predictors and may help isolate the inĆuence of land

surface parameters on FLS distribution under speciĄc conditions.

As already stated, certainly not all factors inĆuencing FLSdistribution are considered

in this study. In part, this study is limited by the spatial resolution of the data sets

used, as local and regional morphology are important drivers for FLS occurrence

(e.g. Bşaś et al., 2002). Furthermore, the landform, turbulent boundary layer mixing,

51



2 Meteorological and land surface drivers of fog and low stratus occurrence

above-cloud humidity and winds, soil conductivity, availability of CCN and the

distance to the coast are listed as inĆuential FLS drivers (e.g. Bşaś et al., 2002, 2010;

Hůnová et al., 2018; Steeneveld and de Bode, 2018). In further studies, the presented

baseline model can be expanded by integrating these predictors to investigate their

inĆuence on model performance and sensitivities.

2.5 Specific conclusions

In this study, a machine learning technique, gradient boosting regression trees,

was used to predict observed FLS occurrence over continental Europe, using

meteorological and land surface parameters as predictors. To analyze spatial

patterns of model skill and sensitivities, spatially explicit 10x10 and 15x15 SEVIRI

pixel model units were created covering the entire study area. Additionally, models

were applied for different model set-ups and data preprocessing procedures. The

models were then applied to the entire, full-year data, as well as in different seasons.

In general, the statistical models were able to accurately predict FLS occurrence in all

regions of the study area, with R2 values between 0.6 and 0.94 during validationwith

independent data. Model skill was observed to be highest in winter and lowest in

the full-year run. Model performance increases when only high pressure situations

are considered and when smaller (10x10 SEVIRI pixels) model units are used. Some

overĄtting is apparent in all models and depends on model unit size, with larger

modeling domains featuring less overĄtting. Using deseasonalized data only has a

small effect on model performance.

Analyses of feature importance reveal that features pertaining to atmospheric

dynamics are more relevant to predict FLS than surface characteristics. The most

important features for FLS prediction are MSP, WS, FLS on the previous day, ET

and to some extent LST. Albedo and FVC are less important in the statistical models.

When only considering high pressure situations, MSP becomes less important, while

ET and WS gain importance, the latter especially in spring and fall. Spatial patterns

of the most important feature show the dominance of MSP in most of the model

units when using all pressure situations. When only high pressure situations are

considered, ET is dominant in central and eastern parts of the study area while WS,

FLSprev and MSP are dominant in western parts of the study area.

A sensitivity analysis was conducted with the statistical models, using the partial

dependence technique. While there are some differences in partial dependencies

when excluding low pressure situations, seasonality and model unit size settings
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do not seem to have a marked inĆuence. A positive inĆuence of FLSprev and MSP

and a negative inĆuence of ET, LST and WS on modeled FLS were found. These

patterns are also conĄrmed in analyses of two-variable partial dependencies, which

were used to study the combined effects of MSP, WS, ET, LST and FLSprev. This

analysis showed that especially the combination of high FLSprev, high MSP and low

WS values leads to high predicted FLS values. This is also the case for low LST and

low ET values.

Considering the modeling framework, there are several limitations that should be

noted. First of all, using spatially explicit model units reduces the available number

of data points for training and testing. Thus, the available data puts a constraint

on the spatial resolution at which such an analysis can be conducted. Still, there

is potential for future improvements: Creating larger model units could provide

more data that could also be used for validation and reduce the risk of overĄtting.

Grid search or a different methodology for hyperparameter tuning could be applied

in all units separately and with fewer model units, less computing time would be

consumed. While the generalization of hyperparameters is useful in this model set-

up, conducting a thorough grid search in all model units would lead to a more

complete picture of ideal hyperparameters for the model but still may have little

inĆuence on model skill and overĄtting. It has to be noted that FLS is inĆuenced

by a large number of parameters, some of which are not represented in the model,

such as topography, humidity, wind direction, soil moisture and aerosol loading.

Additionally, FLS formation is also inĆuenced by the state of higher atmospheric

layers for example through moisture advection and mixing. While the model set-up

presented here provides a general working ground, these features may be integrated

in more complex statistical frameworks in the future. Furthermore, FLS processes

take place from small scales of aerosol activation (10-7 m) to synoptic scales (106 m).

Accurately addressing the issues concerning scaleswill thus be a critical aspect going

forward, speciĄcally as processes that are not important on one scalemight be crucial

on a different scale.

To gain further insights into the relationship between FLS and the land surface, FLS

properties such as cloud top height and liquid water path can also be analyzed with

the presented modeling framework. While the model units can be varied in size,

they can also be grouped into areas of similar topography or land cover which could

help in further analyzing FLS - land cover dependencies.
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fog and low stratus occurrence

3.1 Specific Motivation and Aim

The analysis conducted in chapter 2 showed the high importance of meteorological

drivers for the prediction of FLS occurrence. Compared to the effect of

meteorological variations on FLS occurrence, the effect of variations in the land

surface, speciĄcally albedo and the fraction of vegetation cover, was found to be

small. Yet, studies looking at interactions between the land surface and clouds have

found land surface effects on other cloud types, such as convective cumulus clouds.

For instance, an enhancement of convective cumulus cloud cover has been reported

over forests (Teuling et al., 2017), mega-cities (Theeuwes et al., 2019) and natural

bushland (Ray et al., 2003). Xu et al. (2022) found enhanced cloud cover over most

temperate and boreal forests, but decreased cloud cover over forests in Amazonia,

Central Africa and the Southeast US.

Several potential mechanisms have been identiĄed to be involved in interactions

between forests and clouds. These include a higher evaporation and sensible heat

Ćux over forests (Gambill and Mecikalski, 2011; Gentine et al., 2013; Bosman et al.,

2019), as well as a higher aerodynamic roughness leading to the development of a

forest breeze (Mahrt and Ek, 1993). Further potential reasons for differences in cloud

cover over forest and non-forest areas are differences in the surface energy balance

(Teuling et al., 2017) and the development of a mesoscale circulation (Xu et al.,

2022). Another important factor identiĄed to contribute to cloud formation over

forests is the emission of biovolatile organic compounds (BVOCs) by trees. BVOCs

can form secondary organic aerosols (SOA), which can act as cloud condensation

nuclei (CCNs) and thereby favor cloud formation (Spracklen et al., 2008; Pöschl

et al., 2010; Shrivastava et al., 2017). BVOC emissions further inĆuence warm cloud

microphysics and cloud-aerosol interactions (Petäjä et al., 2022). Considering these

processes described for convective boundary clouds could give further insightswhen
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studying FLS in the context of land-atmosphere interactions. However, temporally

and spatially extensive studies looking speciĄcally at the inĆuence of land cover on

FLS are rare.

To isolate potential local effects of forests on FLS occurrence, the strong inĆuence of

other confounding factors, like topography and meteorology, should be minimized.

The Landes forest in southern France is a suitable area for such an approach as it

has low topographic variability (cf. Fig. A2.1) and large spatial extent. In addition,

BVOC emissions have been detected over the Landes forest (Kammer et al., 2018,

2020), providing the potential to link FLS occurrence with BVOC emissions over

the region. In the following analysis, nighttime (0Ű6 UTC) FLS cover over the

Landes forest over ten years is analyzed. FLS data based on passive and active

satellite data is used, minimizing the inĆuence of potential misclassiĄcations on the

results. By comparing climatological means over forest and non-forested areas, the

inĆuence of the day-to-day variability in meteorological conditions is reduced. The

seasonal differences of FLS cover over the area are investigated and the inĆuence

of wind and temperature on the observed patterns is analyzed. This long-term

analysis contributes to the understanding of potential interactions of FLS and forests,

independent of satellite sensor and short-term Ćuctuations in FLS cover. The main

hypothesis investigated here is that FLS occurrence is signiĄcantly inĆuenced by the

underlying land surface through land surface effects on wind speed, temperature

and CCN availability.

3.2 Data and methods

3.2.1 Data sets

The Landes forest covers an area of about 12,000 km2 in southern France directly

at the Atlantic coast. The forest is mainly composed of maritime pine (Pinus

pinaster) (Kammer et al., 2018) and shows a distinct contrast to its surrounding land

cover types (compare Fig. 3.2d). The study site has previously been used for the

investigation of daytime cumulus clouds using satellite data, showing its potential

for the investigation of land-atmosphere interactions (Teuling et al., 2017).

The primary fog and low cloud data set used in this study was created by Egli

et al. (2017). It uses passive satellite data from Meteosat SEVIRI following the

Satellite-based Operational Fog Observation Scheme (SOFOS) by Cermak (2006)

using the approach presented in Cermak and Bendix (2007) for nighttime data. The

resulting data set provides a binary FLSmask for every 15-minute time step covering
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the entire central European land mass and the years 2006Ű2015. The data set has

been validated against ground observations, showing that 80Ű90% of FLS and no-

FLS situations are classiĄed correctly (Egli et al., 2017). The binary FLS mask is

available for daytime and nighttime hours but not during, as well as shortly before

and after twilight, due to sensor and algorithm constraints. For the purpose of this

study, nighttime observations (0Ű6 UTC) of FLS are used. This is in line with BVOC

emissions observed during night over the Landes forest (Kammer et al., 2018), which

can potentially serve as CCN. The time frame of 0Ű6 UTC was chosen to minimize

the amount of missing observations during twilight and to select a time frame with

nighttime observations across all seasons. As a plausibility check for the FLS data

set by the passive satellite sensor, an additional FLS classiĄcation based on activate

satellite data from CALIPSO was created. For this, the CALIPSO level 2 1 km cloud-

layer product (Version 4.20) (NASA/LARC/SD/ASDC, 2018) was used. The cloud

and aerosol discrimination (CAD) algorithm classiĄes 90% of layers correctly (Liu

et al., 2009). Over the ten years, 186 nighttime overpasses over the Landes region

were available. Due to missing data in both data sets, 179 of those overpasses could

be used for comparison.

For the surface (10 m) winds, ERA5-land reanalysis data from the European Centre

for Medium-Range Weather Forecasts (ECMWF) was used (Muñoz Sabater, 2019).

For temperature and wind data at different pressure levels ERA5 was used as well

(Hersbach et al., 2018). The land cover data plotted in the results is taken from

HILDA (Winkler et al., 2021). The Fraction of Vegetation Cover data serving as the

background for the binary FLSmaps are based on data from the EUMETSAT Satellite

Application Facility on Land Surface Analysis (LSA-SAF) (Trigo et al., 2011).

3.2.2 Fog and low stratus detection

The CALIPSO overpasses usually took place between 02:15 and 02:30 in the night.

The CALIPSO FLSmask was derived similarly to the approach presented in Cermak

(2018). First, the cloud layer altitude was calculated by subtracting the terrain

altitude from the observed feature altitude. Then all cloud layers with a cloud top

height equal to or smaller than 2.5 km and a cloud base height equal to or smaller

than 2 kmwere deĄned as FLS. The thresholds differ slightly to those used inCermak

(2018) to include not only fog but also low stratus clouds.

To compare the SEVIRI based data set with the FLS mask derived from CALIPSO,

the FLS observations of both data sets at the location of the CALIPSO overpass were

contrasted by creating a confusion matrix. The time step of the SEVIRI-based data
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set used for comparison was 02:15 UTC. To take into account the larger pixel size of

SEVIRI and the smallmismatch of observation time of both data sets, the comparison

was done for the complete CALIPSO swath area across the forest area and not pixel-

by-pixel. For example, an observation was marked as true positive, when any pixel

along the CALIPSO swath for both data sets showed FLS. If there was no FLS pixel

in both data sets, the observation was marked as true negative.

This comparison was followed by creating nighttime averages of FLS using the data

from 0Ű6 UTC of the SEVIRI based data set. The respective days belonging to one of

the categories of the confusion matrix were Ćagged accordingly.

3.3 Results

3.3.1 Cross-validation of fog and low stratus products

Out of the 179 used CALIPSO observations, 50 were identiĄed as true positive and

83 as true negative. On 12 observations, no FLS was identiĄed by CALIPSO but FLS

was identiĄed by the SEVIRI based data set (false positive). On 34 observations,

FLS was identiĄed by CALIPSO, but no FLS was present in the SEVIRI data set

(false negative). Possible reasons for this could be multi-layer cloud situations or

classiĄcation errors in the FLS data set (cf. Cermak and Bendix, 2008; Cermak, 2018).

Further reasons are also described in the discussion. The confusion matrix can be

found in table A2.1.

Two true positive cases are displayed in Ągure 3.1. On 2008-07-14 (Fig. 3.1a) most

of the forest is covered by a large FLS patch which is also visible in the CALIPSO

proĄle, where the cloud top is situated at approximately 2.5 km and cloud base at or

below 2 km. A slight mismatch of the two products is visible at the CALIPSO swath

at 44° N, where no FLS is present in the SEVIRI-based product, but FLS is present

in the CALIPSO based product. On 2015-09-20 (Fig. 3.1b) both FLS patches over the

forest and south of the forest are present in both data sets.
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Figure 3.1: Example validation of SEVIRI-based Ąelds with the corresponding CALIPSO proĄles.
Shown are two days, 2008-07-14 (a) and 2015-09-20 (b), with the SEVIRI based FLS
maps on the left and the corresponding CALIPSO proĄles on the right. The gray pixels
in the maps of the SEVIRI-based data set display FLS, the background is a map of mean
fraction of vegetation cover of the study area. For orientation, the CALIPSO swath is
plotted as a dashed line in the maps. In the CALIPSO proĄles, the cloud layers are plotted
as a gray area at their corresponding height and with their latitudinal extent. The green
line, as well as the light green background in the proĄles mark the forest area. The yellow
triangles in both the maps and the proĄles mark the beginning of the forest area.

3.3.2 Climatological means

To decrease and visualize the inĆuence of potential misclassiĄcations on the

climatologicalmean of nighttime FLS cover, three types of climatologicalmeanswere

constructed using the FLS data set:

1. Climatological mean over all days of the SEVIRI based data set by Egli et al.

(2017) (3652 days)

2. Climatological mean over days with CALIPSO overpasses (179 days)

3. Climatological mean over days where the FLS observations of the SEVIRI and

CALIPSO based data set match (true positives and true negatives) (133 days).

The corresponding maps, together with a land cover map of the Landes region, are

shown in Fig. 3.2. In all three climatology maps, mean FLS cover from 0Ű6 UTC is

higher over the forest, with differences in mean FLS cover between forest and non-

forest most distinct in the northern forest area. Nighttime FLS cover is up to 1 hour

longer over the forest than over the surrounding areas and local patches of enhanced

FLS cover over the forest are visible (e.g. south of 44° N). The difference in nighttime

FLS cover over forest vs. other land cover types is signiĄcant (two sample t-test,

P<0.05, Tab. A2.2) for all three climatologies, and strongest for the true positive and
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negative days (Fig. 3.2c). This signiĄcance, independent of calculated climatology,

shows the robustness of the results.

Figure 3.2: Spatial distribution of climatological mean FLS cover over the study region. In a) all
observations from 2006-2015 are used to calculate mean FLS cover (3652 days), in b) only
days with CALIPSO overpasses (179 days), in c) only true positive and true negative
observations (133 days), and d) shows HILDA land cover for the year 2006. The gray
dashed line approximately marks the forest border.

3.3.3 Seasonal analysis

A seasonal analysis of FLS cover (only true positive and true negative observational

days) shows that nighttime FLS enhancement over the forest is signiĄcant (P<0.05)

for all months except January, February, June and October (see Tab. A2.3 for all t-

test results and Fig. A2.2 & A2.3 for all monthly maps). The difference in mean

FLS cover between forest and non-forest areas is shown here for the months of May,

July, August and September (Fig. 3.3a), when FLS is most likely the result of more

localized processes, as opposed to the winter months. Nonetheless, differences in

FLS cover between forest and non-forest areas can still be signiĄcant in winter but

are most likely due to higher FLS cover over the study area but lower FLS cover in

the Pyrenees (south of 43.5° N) (cf. Egli et al., 2017). In May, especially the central

Landes forest shows enhanced nighttime FLS compared to its surroundings. In July,

enhanced FLS cover extends to the south of the forest, towards the Pyrenees. In

August, the shape of the forest is quite well replicated by the pattern of enhanced

FLS cover over the forest. In September, nighttime FLS cover is enhanced mostly

in the central and western parts of the forest. Similar to the patterns depicted in the

full-yearmeans in Ągure 3.2, local patches of enhanced FLS cover are apparent inside

the forest area in all of those monthly plots.
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To investigate the potential reasons for high FLS cover over the Landes region, maps

of mean wind speed are created. They show lower wind speed over the forest

compared to the surrounding area (around 0.5 m s-1) (Fig. 3.3b) and wind speed

is highest directly at the coastline. The differences in mean wind speed above forest

and non-forest pixels are signiĄcant (two sample t-test, P<0.05, Tab. A2.3) in March,

April, June, July and August. The main wind direction is west, with variations over

the different months and over the study area. Patterns of wind direction also seem

to be split into two subpatterns, with westerly winds prevailing near the Pyrenees

(south of 44° N) and changing wind directions north of 44° N, e.g. with northerly

winds in July and August.

Figure 3.3: Climatological mean FLS hours by month based on true positive and true negative
observations (a), and the corresponding ERA5 land wind speed and wind direction (u
and v wind components) on the respective days (mean from 0Ű6 UTC) (b). The number
of true negative and true positive days available to calculate the climatologies is as follows:
9 (May), 11 (July), 12 (August), 13 (September). The gray dashed line approximately
marks the forest border.
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3.3.4 Vertical temperature profiles

To better understand boundary layer effects on enhanced FLS cover over the Landes

region, vertical proĄles of temperature gradient in combinationwithwind vectors on

the different pressure levels are analyzed. For this study, the temperature gradient is

calculated by subtracting the temperature of a pressure level from the temperature of

its overlying layer, i.e. positive values indicate a temperature inversion. In Ągure 3.4,

hourly means over the respective true positive and true negative days in August

(Fig. 3.4a and b) and September (Fig. 3.4c and d) are presented. Both longitudinal

(Fig. 3.4a) and latitudinal (Fig. 3.4b) vertical proĄles show a temperature inversion

(positive temperature gradient) over the forest compared to the surrounding areas,

especially at 05:00 and 06:00 UTC. In August, the temperature gradient reaches

values up to +0.67 K 25 mb-1 at -0.25° W in the longitudinal proĄle and +0.57 K

25 mb-1 at 44.25° N in the latitudinal proĄle. In September, the temperature gradient

reaches values up to +1 K 25mb-1 at 44.25° N and -0.5°W (both in the latitudinal and

longitudinal proĄle). The u-w component vectors plotted in the longitudinal plots

are very weak, whereas the v-w component vectors (latitudinal plot) show wind

from the north in the pressure levels up to 850 mb during the night. Especially at

00:00 and 01:00 UTC air rises at around 44° N, just before the Pyrenees. Over the

night the v-w wind component weakens.
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Figure 3.4: ProĄles of mean hourly temperature gradient in K 25 mb-1 for the true positive and true
negative days in August (a, b) and September (c, d), from 825 to 1000 mb along 44.25° N
(a, c) and -0.25° W (b, d). In the longitudinal proĄle (a, c) u-w wind vectors are plotted,
in the latitudinal proĄle (b, d) v-w wind vectors are plotted. For visibility reasons, the w
vector is enhanced by a factor of 20. The location of the Landes forest is marked in both
plots as green vertical lines. The topography is plotted in gray.
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3.4 Discussion

The passive and active satellite data used in this study reveal enhanced FLS cover

over the Landes forest compared to the surroundings. Both data sets agree well in

most cases (74%), disagreement is potentially due to misclassiĄcations in the FLS

data set (cf. Cermak, 2018) or due to difficult FLS detection in the transitional zone

(Ştwilight zoneŤ) between aerosols and clouds (Koren et al., 2007). Local patterns

of higher FLS cover over the forest area are visible, especially in the southern part

of the Landes forest. This is similar to the Ąndings by Teuling et al. (2017), who

found enhanced daytime cumulus cover over the Landes forest with local maxima

in the southern part of the forest. FLS enhancement over the forest compared to the

surrounding areas is primarily visible in summer and fall, when local processes are

potentially more important than in winter.

Various drivers are important for the development of FLS (Pauli et al., 2020). Here,

the roles of wind speed and temperature are investigated. Based on the results of

the t-test, lower wind speeds over the forest are identiĄed as a potential driver of

higher FLS occurrence, especially in the summer months. While some turbulence

is required for the formation of a stable fog layer (Haeffelin et al., 2010), lower

wind speeds are generally beneĄcial for FLS development (Roach, 1995; Gradstein

et al., 2011; Bergot, 2016; Bergot and Lestringant, 2019; Pauli et al., 2020). Similar

to the processes described in Gradstein et al. (2011) for lowland cloud forests, low

wind speeds combined with nighttime cooling and saturation of air are a potential

pathway leading to the enhanced FLS cover described in this study.

The vertical proĄles of temperature gradient show lower temperatures and a

positive temperature gradient in the forest area at night, which is unusual for

temperate forests since they usually have higher nighttime temperatures than their

surroundings due to turbulence and the storage of heat (Li et al., 2015; Schultz

et al., 2017). Still, in both of these studies, the Landes region seems to be an

exception, showing lower temperatures over the forest compared to unforested areas.

A potential explanation is a strong nighttime cooling through evapotranspiration,

similar to nighttime cooling over forests in tropical regions (Li et al., 2015). In

combination with the observed temperature inversion, nighttime cooling increases

the relative humidity over the area, supporting the development of fog and low

stratus.

Further likely reasons for enhanced FLS cover over the Landes forest are the interplay

between BVOC emissions and high evapotranspiration over the forest area. High

loadings of natural aerosols from late spring to early fall have been found for boreal
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forests (Tunved et al., 2006). It has been shown that secondary organic aerosol

emissions together with evapotranspiration over forests can lead to an increase

in liquid water path and cloud droplet number concentration in low-level liquid

clouds (Petäjä et al., 2022). This could also be a potential pathway in the Landes

forest, where BVOC emissions have been measured in summer (Kammer et al.,

2018). A higher number of CCN and therefore potentially a higher number of small

cloud droplets could lead to more FLS identiĄed by both FLS detection algorithms.

Measurements of BVOC emissions and fog and low cloud occurrences in the Landes

forest could test the interactions between BVOCs and FLS in the future.

The patterns and drivers of higher FLS occurrence over the forest area are further

modiĄed by the general synoptic situation and geographic position of the Landes

forest, with the Atlantic ocean to the west and the Pyrenees to the south. While the

former is a source of moisture, the latter might enhance stationarity of air masses in

the region, preventing highwind speeds and supporting the build-up of atmospheric

moisture.

3.5 Specific conclusions

In this study, nighttime fog and low stratus cloud cover over the Landes forest

in southwestern France using activate and passive remote sensing products was

analyzed. FLS cover is signiĄcantly higher over the forest compared to non-

forest areas and lower wind speed and a temperature inversion over the forest

are potential drivers for this enhancement. As these parameters only partially

explain the enhanced FLS cover over the forest, further atmospheric and biophysical

drivers should be included into the analysis in the future, such as soil moisture,

evapotranspiration and BVOC emissions. In addition, a systematic approach

combiningmodeling and sensitivity studies could be used for future work to further

quantify the role of forests for fog and low stratus cloud formation over varying

geographic and synoptic backgrounds.
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low stratus formation and

dissipation times

4.1 Specific Motivation and Aim

While the analyses presented in chapter 2 and chapter 3 are focused on the drivers

and land surface speciĄc patterns of FLS occurrence, an analysis of the FLS life cycle,

namely its formation time, dissipation time andpersistence is lacking. In this chapter,

a novel FLS formation and dissipation time data set is presented which will further

provide the foundation to study the drivers inĆuencing the fog life cycle and its

persistence on an unprecedented spatial and temporal scale.

Previous studies looking at the formation and dissipation time of fog rely strongly

on ground-based observational data and localized process studies with numerical

models, such as large eddy simulations (LES). These have been conducted for

example in France (e.g. Haeffelin et al., 2010; Dupont et al., 2012; Wærsted et al.,

2019; Karimi, 2020) or in theNetherlands (Duynkerke, 1991; Steeneveld andde Bode,

2018) on time scales ranging from 6 days (Dupont et al., 2012) to up to 7 years

(Wærsted et al., 2019). According to these studies, radiation fog usually forms

during the night through nocturnal cooling (Roach, 1995) and dissipates a few

hours after sunrise (Haeffelin et al., 2010; Bergot, 2016; Steeneveld and de Bode,

2018). While local studies using ground-based measurements provide insights into

the small-scale processes of fog formation and dissipation, large-scale processes

play a major role as well. Thus, data at large spatial scales are necessary to obtain

knowledge on fog formation and dissipation processes across different landscapes.

In this study, both formation and dissipation times are extracted from an existing,

well validated satellite-based binary FLS data set by Egli et al. (2017) with a logistic

regression. The goal is to analyze and discuss the spatial patterns of continental

FLS formation and dissipation times over central Europe. Seasonal differences of
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the extracted formation and dissipation times are analyzed across Europe and the

regional applicability and detail is shown in a regional study in southern Germany.

The guiding hypothesis is that the spatial patterns of FLS formation and dissipation

time strongly depend on topography and the distance to the coast. The resulting

novel data set gives information on FLS formation and dissipation times over

continental Europe and over 10 years, a previously not investigated spatial and

temporal scale. The applicability of the data set to study drivers of FLS formation,

dissipation and persistence is presented in chapter 5 and in the outlook.

4.2 Data and methods

4.2.1 Fog and low stratus data set

The basis of this study is an FLS data set by Egli et al. (2017) which covers central

Europe and the years 2006Ű2015. The FLS data set is created using data from the

Meteosat Spinning Enhanced Visible and Infrared Imager (SEVIRI) and a number

of threshold tests that are based on the Satellite-based Operational Fog Observation

Scheme (SOFOS) by Cermak (2006). FLS in the Egli et al. (2017) data set is deĄned

as a low stratiform cloud with liquid droplets not exceeding a size of 20 µm (Egli

et al., 2017) but radiation fog and other stratiform clouds are not discriminated.

The FLS data set contains binary information that is 1 if FLS is present, and 0 if FLS

is not present. The data set is available for every 15 minute time slot of SEVIRI at its

native resolution (3x3 km at nadir). At twilight, no FLS detection is possible, leading

to ŞFLS not presentŤ (0) values in the original data set during about 4-5 15-minute

time steps during each twilight episode. After exploring different treatments of those

twilight values (keeping them at 0, setting them to NAN (not a number), temporal

interpolation), setting them to NAN has been chosen as the most suitable method in

this study, as this avoids the introduction of false information. However, on the basis

of the Egli et al. (2017) data set, no extraction of formation and dissipation time at

twilight is possible.
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To provide an overview of the data used for the identiĄcation of FLS formation and

dissipation time, the mean FLS cover is shown in Ągure 4.1a. The mean FLS cover

over the study domain of central Europe generally shows higher FLS frequencies

over the northern latitudes and in large-scale river valleys (Fig. 4.1a). In mountain

ranges as well as in the Mediterranean, FLS frequencies are low. The dependency

of FLS cover on topography can also be seen by looking at both mean FLS cover

(Fig. 4.1a) and mean height above sea level over the study area (Fig. 4.1b). The data

set can be used in various research applications, such as the investigation of large-

scale drivers of FLS (Pauli et al., 2020).

Figure 4.1: Mean fog and low stratus cover in central Europe from 2006Ű2015 (data set by Egli et al.
(2017)) (a) and mean height above sea level (b). The Upper Rhine valley, used as a
regional study area for the demonstration of the algorithm and to show the spatial detail of
the results, is depicted with the red rectangle.

Summary of FLS data set validation

In the work presented here, the existing and thoroughly validated FLS data set by

Egli et al. (2017) is used to extract FLS formation and dissipation times by applying

logistic regression. While a novel FLS formation and dissipation times data set

is created, the technique used is not an FLS detection technique but a statistical

interpretation of an already existing, thoroughly validated, satellite-based FLS data

set. This section provides an overview of the validation results of studies using the

SOFOS algorithm for the detection of fog and low clouds (Cermak, 2006; Cermak

and Bendix, 2007, 2008; Egli et al., 2017). Details on the validation procedures can

be found in the relevant publications.
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For the validation of the SOFOS algorithm,MeteorologicalAviationRoutineWeather

Reports (METAR) were used, as these are available with a high temporal frequency

(at least every hour) and well distributed over continental central Europe. In

general, the SOFOS algorithm detects FLS very accurately (Cermak, 2006; Cermak

and Bendix, 2007, 2008; Egli et al., 2017). Cermak (2006) and Cermak and Bendix

(2008) found that 70 to 85% of FLS situations are detected by the scheme. Situations

where FLS is not detected can to a large degree be explained by overlying clouds,

which are present above FLS about 25% of the time in the study domain (Cermak,

2018). False alarms are rare, i.e. a pixel classiĄed as FLS is almost never either clear

or covered by a different cloud type (Cermak and Bendix, 2008). Similar to the other

studies using the SOFOS algorithm, about 80-90% of FLS and no-FLS situations are

classiĄed correctly in the Egli et al. (2017) data set used for the extraction of FLS

formation and dissipation time. The geographic patterns of validation scores show

higher validation scores in continental areas with radiative FLS events as opposed

to coastal areas, where advective FLS events prevail (Egli et al., 2017). Thus, the

constraints of a satellite-based FLS climatology compared to ground-observations

are acknowledged in this study. Nevertheless, the good validation results show that

this FLS data set can be used to derive an FLS formation and dissipation climatology

as shown in the study at hand.

4.2.2 Methods

In this study, logistic regression is applied to statistically interpret the binary FLS

data set by Egli et al. (2017) to determine FLS formation and dissipation times. After

the algorithm is completed, a novel FLS formation and dissipation data set exists,

which is derived from the original binary FLS data set by Egli et al. (2017). The

analysis of this new data set of formation and dissipation time is shown in the results

section. In the following, a general overview on logistic regression is given and then

the algorithm is described, which applies logistic regression to the binary FLS time

series described above.

Logistic regression is used for binary or categorical data and in this study predicts

the probability of a data point belonging to one of the binary classes (Bisong, 2019;

Lever et al., 2016). Mathematically, the probability can be expressed as:

p(t) =
1

1 + exp(−b0 − bt ∗ t)
(4.1)
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where p is the probability, t the time, b0 the intercept and bt the slope. Whilemultiple

predictor variables can be used in logistic regression, in this study, time is the only

predictor. The transition from one state to another and its associated predictor value

is called Şdecision boundaryŤ (Bisong, 2019). Here, this decision boundary is used

to determine the time of FLS formation and dissipation.

In the atmospheric sciences, logistic regression has previously been used for the

detection of hail (López and Sánchez, 2009) or to forecast the probability of extreme

precipitation events (Applequist et al., 2002; Herman and Schumacher, 2018). It

has also been applied to predict the occurrence of orographic cloud cover (Wu and

Zhang, 2013) or to forecast the probabilities of low visibility conditions at an airport

site (Kneringer et al., 2019).

Algorithm

The algorithm which identiĄes FLS formation and dissipation time based on the

binary cloud mask consists of 6 steps. These steps are similar for formation and

dissipation time, but are conducted separately. The algorithm is applied to each

valid FLS event (deĄned below) and to each pixel over the years 2006Ű2015. The

steps described below are marked with the corresponding numbers in Fig. 4.2.

Start
formation event

Formation
time

End formation event

Start dissipation event

Dissipation
time

End dissipation
 event

no FLS = 0
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Formation end group / Dissipation start group 1
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Figure 4.2: WorkĆow for the identiĄcation of FLS formation and dissipation times with logistic
regression using an artiĄcial example. Steps for the identiĄcation of formation time are
plotted in blue, the corresponding steps for the identiĄcation of dissipation time are plotted
in red. Black crosses mark the binary FLS values.
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To apply the logistic regression to the data set, at Ąrst, an FLS formation/dissipation

event has to be identiĄed (step 1). In the case of FLS formation, this means that over

a period of at least 10 consecutive 15-minute time steps (2.5 hours) no FLS has to be

present (cloud mask = 0). In the case of FLS dissipation, the requirement is similar

(FLSpresent (cloudmask=1) for 10 consecutive 15-minute time steps). By choosing

a minimum value of 2.5 hours, randommisclassiĄcations in the original FLS data set

as well as advective FLS events with fast changes between FLS and no-FLS are likely

excluded. One should note that the results can thus only be interpreted with respect

to such longer lasting FLS events, andmay not be representative of FLS events with a

shorter life cycle. After identiĄcation of such a start group, its temporal center point

is then used as the start of the FLS formation or dissipation event (step 2). Looking

at the artiĄcial example in Ągure 4.2, the start group of the formation event (blue

curve) has 20 consecutive 15-minute time steps of no FLS. The starting point is then

deĄned as the center, in this case at the 10th time step of no FLS.

The end group of a given FLS formation or dissipation event is deĄned similarly

to the start group: In the case of FLS formation this means that for 10 consecutive

15-minute time steps FLS has to be present (cloud mask = 1), and in case of

dissipation FLS has to be absent for 10 consecutive 15-minute time steps (step 3).

The end group has to be present within 30 hours from the start of the formation

or dissipation event. By choosing a time period of 30 hours, it is possible to

capture FLS events that persist for longer than a day. If no end group can be

identiĄedwithin 30 hours of the start of the formation/dissipation event (step 2), the

formation/dissipation event is omitted, and no time is determined by the algorithm.

Similar to the determination of the start of the formation/dissipation event, the end

of such an event is then set to be the center of the corresponding end group (step 4).

In the artiĄcial example in Ągure 4.2 the end group of the formation event contains 30

15-minute time steps with FLS, with the end point of formation deĄned in the center

of the group at time step 15. During twilight, the groups of consecutive FLS or no-

FLS are interrupted by NAN values as outlined in section 4.2.1. If the remaining

groups then do not fulĄll the requirement of 10 consecutive FLS or no-FLS values,

this leads to a potential loss of start and end groups.

Following the identiĄcation of the start and end points of the FLS formation/

dissipation events, logistic regression is applied to the binary time series between

the start and end points to model the probability of FLS presence (step 5). Then, the

decision boundary is used to depict the formation and dissipation times (step 6).

For formation, the Ąrst 15-minute time period in which the probability modeled by

the logistic regression exceeds 0.5 is deĄned as the formation time. For dissipation,
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the Ąrst 15-minute time period, where the probability falls below 0.5, is deĄned as

the dissipation time.

After the calculation of the formation/dissipation time, these 6 steps are repeated

for each identiĄed start group for each pixel separately. While the formation and

dissipation situation displayed in Ągure 4.2 can be considered as an ideal example,

with a dissipation event following a formation event right away, there is also the

possibility that a dissipation event is not identiĄed right after a formation event. This

occurs when an end of the dissipation event can not be identiĄed within 30 hours,

due to alternating FLS and no-FLS values. If the requirements discussed above

are not fulĄlled by either a potential formation or dissipation event it is possible

that multiple FLS formation or dissipation events are identiĄed after one another.

This leads to slight differences in the number of formation and dissipation events

identiĄed by the algorithm, which is discussed in section 4.3.1.

Discussion of algorithm uncertainties

It is clear that the quality of the derived FLS formation and dissipation time products

is dependent on the quality of the underlying FLS data set. Therefore, systematic and

random errors in the FLS data set will propagate to the classiĄcation carried out in

this study. By focusing on temporally persistent FLS events, however, the effects of

random misclassiĄcations in the data set are reduced. Another uncertainty of the

derived FLS formation and dissipation time products is introduced by differences

in the characteristics of the binary variability of each speciĄc FLS event (Fig. 4.3).

An abrupt, temporally coherent change between the binary classes (little alternation

between FLS and no-FLS values), leads to a higher absolute value of the slope and

a steep curve Ąt. This leads to either the classic sigmoid shape (Fig. 4.3a and d) or

a very steep transition (Fig. 4.3b and e), both of which are easy to interpret with

respect to FLS formation and dissipation time. In case of frequent changes between

FLS and no-FLS values of an FLS event considered, however, the Ątted logistic curve

is Ćat and the slope value approaches zero (Fig. 4.3c and f). These Ćat curves are

difficult to interpret with respect to an FLS formation/dissipation time, and are thus

excluded from the data set. These valid situations are deĄned to feature a slope

of > |0.1|. This threshold was deĄned by conducting a thorough visual analysis of

different events and their corresponding curve shapes. The exclusion of these high-

uncertainty events leads to an average reduction of 9% of FLS events per pixel.
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Figure 4.3: Logistic regression curves for three formation situations (aŰc, blue curves) and three
dissipation situations (dŰf, red curves). The situations in the left-hand column (a
and d) have a classic sigmoid shape and the situations in the center (b and e) have a
sharp transition. The curves in the right-hand column (c and f) do not fulĄll the slope
requirements (coefficient > |0.1|). The ŞcoefŤ parameter displays the slope of the logistic
regression curve.

4.2.3 Case illustration: 2011-02-07

To illustrate how formation and dissipation time are derived from the binary FLS

masks, a dissipation case from 2011-02-07 over the Upper Rhine valley in Germany

is presented in the following. The mean FLS cover and topography of the region are

shown in Ągure 4.4.

Radiation fog is a frequent phenomenon in the Upper Rhine valley, especially in

the colder months (Kalthoff et al., 1998; Bendix, 2002; Bendix et al., 2006; Egli et al.,

2017). In this rift valley between the Vosges mountains in the west and the Black

Forest mountains in the east (visible in Fig. 4.4b and roughly depicted in Fig. 4.4 with

the 500 m contour), FLS occurs more frequently in the valley than on the mountain

ridges (Fig. 4.4a).
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Figure 4.4: Mean fog and low stratus cover in the Upper Rhine valley from 2006Ű2015 (data set by
Egli et al. (2017)) (a) and mean height above sea level (b). The country border between
France and Germany also marks the course of the river Rhine. The black dashed line depicts
the 500 m above sea level height.

The case illustration of 2011-02-07 focuses on three pixels in the Upper Rhine valley

(at locations A, B, C), all of them located in France. As can be seen in the binary

FLS maps (Fig. 4.5), FLS is present in mainly the northern part of the valley on

the morning of 2011-02-07 and then dissipates during the day. To illustrate the

derivation of the dissipation time, the binary time series at the three locations is

extracted (Fig. 4.6). A logistic regression is calculated for all time series and the

time stamp where the probability of the binary value being equal to 1 falls below

0.5 is assigned to be the dissipation time. In line with the binary FLS masks in

Ągure 4.5, FLS at location B dissipates Ąrst (09:30 UTC) followed by location A

(dissipation at 11:45 UTC). FLS at location C is most stable and dissipates in the

afternoon (14:30 UTC).

The approach presented here for the identiĄcation of dissipation time at the three

locations is then applied to each pixel of the study area, for each identiĄed FLS

formation and dissipation event.
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Figure 4.5: Binary 15-minute FLS masks (data set by Egli et al. (2017)) from 09:00 to 13:00 UTC
on 2011-02-07. Pixels with FLS cover are gray, pixels without FLS are transparent. The
background is a topographic map of the region. The country border between France and
Germany also marks the course of the river Rhine. The black dashed line depicts the 500 m
above sea level height.
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Figure 4.6: Logistic regression curves for the dissipation events on 2011-02-07 at the three locations A,
B, C marked in Ągure 4.5. The ŞcoefŤ parameter displays the slope of the logistic regression
curve.

4.3 Results

4.3.1 Number and duration of FLS events

As a Ąrst view of the data set, the number of formation events, for which a formation

time was calculated is shown (Fig. 4.7a). The number of formation events is

representative for the number of dissipation events, which is very similar with a

difference around +/- 10 events per pixel. As discussed above, this slight difference

is present since not every formation event is followed by a dissipation event which

fulĄlls the requirements discussed above and vice versa. The geographic patterns

of the number of detected formation events are similar to the geographic patterns of

mean FLS cover (Fig. 4.1). A high number of formation events are identiĄed in the

north east of the study area (1000Ű1200 events over 10 years), as well as in the Po

valley and at the northern coast of Spain. Moreover, a higher number of formation

events are detected over cities, which are especially visible overMilan and Paris. This

is potentially a systematic error of the FLS data set used, as higher FLS cover over

cities can also be seen in Ągure 4.1a. This overestimation of FLS cover over cities is

likely due to their high reĆectance in the 3.9 µm channel due to solar contamination

during daytime, which might then lead to a false identiĄcation of clouds during

this time (EUMETSAT CM SAF, 2019). Higher daytime FLS cover over urban pixels

compared to the rural surroundings can be observed in the mean diurnal course of

FLS cover over London, Paris and Milan (Fig. A3.1).
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Figure 4.7: Number of formation events identiĄed by the algorithm (a) and the median of the duration
of all FLS events in which both formation and dissipation times could be determined (b).
Both are calculated over the entire period (2006Ű2015).

A lownumber of formation events (300Ű400 events over 10 years) is detected over the

Mediterranean and over mountain ranges (Alps, Pyrenees). The same geographic

patterns described here for the number of formation events apply to the number of

dissipation events.

The FLS duration is calculated as the difference between dissipation time and

formation time for one FLS event for each pixel. To decrease the inĆuence of outliers,

the median instead of the mean is shown here. The geographic patterns of duration

are similar to the FLS mean map and the number of dissipation events. FLS events

tend to be longer in north-eastern part of the study area (400Ű600 minutes) and

shorter in theMediterranean (200Ű300minutes). The geographic patterns ofmedian

duration are also similar to those of themean FLS cover and the number of formation

events. This is also visible when normalizing the three quantities (Fig. A3.2) to

enhance comparability. Still, the spread of values is lower for the median duration

compared to the mean FLS cover and the number of formation events.

4.3.2 Most frequent formation and dissipation times

For further analysis, the timestamps of formation anddissipation times are converted

into % values as a function of day length (sunriseŰsunset) for formation or

dissipation during the day or as a function of night length (sunsetŰsunrise) for

nighttime formation and dissipation. This is done tomake formation and dissipation

time comparable across seasons and latitudes.
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To facilitate interpretation, these % values are then assigned to different classes of

day- or nighttime (Tab. 4.1). To produce climatological maps of the most frequent

formation and dissipation time, the mode of these classes is used for each pixel

over the entire time period (Fig. 4.8) and depending on the season (Fig. 4.9). As

dissipation most frequently occurs during the day (see Fig. A3.4 for the Upper

Rhine valley region), the most frequent dissipation time is shown here for daytime

dissipation values only. The corresponding plots of most frequent dissipation time

using daytime and nighttime dissipation over the entire study period and for each

season can be found in the appendix chapter A3 in Fig. A3.5 and Fig. A3.6.

Table 4.1: Day- and nighttime classes with respective % ranges.

Daytime Nighttime

class number class name % range class number class name % range

1 Sunrise 0Ű12.4 1 Sunrise 87.5Ű100

2 Morning 12.5Ű37.4 8 Night 62.5Ű87.4

3 Midday 37.5Ű62.4 7 Midnight 37.5Ű62.4

4 Afternoon 62.5Ű87.4 6 Evening 12.5Ű37.4

5 Sunset 87.5Ű100 5 Sunset 0Ű12.4

When considering the entire study period (Fig. 4.8), FLS forms most frequently

around midnight in large parts of the study area such as parts of France, Germany

and Italy, where secondary mountain ranges as well as rather Ćat areas, such as the

Danube valley are present. In the high-altitude mountain ranges (Alps, Pyrenees)

and on the north coast of Spain, formation occurs most frequently around sunset.

In the inner plateau of central Spain, western France and in the Po valley, FLS forms

most frequently around sunrise and in the morning.

The geographic distribution of most frequent dissipation time shows similar spatial

patterns of equal dissipation time as was seen for formation time. At the north coast

of Spain, and in high-altitude mountains such as the Pyrenees and the Alps, FLS

dissipatesmost frequently around sunrise or in themorning. In secondarymountain

ranges such as the Massif Central in southern France and the pre-alpine areas of

southern Germany, dissipation occurs mainly in the morning or around midday. In

the low-altitude areas of central Europe, such as northern France, northern Germany

and Poland but also in the inner plateau of Central Spain, dissipation occurs most

frequently in the afternoon.
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Figure 4.8: Most frequent formation (a) and dissipation times (b) over the entire study period (2006Ű
2015).

The seasonal patterns of formation and dissipation times tend to be similar in winter

(DJF) and fall (SON) and in spring (MAM) and summer (JJA) (Fig. 4.9). In winter

and fall, FLS formation occurs most frequently in the evening or during the night

and dissipation around midday or in the afternoon. In spring and summer, FLS

typically forms later, most frequently around sunrise, but does not last as long as

during winter and dissipates in the morning. The detailed geographic patterns for

each season are described below.

In winter, FLS forms most frequently in the evening or around midnight, except for

large areas inwestern France and the inner-plateau of central Spain, where formation

most frequently takes place in the morning. During this time, FLS dissipates

most frequently in the afternoon in most regions, and earlier (in the morning or

around midday) in parts of the Alps, in the secondary mountain ranges of southern

Germany or southern Italy. In spring, the most frequent formation time shifts to

sunrise or to the morning hours in large parts of France, central Spain and in the

Po valley. On the north coast of Spain, southern France, in the Pyrenees and in the

Alps FLS forms most frequently at sunset. Dissipation most often takes place in the

morning or around midday in most parts of the study area. In the Po valley and in

large parts of Poland, FLS is more persistent and most frequently dissipates in the

afternoon.
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Figure 4.9: Most frequent formation (a) and dissipation time (b) for DJF, MAM, JJA and SON from
2006-2015. Pixels with a mean seasonal FLS occurrence of less than 2 hours day-1 are
marked with a horizontal line.

In summer, FLS formation patterns are spatially diverse, with formation at sunset

(central Germany), around sunrise (Po valley) or in the morning (France). This

could be inĆuenced by to the lower number of formation events in summer compared

to other seasons in most parts of the study area (compare Fig. A3.3). A clear pattern

of formation at sunrise is visible at the coast of the Mediterranean sea. Dissipation

in summer is most frequent in the morning in large parts of the central study area.

FLS dissipates earlier (around sunrise) at the northern coast of Spain and in the

Alps, and later (in the afternoon) in western France. Still, these patterns should

be interpreted with care, as FLS occurrence is low in most of the Mediterranean in

spring and summer (compare hatched areas of Fig. 4.9). In fall, FLS formation shifts

again towards nighttime hours in most of the study area, except for parts of France

and Spain, where FLS forms most frequently in the morning. FLS dissipation also

shifts to afternoon hours inmost parts of the study area. In theAlps and the Pyrenees

FLS most frequently dissipates at sunrise, in southern Germany around midday.
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4.3.3 Regional study: Upper Rhine valley, Germany

While the formation and dissipation times data set can be used to produce

climatological maps for Europe, it can also be used for amore thorough investigation

of formation and dissipation patterns in regional studies. Such an example for a

regional study is presented here by looking closely at formation and dissipation

patterns in the Upper Rhine valley (depicted by the red rectangle in Fig. 4.1 and

introduced in section 4.2.3) in southern Germany. The FLS patterns present in that

region are likely to be inĆuenced by local to regional modulations of the synoptic-

scale weather patterns. Thus, the Upper Rhine valley is an ideal region to showcase

the level of spatial detail provided by the novel data set.

The most frequent formation and dissipation time over the complete period

(Fig. 4.10a) shows two distinct patches of formation and dissipation anomalies (at

∼7.5° E and 48° N, and at around 48.7° N). At these locations, formation is observed

to be in the morning and dissipation in the afternoon (Fig. 4.10a and e). Thus, FLS

formation and dissipation at these patches are much later than in other places of the

Upper RhineValley, where FLS usually forms around sunset or aroundmidnight and

dissipates in the morning or around midday. While the anomalies are clearly visible

in the annual averages, they are especially pronounced in MAM, with formation in

the morning and dissipation in the afternoon extending over the eastern slopes of

the Vosges (Fig. 4.10b and f).

The percentage of values that fall into the most frequent formation and dissipation

time classes relative to all formation and dissipation situations provides a measure

for the representativeness of the mode as a proxy for the typical formation and

dissipation time for each pixel (Fig. 4.10c, d, g, h). The percentage of values in

the most frequent class lies around 15-20% for the formation over the complete

year and rises to values around 20-25% in MAM and is highest in the anomalous

patches described above. Considering the dissipation, the geographic distribution

of % values is similar but on average 10% higher compared to formation, showing

that the temporal variability in dissipation time is lower than the formation time.
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Figure 4.10: Most frequent formation (a and b) and dissipation time (e and f) in the Upper Rhine
valley and the corresponding % of values contained in the most frequent formation (c
and d) and dissipation class (g and h) for the complete time period (All months) and in
spring (MAM). The country border between France and Germany also marks the course
of the river Rhine. The black dashed line depicts the 500 m above sea level height.

This case study provides two important insights into the novel formation and

dissipation data set. First of all, the relatively high spatial and temporal resolution

(native SEVIRI resolution, see Sec. 4.2.1) makes it a useful product to study regional

formation and dissipation patterns. Secondly, the dissipation time features a lower

temporal variability than the formation time, as evidenced by the systematically

higher fraction of events in themost frequent class. Overmost of the study area,more

than two thirds of dissipation events occur during the day, whereas formation time

is equally distributed between daytime and nighttime in large parts of the study area

(Fig. A3.4). This is likely due to a higher number of possible formation pathways and

thus formation times whereas dissipation is strongly inĆuenced by solar radiation.

This is further evaluated in the discussion below.
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4.4 Discussion

The geographic patterns of formation and dissipation time clearly underline the role

of topography for the occurrence and development of FLS events. In large mountain

ranges such as the Alps or the Pyrenees FLS forms earlier (around sunset) compared

to lower terrain but also dissipates earlier (around sunrise). These geographic

patterns may be interpreted as the signature of regionally characteristic processes

inĆuencing FLS formation and dissipation. It is likely that formation at sunset in

those mountain ranges is due to advected FLS layers, especially on the windward

slopes of those ranges, e.g. on the northern slopes of the Pyrenees. After sunrise,

these FLS layers are likely to be Şburned-offŤ as the sun reaches the mountain tops

Ąrst. In the Po valley in Italy or in the inner plateau of Central Spain, FLS formation

is likely to be due to nocturnal cooling and a subsequent transition into a low

stratus cloud (Roach, 1995). Other potential involved processes could be topography

induced drainage Ćows and turbulence (Price, 2019).

In smaller mountain ranges (e.g. the Black Forest), the dependence of formation and

dissipation time on topography is not always clear. A potential explanation for this

could be that the local modulation of the meteorological parameters that determine

the FLS life cycle (e.g. relative humidity, wind) scales with the topographic features.

In areas withmoderate topography, the topography-induced local modulation of the

meteorological setting would then have a weaker effect on the resulting geographic

patterns of formation and dissipation times than in mountainous areas. In general,

topographic features are only modulating the meteorological drivers responsible for

FLS formation and dissipation. As has been shown in previous studies (chapter 2,

Pauli et al., 2020) meteorological factors are the main drivers of FLS occurrence over

central Europe. In addition, the presented formation and dissipation times should

be interpreted with care over areas with a low sample size or high topographic

variability, as the pixel size of the product (3Ű5 km, depending on the exact position)

is too large to be able to depict small-scale variations in FLS.

Besides topography, the proximity to the sea is important for the timing of FLS

formation anddissipation aswell. In general, coastal fog is strongly inĆuenced by the

meteorological conditions and ocean-atmosphere interactions (Gultepe et al., 2021).

The results presented here show a clear pattern of FLS formation at sunrise at the

coast of the Mediterranean sea in summer (Fig. 4.9). According to Azorin-Molina

et al. (2009) humidwinds from theMediterranean sea in combinationwithmountain

ranges close to the coastline can lead to FLS occurrence at the coast. Therefore, at the

Mediterranean coast, the diurnal cycle of the coastal circulation is likely amain driver
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of the observed patterns in FLS formation and dissipation times. At the Atlantic

coast of northern Spain, blocking of FLS by the Cantabrian mountains (Egli et al.,

2017) and upwelling (Alvarez et al., 2010) might be important for FLS formation,

as the latter plays an important role in other FLS prone regions such as at the south

western African coast (Olivier and Stockton, 1989; Cermak, 2012; Andersen et al.,

2020). Close to the french Atlantic coast over the Landes forest south of 45° N FLS

forms earlier over the forest (around midnight) compared to its surroundings (FLS

formation in the morning), particularly in spring and summer. This is in line with

enhanced nighttime FLS occurrence over this forest compared to its surroundings

shown in Pauli et al. (2022b) (chapter 3), potentially due to enhanced emissions

of biogenic volatile organic compounds over the forest, which can serve as cloud

condensation nuclei (Spracklen et al., 2008; Kammer et al., 2018).

Another driving factor for the observed patterns is the solar radiation. As stated

above, this is especially true for the dissipation time, where processes related to

downwelling solar radiation (absorption inside the FLS layer, sensible heat Ćux)

more strongly inĆuence the dissipation of FLS compared to other, more subtle

drivers (Wærsted et al., 2019). Formation can occur through various pathways

during the day or during the night, with formation patterns showing a much higher

variability. To focus on speciĄc FLS events and to unravel different formation

and dissipation pathways, one could Ąlter for stationary FLS events using image

detection techniques or Ąlter for meteorological conditions.

The higher number of formation and dissipation events over cities does not transfer

to a difference of formation and dissipation time between cities and surrounding

land. In contrast to the literature (cf. Yan et al., 2020) earlier dissipation over cities

is not visible in the shown climatological means. On the one hand, this may be

due to the assignment of the dissipation and formation times in % to different

daytime and nighttime classes (Tab. 4.1) and the subsequent calculation of themode,

which could be investigated in more detail by looking at the raw formation and

dissipation times over cities and surrounding areas. On the other hand, as discussed

above, the FLS data set is likely to be Ćawed over cities during daytime, and thus

misclassiĄcations are likely to superimpose the actual patterns in the Ąrst place.

Applying the proposed logistic regression algorithm to a robust high resolution

cloud mask over cities (Fuchs et al., 2022) could add to our knowledge of the FLS

life cycle over urban areas.

As these discussions on the possible processes underlying the geographic formation

and dissipation patterns remain speculative, explicit regional analyses on the drivers

of FLS formation and dissipation time are necessary. In addition, the potential
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inĆuence of multi-layer cloud situations andmisclassiĄcations on the presented FLS

formation and dissipation time has to be considered for the interpretation of the

results. In a regional study, the FLS data set by Egli et al. (2017) used as a basis for

this study has been shown to agree well with active sensor data (chapter 3, Pauli

et al., 2022b). The formation and dissipation time patterns shown with this novel

FLS formation anddissipation data set are also in linewith LES andmodeling studies

over Europe, showing FLS formation in the night and dissipation after sunrise (cf.

Roach, 1995;Haeffelin et al., 2010; Bergot, 2016; Steeneveld anddeBode, 2018). While

modeling, LES studies and local measurements display the FLS life cycle with high

temporal resolution at a speciĄc site and can also include the vertical component

of an FLS event, the data set presented here provides a geographic perspective on

formation and dissipation time over complete central Europe.

4.5 Specific conclusions

The central aim of this studywas to investigate spatial patterns of FLS formation and

dissipation times over central Europe. For this purpose, an algorithmwas designed,

which applies logistic regression to a binary satellite-based FLS cloud mask. With

the novel data set, FLS formation and dissipation times were investigated, largely

conĄrming known patterns of formation during the night and dissipation in the

morning or in the afternoon. In general, FLS occurrence, formation and dissipation

are dependent on various drivers (cf. Roach, 1995; Gultepe et al., 2007; Price,

2019; Pauli et al., 2020). The results presented here underline the importance of

topography-inducedmodulations ofmeteorology for FLS formation anddissipation:

In mountain ranges, FLS forms most frequently at sunset and dissipates in the

morning. At lower altitudes, such as in large-scale river valleys, FLSmost commonly

forms around sunrise and dissipates in the afternoon. Furthermore, a higher

variability in formation times compared to dissipation times is found, with the latter

being much more dependent on solar radiation. The data set adds a geographic

component to our knowledge of FLS formation and dissipation and provides a basis

for future studies.

In the future, a preprocessing step could be implemented by adding a Ąlter to

more speciĄcally study stationary FLS situations that may be indicative of radiation

fog, e.g. using image detection techniques or focusing on speciĄc meteorological

conditions. The new algorithm can also be applied to other existing satellite-

based FLS data sets with a high temporal resolution over regions where FLS are
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an important component of the climate and environment and station measurements

are lacking such as in the Namib Desert (Andersen and Cermak, 2018), and can

be compared to diurnal patterns identiĄed there so far (Andersen et al., 2019).

Furthermore, this data set holds promise to help better understand the drivers of

FLS formation and dissipation at continental scales.
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5 Identifying and understanding fog

and low stratus formation and

dissipation regimes

5.1 Specific Motivation and Aim

Temporal and spatial patterns of fog and low stratus formation and dissipation

vary considerably across continental Europe and were shown to be inĆuenced

by topography, the distance to the coast and the solar cycle in chapter 4. The

meteorological and land surface drivers of FLS occurrence identiĄed in chapter 2

most likely also play an important role for the FLS life cycle. As such, the research

of the chapter at hand merges the knowledge gained in chapter 2 and 4 to identify

geographically distinct FLS regimes and quantify sensitivities of FLS formation and

dissipation time to changes in meteorological and land surface parameters.

Previous studies have identiĄed FLS regimes based on their daily mean occurrence

(Egli et al., 2019) or their daily frequency cycle (Knerr et al., 2021) using clustering

algorithms such as self-organizing maps (SOMs) (Kohonen, 1982) and hierarchical

clustering (Müllner, 2011, 2013). The resulting clusterswere shown to be determined

by the inĆuence of topography and atmospheric conditions (Egli et al., 2019; Knerr

et al., 2021). Besides using occurrence means as an input, sensitivities presenting

relationships of the investigated variable with environmental conditions can be

used as a basis for clustering, to group regions with similar sensitivity patterns

(Douglas and Stier, 2021; Zuidema et al., 2022). Douglas and Stier (2021) created

global regimes of cloud controlling factors by using the sensitivities obtained from

a machine learning set-up in a k-means clustering approach. Similar approaches

have also been applied in research Ąelds outside the atmospheric sciences, for

example, to analyze tree climate response using monthly correlations of tree growth

with environmental variables as an input for SOMs (Zuidema et al., 2022). By

delineating regimes of FLS formation and dissipation based on their sensitivities to
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environmental conditions will shed new light onto the geographic variability of FLS

processes.

The goal of the study is to identify and delineate FLS formation and dissipation

regimes over central Europe and to quantify the sensitivity of the FLS life cycle to

changes in meteorological and land surface based drivers identiĄed in chapter 2

(Pauli et al., 2020). This is done by using pixel-based correlations of FLS formation

and dissipation time with meteorological and land surface drivers as an input into

a hierarchical clustering algorithm. Region-speciĄc correlations are analyzed for

each cluster and on different hierarchy levels. The guiding hypothesis is that the

sensitivities of the identiĄed FLS regimes to changes in environmental conditions

depend on background climate and FLS type. This analysis contributes to the

understanding of the spatial variations of FLS regimes, outlines the differences in

the inĆuence of meteorological and land surface drivers on the FLS life cycle and

provides a basis for further FLS region-speciĄc sensitivity studies.

5.2 Data and methods

5.2.1 Fog and low stratus formation and dissipation time data set

The basis of the study is the satellite-based FLS formation and dissipation time data

set by Pauli et al. (2021), in particular data on daytime dissipation and nighttime

formation to speciĄcally investigate the radiation fog life cycle. This formation and

dissipation time data set has been created by applying logistic regression to an

existing FLS data set based on Meteosat SEVIRI (Spinning Enhanced Visible and

Infrared Imager) data (Egli et al., 2017). Details on the logistic regression algorithm

applied can be found in Pauli et al. (2022a). The spatial resolution of the Pauli et al.

(2021) data set is 3 km at nadir (around 5 km in central Europe) and FLS formation

and dissipation times are given as percentage values as a function of day or night

length.

To describe the prevailing meteorological condition, daily means of mean surface

pressure (MSP) and wind speed (WS) from ERA5 land are used (Muñoz Sabater,

2019). The state of the land surface is described using daily means of land surface

temperature (LST) and evapotranspiration (ET) from the Land-Surface Analysis

Satellite Applications Facility (LSA-SAF) (Trigo et al., 2011). Rescaling to SEVIRI

resolution and quality control is carried out as described in Pauli et al. (2020). All

data sets span the years 2006Ű2015 and the area of central Europe.
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5.2.2 Clustering input and algorithm description

Pixel-based correlation calculation

As a Ąrst step, the correlation of daytime dissipation and nighttime formation with

daily means of MSP, WS, ET and LST is quantiĄed by calculating the corresponding

SpearmanŠs rho correlations and p-values for each pixel over central Europe. To

obtain information on the seasonal cycle of the correlations, these are performed

for each month separately. In addition, a moving window approach based on a 3x3

pixel region is implemented to enhance the number of observations used for the

correlation analyses.

The signiĄcance of the obtained SpearmanŠs rho correlation values is considered

by interpolating over the non-signiĄcant (p>0.05) pixels using linear interpolation,

as applying a strict p-value threshold would lead to the exclusion of pixels in

the subsequent clustering analysis. All correlation values of one pixel (with each

variable, for each month) have to be valid to assign the pixel to a cluster. Different

interpolation techniques, speciĄcally nearest neighbor, were found to provide less

spatial detail in the correlationmaps than linear interpolation. To show the inĆuence

of the interpolationmethod on the resulting clusters, the appendix chapter A4 shows

the results of the clustering procedure using nearest neighbor.

The effect of the interpolation on the input data is shown with exemplary maps

over Germany displaying the correlation of FLS formation and dissipation time with

mean surface pressure for the month of February in Ągure 5.1. While the variability

of the spatial patterns is high, the correlations indicate a shift of sensitivities from

maritime to continental regions which is further discussed in section 5.3. While the

linear interpolation slightly smooths the spatial patterns of the correlation values,

the difference to the raw correlation values (left column) is small.

Hierarchical clustering

In order to group areas in central Europe with a similar formation and dissipation

regime and to analyze their sensitivities to changes of the four drivers, a hierarchical,

agglomerative clustering algorithm is applied to the correlations calculated for each

pixel. Agglomerative clustering is an unsupervised machine learning technique

which separates a data set into singleton nodes and merges the closest nodes until

only one node is left (Everitt, 2011; Müllner, 2011). Merging can be performed using

various linkage strategies, which deĄne the measure of distance (or similarity). In

the context of this study, the ward linkage is applied, which aims to minimize the
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Figure 5.1: Correlationmap for mean surface pressure (MSP)with formation (upper) and dissipation
(lower) time for the month of February. The left column displays the raw SpearmanŠs rho
values, the center column those with a p-value <=0.05 and the right column the result of
the linear interpolation values.

increase in the error sum of squares within a cluster summed over all variables

(Everitt, 2011).

One of the major advantages of using a hierarchical clustering approach is that it is

possible to decide on the level of hierarchywhere the clusters are chosen from and to

viewhowclusters on the same or different hierarchy levels are related. In the analysis

conducted here, this is especially useful as itmakes it possible to analyze howclusters

of similar FLS life cycle regimes relate geographically. Nevertheless, the main

disadvantages of agglomerative hierarchical clustering is that if two observations

have been joined they can not be separated in a later step (Everitt, 2011).

In the context of this study, the fastcluster package in python developed by Müllner

(2011, 2013) is used, as it clusters a large input data set efficiently. The fastcluster

package has been used successfully to cluster general weather situations into groups

of similar fog patterns in Egli et al. (2019). The input data for the fastcluster
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algorithm consists of one row for each (land-) pixel and one column for eachmonthly

correlation value of each variable for both formation and dissipation (Tab.5.1).

Table 5.1: Example layout of the table used as an input for the hierarchical clustering algorithm. The
correlation values are for visualization purposes only. The input table used in the clustering
algorithm contains the correlation values with all variables (MSP, WS, ET, LST).

nPixel corrMSP

form
Jan

... corrMSP

form
Dec

... corrMSP

diss
Jan

... corrMSP

diss
Dec

... corrLST
diss
Dec

1 0.50 ... 0.40 ... 0.31 ... -0.15 ... -0.32

2 0.01 ... 0.72 ... 0.83 ... 0.24 ... -0.13

3 0.45 ... -0.37 ... -0.23 ... 0.02 ... 0.8

... ... ... ... ... ... ... ... ... ...

206095 0.73 ... 0.42 ... -0.7 ... 0.21 ... 0.27

The output of the hierarchical clustering procedure is a dendrogram, which is

displayed as a rooted tree, with leaves as the initial nodes and internal nodes

depicting where two clusters are joined (Müllner, 2011, 2013). The length of

the stems (vertical lines) represents the distances at which the clusters are joined

(Everitt, 2011), which helps to identify cluster partitions with a large increase in

distance measure.

5.3 Results and Discussion

5.3.1 Regional cluster overview

The dendrogram of the hierarchical clustering procedure shown in Ągure 5.2 clearly

delineates four main clusters, as shown by the increase in distance measure after

the data is merged into these four clusters. A spatial map of the resulting four FLS

formation and dissipation regimes is shown in Ągure 5.3a, whereas smaller, more

regional clusters are visible when using a hierarchy level of 15 clusters (Fig. 5.3b).

The spatial map using nearest neighbor as an interpolation technique is shown in

ĄgureA4.1. The identiĄed clusterswhen using different interpolation techniques are

similar and the spatial details described in the following for the most part also apply

to the clustering resultswhen using nearest neighbor for the input data interpolation.
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Figure 5.2: Dendrogram of the hierarchical clustering procedure, displaying the relationship of clusters
and their joining distance. The y-axis shows the distance of data points to other members
of the cluster (here the intra-cluster variance) with numbers at the nodes highlighting the
distance at which the clusters are joined. The clusters are colored to mark the four main
clusters. The points on the vertical lines show the position of the joining nodes. Cluster
sizes (number of pixels contained) on the x-axis are given for the 15 clusters shown.

The FLS life cycle regimes obtained by the hierarchical clustering approach generally

match well to known regional and subregional FLS types and climate zones.

Different background climates are most likely reĆected in the sensitivities of

formation and dissipation time to changes in meteorological and land surface

drivers, which can also lead to the assignment of geographically close regions to

different clusters. Potential FLS types and background climatology of the four main

clusters and their relation to the 15 subclusters are discussed in the following.

The largest cluster identiĄed by the hierarchical clustering algorithm (orange,

further referred to as Şcentral clusterŤ as it covers most of central Europe) contains

most of the data points and covers large parts of Italy and southeastern Europe, as

well as parts of Germany, France, Portugal and Spain. The central cluster is derived

from multiple subclusters (Fig. 5.3b) showing regions of known FLS regimes, such

as the north-western coast of the Iberian peninsula (Egli et al., 2017), the Swiss

Plateau and the Po valley (Bendix, 1994; Cermak et al., 2009). In these regions, FLS

of radiative and advective origin are present.

The cluster in the north western part of the study area contains the UK, as well

as coastal areas of France, Belgium, the Netherlands and Germany (blue, further

referred to as Şmaritime clusterŤ). It is formed by two subclusters (Fig. 5.3b), which
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also separate the east coast of the UK from the west coast, with the latter being much

more prone to the incoming westerlies and higher rainfall (Mayes and Wheeler,

2013). According to Mayes (2013), fog on the west coast of England and Wales is

more likely of advective than of radiative origin.

Figure 5.3: Map of formation and dissipation clusters identiĄed by the hierarchical clustering
algorithm. Two different hierarchy levels are displayed, 4 clusters (a) and 15 clusters
(b). The white areas in some coastal regions are due to missing input values, as these
are situated outside the convex hull used in the interpolation procedure.

The cluster situated in the north eastern part of the study area (red, further referred

to as ŞBaltic-Scandinavian clusterŤ) covers most Baltic and Scandinavian states. FLS

occurrence has been shown to be especially large in this region during prevailing

anticyclonic conditions (Egli et al., 2017), leading to the advection of warm air

over cold and potentially snow-covered land and the formation of advection fog

(Avotniece et al., 2015). Besides advection fog, radiation fog can form as well in

this region, especially in anticyclonic conditions in fall (Avotniece et al., 2015).

The fourth major cluster covers parts of Spain, Portugal and Croatia (purple,

Mediterranean cluster). In summer and early fall, FLS on the Iberian Peninsula

forms mainly due to advection of clouds onto the mountain ranges (Estrela et al.,

2008), whereas in winter, FLS patterns are due to frontal systems (Valiente et al.,

2011). Nevertheless, major parts of the Iberian Peninsula are assigned to the central

cluster. While the climate of the north coast is oceanic and strongly inĆuenced by the

Atlantic, the climate in the central Plateau of the Iberian Peninsula has continental

characteristics (Royé et al., 2018), leading to different sensitivities of formation and

dissipation time to the investigated drivers.
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5.3.2 Sub-regional cluster analysis

With the identiĄcation of distinct FLS regimes, their speciĄc characteristics can be

analyzed with greater detail regarding meteorological and land surface drivers of

the FLS life cycle. In the following, the sensitivity of FLS formation and dissipation

times to changes inmeteorological and land surface drivers is analyzed for three sub-

regional clusters identiĄed by the hierarchical clustering algorithm. The sensitivities

are given as the mean monthly SpearmanŠs rho value for all pixels with p≤0.05.

A positive correlation indicates a shift to later (earlier) formation and dissipation

times with increasing (decreasing) feature value, whereas a negative correlation

indicates a shift to earlier (later) formation and dissipation times with increasing

(decreasing) feature values. All clusters analyzed below have been extracted from a

hierarchy level of 80 clusters, as this level provides distinct subregional clusters with

a considerable spatial extent.

Po valley, Italy

The Ąrst sub-regional cluster is part of the large central cluster described above

(Fig. 5.3) and covers large parts of the Po valley in northern Italy (Fig. 5.4). This

region is known for high FLS occurrence (Fuzzi et al., 1992; Bendix, 1994; Cermak

et al., 2009; Egli et al., 2017) with a typical radiation FLS regime of formation before

sunrise and dissipation in the afternoon (chapter 4, Pauli et al., 2022a). As shown

here, the hierarchical clustering algorithm is thus able to extract the Po valley region

by solely using the calculated correlations. Sensitivities of formation and dissipation

time to variations in LST and ET are low during winter and fall and increase in

spring and summer with a maximum of 0.5 for ET in June. This indicates that

higher temperatures together with high evapotranspiration lead to a delayed FLS

formation during the night and delayed FLS dissipation during the day. A potential

explanation for this shift to later FLS formation times in spring and summer is,

that due to generally higher daytime temperatures, it takes longer for the air to

cool down to its dewpoint during the night. Increasing LST values in December

lead to an earlier dissipation, which is in accordance with studies looking at the

inĆuence of temperature or solar radiation on the FLS life cycle (Haeffelin et al., 2010;

Wærsted et al., 2019; Pauli et al., 2020). Generally, moist, Mediterranean air masses

are important for FLS formation in the Po valley, as cold air at the groundmixes with

the overlying moist air (Bendix, 1994). Looking at the variability of temperature and
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moisture between different pressure levels in the future could further give insight

into these processes.

Figure 5.4: Sub-regional cluster covering the Po valley and monthly sensitivities of FLS formation and
dissipation time to meteorological and land surface drivers. The sensitivities are given as
the mean monthly SpearmanŠs rho value for all pixels with p≤0.05. The 95th percentile is
displayed as the shaded background.

The correlations of FLS formation and dissipation time with wind speed and mean

surface pressure are generally low in magnitude except for summer: In the summer

months, low WS and low MSP decrease the duration of FLS events by shifting

FLS formation time to later times in the night and FLS dissipation time to earlier

times in the morning. The sensitivities of FLS formation and dissipation to changes

in MSP are in line with other studies, which have shown that high mean surface

pressure (as found in anticyclonic conditions) leads to more persistent FLS and

thus longer FLS duration (Ye, 2009; Egli et al., 2019). Concerning wind speed,

the results are contrasting to other studies which identiĄed low wind speeds to

increase the duration of FLS (Cuxart and Jiménez, 2012; Pérez-Díaz et al., 2017; Price,

2019). Nevertheless, the inĆuence of wind speed on FLS formation and dissipation

time is most likely region-speciĄc, dependent on wind direction, FLS type and the

differentiation of low stratus and ground fog. Additionally, studying the interactive

effects of MSP andWS (similarly as in chapter 2, Fig. 2.9) on the FLS life cycle would

give further insights into the involved processes.
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Northwest of England & Wales

The second sub-regional cluster is part of the maritime cluster and covers the coastal

areas of the northwest of England and Wales (Fig. 5.5). Both FLS formation and

dissipation show similar sensitivities to variations in LST and ET with the highest

correlations present in summer, which lead to a shift of the FLS life cycle to both later

formation and dissipation. Inwinter, correlationsmostly have lowermagnitudes but

display a shift to earlier dissipation for high LST values.

Figure 5.5: Sub-regional cluster covering the Northwest of England and Wales and monthly
sensitivities of FLS formation and dissipation time to meteorological and land surface
drivers. The sensitivities are given as the mean monthly SpearmanŠs rho value for all pixels
with p≤0.05. The 95th percentile is displayed as the shaded background.

The inĆuence of MSP andWS on FLS formation and dissipation time varies strongly

between formation and dissipation and the two variables. In high wind speed

conditions, FLS forms earlier but also dissipates earlier in the summer months.

In fall, the pattern is different: FLS forms later in high wind speed conditions

and dissipates earlier. This could be due to high wind speeds associated with

storm systems, leading to fast changes in low stratus cover and fog in that region.

Unfortunately, no information on wind direction is available here, which makes it

not possible to say if the different sensitivities are due to a change in circulation

patterns. According to Kenworthy (2014), wind direction plays a major role for FLS

persistence in the northern part of the cluster region, where low stratus clouds persist

after the passage of a cold front when the following wind direction is northwesterly.
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The correlation of FLS formation and dissipation time with daily means of MSP is

positive throughout the year and highest in summer. A shift of FLS dissipation to

later times in high pressure conditions has been shown in previous studies (Ye, 2009;

Egli et al., 2019). With the highly dynamic weather in this region, together with a

large frequency of storms during fall and winter (Mayes, 2013; Kenworthy, 2014),

other drivers besides those investigated here are likely to inĆuence the detected

FLS regimes and sensitivities as well. One of these drivers is likely the sea surface

temperature (SST), which has been shown to inĆuence FLS formation at the south

and east coast of England, especially in spring and early summer when SSTs are still

low (Perry, 2014; Fallmann et al., 2019).

Jucar basin, Spain

The third sub-regional cluster is located near Valencia in the Jucar basin, at the

Mediterranean east coast of Spain (Fig. 5.6). The correlation of LST and ET with

FLS formation time varies between 0.2 and -0.2 with highest magnitudes in March

andNovember for LST and inMay for ET. Thesemostly negative correlations indicate

that FLS forms earlier with higher LST and ET feature values. The correlation of FLS

dissipation time with LST and ET is mostly negative, suggesting that FLS dissipates

earlier when LST and ET are higher. As discussed above, the positive inĆuence

of higher temperatures and solar radiation on FLS dissipation has been shown in

chapter 2 and in other studies as well (Haeffelin et al., 2010; Wærsted et al., 2019;

Pauli et al., 2020).

FLS formation and dissipation sensitivity to changes in wind speed and mean

surface pressure varies considerably over the course of the year. The correlations of

formation timewithwind speed are of lowmagnitude and are positive inwinter and

negative in summer. Earlier FLS formation in high wind speed situations (negative

correlation) could relate to FLS advection from the sea onto the mountain ranges

near the coast (Estrela et al., 2008), especially during easterly circulation types in

summer and early fall (Valiente et al., 2011; Royé et al., 2018). FLS dissipation is

shown to be later in high wind speed situations over all seasons, which also suggests

a connection to speciĄc circulation types, wind direction and topography of the

region. FLS duration is prolonged in high pressure situations as it forms earlier and

dissipates later. Still, correlations vary substantially in magnitude over the course of

the year, which makes it difficult to extract a clear dependency of the FLS life cycle

on both wind speed and surface pressure.
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Figure 5.6: Sub-regional cluster covering the Jucar basin on the east coast of Spain and monthly
sensitivities of FLS formation and dissipation time to meteorological and land surface
drivers. The sensitivities are given as the mean monthly SpearmanŠs rho value for all pixels
with p≤0.05. The 95th percentile is displayed as the shaded background.

5.4 Specific conclusions

The aim of this study was to identify FLS life cycle regimes over central Europe by

applying hierarchical clustering to correlations of FLS formation anddissipation time

with meteorological and land surface drivers. The differences in the relationship of

the FLS life cycle to environmental conditions across different subregional FLS life

cycle regimes were outlined and knowledge on the main drivers for FLS occurrence

gained in chapter 2 (Pauli et al., 2020) was applied. Distinct geographic regimes

were found, which are most likely dependent on the relation of FLS formation

and dissipation time with the background climate, as well as the proximity to

the coast and topography given by the sensitivities used as the input data. The

sensitivities of three exemplary FLS regimes show the potential of this approach to

understand region-speciĄc FLS life cycles as a function of land surface characteristics

and meteorological conditions: An increase in land surface temperatures leads to a

shift to later dissipation times in summer in the Po valley, but to earlier dissipation

at the eastern coast of the Iberian Peninsula. Similarly, the inĆuence of mean surface

pressure andwind speed on the FLS life cycle varies across clusters: Increasingmean

surface pressure values leads to a shift to later formation times over the Northwest

of England and Wales but to earlier formation in the Po valley and the eastern coast
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of the Iberian Peninsula. In addition, while LST seems to be highly important for the

FLS life cycle in the Po valley, FLS formation and dissipation processes on the British

Isles seem to dependmore on the meteorological variability displayed by changes in

wind speed and mean surface pressure.

Apart from the variation in sensitivities pertaining to cluster location, the type of fog

(e.g. radiation or advection fog) and the distinction between (ground) fog and lifted

fog (stratus) most likely also inĆuences the observed patterns. Applying weather

type Ąlters or using active satellite data for the selection of (ground) fog days could

help in distinguishing fog type speciĄc sensitivities, which is critical going forward.

The clustering procedure can be further improved by using daytime and nighttime

means for the correlations. This will further clarify formation sensitivities, as these

show a larger variability than dissipation sensitivities, similar to what has been

shown for the climatological patterns in chapter 4 (Pauli et al., 2022a). Including

previously not considered variables, such as wind direction as well as temperature

and moisture on different pressure levels, will potentially further help in evaluating

region-speciĄc processes of the FLS life cycle.

The FLS regimes identiĄed in this study provide an ideal working ground to further

analyze region-speciĄc FLS life cycle drivers. A possible approachwould be to apply

machine learning to predict FLS formation, dissipation or duration over multiple

regions and compare performance and sensitivities. Combining this approach with

a Ąlter for FLS types will further help to quantify the inĆuence of meteorological and

land surface drivers on region-speciĄc fog and low stratus life cycle patterns.
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6.1 Concluding discussion

Fog and low stratus processes occur on a large range of scales, from aerosol processes

on microphysical scales, to processes related to topography on the landscape scale.

The life cycle of FLS is inĆuenced across these scales by a range of atmospheric

and land surface processes and their magnitude and direction depend on location,

season and fog type. In this thesis, the central aim was to quantify the inĆuence

of meteorological and land surface drivers on FLS occurrence and FLS life cycle

over central Europe. This was done by applying several statistical methods to

satellite-based data sets and reanalysis data. The understanding of fog and low

stratus processes, the role of the land surface and knowledge of fog and low

stratus formation and dissipation processes was improved under the guidance of

the following four research questions identiĄed in chapter 1.5:

1. What are the main drivers of large-scale spatial and temporal fog and low stratus

patterns?

2. How does the land surface inĆuence spatial variations in fog and low stratus

occurrence?

3. What are the climatological patterns of fog and low stratus formation and dissipation

time?

4. What are fog and low stratus formation and dissipation regimes on regional to sub-

regional scales?

Themain Ąndings and results of this thesis concerning these questions are discussed

in the following.
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(1) Meteorological and land surface drivers of fog and low stratus

occurrence

In a regional study over continental central Europe, FLS occurrence was modeled

using meteorological and land surface parameters. In agreement with the guiding

hypothesis proposed in chapter 1.5, atmospheric proxies were identiĄed as the

main determinants of FLS presence, in particular mean sea level pressure, near-

surface wind speed and FLS occurrence on the previous day. Of the land surface

characteristics considered, evapotranspirationwas shown to play a crucial role in the

prediction of FLS occurrence, especially in high pressure conditions and in spring

and fall (Fig. 2.7). Local moisture input was found to be especially important for

locations further inland, highlighting the role of horizontal moisture advection for

FLS occurrence and the interactions of atmospheric and land surface drivers.

The Ąndings of this study support results of previous more localized process studies

while providing insights on the spatial variation of drivers of FLS occurrence. The

effect of variations in LST on FLS occurrence shows that low temperatures positively

inĆuence FLS occurrence as has been hypothesized previously (Underwood et al.,

2004; Ye, 2009; Cuxart and Jiménez, 2012; Pérez-Díaz et al., 2017; Boutle et al., 2018;

Gray et al., 2019; Price, 2019; Mühlig et al., 2020). The positive effect of low wind

speeds, high pressure and speciĄc weather patterns providing such conditions on

FLS occurrence and persistence (Ye, 2009; Price, 2011; Cuxart and Jiménez, 2012;

Scherrer and Appenzeller, 2014; Pérez-Díaz et al., 2017; Rosskopf and Scherrer, 2017;

Egli et al., 2019; Knerr et al., 2021) has also been detected in this study. To further

analyze the role of large-scale atmospheric conditions and the related pressure Ąelds,

the daily average FLS occurrence is assigned to general weather situations after Hess

and Brezowsky (1977). FLS occurrence maps by general weather situation reveal

regions of high radiation fog occurrence such as river valleys (Po, Danube) and

large basins (Panonnian basin) (Fig. 6.1). Applying this Ąltering approach in future

studies couldmake it possible to create FLS type speciĄcmodels and to subsequently

analyze FLS type speciĄc drivers.

The inĆuence of land surface characteristics (namely albedo and fraction of

vegetation cover) was found to be low. This is potentially due to the low

day-to-day variability of these drivers compared to atmospheric drivers or LST and

ET. Extending this concept further suggests that the day-to-day variability of FLS

occurrence is mostly determined by the day-to-day variability of the atmospheric

setting. Hence, the inĆuence of the land surface on FLS occurrence might be

detectable when climatological means of FLS occurrence are analyzed (cf. Teuling
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Figure 6.1: Mean FLS cover in hours per day during the general weather situation ŞHigh over Central
EuropeŤ (HM) (a) and ŞAnticyclonic southwesterlyŤ (SWA)(b).

et al. (2017) and chapter 3). Furthermore, the low spatial resolution of the FLS data

set used (3 km pixel size at nadir) might superimpose land cover speciĄc inĆuences

on the FLS occurrence. Using high resolution satellite FLS products (Fuchs et al.,

2022) could enhance the possibilities of the analysis of land surface effects on fog

and low stratus clouds.

At the temporal and spatial scales of the study conducted in chapter 2,meteorological

drivers are themost inĆuential when predicting FLS occurrence. The inĆuence of the

land surfacewas found to be secondary, but is potentially dependent on the temporal

averages considered. Furthermore, this study underlines the applicability of tree-

based machine learning algorithms to atmospheric problems and their high level of

interpretability.

(2) Land surface driven variations in fog and low stratus

occurrence

In chapter 2, meteorology was identiĄed as the main driver in determining daily

means of FLS occurrence, whereas the inĆuence of the land surface was found to be

marginal. In this chapter, multi-year means of nighttime FLS occurrence, using two

independent satellite products, were analyzed over a western European forest and

the surrounding agricultural land to detect land cover inĆuences on FLS occurrence.

Over the forest area considered in the analysis, signiĄcantly higher nighttime FLS
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occurrence compared to the surrounding agricultural land was detected. Potential

reasons were found to be lower wind speeds, a temperature inversion and a higher

availability of BVOCs serving as CCN over the forest.

The approach used in this chapter is similar to a space-for-time approach, which

is often used to compare cloud or temperature patterns over neighboring forest

and non-forest pixels to derive potential effects of land cover change on the

variable of interest (Li et al., 2015; Teuling et al., 2017; Xu et al., 2022). Thus, the

results of chapter 3 would suggest, that deforestation could decrease nighttime FLS

occurrence, similar to what has been detected for convective cloud cover in boreal

regions (Xu et al., 2022). However, projections of the Ąndings of the study on the

effects of the change in land cover on FLS occurrence are difficult, as potential drivers

most likely vary depending on forest location and climatic zone.

An important driver for FLS occurrence identiĄed in chapter 2 is the land surface

temperature. Further analysis of LST over the study region shows lower nighttime

values over the Landes forest compared to the surrounding agricultural land

(Fig. 6.2), especially in summer and fall. Lower nighttime temperatures in

forests compared to nearby non-forest areas are usually observed in the tropics,

where strong cooling over the forest due to evapotranspiration decreases nighttime

temperatures (Li et al., 2015; Schultz et al., 2017). Over parts of the Landes forest,

transpiration rates have been found to be relatively low (Moreaux et al., 2013), thus,

other drivers such as the surface turbulent heat Ćuxes and the ground heat Ćuxmight

lead to lower nighttime temperatures over the forest area (Chen andDirmeyer, 2020).

Figure 6.2: Mean seasonal nighttime (0Ű6 UTC) LST from 2006Ű2015 over the Landes area. The
forest boundary is depicted by a dashed gray line.
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The positive inĆuence of low temperatures on FLS formation has also been found

in studies looking at FLS formation in tropical lowland cloud forests (TLCFs)

(Gradstein et al., 2011). In addition to the effect of temperature, the relief has been

shown to inĆuence nocturnal FLS patterns over the TLCFs of South America as well

(Pohl et al., 2021). Extending the analysis of chapter 3 to other forest areas and

analyzing the factors leading to enhanced FLS cover could also support conservation

efforts of TLCF environments.

Similar towhat has been shown for daytime convective cloud cover inXu et al. (2022),

the magnitude of the surface heat Ćuxes and the partitioning of the turbulent heat

Ćuxes into their latent and sensible part also plays a signiĄcant role in the fog life

cycle: Whereas the latent surface heat Ćux positively inĆuences the liquid water

path (LWP) budget in fog, the sensible surface heat Ćux is the most signiĄcant

negative term and thus strongly contributes to fog dissipation (Wærsted et al., 2019).

Wærsted et al. (2019) further suggest that the Bowen ratio plays a major role in

determining the inĆuence of the surface latent and sensible heat Ćux on the fog

LWP. The Bowen ratio is inĆuenced by the availability of liquid water on the surface

and thus the type of underlying vegetation, as the latter strongly impacts water

distribution by wind, throughfall and soil inĄltration (Wærsted et al., 2019). Thus,

comparing magnitude and direction of the turbulent heat Ćuxes over forests and

other nearby land surface types would further contribute to the understanding of

the role of land cover on FLS processes.

The Ąndings of the study present observational evidence of land cover inĆuence

on FLS on a spatial and temporal scale previously not shown and support the

hypothesis presented in chapter 1.5. The inĆuence of the land surface is found to

occur via biophysical interactions (i.e. exchanges of energy) and biogeochemical

interactions (i.e. emissions of aerosols). The results further emphasize the need

for the quantiĄcation of the effect of the responsible drivers, such as the analysis of

BVOC and land surface temperature effects on FLS occurrence over the forest area,

which both likely belong to themain determinants of the observed land cover speciĄc

FLS patterns. Moreover, the relationship of the size of the area with uniform land

cover and the spatial scale of the data used has to be considered in future studies:

When relatively large pixel sizes are used (3Ű5 km), patternsmight only be detectable

when the area with uniform land cover is relatively large (in the case of the Landes

forest: 12,000 km2). Future analyses have to test these assumptions by Ąrst applying

themethods used here to other European forest areas, secondly detecting the drivers

of the observed patterns and Ąnally using data with different spatial and temporal

characteristics.
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(3) Climatological patterns of fog and low stratus formation and

dissipation times

In chapter 2 and 3 the occurrence of fog and low stratus and its meteorological and

land surface drivers were investigated. To further analyze FLS in the context of land-

atmosphere interactions, knowledge of the life cycle of FLS, in particular its timing

of formation and dissipation, is necessary. Therefore, a novel FLS formation and

dissipation time data set was developed in chapter 4 by applying logistic regression

to a binary satellite-based FLS data set. An analysis of the temporal and spatial

patterns of FLS formation and dissipation time revealed a clear dependency of these

on topography. In river valleys, a clear diurnal cycle was found, with FLS formation

in the evening and dissipation in the morning. Seasonal patterns of FLS formation

and dissipation further reveal the importance of the distance to the coast and the

solar cycle on FLS formation and dissipation time.

The Ąndings of the study presented in chapter 4 agree well with LES and modeling

studies over Europe (Roach, 1995; Haeffelin et al., 2010; Bergot, 2016; Steeneveld

and de Bode, 2018) which show fog formation in the evening and dissipation in

the morning, with a strong dependency of dissipation on the solar cycle. The large

advantage of this study is its large spatial and temporal extent: Unlike local and

mostly temporal constrained measurement and modeling studies, the novel data set

created in chapter 4 of this thesis gives information on FLS formation and dissipation

over the complete land mass of central Europe. This provides a data basis for large-

scale studies on drivers of the FLS life cycle.

On the basis of the geographic patterns of formation and dissipation time, three

potential drivers of these patterns have been identiĄed: Topography, distance to the

coast and the solar cycle. Pertaining to processes related to topography, non-local

drainage Ćows aswell as cold air Ćow and pooling have been previously identiĄed to

inĆuence the FLS life cycle (Müller et al., 2010; Rosskopf and Scherrer, 2017; Ducongé

et al., 2020). Besides altitude, the slope, aspect and the position of the site in relation

to local and regional morphology are important (Bşaś et al., 2002; Hůnová et al.,

2021b; Pohl et al., 2021). Topography further modulates meteorological drivers such

as wind and temperature (Cuxart et al., 2021), and these inĆuences might scale with

the size of the topographic features. Furthermore, the inĆuence of topography on

FLS occurrence most likely depends on the season (Hůnová et al., 2021b) which is

also visible in Ągure 4.9.

The identiĄed patterns related to topography might also be a feature of local to

regional wind patterns, leading to advected FLS layers at upwind locations and
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less FLS at downwind locations. Such topography induced FLS patterns have been

identiĄed over Corsica, where FLS formation times shift depending on the site

position in relation to the complex topography (Knerr et al., 2021). Currently, it

is not possible to determine if the FLS life cycle patterns identiĄed in chapter 4 relate

to a speciĄc FLS type. While the algorithm excludes fast changes in between FLS

and no FLS situations (see 4.2.2) a distinction between advection and radiation fog

is currently not possible with this data set.

The processes leading to the observed FLS formation and dissipation patterns at

the Mediterranean coast are potentially similar to processes which inĆuence the FLS

life cycle at other coastal locations over the globe, for example in coastal California.

FLS at the Californian coast has been shown to be inĆuenced by the pressure Ąeld

distribution over the ocean and land, ocean currents, coastal upwelling, as well as

topography near the coastline (Leipper, 1994; Iacobellis and Cayan, 2013; Rastogi

et al., 2016; Samelson et al., 2021). Coastal upwelling has also been found at the

Cantabrian coast of northern Spain (Alvarez et al., 2010) and thus potentially plays

a role in FLS formation processes at this location (compare Fig. 4.9). It has further

been hypothesized that FLS layers form over the Atlantic in humid and relatively

cool conditions and are then advected over the Bay of Biscay onto the Cantabrian

mountains (Egli et al., 2017; Royé et al., 2018). The relief of the surrounding areas

might inĆuence coastal FLS formation as well: In arid regions, a basin which can

heat up during the day can increase the sea breeze, enhancing the advection of FLS

towards topographic features close to the coast (Schemenauer and Cereceda, 1994).

Further processes at the coast which could inĆuence the FLS life cycle are mixing

of air masses with different temperatures (Bardoel et al., 2021) and the advection of

radiation fog formed inland (Bari et al., 2015). Still, it has to be taken into account

that the inĆuence of sea or freshwater on the FLS life cycle could be superimposed

by other mechanisms related to topography or seasonality (Hůnová et al., 2022).

Therefore, the exact processes of FLS formation and dissipation in the coastal region

of theMediterranean aremost likely dependent on a combination of different drivers,

topography and climate and thus are subject of future investigations.

The third major driver identiĄed to inĆuence the climatological patterns of FLS

formation and dissipation time is the solar cycle, which has been also frequently

addressed in measurement and modeling studies (Roach, 1995; Stolaki et al., 2009;

Haeffelin et al., 2010; Price, 2011; Stolaki et al., 2015; Bergot, 2016; Wærsted et al.,

2019). FLS frequently forms around sunset or during the night when the air reaches

its dewpoint due to radiative cooling (Roach, 1995; Stolaki et al., 2009; Price, 2011;

Stolaki et al., 2015). After sunrise, FLS dissipates through the absorption of solar
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radiation by the surface along with turbulent mixing caused by the increase in

temperature. Wærsted et al. (2019) list the increase in the surface sensible heat Ćux

after sunrise as the most signiĄcant negative term contributing to the loss of LWP,

whereas the direct absorption of solar radiation is only secondary for LWP loss.

As suggested in the hypothesis in chapter 1.5, topography, the distance to the coast

and the solar cycle have been identiĄed as drivers of the climatological patterns of

FLS formation and dissipation over central Europe. The effect of meteorological or

land surface based drivers is potentially superimposed by the background climate

and modiĄed by the underlying topography. The land surface is presumably

involved in a myriad of dissipation processes, such as turbulence and moisture

(Wærsted et al., 2019). It is further possible that a speciĄc land surface type has

characteristics leading to counteracting inĆuences on FLS formation and dissipation

processes. Extracting the individual and combined effects of meteorological and

land surface drivers on FLS formation and dissipation time is thus critical going

forward.

The novel FLS formation and dissipation time data set provides a data basis to apply

both analyses of FLS occurrence conducted in chapter 2 and 3 to the FLS life cycle.

The spatial and temporal extent of the novel FLS formation and dissipation time data

set is unprecedented, making it possible to analyze the FLS life cycle without ground

observations over the complete European land mass. Furthermore, the logistic

regression algorithm can be applied to any other cloud masks with high temporal

resolution such as to novel high spatially resolved FLS masks (Fuchs et al., 2022) or

to data sets over other FLS prone regions such as the Namib desert (Andersen and

Cermak, 2018).

(4) Identifying and understanding fog and low stratus formation

and dissipation regimes

The knowledge of drivers inĆuencing FLS occurrence gained in chapter 2 and the

novel FLS formation and dissipation time data set created in chapter 4 provide

the foundation for the investigation of drivers inĆuencing the FLS life cycle.

Hence, in chapter 5, FLS formation and dissipation time regimes were identiĄed

and investigated with respect to their sensitivities to changes in environmental

conditions. This was done using pixel-based monthly correlations of FLS formation

and dissipation time with meteorological and land surface parameters in a

hierarchical clustering approach over central Europe. FLS life cycle sensitivities to

variations in meteorological and land surface conditions for the identiĄed regimes
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were found to differ seasonally, geographically and depending on background

climate. Moreover, similar meteorological conditions were found to lead to different

sensitivities in different regimes. This is potentially a pattern of the prevailing

FLS types, but further analysis is necessary to quantify the effect of FLS type on

the sensitivities accordingly. Nevertheless, the clustering analysis provides a basis

for the analysis and discussion of FLS formation and dissipation sensitivities to

meteorological and land surface conditions.

In general, the study builds on Ąndings of chapter 2 and conĄrms the effect of

lower wind speed, higher surface pressure and higher temperatures in delaying FLS

dissipation in some identiĄed FLS regimes. A deviation from the sensitivity patterns

identiĄed in chapter 2 is most likely due to differences in background climate and

FLS type, conĄrming the hypothesis in chapter 1.5. The variation of sensitivities

across regimes and seasons is more strongly pronounced for FLS formation, with

a high variation of sensitivities of FLS formation time to changes in wind speed.

Besides the inĆuence of wind direction discussed in chapter 5, the variation in the

inĆuence of wind speed on the FLS life cycle might further depend on the depth

of the fog layer and height of the increased wind intensity (Bergot, 2016). Low

wind speeds have been shown to promote FLS formation (Cuxart and Jiménez, 2012;

Bergot, 2016; Pérez-Díaz et al., 2017; Price, 2019), but low wind speeds near the fog

top could lead to a decrease in LWP of the fog layer and a decrease in fog duration

(Bergot, 2016).

The FLS formation and dissipation regimes identiĄed provide ideal regional and

sub-regional study areas for the application of site speciĄcmachine learningmodels.

In addition, the agglomerative clustering approach used here can also be applied

to other FLS studies, such as the extraction of temporal FLS type speciĄc patterns

and their link to the atmospheric background condition (similar to Egli et al., 2019).

Furthermore, the partial dependencies calculated in chapter 2 could be used as input

data for the clustering algorithm in future studies, to identify FLS regimes pertaining

to model sensitivities. Therefore, the combination of the data sets, methods and

learnings from the research chapters of this thesis, provide a myriad of possibilities

for future analysis of fog and low stratus clouds.
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6.2 Outlook

The results of this thesis show that meteorological and land surface processes, along

with their interactions, inĆuence FLS occurrence and its life cycle. This inĆuence

varies across regions and seasons and is further dependent on the temporal and

spatial scales considered. The research presented here enhances process and system

understanding pertaining to climatological occurrences of FLS in addition to its

formation and dissipation processes. However, it has not been possible to quantify

the effect of a change in land use and land cover on FLS in this thesis, though

pathways identiĄed for convective cumulus clouds in the literature (Xu et al., 2022)

might be important for FLS as well. Furthermore, the role of scale should be kept in

mind: FLS processes and land-atmosphere interactions occur across a large range of

scales, from aerosol processes and leaf-atmosphere exchanges to synoptic processes

and ecosystem exchanges (Suni et al., 2015; Koracin and Dorman, 2017). Thus, the

results of this thesis inherently scale with the variation of the temporal and spatial

scales of the analyses, leading to a shift in the importance of drivers from one scale

to another.

Further important elements of the FLS life cycle, which have not been considered in

this thesis, are variations in the type and amount of aerosols. It has been found

that aerosols promote FLS via increasing LWC, increasing droplet concentration

and decreasing droplet effective radius (Yan et al., 2020). Increasing the CCN

concentration results in a higher number of small droplets in FLS and a decrease

in visibility (Poku et al., 2019; Yan et al., 2021). This effect is called the Twomey

effect and describes that aerosols can act as CCN and increase the number of small

cloud droplets, resulting in an increase in cloud optical thickness (Twomey, 1977).

The increase in CCN can further lead to stronger radiative cooling at the cloud top,

which speeds up the vertical growth and delays dissipation of the resulting higher

and denser FLS layer (Maalick et al., 2016; Jia et al., 2019b).

To further understand the effect of aerosols and their interactions with other drivers

on FLS and its life cycle, a promising path forward could be to use the formation

and dissipation time data set created in chapter 4 in a machine learning set-up. Such

an analysis would provide insights if the FLS life cycle is inĆuenced by aerosols, in

which weather condition this inĆuence is strongest and how this inĆuence compares

to other meteorological or land surface based drivers.

In a preliminary study, an extreme gradient boosting model was set up which

predicts the duration of an FLS event using a set of meteorological drivers from

ERA5 (Hersbach et al., 2018;Muñoz Sabater, 2019) anddailymeans of aerosol optical
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depth (AOD) from the Satellite Application Facility on Climate Monitoring (CM

SAF) (Clerbaux et al., 2017) on the day before FLS formation. Extreme gradient

boosting (XGB) is similar to the GBRTmodel used in chapter 2with the advantage of

shorter run times and built-in regularization techniques (Chen and Guestrin, 2016).

The model is run for high pressure conditions (>101200 Pa) in winter and fall of

2006Ű2012 for an area in the Po valley region, which was a preliminary clustering

result of the procedure described in chapter 5. The spatial extent is similar to the

area shown in Ągure 5.4, thus the climatological patterns described there apply here

as well.

The XGB model is able to skillfully predict FLS duration with an R2 of 0.86 using

the training set and an R2 of 0.73 when using the test set. Model sensitivities are

calculated using SHapley Additive exPlanations (SHAP) values, which quantify

the contribution of each feature to each individual prediction, enabling a global

understanding of the model (Lundberg and Lee, 2017; Lundberg et al., 2020). In

Ągure 6.3 the Ąnal feature set and the SHAP value for each feature depending on the

feature value is shown, with features sorted by their mean absolute SHAP value in

descending order.

Figure 6.3: SHAP ŞbeeswarmŤ plot, showing the impact of each feature on the predicted FLS duration.
Each dot represents an observation and is colored dependent on its feature value. The
position of the dot along the x-axis depicts its inĆuence on the model prediction. The
features are sorted by their mean absolute SHAP value in descending order. Multiple
observations for one SHAP value are stacked horizontally. t is the temperature, q the
speciĄc humidity, u and v are the horizontal wind vectors and aodprev is the aerosol load
on the day before formation. The subscripts are described in the text.
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The features of the Ąnal feature set are used either at 1 hour after formation at a

speciĄc height (10 m for u and v or on pressure levels for t and q), describe the

displacement of a variable (e.g. qamplitude) during the FLS event or describe the

difference of feature value at dissipation time in relation to its value at formation time

(e.g. tdiff). The most important features for the FLS duration prediction are qamplitude

and tamplitude. For both features the impact on predicted duration is higher for higher

feature values. For tamplitude this can be explained as the FLS layer shields the ground

from radiative heat loss (when FLS occurs during the night), leading to a positive

offset in the detrended temperature curve. Furthermore, a dry layer above the FLS

layer, i.e. low q values at 600 hPa (q600), seems to be beneĄcial for FLS duration, as

indicated by the positive SHAP values for q600. This dry layer potentially enhances

radiative cooling at the FLS top, resulting in a more persistent FLS layer (Wærsted

et al., 2017; Andersen et al., 2020).

While themean absolute SHAPvalue of aodprev is comparably low, some high aodprev

situations have a high impact on the predicted FLS duration (Fig. 6.3). The impact on

FLS duration solely attributable to aodprev (main effect), is shown in Ągure 6.4a. High

pollution events on the previous day seem to prolong FLS duration up to 60minutes.

This is in-line with Ąndings from Yan et al. (2021) who found that aerosol-cloud

interactions in fog enhance its duration by about 1 hour. The impact of the interaction

of aodprev with tamplitude increases the predicted FLS duration by an additional 30

minutes (Fig. 6.4b) for high tamplitude values. This implies an increasing impact of

high aodprev values in FLS situations which are potentially dense (high tamplitude) and

of large vertical extent.

Figure 6.4: SHAP dependence plots showing a) the main effect of aodprev on the prediction of FLS
duration and b) the interaction effects with tamplitude.
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The SHAP values investigated here provide insights into the mechanisms that

govern the FLS duration in the Po valley with the option to further analyze speciĄc

observations. The sensitivities shown improve our understanding of the important

meteorological processes and particularly the role of aerosols. Themodel framework

applied to the Po valley can be applied to other areas as well, providing a tool to

analyze and compare the role of meteorology and aerosols on FLS duration over

varying geographic backgrounds.

This thesis showed that atmospheric drivers determine the day-to-day variability

in FLS occurrence, whereas climatological FLS patterns on larger, multiyear time

scales are measurably inĆuenced by the land surface. Future research efforts can

use novel high-resolution satellite sensors such as the soon-launching Meteosat

Third Generation (MTG) satellites and novel FLS data sets. These provide the data

basis to further extract the inĆuence of land cover and land cover change on FLS

occurrence and life cycle on higher spatial and temporal scales. Using a combination

of satellite observations, surface measurements and machine learning over varying

temporal and spatial scales will provide a basis for future analyses relating to fog

and low stratus processes in the climate system. Such an analysis can be extended

to investigate FLS processes in a changing climate, as the associated changes in the

distribution of energy and moisture in the atmosphere will potentially impact FLS

life cycle and occurrence. In addition, knowledge of the FLS life cycle is further

highly valuable for the prediction of solar power production, which becomes more

and more important as the need for renewable energies increases.
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A1 Scientific Appendix of Chapter 2

Mean squared error (MSE) of all models

Figure A1.1: MSE of training and test set over all grid sizes and seasons using either all pressure
situations (left) or only high-pressure situations (right). The top row shows the results
using the data with seasonality, while the bottom row displays the model results using
deseasonalized data.
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A2 Scientific Appendix of Chapter 3

Introduction

This scientiĄc appendix of chapter 3 provides the confusion matrix of the cross-

validation of the two FLS products (Tab. A2.1), P values on all conducted t-tests in

the analysis (Tab. A2.2 & A2.3), a topographic map of the area (Fig. A2.1) as well as

Ągures formonthlymean FLS cover andwind speed (Fig. A2.2 &A2.3) andmonthly

mean proĄles ofmean hourly inversion strength (Fig. A2.4, A2.5, A2.6, A2.7 &A2.8).

The Ągures A2.2-A2.8 show the plots for those months which have not been shown

in the paper.

Cross-validation of the satellite products

Table A2.1: Cross-validation of the satellite products. Values indicate the confusion matrix for the two
data sets. The number of true positives (50) and true negatives (83) is written in bold.

FLS (SEVIRI) no FLS (SEVIRI)

FLS (CALIPSO) 50 34

no FLS (CALIPSO) 12 83
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A2 ScientiĄc Appendix of Chapter 3

Two sample t-tests results

Table A2.2: P values of the two sample t-tests, testing the difference between FLS cover over forest vs.
non-forest areas for the three different SEVIRI based FLS climatologies (a, b and c) in
Ągure 3.2. For the t-test 500 random pixels from each group are used. P values smaller
than 0.05 are in bold.

P value

a 1.05e-13

b 3.16e-9

c 2.00e-18

Table A2.3: P values of the two sample t-tests, testing the difference between FLS cover and wind speed
(ws) over forest vs. non-forest areas for all months. For the FLS cover t-test 500 random
pixels from each group are used, for the wind speed t-test 150 random pixels, due to the
larger pixel size of the wind speed data. P values smaller than 0.05 are in bold.

Month P value FLS P value ws

1 0.30 0.79

2 4.12e-5 0.02

3 0.07 0.0007

4 0.10 0.002

5 2.83e-18 0.5

6 0.01 0.002

7 1.45e-15 0.004

8 2.75e-26 2.61e-12

9 3.15e-31 0.2

10 1.86e-8 0.07

11 1.97e-15 0.17

12 1.54e-26 0.67
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Digital elevation map of the study area

Figure A2.1: Digital elevation map of the study area. The gray dashed line approximately marks the
forest border.
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A2 ScientiĄc Appendix of Chapter 3

Monthly mean FLS cover and wind speed

Figure A2.2: Climatological mean FLS hours by month based on true positive and true false
observations (a), and the corresponding ERA5 land wind speed and wind direction (u
and v wind components) on the respective days (mean from 0Ű6 UTC) (b) for January,
February, March and April. The gray dashed line approximately marks the forest border.

Figure A2.3: Climatological mean FLS hours by month based on true positive and true false
observations (a), and the corresponding ERA5 land wind speed and wind direction (u
and v wind components) on the respective days (mean from 0Ű6 UTC) (b) for June,
October, November, December. The gray dashed line approximately marks the forest
border.
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Monthly mean of mean hourly inversion strength

Figure A2.4: ProĄles of mean hourly inversion strength in K 25 mb-1 for the true positive and true
negative days in January (a, b) and February (c, d), from 825 to 1000mb along 44.25° N
(a, c) and -0.25°W (b, c). In the longitudinal proĄle (a, c) u-w wind vectors are plotted,
in the latitudinal proĄle (b, d) v-w wind vectors are plotted. For visibility reasons, the
w vector is enhanced by a factor of 20. The location of the Landes forest is marked in both
plots as green vertical lines. The topography is plotted in gray.
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A2 ScientiĄc Appendix of Chapter 3

Figure A2.5: ProĄles of mean hourly inversion strength in K 25 mb-1 for the true positive and true
negative days in March (a, b) and April (c, d), from 825 to 1000 mb along 44.25° N (a,
c) and -0.25° W (b, c). In the longitudinal proĄle (a, c) u-w wind vectors are plotted,
in the latitudinal proĄle (b, d) v-w wind vectors are plotted. For visibility reasons, the
w vector is enhanced by a factor of 20. The location of the Landes forest is marked in both
plots as green vertical lines. The topography is plotted in gray.
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Figure A2.6: ProĄles of mean hourly inversion strength in K 25 mb-1 for the true positive and true
negative days in May (a, b) and June (c, d), from 825 to 1000 mb along 44.25° N (a, c)
and -0.25° W (b, c). In the longitudinal proĄle (a, c) u-w wind vectors are plotted, in
the latitudinal proĄle (b, d) v-w wind vectors are plotted. For visibility reasons, the w
vector is enhanced by a factor of 20. The location of the Landes forest is marked in both
plots as green vertical lines. The topography is plotted in gray.
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A2 ScientiĄc Appendix of Chapter 3

Figure A2.7: ProĄles of mean hourly inversion strength in K 25 mb-1 for the true positive and true
negative days in July (a, b) and October (c, d), from 825 to 1000 mb along 44.25° N (a,
c) and -0.25° W (b, c). In the longitudinal proĄle (a, c) u-w wind vectors are plotted,
in the latitudinal proĄle (b, d) v-w wind vectors are plotted. For visibility reasons, the
w vector is enhanced by a factor of 20. The location of the Landes forest is marked in both
plots as green vertical lines. The topography is plotted in gray.
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Figure A2.8: ProĄles of mean hourly inversion strength in K 25 mb-1 for the true positive and true
negative days in November (a, b) and December (c, d), from 825 to 1000 mb along
44.25° N (a, c) and -0.25° W (b, c). In the longitudinal proĄle (a, c) u-w wind vectors
are plotted, in the latitudinal proĄle (b, d) v-w wind vectors are plotted. For visibility
reasons, the w vector is enhanced by a factor of 20. The location of the Landes forest is
marked in both plots as green vertical lines. The topography is plotted in gray.
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Diurnal course of FLS cover over urban and rural sites

Figure A3.1: Mean diurnal course of FLS cover in winter over London, Paris and Milan and their
respective rural surroundings from 2006Ű2015. For each city, the mean diurnal course
is calculated over 10 different pixels for urban and rural pixels each. The sudden decrease
in mean FLS fraction around 8:00 and 16:00 is due to the no-FLS values at twilight,
serving as an reference for sunrise and sunset.

Normalized FLS cover, duration and number of

formation events

Figure A3.2: Normalized mean FLS cover (a), normalized median duration of FLS event (b) and
normalized number of formation events (c) over the complete study period (2006Ű2015).
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Seasonal number of formation events

Figure A3.3: Seasonal number of formation events identiĄed by the algorithm.

Fraction of daytime formation and dissipation events

Figure A3.4: Fraction of daytime formation (a) and dissipation (b) events out of all events, in the
Upper Rhine valley, Germany. The country border between France and Germany also
marks the course of the river Rhine. The black dashed line depicts the 500 m above sea
level height.
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Most frequent formation and dissipation time - All day

The following plots show the most frequent formation and dissipation time plots as

shown in chapter 4, but with the most frequent dissipation time including nighttime

dissipation.

Figure A3.5: Most frequent formation (a) and dissipation times (b) over the entire study period
(2006Ű2015) using daytime and nighttime dissipation.

Figure A3.6: Most frequent formation (a) and dissipation time (b) for DJF,MAM, JJA and SON from
2006Ű2015 using daytime and nighttime dissipation. Pixels with a mean seasonal FLS
occurrence of less than 2 hours day-1 are marked with a horizontal line.
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A4 Scientific Appendix of Chapter 5

Introduction

Figure A4.1 displays the hierarchical clustering results when interpolating over non-

signiĄcant (p>0.05) SpearmanŠs rho values using nearest neighbor before running

the clustering algorithm. The regional clusters identiĄed are similar compared to

Ągure 5.3, with some differences in cluster location in the Mediterranean region. In

general, the interpolation technique used has little inĆuence on the obtained regional

to sub-regional clusters.

Regional cluster overview

Figure A4.1: Map of formation and dissipation clusters identiĄed by the hierarchical clustering
algorithm using nearest neighbor as an interpolation technique. Two different hierarchy
levels are displayed, 4 clusters (a) and 16 clusters (b).
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A B S T R A C T   

The formation and development of fog and low stratus clouds (FLS) depend on meteorological and land surface 
conditions and their interactions with each other. While analyses of temporal and spatial patterns of FLS in 
Europe exist, the interactions between FLS determinants underlying them have not been studied explicitly and 
quantitatively at a continental scale yet. In this study, a state-of-the-art machine learning technique is applied to 
model FLS occurrence over continental Europe, using meteorological and land surface parameters from geos-
tationary satellite and reanalysis data. Spatially explicit model units are created to test for spatial and seasonal 
differences in model performance and FLS sensitivities to changes in predictors, and effects of different data 
preprocessing procedures are evaluated. The statistical models show good performance in predicting FLS oc-
currence during validation, with R2 > 0.9 especially in winter high pressure situations.The predictive skill of the 
models seems to be dependent on data availability, data preprocessing, time period, and geographic char-
acteristics. It is shown that atmospheric proxies are more important determinants of FLS presence than surface 
characteristics, in particular mean sea level pressure, near-surface wind speed and evapotranspiration are cru-
cial, together with FLS occurrence on the previous day. Higher wind speeds, higher land surface temperatures 
and higher evapotranspiration tend to be negatively related to FLS. Spatial patterns of feature importance show 
the dominant influence of mean sea level pressure on FLS occurrence throughout the central European domain. 
When only high pressure situations are considered, wind speed (in the western study region) and evapo-
transpiration (in the eastern study region) gain importance, highlighting the influence of moisture advection on 
FLS occurrence in the western parts of the central European domain. This study shows that FLS occurrence can 
be accurately modeled using machine learning techniques in large spatial domains based on meteorological and 
land surface predictors. The statistical models used in this study provide a novel analysis tool for investigating 
empirical relationships in the FLS – land surface system and possibly infer processes.   

1. Introduction 

Fog influences several anthropogenic and natural systems: it affects 
traffic at land, sea and in the air (Leigh et al., 1998; Pagowski et al., 
2004), it plays an important role in climate processes (Vautard et al., 
2009; Egli et al., 2017) and is often vital for ecological systems since it 
can supply water and nutrients to ecosystems (Bruijnzeel et al., 2006; 
Gottlieb et al., 2019; Mitchell et al., 2020). While fog is generally de-
fined as a suspension of water droplets leading to visibilities <1000 m 
(Glickman, 2000), it can be further classified based on its formation 
mechanisms. In central Europe, radiation fog is the most frequent fog 
type (Fuzzi et al., 1992; Gultepe et al., 2007) and especially prevalent 
during winter (Cermak et al., 2009; Egli et al., 2017). Radiation fog 

forms due to radiative cooling at the surface or at the near-surface layer 
of the atmosphere (Price, 2019) under clear skies typically encountered 
during anticyclonic conditions (Gultepe et al., 2007). The formation of 
radiation fog is positively influenced by low temperatures, low wind 
speeds and a stable boundary layer (Cuxart and Jiménez, 2012; Pérez- 
Díaz et al., 2017; Price, 2019). Fog is a particular case of a low stratus 
cloud positioned directly at the Earth surface. From the satellite per-
spective, (radiation) fog and other low stratus clouds are frequently 
treated together as a single category (fog and low stratus: FLS) (Cermak 
and Bendix, 2011). 

In addition to the contribution of atmospheric processes (van 
Oldenborgh et al., 2010), FLS occurrence is also heavily linked to sur-
face-atmosphere exchanges (Bergot et al., 2005). These exchanges are 
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classified here as two pathways of opposite directions: 1) Fog and low 
stratus influence on the land surface, especially vegetation and 2) land 
surface influences on the formation, properties and distribution of FLS. 

Pathway 1) is mainly expressed via the supply of water through fog 
and by influencing the amount of nutrients reaching the vegetation. 
This has been investigated in various ecosystems around the world such 
as coastal deserts (Eckardt et al., 2013; Ebner et al., 2011; Roth- 
Nebelsick et al., 2012; Mitchell et al., 2020; Lehnert et al., 2018), tro-
pical montane cloud forests (Berry et al., 2015) and in the Californian 
redwood forests (Dawson, 1998). Furthermore, fog can influence the 
productivity in cultivated crops by modifying radiation, e.g. leading to 
a higher water use efficiency in strawberries on foggy days (Baguskas 
et al., 2018). For this study, pathway 2), the influences of the land 
surface on FLS formation, properties and distribution is in the focus. 
Generally, topography and landform can modify the influence of at-
mospheric dynamics on FLS occurrence (van Oldenborgh et al., 2010). 
Advected FLS can accumulate in steep windward slopes (Ball and 
Tzanopoulos, 2020) and lower advected fog densities are found in 
leeward locations (Ball and Tzanopoulos, 2020; Torregrosa et al., 
2016). The formation and persistence of radiation fog can also be in-
fluenced by topographically induced drainage flows and turbulence 
(Price, 2019). Furthermore, the growing phase of radiation fog is con-
trolled by advection slightly above the fog layer, which is strongly 
linked to the topography (Cuxart and Jiménez, 2012). Besides topo-
graphy, turbulent mixing, soil temperature and soil moisture fluxes 
influence fog formation and dissipation (Maronga and Bosveld, 2017). 
Low wind speeds are necessary to generate turbulence for FLS devel-
opment (Klemm and Wrzesinsky, 2007) whereas modestly stronger 
wind above the nocturnal boundary layer can inhibit the development 
of radiation fog (Bergot and Lestringant, 2019). Furthermore, wind 
direction can also influence FLS occurrence but is location-specific (Blas 
et al., 2002; Klemm and Wrzesinsky, 2007; Wrzesinsky and Klemm, 
2000). FLS occurrence is also strongly impacted by the availability of 
aerosols that can act as cloud condensation nuclei (CCN) (Ramanathan 
et al., 2001). Biovolatile organic compounds (BVOC’s), emitted by ve-
getation can form secondary organic aerosols (SOA) and act as CCN and 
thereby favor cloud formation (Pöschl et al., 2010; Shrivastava et al., 
2017). Improvements in air quality have been observed to lead to a 
reduction in fog (Klemm and Lin, 2016; Gray et al., 2019). Furthermore 
the land cover type influences FLS, with lower FLS frequency over 
urban areas compared to rural areas, e.g. in Milan (Bendix, 1994), in 
Munich (Sachweh and Koepke, 1995; Sachweh and Koepke, 1997), in 
Delhi (Gautam and Singh, 2018), in multiple cities in the Netherlands 

(Izett et al., 2019) or California (Williams et al., 2015), likely in parts 
due to the urban heat island effect. 

The general patterns of FLS occurrence in Europe have been in-
vestigated using ground-based observations and satellite data in the last 
few years. Egli et al. (2017) found FLS occurrence to be highest in 
winter with higher FLS occurrence in the northeast of Europe than in 
the Mediterranean region. Using a hybrid approach with ground truth 
data and data from the Spinning Enhanced Visible and Infrared Imager 
(SEVIRI) on board Meteosat Second Generation (MSG), Egli et al. 
(2018) derived a 10-year climatology of ground fog showing high fog 
occurrences in mountainous areas in spring and summer and high va-
lues in lowlands and plains in winter (Egli et al., 2018). Cermak (2018) 
investigated fog and low cloud frequency using LiDAR (Light detection 
and ranging) aboard CALIPSO (Cloud-Aerosol LiDAR and Pathfinder 
Satellite Observations) data and found similar patterns, with a general 
decrease of FLS frequency from north to south and high values in the 
Baltic sea regions. 

FLS processes take place across a large range of different scales, 
from small scales of aerosol activation (10−7 m) to synoptic scales 
(106 m). While investigations about temporal and spatial FLS patterns 
over Europe exist, as well as many insights on specific local and non- 
local processes determining FLS formation and development, no explicit 
satellite-based investigation of the determinants of FLS development 
spanning multiple years and a large spatially coherent region exists to 
date. The aim of this study is to quantitatively determine the relative 
importance of several land-cover and meteorological parameters for 
FLS occurrence in a large central European domain. This is done by 
using a machine learning technique, investigating its predictive per-
formance concerning FLS occurrence as well as model sensitivities. The 
high occurrence frequencies of FLS especially in central Europe during 
winter provide a good database in conducting this analysis. In this 
paper, we would like to unravel the question what the main drivers of 
large-scale spatial and temporal FLS patterns in central Europe are, and 
how these drivers influence FLS patterns. 

2. Data and methods 

2.1. Study area 

The study is conducted in a large domain in continental Europe, 
from 48° to 53°N and 5° to 15°E including parts of the countries Austria, 
Belarus, Belgium, Czech Republic, France, Germany, Luxembourg, 
Netherlands, Poland, Slovakia and Ukraine (see Fig. 1). This continental 

Fig. 1. Average fog and low stratus hours per day from 2006–2015 in the central European study area based on the product by Egli et al. (2017).  
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study area was chosen to allow for a focus on continental situations 
unimpaired by the effects of local circulations such as land-sea and 
mountain breeze systems. Thus, large mountain ranges such as the Alps 
and areas close to the coast were excluded. Nonetheless, small local 
topographic differences and smaller topography-induced circulations 
still exist in the presented study area. The effects of such local-scale 
modulations on FLS occurrence and FLS – land surface interactions are 
reduced by subdividing the study area into a number of smaller units. In 
this study, two model unit sizes are tested (10 × 10 and 15 × 15 SE-
VIRI pixels), which are further described below. 

2.2. Data 

The FLS product used in this study presented by Egli et al. (2017) is 
based on geostationary satellite data from the Meteosat Second Gen-
eration platforms Meteosat 8, 9 and 10. The SEVIRI system on board of 
the satellites scans the full hemisphere every 15 min. The sub-satellite 
resolution is 3 km in 11 spectral bands with an additional high-re-
solution visible channel with 1 km resolution. The FLS product is a 
modification of the Satellite-based Operational Fog Observation 
Scheme (SOFOS) by Cermak (2006) and covers the years 2006 to 2015. 
To produce a data set of daily FLS occurrence, the original 15-min 
product is locally averaged into FLS hours day−1, which serves as the 
target quantity in this study. The mean FLS distribution for the chosen 

Fig. 2. Schematic of the model workflow. Step II and III are conducted multiple times for different settings concerning pressure filters, treatments of seasonality, 
model unit sizes and modeling time periods. 
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study area over the complete time period can be seen in Fig. 1. 
To describe the physical state of the land surface and its possible 

influence on FLS distribution, several land surface features are included 
in this study, based on products from the EUMETSAT Satellite 
Application Facility on Land Surface Analysis (LSA-SAF) (Trigo et al., 
2011). All of these products are created using data from Meteosat SE-
VIRI and thus have the same spatial resolution as the FLS product. To 
describe temperature and moisture availability of the surface, land 
surface temperature (LST) and evapotranspiration (ET) are included. 
Additional land surface characteristics relevant for energy and moisture 
fluxes are described by the fraction of vegetation cover (FVC) and the 
bi-hemispherical albedo for the total shortwave range (ALB). 

To describe atmospheric conditions, ERA5 reanalysis data from the 
European Centre for Medium-Range Weather Forecasts (ECMWF) is 
used. ERA5 is the follow-up of ERA-interim (Dee et al., 2011) and 
provides higher spatial resolution (0.25°) (Hersbach, 2016) which is 
especially useful for investigating land–atmosphere interactions. In this 
study, mean sea level pressure (MSP) and the u and v component of 
wind at 10 meters are included. The u and v component of the wind are 
combined to calculate the near surface wind speed (WS). As a measure 
for the persistence of meteorological conditions that can lead to FLS, 
the FLS value of the previous day (FLSprev) is included. 

Additional information on the height above sea level, geographical 
position or land cover type were tested but are not included in the final 
model, as they did not lead to marked improvements in model perfor-
mance and, equally to a location ID, could lead to overfitting (Meyer 
et al., 2018; Meyer et al., 2019). Meyer et al. (2019) further assume that 
using predictor variables that describe the spatial location prevent the 
model from making reliable spatial predictions. As such, the final 
models are based on 7 predictors (ALB, ET, FLSprev, FVC, LST, MSP, WS) 
to predict the duration of FLS cover. 

2.3. Methods 

Interactions between the atmosphere and the land surface are often 
highly dimensional. With machine learning, non-linear and complex 
multivariate problems can be handled (Lary et al., 2016; Olden et al., 
2008). Especially for problems where theoretical knowledge is limited 
but the amount of available observational data is large, machine 
learning can be an ideal tool for addressing these problems (Lary et al., 
2016). In this study, a model was constructed using the machine 
learning technique Gradient Boosting Regression Trees (GBRT), aiming 
at predicting FLS hours per day on the basis of the meteorological and 
surface predictors described above. GBRTs use an ensemble of weak 
base learners (decision trees) which follow the negative gradient of the 
loss function (Friedman, 2001; Natekin and Knoll, 2013). They are 
flexible when using categorical and numerical data and have large 
predictive power, being able to represent nonlinear relationships be-
tween predictors and the predictand (Hastie et al., 2001). Furthermore, 
one of the key strengths of this machine learning technique is its high 
level of interpretability, since a number of interpretation methods exist 
for GBRTs (Elith et al., 2008). These properties have been exploited in 
recent studies to analyze complex atmospheric systems with GBRTs 
(Fuchs et al., 2018; Stirnberg et al., 2020). For this study, the GBRT 
implementation of the scikit-learn library in python was used 
(Pedregosa et al., 2011). 

2.3.1. Data preprocessing 
In a first step (Fig. 2I), the ERA5 data sets are rescaled to the SEVIRI 

pixel resolution of 3 × 3 km at nadir of the FLS data set using a nearest- 
neighbor approach. As described above, wind speed at 10 m height is 
calculated using the u and v components of the wind at 10 m height. 
Furthermore, daily averages are calculated for FLS, LST, ET, MSP and 
WS. FVC and ALB are already in the form of daily means. Daily averages 
are used, as the focus lies on the day-to-day variability of FLS occur-
rence. Poor quality data and data with high error values, e.g. due to 

adjacent cloud-covered areas is excluded using the following data 
quality control steps. For FVC, only data that is free of snow and water 
and with reliable input ranges for the FVC algorithm is included as well 
as data with an absolute error smaller than 0.2. For ALB, data with an 
absolute error greater than 0.2 is excluded. For ET, data where input 
variables for the ET algorithm have insufficient quality or are missing, 
is excluded. For LST, cloud-filled pixels or pixels partly contaminated 
by clouds, snow or ice are excluded. Since some cloud-covered or cloud 
adjacent pixels with either implausible high or low surface tempera-
tures are not caught by the quality flag, they are removed by setting the 
valid LST range depending on the month. For the full year, the valid 
data range is set to −60 °C to +60 °C. This range is then adjusted 
depending on the time of year: the maximum is adjusted to +40 °C 
from October to March and the minimum to −50 °C from March to 
September. With this, plausible LST data at the upper or lower ends of 
the temperature range can be kept in each season. The data excluded in 
the quality control as described above are marked as invalid in each 
data set. Any such flagging leads to the exclusion of the data point, as 
the model only considers data points with valid data in all data sets. 

Since seasonal influence on FLS as well as on numerous other 
parameters is large, the models are run with two seasonality settings: 1) 
The seasonality is kept in the data and 2) the seasonal cycle is sub-
tracted from the data. These two seasonality settings are used to in-
vestigate to what extent model performance and sensitivities are de-
pendent on seasonal effects. When removing the seasonality, only the 
day-to-day variability is modeled, whereas keeping the seasonality in 
the data also models the seasonal interactions of FLS and its predictors. 
Here, the seasonality is defined as the mean over the investigated time 
period for every pixel for every day of the year and then smoothing this 
time series using a Savitzky-Golay filter (Savitzky and Golay, 1964). 
The seasonality is then subtracted from the data sets of each specific 
feature. 

2.3.2. Model construction 
The study area is subdivided into spatially explicit model units, in 

which data is treated summarily at the SEVIRI resolution for training, 
testing and sensitivity analyses (compare Fig. 2II). Two spatial sizes of 
the model units are tested, with model units containing either 10 × 10 
or 15 × 15 SEVIRI pixels. Due to the high latitudinal position and the 
rather shallow satellite viewing angle of 45° in the study area, one 
SEVIRI pixel corresponds to about a width of 4 km and a height of 7 km 
(EUMETSAT, 2013). For the 10 × 10 model unit, this leads to a mean 
model unit area of roughly 2800 km2 and 6300 km2 for the 15 × 15 
unit respectively. This model unit set-up is chosen to account for re-
gional differences in the study area, while still choosing a unit size 
where some variability in land cover is present. Furthermore this set-up 
allows for the evaluation of spatial differences in model performance 
and sensitivities. Thus, the 15 × 15 pixel units contain more data for 
training and testing, whereas the 10 × 10 units provide smaller and 
thus more homogeneous model units. 

To account for seasonal differences, seasonal model runs are con-
ducted as well as full-year runs. These seasonal runs are winter 
(December, January and February: DJF), spring (March, April and May: 
MAM), summer (June, July and August: JJA) and fall (September, 
October and November: SON). In the considered time periods (full-year 
or seasons), separate models are trained using either all data or only the 
20% highest pressure situations in each model unit to focus on situa-
tions where FLS is favored (see Section 1). The pressure threshold is 
calculated from the distribution of pressure values for every model unit 
and model time period separately. 

In each model unit, data is split into separate training and test data 
sets, containing 70% and 30% of the data respectively. To ensure that 
training and test data contain comparable FLS distributions, the test- 
training split is coupled with a stratification of the FLS data set. In 
general, the number of available data points varies from model unit to 
model unit e.g. due to cloud contamination e.g. for LST and FVC data, 
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but can be higher than 400,000 (full-year, all pressure situations, 
15 × 15 pixel model unit size), but also as low as 3800 (seasonal 
model, with pressure filter in a 10 × 10 pixel model unit). 

Considering different seasonality and pressure filters, model unit 
sizes and modeling time periods (seasons or full-year), 30 different 
model settings are investigated in this study. 

2.3.3. Hyperparameter tuning 
Hyperparameter tuning is conducted using grid search with a small 

range of possible values to avoid overfitting, e.g. by using only low 
values for the maximum depth (Table 1). Since grid search is compu-
tationally expensive, it is conducted in every 5th model unit over a 
range of feature combinations and model settings to investigate the 
influence on the hyperparameters. The hyperparameters proposed in 
the grid search are similar over model units, feature combinations and 
model settings and the most common hyperparameters are used as the 
final settings. 

2.3.4. Validation and sensitivity analysis 
To test the influence of different model settings on model perfor-

mance and sensitivities, the validation (Fig. 2III) and sensitivity ana-
lysis (Fig. 2IV) are conducted for all model settings described above. 
Model performance is evaluated using the coefficient of determination 
(R2) and the mean squared error (MSE) between observed and pre-
dicted FLS in each model unit. The validation results are then evaluated 

concerning the differences between settings for each unit separately 
and over all units. Potential overfitting is analyzed by comparing R2 and 
MSE for the test and training data sets. Correlations between variables 
are quantified using the Spearman’s rho coefficient to account for ef-
fects of outliers and non-linearity in the investigated correlation. 

To investigate the most important features for model performance, 
the permutation feature importance is calculated for all model units. 
The permutation feature importance measures the increase in predic-
tion error after permuting (randomly shuffling) one feature (Breiman, 
2001). This breaks the relationship between the feature and the target, 
thus indicating how much the model depends on that feature (Strobl 
et al., 2007; Molnar, 2019). Compared to the often used impurity based 
feature importance (gini importance) the permutation importance is 
not as strongly biased towards variables with many categories and the 
continuous variable (Strobl et al., 2007). Thus the term feature im-
portance relates to permutation importance in this paper. The mean 
feature importance is calculated over all model units but is also in-
vestigated for each model unit separately. To improve comparability, 
the permutation feature importance is scaled so the sum of permutation 
importance over all features equals 1. 

While the feature importance only displays the relative importance 
of a feature, the sign and nonlinearity of the predictand response re-
lative to changes of each predictor variable can be analyzed using the 
partial dependence. In the context of this paper, the partial de-
pendencies quantify the average change of the predicted FLS values 

Table 1 
Parameter grid for the grid search and final hyperparameters used for model training.        

Number of estimators Learning rate Maximum depth Minimum samples per leaf  

parameter grid 500, 1000, 1500, 2000, 2500, 3000 0.1, 0.05, 0.03, 0.02, 0.01 2, 3 10, 14, 18 
final settings 3000 0.1 3 10 

Fig. 3. R2 of training and test set over all grid sizes and seasons using either all pressure situations (left) or only high pressure situations (right). The top row shows 
the results using the data with seasonality, while the bottom row displays the model results using deseasonalized data. 
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relative to either one or two features (one-variable partial dependence 
and two-variable partial dependence) while accounting for the average 
effects of all other variables (Elith et al., 2008; Friedman, 2001; Fuchs 
et al., 2018). The partial dependence is calculated by gridding the in-
vestigated feature and calculating the corresponding average FLS pre-
diction while the complement features are varied over their distribution 
(Molnar, 2019). 

3. Results 

3.1. Model performance 

As a first overview of model performance, GBRT performance 
during training and validation with independent data is analyzed for all 
different model unit sizes as well as seasonality and pressure settings. 
The results of this validation are shown in Fig. 3. R2 values are generally 
higher when filtering for high pressure situations, but are similar for 
runs containing seasonality versus runs that use deseasonalized data. 
The mean R2 values of the model units in the 15 × 15 runs tend to be 
lower than in the 10 × 10 runs. The highest mean R2 (averaged over all 
model units) is found in the pressure-filtered, deseasonalized 10 × 10 
spring run (0.94), but is similar high (~0.93) in other runs (e.g. in the 
pressure-filtered 15 × 15 winter run with seasonality). A clear seasonal 
pattern in model performance exists, with skill generally lowest in 
summer and highest in winter, albeit this seasonal pattern is weakened 
when only high pressure situations are considered. The difference in R2 

between the model runs with all pressure values (Fig. 3A and C) versus 
those considering only high pressure situations (Fig. 3B and D) is 
therefore lowest in winter. The full-year models feature the lowest R2 of 
runs without a pressure filter (mean R2 0.6–0.7), but also reach values 
~0.9 in the pressure-filtered runs. The regional variability of model 
performance, expressed as the spread in R2 values, is highest in winter 
and for the full-year run, and lowest in spring and fall. The training R2 

is significantly (p < 0.01) higher than the test R2 indicating some level 
of overfitting in the statistical models. Depending on the season, the 
training R2 is on average slightly (4–8%) higher over all model units, 
and smaller than that in the 15 × 15 and full-year models. Still the high 
test R2 shows the ability of the models to generalize relationships be-
tween the predictors and FLS patterns learned during training. The 
difference between test and train R2 is higher in the 10 × 10 model 
units and lowest in the full-year runs. The model predictions do not 
feature a noticeable bias (mean bias = 0.0, median bias ~ −0.3). MSE 
patterns are similar to R2, with higher MSE values (thus worse perfor-
mance) in the 15 × 15 runs and a larger difference of MSE between 
seasons than between model runs with different seasonality subtraction 
settings (Fig. 10). This means that model performance is more depen-
dent on the modeled season than on seasonality subtraction settings. As 
the MSE is dependent on the absolute values, MSE patterns are influ-
enced by the seasonal FLS distribution, thus leading to high MSE values 
in winter and fall, and lower MSE in spring and summer. 

To investigate the reasons for overfitting, the difference between 
training and test R2 and MSE is correlated with the number of data 
points available for training and testing. For the correlation with the 
absolute difference between training and test R2 the Spearman’s rho is 
approximately −0.5 (p < 0.01) especially in the full-year and winter 
run. For the MSE correlation, the Spearman’s rho is −0.5 (p < 0.01) in 
the full-year, spring and fall runs. Thus, overfitting is partly controlled 
by the number of available data points, and models generalize better 
when more data points are available for training and testing. 

Due to the good overall performance in the 10 × 10 model units 
and the higher spatial resolution, only the results of the 10 × 10 model 
units are presented in the following sections. Where not specifically 
pointed out, results of the 15 × 15 model units are similar, though. 

Fig. 4 shows spatial patterns of R2 relative to the domain average R2 

for two different model settings (full-year models including seasonality 
with (Fig. 4A) and without (Fig. 4B) pressure filter). This highlights 

model units that either have distinctly better or worse performance 
than the overall mean. Additionally, in Fig. 4C a topographic map is 
shown for the study area, together with two scatterplots of the R2 de-
viation with the mean height per model unit (Fig. 4D) for values west 
and east of 10°E separately. The corresponding Spearman’s rho, p-value 
and R2 for the complete correlations (negative and positive R2 deviation 
values together) are added in the top right corner of the Fig. 4D plot. 

The domain average R2 for the model run including all pressure 
situations is 0.71, for the model run using only high pressure situations 
it is 0.89. While the spatial patterns of skill are similar for both model 
settings, the models using only high pressure situations feature a lower 
deviation from the domain average R2. Generally, in the north-eastern 
part of the model region, e.g. in Poland and the central Czech Republic 
and the south-eastern and north-eastern parts of Germany, the R2 in the 
model units shows a positive deviation from the domain average. In the 
western part of the model region (western Germany), as well as in parts 
of the south western part of the model region (northern parts of the 
Vosges, the upper Rhine valley, Black Forest) the R2 is lower than the 
domain average. This is also the case for the mountain ranges sur-
rounding the Czech Republic as well as in the south eastern part of the 
model region (High Tatras). The relationship between R2 deviation and 
topography is visible in a) the visual relationship between the two (e.g. 
compare Fig. 4A and C) and b) the correlation of the two (Fig. 4D). With 
a Spearman’s rho of −0.36 the latter is especially strong for values east 
of 10°E. A correlation of A and B with the distance to the coastline 
produced a Spearman’s rho close to 0 with a p-value  > 0.05. Small 
differences between pressure settings are visible in the north eastern 
and south western part of the model region, as well as the border tri-
angle between Germany, Poland and the Czech Republic at 15°E. The 
apparent spatial patterns of skill are similar during all seasons, and 
independent of skill measure (R2 or MSE) and training or test data set. 

3.2. Feature importance 

In Fig. 5 the domain-average feature importance is shown for all 
seasons and specific model settings as stacked barplots. The left-hand 
panel (Fig. 5A) shows results for the model run that contains season-
ality, while the right-hand panel shows the results of the deseasonalized 
model (Fig. 5B). In these subplots, the darker-colored bars on the left 
display the results of the model runs containing all pressure situations, 
while the lighter-colored bars on the right show the results of the model 
using only high pressure situations. Since results in the 15 × 15 model 
unit runs are similar, only 10 × 10 model unit results are shown and 
described here. 

In general, clear similarities but also some distinct differences in 
mean feature importance are apparent: MSP, FLSprev, WS and ET are 
among the most important features in all model runs. During winter 
and summer, MSP and WS are the most important features, while in the 
spring, fall and full-year run, ET and FLSprev gain importance. When 
filtering for high pressure situations, ET becomes more important while 
the importance of MSP decreases. This is especially apparent in the 
spring, fall and full-year runs. LST reaches its highest feature im-
portance in summer, but overall has little importance for model per-
formance. ALB and FVC have little importance in all model runs how-
ever, this is slightly increased when filtering for high pressure situations 
in summer. 

Differences between the model runs containing seasonality and the 
deseasonalized model runs are present in the exact values of feature 
importance but general patterns are similar. The largest differences in 
feature importance are apparent between the different seasons and the 
pressure exclusion runs. Model unit size and subtraction of seasonality 
only produce small differences in the mean permutation feature im-
portance over all model units. 
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3.3. Spatial patterns of relevant features 

In Fig. 6 the most important feature per model unit of the full-year 
run is shown for four different model settings. In general, the spatial 
patterns of the most important feature show clear differences between 
the model runs using all pressure situations (Fig. 6A and C) versus those 
using the 20% highest pressure values (Fig. 6B and D). When all pres-
sure situations are used, MSP is the most important feature in most 
model units. This pattern is especially prevalent in the deseasonalized 
model run. Here, MSP is the most important feature in all model units 
except for some units in the eastern part of the study area, where ET is 
the most important feature. In the model run that contains seasonality 
(Fig. 6A), ET is the most important feature in numerous model units 
east of 10°E, in parts of eastern Germany, most of the Czech Republic 
and parts of Poland. In three model units in the Czech Republic, FLSprev 

is the most important feature. 
As expected, in the high pressure filtered model runs MSP is much 

less important. Instead, ET is the most important feature in large parts 

of the eastern study area. Other than ET, MSP, FLSprev and WS are the 
most important features in numerous model units across both season-
ality settings (Fig. 6B and D). MSP is the dominant feature in most parts 
of western Germany and eastern France and in some units in the Czech 
Republic and Poland. FLSprev is dominant in the north western part of 
the Czech Republic, western Germany as well as parts of France and 
Poland. WS is the most important feature in some scattered model units 
of the model run including seasonality. In the deseasonalized model 
run, WS is dominant in more model units mostly in the western and the 
north western part of the study area. The seasonal patterns of the most 
important feature (Fig. 7) are similar to the patterns observed in the 
full-year run. In the model runs using all pressure values (Fig. 7A), MSP 
is dominant over all seasons, with only some exceptions in winter and 
fall. In high pressure situations, though, seasonal differences are more 
pronounced (Fig. 7B): in winter, FLSprev is dominant in the western part 
of the study area (Germany and parts of France) and WS is dominant in 
the eastern part of the study area. MSP is the most important feature in 
between WS and FLSprev in central and north western parts of the study 

Fig. 4. Map of deviation from the mean R2 over all 
model units (domain average) in %, a topographic 
map (based on Hijmans et al. (2005)) of the study 
area and a correlation of these two. The left upper 
panel (A) shows the results from the model run using 
all pressure situations, the right upper panel (B) 
shows the results from the high pressure model run. 
Both include the seasonality. The domain average R2 

is computed for all model settings separately. For 
better visibility the colormap is scaled logarithmic. In 
(C) the topographic map for the study area is shown. 
In (D) the results from (A) are correlated with the 
mean height per model unit for model units values 
west and east of 10°E separately. The corresponding 
Spearman’s rho, p-value and R2 of the correlation of 
the combined negative (blue) and positive (red) R2 

deviation values are plotted in each subplot. (For 
interpretation of the references to colour in this 
figure legend, the reader is referred to the web ver-
sion of this article.) 

Fig. 5. Mean 10 × 10 feature importance over all 
model units for all features and all seasons. The 
darker, left bars display the feature importance of the 
model run with all pressure situations, the right, 
brighter bars display the feature importance of the 
model run with high pressure situations. The left 
subplot (A) shows the feature importance from the 
model run including the seasonality, the right subplot 
(B) the one of the deseasonalized model run. 
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area. Other than these three, ET and LST are the most important fea-
tures in some scattered model units as well. In spring, the most im-
portant features are FLSprev in south western and ET in north eastern 
parts of the study area. Other than that, MSP is dominant in most of the 
study region, with some scattered model units where LST and WS are 
the most dominant features. In summer, MSP is the most important 
feature in most model units, with WS being dominant on the border of 
Germany and France, in Poland, in the Czech Republic and in some 
scattered model units in central Germany. Apart from that only a few 
model units are dominated by FLSprev and LST. In fall, MSP is dominant 
in the western part of the study area and ET is dominant in the eastern 
part of the study area (east of 10°E). WS is dominant in parts of eastern 
Germany and Poland and FLSprev is the most important feature in some 
scattered model units in Germany, Poland and the Czech Republic. 

3.4. One-variable partial dependence 

In Fig. 8 the predictand responses relative to changes in all pre-
dictors are displayed as partial dependencies (see Section 2.3.4) for all 
considered time periods. Since the partial dependencies are calculated 
for each model unit separately, the mean and the interquartile ranges of 
the partial dependencies of all model units are presented here. Ad-
ditionally, the distribution of values of each predictor is plotted below 
the corresponding partial dependence as a qualitative assessment of the 

representativeness of the obtained partial dependencies. The partial 
dependencies presented here are from the 10 × 10 model unit run 
where seasonality and all pressure values are included, since the partial 
dependencies are similar over model unit sizes, seasonality and pres-
sure-exclusion settings. The effect of the high pressure filter on the 
partial dependence of MSP is shown in the bottom right panel (all other 
partial dependencies of this run are similar to the ones shown). The 
partial dependence can be understood as the deviation from the mean 
of the predictand (here FLS occurrence) that can be attributed to a 
specific predictor. Thus, a positive partial dependence at a given feature 
value indicates a positive influence on modeled FLS occurrence. Simi-
larly, a negative partial dependence at a given feature value indicates a 
negative influence on modeled FLS occurrence. The magnitude of the 
partial dependence determines the magnitude of the influence. A partial 
dependence close to zero indicates very little or no influence on mod-
eled FLS occurrence at the given feature value. 

As a sensitivity measure, the range of the mean partial dependence 
over all model units for the full-year run is given in the text, together 
with the corresponding slope direction of the partial dependence curve. 
This provides a measure of influence on modeled FLS occurrence for 
each feature over the corresponding value distribution with a greater 
sensitivity measure indicating a large positive or negative influence on 
modeled FLS occurrence. Seasonal differences of sensitivity are shortly 
described. 

Fig. 6. Most important feature per 10 × 10 model 
unit in the full-year run over all model settings. The 
left column shows the model runs including all 
pressure situations (A and C) while the right column 
shows the model runs using only the 20% highest 
pressure situations (B and D). In the model runs of 
the top row, seasonality is included, in the bottom 
row it is subtracted. 

Fig. 7. Most important feature per 10 × 10 model unit for different seasons. The top row shows the model run using all pressure situations while the bottom row 
shows high pressure situations. Both model runs use the data that includes the seasonality. 
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The partial dependence of MSP (Fig. 8A) is nonlinear, following a 
clear pattern: in low pressure situations (980–1005 hPa) the partial 
dependence is low, however, not many cases fall into this value range. 
In situations with 1005 hPa < MSP < 1030 hPa, where most of the cases 
occur, the partial dependence increases substantially, reaching its 
maximum at ~1030 hPa or even higher pressure situations during 
winter, before it decreases again for pressure situations around 
1040 hPa. However, only a few cases (most of them in winter) exist 
with such high pressure of 1040 hPa. The full-year sensitivity of MSP 
is +3.64 and the seasonal sensitivity is highest in winter and fall 
(+3.63) and lowest in summer (+1.73). FLS on the previous day 
(Fig. 8B) shows the most pronounced partial dependence pattern over 
all seasons and the full-year run with increasing values over the com-
plete value distribution. The minimum partial dependence is thus 
reached for small FLSprev values and the maximum partial dependence 
for high FLSprev values. The sensitivity of FLSprev also shows the strong 
influence of FLSprev on modeled FLS occurrence and lies at +7.04 for 

the full-year run. The FLSprev sensitivity reaches its seasonal maximum 
in fall (+7.94) and its minimum in spring (+4.95). The pattern of 
partial dependence of FLS on WS (Fig. 8C) is strongly dependent on 
season and the distribution of values. At low wind speeds (0–2 m s−1) 
the partial dependence decreases in winter, fall and the full-year run. In 
spring and summer it remains more or less constant at such low WS. In 
summer, it increases slowly, in spring and the full-year run it increases 
around 8 m s−1 and for the winter and fall run it remains more or less 
constant. Still it has to be considered that any WS values greater than 
6 m s−1 are rare and the corresponding partial dependence pattern may 
not be as reliable and due to the low occurrence frequency not that 
relevant. The full-year sensitivity of WS is, compared to MSP and 
FLSprev relatively low at −1.33 but reaches higher values in winter 
(−4.75). The seasonal minimum of WS sensitivity is reached in spring 
(+1.65). 

The partial dependencies of the ET and LST are also both strongly 
dependent on the investigated season. In summer, the partial 

Fig. 8. Partial dependence plot showing the mean response in modeled FLS occurrence to changes in all input features over all seasons, for the 10 × 10 model unit 
run using data with seasonality. The top plot displays the partial dependence, the bottom plot shows a kernel density estimation of the data distribution. The shown 
features are: MSP in the model run using all pressure values (A), FLSprev (B), WS (C), ET (D), LST (E), ALB (F) and FVC (G). In the additional (H) plot, the mean model 
response to changes in MSP in high pressure situations is shown. 
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dependence of FLS on ET (Fig. 8D) is more or less constant at a partial 
dependence of 0 predicted FLS h day−1 over the complete value dis-
tribution. In all other seasons and the full-year run the partial depen-
dence decreases at ET values from 0.0 to 0.1 mm h−1. In spring and the 
full-year run it then slightly increases again at 0.4 mm h−1. Due to the 
low distribution of ET values greater than 0.3 mm h−1 the corre-
sponding partial dependence values might be less reliable. The full-year 
sensitivity for ET is at −2.90, the seasonal maximum of sensitivity is 
found in fall (−4.09) and the minimum is found in summer (−0.94). 
The partial dependence of FLS on LST (Fig. 8E) is highest when LSTs are 
below the freezing point, reaching a maximum at around −10 °C. At 
higher LSTs, the partial dependence of FLS on LST decreases. In 
summer, the LST value range and also these partial dependence pat-
terns are shifted to higher temperatures. The full-year sensitivity of LST 
is similar to the ET sensitivity at −2.93. The seasonal maximum of LST 
sensitivity is found in fall (−3.06), the seasonal minimum is found in 
winter (−1.85). 

Similar to their low feature importance, ALB (Fig. 8F) and FVC 
(Fig. 8G) both have small partial dependence values. The partial de-
pendence of ALB slightly increases over the complete value distribution 
of all seasons and the full-year run. The partial dependence of FVC is 
low and constant over all seasons. Interestingly, the full-year sensitivity 
of ALB reaches +2.56, a similar high value to the sensitivity of ET and 
LST. The seasonal maximum is found in winter (+2.19) and the 
minimum is found in summer (+1.24). The full-year sensitivity of FVC 
is at +0.87 and thus the lowest of all features. The seasonal FVC sen-
sitivity is highest in winter (+0.73) and lowest in fall (−0.19). 

In the pressure-filtered model run, all partial dependencies show a 
similar pattern, except for the partial dependencies of MSP (Fig. 8H). 
This is due to the reduced value range of the MSP values, thus only the 
decrease of the partial dependencies starting from around 1035 hPa is 
visible. The MSP sensitivity changes direction in the pressure filtered 
model and lies at −4.33 for the full-year run and is strongest in winter 
(−4.03) and lowest in spring (−0.74). 

All in all, the response in modeled FLS occurrence is distinctive for 
the features FLSprev, ET, LST, WS and MSP, with the latter showing a 
clear dependency on the application of the pressure filter. For changes 
in FVC and ALB, the response in modeled FLS occurrence is small. These 
partial dependence patterns confirm the feature importance patterns 
discussed above, with FLSprev, MSP and ET being important features for 
model performance. 

3.5. Two-variable partial dependence 

While the isolated impacts of individual features can be investigated 
with the one-variable partial dependencies, two-variable partial de-
pendence plots can show the combined effects of two variables on the 
response of modeled FLS occurrence, allowing for the analysis of pos-
sible co-dependencies. Based on the one-variable partial dependencies 
described above, six combinations of the most important features are 
presented in Fig. 9. These are MSP-WS (A), FLSprev-MSP (B), FLSprev-ET 
(C), ET-MSP (D), FLSprev-WS (E) and ET-LST (F). In Fig. 9, the two- 
variable partial dependencies of the full-year run using all pressure si-
tuations including the seasonality are shown. Similar to the one-vari-
able partial dependencies the exact data preprocessing pertaining to 
seasonality treatment or pressure filtering does not substantially influ-
ence the two-variable partial dependencies. To outline characteristics of 
the distribution of the considered features and as an assessment for the 
representativeness of the results, two distribution borders are marked in 
the plots below: inside the outer dashed line 99% of the data can be 
found, inside the inner dashed line 75% of the data is present. Ad-
ditionally, on the equivalent axes of the feature combinations, the 1st, 
50th and 99th percentiles are marked as short lines. 

The two-variable partial dependence of MSP and WS is displayed in  
Fig. 9A. The values of the partial dependence are low over the complete 
value range of both features. A diagonal pattern, where low wind 

speeds and high pressure values lead to higher predicted FLS values is 
indicated. The combined effects of FLSprev and MSP in Fig. 9B are 
stronger, with FLSprev being the more dominant variable. Still a weak 
combined effect of higher MSP values and higher FLSprev values leading 
to higher predicted FLS is visible. In Fig. 9C the combined effects of 
FLSprev and ET are visible. While low FLSprev values in combination 
with high ET values have a negative effect on predicted FLS, a positive 
effect on predicted FLS is visible for high FLSprev and low ET values. The 
two-variable partial dependence of ET and MSP (Fig. 9D) also shows a 
diagonal pattern of the combined effect of high MSP values with low ET 
values leading to higher predicted FLS. The combined effects of FLSprev 

and WS (Fig. 9E) are similar to FLSprev and MSP: FLSprev dominates the 
combined effects, with stronger influence of WS when FLSprev values are 
higher, indicated by the more diagonal patterns of the two-variable 
partial dependence at FLSprev values larger than 5 h day−1. For the two- 
variable partial dependencies of ET and LST (Fig. 9F) low ET values 
with low LST values lead to high predicted FLS values. 

In general, the seasonal differences of the two-variable partial de-
pendence are governed by the seasonal differences in FLS occurrence as 
well as the range of values of the features. Since FLS occurrence is 
higher in winter and fall, the magnitude of the two-variable partial 
dependence is higher in winter and fall. Furthermore, the combined 
effects of MSP and WS are stronger in fall and winter thus confirm the 
combination of high MSP – low WS leading to higher predicted FLS 
indicated in the full-year plot. In summer and spring, two-variable 
partial dependencies are low. Considering the patterns seen in the one- 
variable and two-variable partial dependence plots FLSprev shows the 
most pronounced and clear effect on modeled FLS occurrence and 
dominates the combined effects in the two-variable partial dependence 
plots. This is especially interesting since MSP is the most important 
feature in most model runs (compare Fig. 5). 

4. Discussion 

4.1. Model performance 

In general, the statistical models are capable of accurately pre-
dicting FLS using meteorological and land-cover predictors. While 
subtracting seasonality does not influence model performance sub-
stantially, filtering for high pressure situations boosts model perfor-
mance significantly. Filtering for high pressure situations also leads to a 
higher relative frequency of radiation fog situation, which helps the 
model learn the relevant patterns, and thus improves its performance. 
Performance is best in winter and worst in summer. These patterns 
might both be due to more frequent high pressure situations in winter 
(e.g. Bartoszek, 2017), which can also be seen by significantly higher 
MSP values in winter compared to the other seasons (winter mean MSP 
being 5 hPa higher) in the ERA5 data used in this study. Additionally, 
filtering for high pressure values makes it easier for the model to gen-
eralize and predict FLS. In summer and when using all pressure values, 
FLS occurrence may be due to local processes more frequently, such as 
orographic lifting (Egli et al., 2019) and not specifically tied to large- 
scale weather systems. This is in line with the results shown in van 
Oldenborgh et al. (2010) who found that atmospheric dynamics con-
tribute up to 40% to the variability of fog occurrences in winter, 
whereas in summer, the contribution of circulations on fog occurrence 
is more dependent on local factors. 

The spatial differences of R2 show lower model performance in units 
with high topographic variability such as parts of the mountain ranges 
surrounding the Czech Republic and the High Tatras. Furthermore the 
deviation from the mean R2 (Fig. 4) and MSE per model unit is greater 
in areas with greater height above sea level and with greater standard 
deviation of height in that model unit. The correlation between the 
mean height above sea level and deviation from the mean R2 per model 
unit is especially prevalent east of 10°E, with a stronger negative de-
viation from the mean R2 at larger heights (compare Fig. 4D). This 
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correlation is strongest in spring and fall. The decreasing performance 
in these either high altitude or topographically highly variable model 
units could be due to more pronounced small-scale, local processes that 
the model is not capable of reproducing. This could be also due to the 
missing terrain information in the selected predictors, e.g. according to  
Cuxart and Jiménez (2012) the advection flows generated by the to-
pography are crucial for the growing phase of radiation fog. As stated in 
the Methods, using static geolocation variables such as height above sea 
level or geographic position can lead to overfitting and might be useful 
in training but not in making spatial predictions, as stated in Meyer 
et al. (2018) and Meyer et al. (2019). Terrain information (as height 
above sea level) is left out for this reason. 

Besides the missing terrain information, the low resolution of the 
ERA5 data might lead to worse performance in topographically highly 
variable model units. In these units, the ERA5 data might be less ac-
curate in general due to grid averaging. Here, the quality of the ERA5 
may be improved by using a different interpolation technique like 
kriging or bicubic interpolation during data preprocessing. However, 
such a change is not expected to markedly change the results. Generally 
the model performance in the eastern parts of the study area is high, 
likely due to rather low variability in terrain and a large influence of 
large-scale circulation patterns on fog occurrence leading to mostly 
radiation or advection fog. These processes are well captured by the 
chosen predictors and therefore well represented in the models. 

Interestingly, the high pressure filter can also lead to lower per-
formance in some model units in winter, such as near the Harz and in 
parts of Poland. This is not the case at any other time of year, though. 
Two things might be responsible for this pattern: First, in the high 
pressure situations in winter, available data for training and testing has 
been reduced strongly. Thus, false predictions have a stronger influence 
on the R2 of the model unit when less predictions are made in general. 

In model units with more available data points, false predictions have 
less influence on the model unit R2. Secondly, the lower performance in 
these units may indicate that in these regions, fog occurrence during 
winter may be caused by processes that are not inherently captured by 
the set of predictors. For example, terrain-induced processes may play a 
role as stated above, such as on the Mt. Brocken at 1142 m asl which is 
immersed in clouds about 50% of the time (Acker et al., 2002). 

A thorough investigation of the influence of the FLS distribution on 
model performance shows that in model units with higher FLS occur-
rence, model performance is better. The relationship of model perfor-
mance and mean FLS occurrence for each model unit over all seasons is 
strong (Spearman’s rho = 0.8) and significant (p < 0.01) especially in 
the model runs using all pressure situations. This confirms the pre-
viously stated relationship of better performance in winter and worse 
performance in summer. These findings underline the influence of data 
availability and distribution on model performance. 

Overfitting is apparent in all models, with larger differences be-
tween test and training performance in the 10 × 10 units than in the 
15 × 15 units. This is likely due to the higher number of available data 
points in the 15 × 15 units for training and testing, shown with the 
decreasing difference between training and test performance with in-
creasing number of data available in the model unit. More data thus 
makes it possible to learn more FLS situations and the subsequent be-
havior of the predictor variables. Furthermore, in a larger domain, a 
model needs to be able to represent rather general FLS patterns instead 
of specific local FLS patterns. A highly localized model might be also 
prone to overfitting. This could be investigated in future studies, by 
varying the model unit size while keeping the number of available 
training points constant. The different model unit sizes show the con-
flict between sufficient data for training and testing and small enough 
regional models to model smaller scale, regional FLS patterns. This 

Fig. 9. Two-variable partial dependence on FLS 
(hours day−1) for six feature combinations for the 
10 × 10 full-year run including the seasonality. The 
feature combinations are MSP and WS (A), FLSprev 

and MSP (B), FLSprev and ET (C), ET and MSP (D), 
FLSprev and WS (E) and ET and LST (F). The outer 
dashed circle contains 99% of the data, the inner 
dashed circle contains 75% of the data. On the x and 
y axes of the feature combinations, the 1st, 50th and 
99th percentile are marked as short lines. 
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conflict between data availability and spatial resolution is frequently 
encountered in observational studies. Conducting hyperparameter 
tuning in all model units for all model unit sizes in combination with 
regularization would lead to higher computation times, but could re-
duce the observed overfitting. 

4.2. FLS drivers and their temporal and spatial patterns 

Generally, fog formation and presence depend on multiple factors, 
such as the synoptic situation, smaller-scale atmospheric circulations 
and local orographic factors (Pérez-Díaz et al., 2017). The important 
role of the synoptic situation is underscored by the results of this study, 
with the high feature importance of MSP and WS, which are used as 
proxies for atmospheric dynamics. In high pressure situations, often 
related to anticyclonic conditions, an inversion can develop during 
nighttime which is a prerequisite for the formation of radiation fog. The 
results obtained from the sensitivity analysis indicate that lower wind 
speed together with high pressure lead to a stronger stability and thus 
persisting FLS. This interplay of MSP and WS is also visible in Fig. 9. 
The influence of low wind speeds on turbulence generation during FLS 
development is not visible here as such phenomena occur below the 
spatial resolution of the ERA5 data. Wind direction has not been in-
cluded in this study, since creating a general FLS – land surface model 
with a low number of predictors and minimum amount of rescaling has 
been a priority in this study, to first create a general model framework 
which can be further developed based on its first results in the future. 
For example more detailed treatments of wind speed and direction in 
different atmospheric layers will be investigated in further studies. In 
the investigated study area, especially humid air masses from the west 
are important for fog occurrence (Blas et al., 2002; Wrzesinsky and 
Klemm, 2000; Klemm and Wrzesinsky, 2007). The importance of at-
mospheric dynamics and air masses is also visible by the higher fre-
quency of model units with WS and MSP as the most important feature 
in the western parts of the study region, which possibly indicates a 
decreasing relevance of westerly (moist) air masses with increasing 
continentality. As noted above, wind direction should thus be added as 
a predictor in further studies. 

The positive relationship of FLS cover with FLSprev is most likely due 
to persisting FLS over several days due to persisting atmospheric con-
ditions. Additionally, feedback processes between FLS and the surface 
exist: in the presence of FLS, surface heating due to solar radiation is 
reduced during daytime which leads to lower near-surface temperatures 
in the subsequent night and a reduction of the difference between air 
and dew point temperature. This relationship might be stronger in 
basins and valleys where FLS tends to persist longer due to lower wind 
speeds inside the FLS layer and inversions or cold pool situations that 
can last for several days (Cuxart and Jiménez, 2012; Scherrer and 
Appenzeller, 2014). To investigate processes and sensitivities in larger 
river valleys, model units could be delineated specifically considering 
topographic information in further studies. In these larger model units, 
SHAP (SHapley Additive exPlanations) values, introduced by Lundberg 
and Lee (2017) could be investigated, which allow for the investigation 
of individual predictions leading to a global understanding of the model 
(Lundberg et al., 2020), providing a tool to distinguish and individually 
analyze different FLS regimes. 

Two land surface based predictors that are closely related to each 
other due to the dependence of the saturation vapor pressure on tem-
perature, described by the Clausius–Clapeyron equation, are LST and 
ET. This means that higher land surface temperatures lead to higher 
evapotranspiration, with the latter being constrained by moisture 
availability (especially in summer), but also by solar radiation as well as 
the vapor pressure deficit. Concerning FLS processes, one would expect 
LST to have a negative relationship with FLS occurrence and ET to have 
a positive influence on FLS occurrence due to the moisture input into 
the boundary layer. However, in this study, both LST and ET show a 
negative relationship with modeled FLS, the latter one likely 

confounded by temperature, but also winds. FLS occurrence might be 
lower in high ET situations due to the larger vapor pressure deficit and 
thus drier air. Generally, ET is strongly influenced by the variability of 
atmospheric conditions (Teuling et al., 2010; Seneviratne et al., 2012) 
e.g. with anticyclonic circulation patterns leading to high ET values in 
Poland (Bogawski and Bednorz, 2016). At the scales considered in this 
study, the influence of atmospheric conditions on ET – FLS patterns is 
likely larger than the effects of moisture input via ET on FLS formation. 

In general, temperature and humidity during FLS formation are 
connected via the process of condensation: Cooling leads to a rise in 
relative humidity, a reduction of the atmospheric saturation vapor 
pressure, and, once saturation is reached, condensation of water vapor 
to available cloud condensation nuclei and fog formation (Bergot and 
Lestringant, 2019; Steeneveld and de Bode, 2018). This effect is espe-
cially prevalent in winter, where fog formation is favored by a higher 
frequency of low temperatures together with high relative humidity 
conditions (Wrzesinsky and Klemm, 2000). Hunová et al. (2018) list 
relative humidity and air pollutants as the most important features 
when modeling fog in the Czech Republic. As the presented statistical 
model presents a general working ground, a proxy for CCN has not been 
included yet but will be in further studies. The negative influence of 
higher LST on FLS cover in urban areas (Williams et al., 2015; Izett 
et al., 2019) can be suspected here, but is not visible in the results due 
to the size of the model units. 

Still, compared to LST, ET plays a stronger role in this study, 
especially in spring and fall, where the combined effects of low tem-
peratures favorable for FLS and a higher soil moisture leading to 
moderate evapotranspiration are prevalent. This is mainly visible in the 
eastern part of the study area, where ET is the most important feature in 
most model units in spring and fall. In these units, the moisture input by 
maritime westerly air masses might be limited which could lead to a 
higher importance of local moisture sources. According to van 
Oldenborgh et al. (2010) fog during summer in the Netherlands only 
forms when enough moisture is present, with higher summer fog oc-
currences when moisture input in the preceding early summer or spring 
months has been larger. Here, in high pressure situations, day to day 
variations in ET are more important for predicting FLS occurrence than 
day to day variations in MSP, which is visible in the feature importance 
of ET and MSP in the deseasonalized model run. 

In this study, the influence of radiative properties of the surface on 
FLS occurrence is only indicated by the small positive influence of in-
creasing ALB values on FLS occurrence. Still, the feature importance 
and partial dependence of ALB is rather low and does not feature a clear 
pattern. The small effect of ALB on FLS occurrence might also be due to 
the multiple directions in which ALB might influence FLS occurrence. 
While surfaces with high ALB absorb less radiation during daytime and 
thus might lead to a lower air temperature and higher relative humidity 
above these surfaces, during nighttime, when radiation fog usually 
forms, darker surfaces might provide more moisture initially (such as 
water bodies or forests). Furthermore, FLS reduces the incoming solar 
radiation thus masking some expected radiative effects of ALB on FLS 
occurrence. In further studies, the effects of radiation on FLS occurrence 
could be further investigated by adding radiation fluxes as predictors to 
the model. 

Similar to ALB, the influence of FVC on FLS occurrence is also not 
clearly visible in the results obtained from the study. Duynkerke (1991) 
lists vegetation as a driver for FLS occurrence but this might not be 
visible here due to the spatial resolution and the stronger influence of 
meteorological drivers that mask such influences of the land surface 
and cover. Still, with the exclusion of low pressure situations and 
subsequent decreasing the influence of atmospheric dynamics can help 
the investigation of the influence of land surface parameters on FLS 
distribution. Filtering for specific weather situations, as in Egli et al. 
(2019) could decrease the variability and influence of the considered 
atmospheric predictors and may help isolate the influence of land sur-
face parameters on FLS distribution under specific conditions. 
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As already stated, certainly not all factors influencing FLS dis-
tribution are considered in this study. In part, this study is limited by 
the spatial resolution of the data sets used, as local and regional mor-
phology are important drivers for FLS occurrence (e.g. Blas et al., 
2002). Furthermore, the landform, turbulent boundary layer mixing, 
above-cloud humidity and winds, soil conductivity, availability of CCN 
and the distance to the coast are listed as influential FLS drivers (e.g.  
Blas et al., 2002; Blas et al., 2010; Steeneveld and de Bode, 2018; 
Hunová et al., 2018). In further studies, the presented baseline model 
can be expanded by integrating these predictors to investigate their 
influence on model performance and sensitivities. 

5. Conclusion 

In this study, a machine learning technique, gradient boosting re-
gression trees, was used to predict observed FLS occurrence over con-
tinental Europe, using meteorological and land surface parameters as 
predictors. To analyze spatial patterns of model skill and sensitivities, 
spatially explicit 10 × 10 and 15 × 15 SEVIRI pixel model units were 
created covering the entire study area. Additionally, models were ap-
plied for different model setups and data preprocessing procedures. The 
models were then applied to the entire, full-year data, as well as in 
different seasons. 

In general, the statistical models were able to accurately predict FLS 
occurrence in all regions of the study area, with R2 values between 0.6 
and 0.94 during validation with independent data. Model skill was 
observed to be highest in winter and lowest in the full-year run. Model 
performance increases when only high pressure situations are con-
sidered and when smaller (10 × 10 SEVIRI pixels) model units are 
used. Some overfitting is apparent in all models and depends on model 
unit size, with larger modeling domains featuring less overfitting. Using 
deseasonalized data only has a small effect on model performance. 

Analyses of feature importance reveal that features pertaining to 
atmospheric dynamics are more relevant to predict FLS than surface 
characteristics. The most important features for FLS prediction are MSP, 
WS, FLS on the previous day, ET and to some extent LST. Albedo and 
FVC are less important in the statistical models. When only considering 
high pressure situations, MSP becomes less important, while ET and WS 
gain importance, the latter especially in spring and fall. Spatial patterns 
of the most important feature show the dominance of MSP in most of 
the model units when using all pressure situations. When only high 
pressure situations are considered, ET is dominant in central and 
eastern parts of the study area while WS, FLSprev and MSP are dominant 
in western parts of the study area. 

A sensitivity analysis was conducted with the statistical models, 
using the partial dependence technique. While there are some differ-
ences in partial dependencies when excluding low pressure situations, 
seasonality and model unit size settings do not seem to have a marked 
influence. A positive influence of FLSprev and MSP and a negative in-
fluence of ET, LST and WS on modeled FLS were found. These patterns 
are also confirmed in analyses of two-variable partial dependencies, 
which were used to study the combined effects of MSP, WS, ET, LST and 
FLSprev. This analysis showed that especially the combination of high 
FLSprev, high MSP and low WS values leads to high predicted FLS va-
lues. This is also the case for low LST and low ET values. 

Considering the modeling framework, there are several limitations 
that should be noted. First of all, using spatially explicit model units 

reduces the available number of data points for training and testing. 
Thus, the available data puts a constraint on the spatial resolution at 
which such an analysis can be conducted. Still, there is potential for 
future improvements: Creating larger model units could provide more 
data that could also be used for validation and reduce the risk of 
overfitting. Grid search or a different methodology for hyperparameter 
tuning could be applied in all units separately and with fewer model 
units, less computing time would be consumed. While the general-
ization of hyperparameters is useful in this model set-up, conducting a 
thorough grid search in all model units would lead to a more complete 
picture of ideal hyperparameters for the model but still may have little 
influence on model skill and overfitting. It has to be noted that FLS is 
influenced by a large number of parameters, some of which are not 
represented in the model, such as topography, humidity, wind direc-
tion, soil moisture and aerosol loading. Additionally, FLS formation is 
also influenced by the state of higher atmospheric layers for example 
through moisture advection and mixing. While the model set-up pre-
sented here provides a general working ground, these features may be 
integrated in more complex statistical frameworks in the future. 
Furthermore, FLS processes take place from small scales of aerosol ac-
tivation (10−7 m) to synoptic scales (106 m). Accurately addressing the 
issues concerning scales will thus be a critical aspect going forward, 
specifically as processes that are not important on one scale might be 
crucial on a different scale. 

To gain further insights into the relationship between FLS and the 
land surface, FLS properties such as cloud top height and liquid water 
path can also be analyzed with the presented modeling framework. 
While the model units can be varied in size, they can also be grouped 
into areas of similar topography or land cover which could help in 
further analyzing FLS – land cover dependencies. 
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1. Introduction

Interactions between the land surface and clouds are manifold and highly dependent on cloud type as well as 

geographical region. The intensity and direction of these interactions are still uncertain. Considering the influ-

ence of surface characteristics on energy fluxes on the surface and the boundary layer (Pielke, 2001), specifically 

the effects of land cover on boundary layer clouds has been the subject of research in the past (Ray et al., 2003; 

Teuling et al., 2017; Theeuwes et al., 2019; Wang et al., 2009). An enhancement of convective cumulus cloud 

cover compared to the surroundings has been reported over forests, including the large Landes forest in south-

ern France (Teuling et al., 2017), megacities (Theeuwes et al., 2019) and natural bushland (Ray et al., 2003). 

However, an increase in shallow cloud cover has also been found over deforested areas in eastern Amazonia 

(Wang et al., 2009). This is in line with findings from Xu et al. (2022), who found enhanced cloud cover over most 

temperate and boral forests but decreased cloud cover over forests in Amazonia, Central Africa, and the Southeast 

US. Possible reasons for shallow cumulus enhancement over forests are higher evaporation (Gentine et al., 2013) 

and higher sensible heat flux (Bosman et al., 2019; Gambill & Mecikalski, 2011) over forests, as well as higher 

aerodynamic roughness, leading to the development of a forest breeze (Mahrt & Ek, 1993). Besides the physical 

mechanisms for low cloud cover enhancement, biogeochemical processes can contribute to cloud development. 

Biovolatile organic compounds (BVOCs), emitted by forests can form secondary organic aerosols (SOA), which 

can act as cloud condensation nuclei (CCNs) and thereby favor cloud formation (Pöschl et al., 2010; Shrivastava 

et al., 2017). Enhanced emission of BVOCs has been found over the Landes forest (Kammer et al., 2018) while 

enhanced cloud cover due to the release of BVOCs has been found over boreal forests (Spracklen et al., 2008).

While the mechanisms for convective cloud enhancement over forests are understood relatively well, this is less 

in the case for fog and low stratus clouds (FLS). Topography is known to strongly influence FLS, leading to a 

higher FLS cover in valleys compared to mountainous areas (Bendix,  1994; Scherrer & Appenzeller,  2014). 

Higher temperatures, lower saturation of air with water vapor, and an increase in air quality lead to reduction of 

Abstract Understanding the drivers of fog and low stratus (FLS) cloud occurrence is important for traffic, 

ecosystems, and climate models, but it is challenging to analyze due to the complex interactions between 

meteorological factors and land cover. Here, we use active and passive satellite data, as well as reanalysis 

data to investigate nighttime FLS occurrence over the expansive Landes forest in France from 2006 to 2015. 

We find significant FLS enhancement over the forest compared to surrounding areas, especially in summer 

and fall. Lower wind speed and lower temperatures are found over the forest at night, which can enhance 

FLS development over the forest. Still, other drivers, such as biovolatile organic compounds acting as cloud 

condensation nuclei, are most likely important as well. The results show that the influence of forests on 

boundary layer clouds is not limited to convective daytime conditions.

Plain Language Summary Fog and low stratus clouds (FLS) are influenced by various drivers. 

Their relationship to land cover, specifically forest, is thus difficult to investigate. In this study, we analyze 

nighttime FLS cover over a large forest area in south-western France using a mix of different types of satellite 

data. We find higher FLS occurrence over the forest area compared to its surroundings, especially in summer 

and fall. Lower temperatures and wind speed over the forest could contribute to this enhancement. These results 

can help when predicting FLS for traffic and underline the importance of different land cover types for weather 

and climate.
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fog (Gray et al., 2019; Klemm & Lin, 2016; Yan et al., 2020), and have been observed to induce fog holes over 

urban areas (Gautam & Singh, 2018; Williams et al., 2015). An earlier onset of fog formation has been observed 

over fields compared to bare soil (Roach, 1995) and over a homogeneous grass surface compared to a surface 

with trees (Mazoyer et al., 2017). The influence of fog on vegetation has been well-studied for several specific 

ecosystems around the world, including tropical-montane cloud forests (TMCFs) (Weathers et al., 2019), in the 

Namib desert (Gottlieb et al., 2019) or in the Californian redwood forests (Dawson, 1998). Here, fog plays a major 

role for water and nutrient input. Still, temporally and spatially extensive studies looking at the influence of land 

cover on fog and low clouds are rare.

Satellite data can potentially provide information on fog and low stratus clouds over larger areas not covered by 

weather stations. Passive sensors, such as the geostationary Meteosat Spinning Enhanced Visible and Infrared 

Imager (SEVIRI), provide high temporal resolution and cover a large area, and have been used successfully for 

the detection of FLS in Europe (Cermak et al., 2009; Cermak & Bendix, 2011; Egli et al., 2017) and the Namib 

desert (Andersen & Cermak, 2018). Still, classification errors, small-scale FLS features and multiple cloud layers 

can lead to misclassifications (Cermak & Bendix, 2008; Cermak, 2018). These classification errors can be mini-

mized when using active satellite data such as LiDAR data from Cloud-Aerosol LiDAR and Infrared Pathfinder 

Satellite Observations (CALIPSO) (Cermak, 2018; Vaughan et al., 2009). Despite its low temporal sampling rate, 

CALIPSO data is still highly valuable for the study of fog and low cloud patterns, especially when combined with 

passive satellite data.

To isolate potential local effects of forests on fog and low cloud occurrence, the strong influence of topography 

on FLS occurrence discussed above should be minimized. A forested area with low topographic variability (cf. 

Figure S1 in the Supporting Information S1) and large spatial extent is the Landes forest in southern France. 

Here, we analyze nighttime (0–6 UTC) fog and low stratus cloud cover over the Landes forest over a period of 10 

years. We compare the FLS detection based on passive and active satellite data, and thus minimize the influence 

of potential misclassifications on the results. Furthermore, we investigate seasonal differences of FLS cover 

over the area and analyze the influence of wind and temperature on the observed patterns. With this long-term 

analysis, we can discuss potential interactions of FLS and forests, independent of satellite sensor and short-term 

fluctuations in FLS cover.

2. Data and Methods

2.1. Data

The Landes forest covers an area of about 12,000 km 2 in southern France directly at the Atlantic coast. The forest 

is mainly composed of maritime pine (Pinus pinaster) (Kammer et al., 2018) and shows a distinct contrast to its 

surrounding land cover types (compare Figure 2d). The study site has previously been used for the investigation 

of daytime cumulus clouds using satellite data, showing its potential for the investigation of land-atmosphere 

interactions (Teuling et al., 2017).

The primary fog and low cloud data set used in this study was created by Egli et al. (2017). It uses passive satel-

lite data from Meteosat SEVIRI following the Satellite-based Operational Fog Observation Scheme (SOFOS) 

by Cermak (2006) using the approach presented in Cermak and Bendix (2007) for nighttime data. The resulting 

data set provides a binary FLS mask for every 15-min time step covering the entire central European land mass 

and the years 2006–2015. The data set has been validated against ground observations, showing that 80%–90% 

of FLS and no-FLS situations are classified correctly (Egli et al., 2017). The binary FLS mask is available for 

daytime and nighttime hours but not during, as well as shortly before and after twilight due to sensor and algo-

rithm constraints. For the purpose of this study, nighttime observations (0–6 UTC) of FLS are used. This is in line 

with BVOC emissions observed during night over the Landes forest (Kammer et al., 2018), which can potentially 

serve as CCN. The time frame of 0–6 UTC was chosen to minimize the amount of missing observations during 

twilight and to select a time frame with nighttime observations across all seasons. As a plausibility check for the 

FLS data set by the passive satellite sensor, an additional FLS classification based on active satellite data from 

CALIPSO was created. For this, the CALIPSO level 2 1-km cloud-layer product (Version 4.20) (NASA Langley 

Atmospheric Science Data Center DAAC, 2018) was used. The cloud and aerosol discrimination (CAD) algo-

rithm classifies 90% of layers correctly (Liu et al., 2009). Over the 10 years, 186 nighttime overpasses over the 
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Landes region were available. Due to missing data in both data sets, 179 of those overpasses could be used for 

comparison.

For the surface (10 m) winds, ERA5-land reanalysis data from the European Centre for Medium-Range Weather 

Forecasts (ECMWF) was used (Muñoz Sabater, 2019). For temperature and wind data at different pressure levels 

ERA5 was used as well (Hersbach et al., 2018). The land cover data plotted in the results is taken from HILDA 

(Winkler et al., 2021). The Fraction of Vegetation Cover data serving as the background for the binary FLS maps 

are based on data from the EUMETSAT Satellite Application Facility on Land Surface Analysis (LSA-SAF) 

(Trigo et al., 2011).

2.2. Methods

The CALIPSO overpasses usually took place between 02:15 and 02:30 in the night. The CALIPSO FLS mask 

was derived similarly to the approach presented in Cermak (2018). First, the cloud layer altitude was calculated 

by subtracting the terrain altitude from the observed feature altitude. Then all cloud layers with a cloud top height 

equal to or smaller than 2.5 km and a cloud base height equal to or smaller than 2 km were defined as FLS. The 

thresholds differ slightly to those used in Cermak (2018) to include not only fog but also low stratus clouds.

To compare the SEVIRI based data set with the FLS mask derived from CALIPSO, the FLS observations of both 

data sets at the location of the CALIPSO overpass were contrasted by creating a confusion matrix. The time step 

of the SEVIRI-based data set used for comparison was 02:15 UTC. To take into account the larger pixel size of 

SEVIRI and the small mismatch of observation time of both data sets, the comparison was done for the complete 

CALIPSO swath area across the forest area and not pixel-by-pixel. For example, an observation was marked as 

true positive, when any pixel along the CALIPSO swath for both data sets showed FLS. If there was no FLS pixel 

in both data sets, the observation was marked as true negative.

This comparison was followed by creating nighttime averages of FLS using the data from 0 to 6 UTC of the 

SEVIRI based data set. The respective days belonging to one of the categories of the confusion matrix were 

flagged accordingly.

3. Results

3.1. Cross-Validation of FLS Products

Out of the 179 used CALIPSO observations, 50 were identified as true positive and 83 as true negative. On 12 

observations, no FLS was identified by CALIPSO but FLS was identified by the SEVIRI based data set (false 

positive). On 34 observations, FLS was identified by CALIPSO, but no FLS was present in the SEVIRI data set 

(false negative). Possible reasons for this could be multilayer cloud situations or classification errors in the FLS 

data set (cf. Cermak and Bendix (2008); Cermak (2018)). Further reasons are also described in the discussion. 

The confusion matrix can be found in Table S1 in the Supporting Information S1.

Two true positive cases are displayed in Figure 1. On 2008-07-14 (Figure 1a) most of the forest is covered by a 

large FLS patch, which is also visible in the CALIPSO profile, where the cloud top is situated at approximately 

2.5 km and cloud base at or below 2 km. A slight mismatch of the two products is visible at the CALIPSO swath 

at 44°N, where no FLS is present in the SEVIRI-based product, but FLS is present in the CALIPSO based prod-

uct. On 2015-09-20 (Figure 1b) both FLS patches over the forest and south of the forest are present in both data 

sets.

3.2. Climatological Means

To decrease and visualize the influence of potential misclassifications on the climatological mean of nighttime 

FLS cover, three types of climatological means were constructed using the FLS data set:

1.  Climatological mean over all days of the SEVIRI based data set by Egli et al. (2017) (3,652 days)

2.  Climatological mean over days with CALIPSO overpasses (179 days)

3.  Climatological mean over days where the FLS observations of the SEVIRI and CALIPSO based data set 

match (true positives and true negatives) (133 days)

Further appendices
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The corresponding maps, together with a land cover map of the Landes region are shown in Figure 2. In all three 

climatology maps, mean FLS cover from 0 to 6 UTC is higher over the forest, with differences in mean FLS 

cover between forest and non-forest most distinct in the northern forest area. Nighttime FLS cover is up to 1 hr 

longer over the forest than over the surrounding areas and local patches of enhanced FLS cover over the forest are 

visible (e.g., south of 44°N). The difference in nighttime FLS cover over forest versus other land cover types is 

significant (two sample t-test, P < 0.05, Table S2 in the Supporting Information S1) for all three climatologies, 

and strongest for the true positive and negative days (Figure 2c). This significance independent of calculated 

climatology, shows the robustness of the results.

3.3. Seasonal Analysis

A seasonal analysis of FLS cover (only true positive and true negative observational days) shows that nighttime 

FLS enhancement over the forest is significant (P < 0.05) for all months except January, February, June, and 

October (see Table S3 in the Supporting Information S1 for all t-test results and Figures S1 and S2 in the Support-

ing Information S1 for all monthly maps). The difference in mean FLS cover between forest and non-forest areas 

is shown here for the months of May, July, August, and September (Figure 3a), when FLS is most likely the result 

of more localized processes, as opposed to the winter months. Nonetheless, differences in FLS cover between 

forest and non-forest areas can still be significant in winter but are most likely due to higher FLS cover over the 

study area but lower FLS cover in the Pyrenees (south of 43.5°N) (cf. Egli et al. (2017)). In May, especially the 

central Landes forest shows enhanced nighttime FLS compared to its surroundings. In July, enhanced FLS cover 

extends to the south of the forest, toward the Pyrenees. In August, the shape of the forest is quite well replicated 

by the pattern of enhanced FLS cover over the forest. In September, nighttime FLS cover is enhanced mostly in 

the central and western parts of the forest. Similar to the patterns depicted in the full-year means in Figure 2, local 

patches of enhanced FLS cover are apparent inside the forest area in all of those monthly plots.

To investigate the potential reasons for high FLS cover over the Landes region, maps of mean wind speed are 

created. They show lower wind speed over the forest compared to the surrounding area (around 0.5  m s −1) 

(Figure 3b) and wind speed is highest directly at the coastline. The differences in mean wind speed above forest 

and non-forest pixels are significant (two sample t-test, P < 0.05, Table S3 in the Supporting Information S1) in 

March, April, June, July, and August. The main wind direction is west, with variations over the different months 

and over the study area. Patterns of wind direction also seem to be split into two subpatterns, with westerly winds 

prevailing near the Pyrenees (south of 44°N) and changing wind directions north of 44°N, for example, with 

northerly winds in July and August.

Figure 1. Example validation of Spinning Enhanced Visible and Infrared Imager (SEVIRI)-based fields with the corresponding Cloud-Aerosol LiDAR and Infrared 

Pathfinder Satellite Observations (CALIPSO) profiles. Shown are two days, 2008-07-14 (a) and 2015-09-20 (b), with the SEVIRI based Fog and low stratus (FLS) 

maps on the left and the corresponding CALIPSO profiles on the right. The gray pixels in the maps of the SEVIRI-based data set display FLS, the background is a map 

of mean fraction of vegetation cover of the study area. For orientation, the CALIPSO swath is plotted as a dashed line in the maps. In the CALIPSO profiles, the cloud 

layers are plotted as a gray area at their corresponding height and with their latitudinal extent. The green line, as well as the light green background in the profiles mark 

the forest area. The yellow triangles in both the maps and the profiles mark the beginning of the forest area.
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3.4. Vertical Temperature Profiles

To better understand boundary layer effects on enhanced FLS cover over the Landes region, vertical profiles of 

temperature gradient in combination with wind vectors on the different pressure levels are analyzed. For this 

study, the temperature gradient is calculated by subtracting the temperature of a pressure level from the temper-

ature of its overlying layer, that is, positive values indicate a temperature inversion. In Figure 4, hourly means 

over the respective true positive and true negative days in August (Figures 4a and 4b) and September (Figures 4c 

and 4d) are presented. Both longitudinal (Figure 4a) and latitudinal (Figure 4b) vertical profiles show a temper-

ature inversion (positive temperature gradient) over the forest compared to the surrounding areas, especially at 

Figure 2. Spatial distribution of climatological mean Fog and low stratus (FLS) cover over the study region. In (a) all observations from 2006 to 2015 are used to 

calculate mean FLS cover (3,652 days), in (b) only days with Cloud-Aerosol LiDAR and Infrared Pathfinder Satellite Observations overpasses (179 days), in (c) only 

true positive and true negative observations (133 days), and (d) shows HILDA land cover for the year 2006. The gray dashed line approximately marks the forest border.

Figure 3. Climatological mean fog and low stratus hours by month based on true positive and true negative observations (a), and the corresponding ERA-5 land wind 

speed and wind direction (u and v wind components) on the respective days (mean from 0–6UTC) (b). The number of true negative and true positive days available to 

calculate the climatologies is as follows: 9 (May), 11 (July), 12 (August), and 13 (September). The gray dashed line approximately marks the forest border.
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05:00 and 06:00 UTC. In August, the temperature gradient reaches values up to +0.67 K 25 mb −1 at −0.25°W in 

the longitudinal profile and +0.57 K 25 mb −1 at 44.25°N in the latitudinal profile. In September, the temperature 

gradient reaches values up to +1 K 25 mb −1 at 44.25°N and −0.5°W (both in the latitudinal and longitudinal 

profile). The u-w component vectors plotted in the longitudinal plots are very weak, whereas the v-w component 

vectors (latitudinal plot) show wind from the north in the pressure levels up to 850mb during the night. Espe-

cially at 00:00 and 01:00 UTC air rises at around 44°N, just before the Pyrenees. Over the night the v-w wind 

component weakens.

Figure 4. Profiles of mean hourly temperature gradient in K 25 mb −1 for the true positive and true negative days in August (a and b) and September (c and d), from 825 

to 1000 mb along 44.25°N (a and c) and −0.25°W (b and d). In the longitudinal profile (a and c) u-w wind vectors are plotted, in the latitudinal profile (b and d) v-w 

wind vectors are plotted. For visibility reasons, the w vector is enhanced by a factor of 20. The location of the Landes forest is marked in both plots as green vertical 

lines. The topography is plotted in gray.
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4. Discussion

The passive and active satellite data used in this study reveal enhanced FLS cover over the Landes forest 

compared to the surroundings. Both data sets agree well in most cases (74%), disagreement is potentially due to 

misclassifications in the FLS data set (cf. Cermak (2018)) or due to difficult FLS detection in the transitional 

zone (“twilight zone”) between aerosols and clouds (Koren et al., 2007). Local patterns of higher FLS cover over 

the forest area are visible, especially in the southern part of the Landes forest. This is similar to the findings by 

Teuling et al. (2017), who found enhanced daytime cumulus cover over the Landes forest with local maxima in 

the southern part of the forest. FLS enhancement over the forest compared to the surrounding areas is primarily 

visible in summer and fall, when local processes are potentially more important than in winter.

Various drivers are important for the development of FLS (Pauli et al., 2020). Here, the roles of wind speed and 

temperature are investigated. Based on the results of the t-test we identify lower wind speeds over the forest as a 

potential driver of higher FLS occurrence, especially in the summer months. While some turbulence is required 

for the formation of a stable fog layer (Haeffelin et al., 2010), lower wind speeds are generally beneficial for FLS 

development (Bergot, 2016; Bergot & Lestringant, 2019; Gradstein et al., 2011; Pauli et al., 2020; Roach, 1995). 

Similar to the processes described in Gradstein et al. (2011) for lowland cloud forests, low wind speeds combined 

with nighttime cooling and saturation of air are a potential pathway leading to the enhanced FLS cover described 

in this study.

The vertical profiles of temperature gradient show lower temperatures and a positive temperature gradient in the 

forest area at night, which is unusual for temperate forests since they usually have higher nighttime temperatures 

than their surroundings due to turbulence and the storage of heat (Li et al., 2015; Schultz et al., 2017). Still, in 

both of these studies, the Landes region seems to be an exception, showing lower temperatures over the forest 

compared to unforested areas. A potential explanation is a strong nighttime cooling through evapotranspiration, 

similar to nighttime cooling over forests in tropical regions (Li et al., 2015). In combination with the observed 

temperature inversion, nighttime cooling increases the relative humidity over the area, supporting the develop-

ment of fog and low stratus.

Further likely reasons for enhanced FLS cover over the Landes forest are the interplay between BVOC emissions 

and high evapotranspiration over the forest area. High loadings of natural aerosols from late spring to early fall 

have been found for boreal forests (Tunved et al., 2006). It has been shown that secondary organic aerosol emis-

sions together with evapotranspiration over forests can lead to an increase of liquid water path and cloud droplet 

number concentration in low-level liquid clouds (Petäjä et al., 2022). This could also be a potential pathway in the 

Landes forest, where BVOC emissions have been measured in summer (Kammer et al., 2018). A higher number 

of CCN and therefore potentially a higher number of small cloud droplets could lead to more FLS identified by 

both FLS detection algorithms. Measurements of BVOC emissions and fog and low cloud occurrences in the 

Landes forest could test the interactions between BVOCs and FLS in the future.

The patterns and drivers of higher FLS occurrence over the forest area is further modified by the general synoptic 

situation and geographic position of the Landes forest, with the Atlantic Ocean to the west and the Pyrenees to the 

south. While the former is a source of moisture, the latter might enhance stationarity of air masses in the region, 

preventing high wind speeds and supporting the build-up of atmospheric moisture.

5. Conclusion

In this study, we have analyzed nighttime fog and low stratus cloud cover over the Landes forest in southwestern 

France using active and passive remote sensing products. We have found significantly higher FLS cover over the 

forest compared to non-forest areas and identified lower wind speed and a temperature inversion over the forest 

as potential drivers. As these parameters only partially explain the enhanced FLS cover over the forest, further 

atmospheric and biophysical drivers should be included into the analysis in the future, such as soil moisture, evap-

otranspiration, and BVOC emissions. For future work we propose a systematic approach combining modeling 

and sensitivity studies to further quantify the role of forests for fog and low stratus cloud formation over varying 

geographic and synoptic backgrounds.
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Data Availability Statement

The fog and low stratus cloud data set can be downloaded from http://vhrz669.hrz.uni-marburg.de/lcrs/data_pre.

do?citid=291. The CALIPSO level 2 1-km cloud-layer product (Version 4.20) is distributed by the Atmospheric 

Science Data Center (ASDC) at https://doi.org/10.5067/CALIOP/CALIPSO/LID_L2_01KMCLAY-STAND-

ARD-V4-20. The era5-land data is available at https://doi.org/10.24381/cds.e2161bac. The era5 data on different 

pressure levels can be downloaded from https://doi.org/10.24381/cds.bd0915c6. FVC data is provided by the 

EUMETSAT Satellite Application Facility on Land Surface Analysis (Trigo et al., 2011) and can be downloaded 

from https://landsaf.ipma.pt/en/products/vegetation/fvc/.
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Abstract

Knowledge of fog and low stratus (FLS) cloud patterns and life cycles is impor-

tant for traffic safety, for the production of solar energy and for the analysis

of cloud processes in the climate system. While meteorological stations pro-

vide information on FLS, a data set describing FLS formation and dissipation

times on large spatial and temporal scales does not yet exist. In this study, we

use logistic regression to extract FLS formation and dissipation times from a

satellite-based 10-year FLS data set covering central Europe. The resulting data

set is the first to provide a geographic perspective on FLS formation and dissi-

pation at a continental scale. The patterns found show a clear dependency of

FLS formation and dissipation times on topography. In mountainous areas, FLS

forms in the night and dissipates in themorning. In river valleys, the typical FLS

life cycle shifts to formation after sunrise and dissipation in the afternoon. Sea-

sonal patterns of FLS formation and dissipation show similar FLS formation and

dissipation times in winter and autumn, and in spring and summer, with longer

events in the former two seasons.

KEYWORD S

Europe, fog, fog dissipation, fog formation, logistic regression, low stratus

1 INTRODUCTION

Fog and the timing of its formation and dissipation is

important for traffic on land, at sea and in the air (Leigh

et al., 1998; Pagowski et al., 2004), and is critical for the

quality of the prediction of solar power production (Köhler

et al., 2017). Fog is also a crucial water source for various

ecosystems around the world (Bruijnzeel et al., 2006; Got-

tlieb et al., 2019) and plays an important role in climate

processes (Vautard et al., 2009).

In general, fog can be defined as a cloud touching

the ground with a horizontal visibility less than 1 km

(American Meteorological Society, 2012). It can be further

classified into different types based on its formationmech-

anisms. Radiation fog is the most frequent fog type in

central Europe (Fuzzi et al., 1992; Gultepe et al., 2007a). It

forms through radiative cooling of the ground, a build-up

of a temperature inversion and subsequent condensation

of the excess water vapour, and is sustained by radiative

heat loss at the fog top (Roach, 1995). Geographically,

radiation fog occurs more frequently in valleys, such as

large river valleys, compared to mountainous areas, as

shown by Scherrer and Appenzeller (2014) for the Swiss

Plateau and Fuzzi et al. (1992) and Bendix (1994) for the

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the

original work is properly cited.
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Po Valley mostly in autumn and winter, when the condi-

tions described above are present (Cermak et al., 2009; Egli

et al., 2017).

Dissipation of radiation fog can take place through var-

ious pathways. After sunrise, the increasing solar radiation

leads to a ‘burn-off’ of fog due to warming of air and mix-

ing of the boundary layer (Roach, 1995; Haeffelin et al.,

2010; Maalick et al., 2016). Short-wave radiative warm-

ing can also lead to a transition of fog into a low stratus

cloud (Maalick et al., 2016). Turbulent heat fluxes can con-

tribute strongly to the loss of liquid water content in the

fog layer and thus to fog dissipation (Wærsted et al., 2019).

Furthermore, higher wind speeds can lead to the erosion

of fog at its top (Bergot, 2016), and high clouds moving

over the fog can reduce radiative cooling of the cloud tops,

resulting in the dissipation of the fog layer (Roach, 1995).

Land surface characteristics can also modulate fog pat-

terns, for example, over cities that often feature ‘fog holes’

over urban areas (Yan et al., 2020).

The knowledge of formation and dissipation time of

fog relies strongly on ground-based observational data and

localized process studies with numerical models such as

large-eddy simulations. These have been conducted for

example in France (e.g., Haeffelin et al., 2010; Dupont

et al., 2012; Wærsted et al., 2019; Karimi, 2020) or in the

Netherlands (Duynkerke, 1991; Steeneveld and de Bode,

2018) over time-scales ranging from 6days (Dupont et al.,

2012) up to 7 years (Wærsted et al., 2019). According to

these studies, radiation fog usually forms during the night

through nocturnal cooling (Roach, 1995) and dissipates

a few hours after sunrise (Haeffelin et al., 2010; Bergot,

2016; Steeneveld and de Bode, 2018). While these studies

provide insights on the small-scale processes of fog for-

mation and dissipation, large-scale processes play a major

role as well. Thus, data at large spatial scales are neces-

sary to obtain knowledge on fog formation and dissipation

processes across different landscapes.

Geostationary satellite data have proven suitable for

the observation of fog over large spatial scales, for example,

over Europe (Cermak et al., 2009; Cermak and Bendix,

2011; Egli et al., 2017), North America (Ellrod and Gul-

tepe, 2007; Gultepe et al., 2007b; Torregrosa et al., 2016)

and the Namib desert (Andersen and Cermak, 2018). They

provide information about fog and low stratus clouds over

a large spatial area and with a high temporal resolution.

When no ground information is available, fog and low stra-

tus (FLS) are typically treated as a single category (Cermak

and Bendix, 2011). Based on Cermak and Bendix (2007;

2008) a FLS dataset has been created by Egli et al. (2017)

which provides information about FLS cover over Europe

for each 15-min interval over 10 years. This dataset has

been used previously for the study of large-scale drivers of

FLS using machine learning (Pauli et al., 2020). Still, it has

to be considered that not all FLS situations can be detected

accurately by geostationary satellite data, as small-scale

FLS features, classification errors andmulti-layer cloud sit-

uations can lead tomisclassifications (Cermak andBendix,

2008; Cermak, 2018).

The goal of this study is to analyse and discuss the spa-

tial patterns of continental FLS formation and dissipation

times over central Europe. Both formation and dissipa-

tion times are extracted from an existing, well-validated

satellite-based binary FLS data set by Egli et al. (2017)

with a logistic regression. The seasonal differences of the

extracted formation and dissipation times are analysed

across Europe and the regional applicability and detail

are shown in a regional study in southern Germany. The

resulting novel data set gives information on FLS forma-

tion and dissipation times over continental Europe and

over 10 years, on spatial and temporal scales not previ-

ously investigated. The guiding hypothesis of this study is

as follows. The timing of fog and low stratus formation

and dissipation in central Europe is mainly dependent on

topography. Its specific patterns are further impacted by

the distance to the coast and local- to regional-scale modu-

lations of the relevant meteorological drivers of FLS (Pauli

et al., 2020).

2 DATA & METHODS

2.1 Data

The basis of this study is an FLS data set by Egli

et al. (2017) which covers Central Europe over the years

2006–2015. The FLS data set is created using data from the

Meteosat Spinning Enhanced Visible and Infrared Imager

(SEVIRI) and a number of threshold tests that are based on

the Satellite-based Operational Fog Observation Scheme

(SOFOS) by Cermak (2006). FLS in the Egli et al. (2017)

data set is defined as a low stratiform cloud with liquid

droplets not exceeding a size of 20𝜇m (Egli et al., 2017)

but radiation fog and other stratiform clouds are not dis-

tinguished.

The FLS data set contains binary information, that is, 1

if FLS is present and 0 if FLS is not present. The data set is

available for every 15min time slot of SEVIRI at its native

resolution (3× 3 km at nadir). At twilight, no FLS detec-

tion is possible, leading to εFLS not presentε (0) values in

the original data set during about four to five 15-min time

steps during each twilight episode. After exploring differ-

ent treatments of those twilight values (keeping them at 0,

setting them to NAN (not a number), temporal interpola-

tion), setting them to NAN has been chosen as the most

suitable method in this study, as this avoids the introduc-

tion of false information. However, on the basis of the Egli
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F IGURE 1 (a) Mean fog and low stratus cover in Central Europe from 2006 to 2015 (data set by Egli et al. (2017)) and (b) mean height

above sea level. The Upper Rhine Valley, used as a regional study area for the demonstration of the algorithm and to show the spatial detail of

the results, is indicated by the rectangle [Colour figure can be viewed at wileyonlinelibrary.com]

et al. (2017) data set, we are unaware of formation and

dissipation time at twilight.

To provide an overview of the data used for the iden-

tification of FLS formation and dissipation time, we show

the mean FLS cover in Figure 1a. The mean FLS cover

over the study domain of Central Europe generally shows

higher FLS frequencies over the northern latitudes and in

large-scale river valleys (Figure 1a). Inmountain ranges as

well as in theMediterranean, FLS frequencies are low. The

dependency of FLS cover on topography can also be seen

by looking at both mean FLS cover (Figure 1a) and mean

height above sea level over the study area (Figure 1b). The

data set can be used in various research applications, such

as the investigation of large-scale drivers of FLS (Pauli

et al., 2020).

2.1.1 Validation of FLS data used

In the work presented here, we use the existing and thor-

oughly validated FLS data set by Egli et al. (2017) to extract

FLS formation and dissipation times by applying logistic

regression. While we do create a novel FLS formation and

dissipation times data set, the technique we use is not an

FLS detection technique but a statistical interpretation of

an already existing, thoroughly validated, satellite-based

FLS data set. In this section, we provide an overview of the

validation results of studies using the SOFOS algorithm

for the detection of fog and low clouds (Cermak, 2006;

Cermak and Bendix, 2007; 2008; Egli et al., 2017). Details

on the validation procedures can be found in the relevant

publications.

For the validation of the SOFOS algorithm, Meteoro-

logical Aviation RoutineWeather Reports (METARs) were

used, as these are available with a high temporal frequency

(at least every hour) and well distributed over continental

Central Europe. In general the SOFOS algorithm detects

FLS very accurately (Cermak, 2006; Cermak and Bendix,

2007; 2008; Egli et al., 2017). Cermak (2006) and Cermak

and Bendix (2008) found that 70 to 85% of FLS situations

are detected by the scheme. Situations where FLS is not

detected can to a large degree be explained by overlying

clouds, which are present above FLS about 25% of the

time in the study domain (Cermak, 2018). False alarms

are rare, that is, a pixel classified as FLS is almost never

either clear or covered by a different cloud type (Cermak

and Bendix, 2008). Similar to the other studies using the

SOFOS algorithm, about 80–90% of FLS and no-FLS situa-

tions are classified correctly in the Egli et al. (2017) data set

used for the extraction of FLS formation and dissipation

time. The geographic patterns of validation scores show

higher validation scores in continental areas with radiative

FLS events as opposed to coastal areas, where advective

FLS events prevail (Egli et al., 2017).

We acknowledge the constraints that a satellite-based

FLS climatology has when compared to ground observa-

tions. Nevertheless the good validation results show that

this FLS data set can be used to derive an FLS forma-

tion and dissipation climatology as shown in the study

at hand.
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F IGURE 2 Workflow for the identification of FLS formation and dissipation times with logistic regression using an artificial example.

Steps for the identification of formation time are plotted in blue,and the corresponding steps for the identification of dissipation time are

plotted in red. Black crosses mark the binary FLS values [Colour figure can be viewed at wileyonlinelibrary.com]

2.2 Methods

In this study, we apply logistic regression to statistically

interpret the binary FLS data set by Egli et al. (2017) to

determine FLS formation and dissipation times. After the

algorithm is completed, a novel FLS formation and dissi-

pation data set exists, which is derived from the original

binary FLS data set by Egli et al. (2017). We then anal-

yse this new data set of formation and dissipation time

in the results section. In the following, we give a gen-

eral overview on logistic regression and then describe the

algorithm which applies logistic regression to the binary

FLS time series described above.

Logistic regression is used for binary or categorical

data and in this study predicts the probability of a data

point belonging to one of the binary classes (Lever et al.,

2016; Bisong, 2019).Mathematically, the probability can be

expressed as:

p(t) =
1

1 + exp(−b0 − bt ∗ t)
, (1)

where p is the probability, t the time, b0 the intercept and bt
the slope.Whilemultiple predictor variables can be used in

logistic regression, in this study, time is the only predictor.

The transition from one state to another and its associated

predictor value is called the “decision boundary” (Bisong,

2019). Here, this decision boundary is used to determine

the time of FLS formation and dissipation.

In the atmospheric sciences, logistic regression has

previously been used for the detection of hail (López and

Sánchez, 2009) or to forecast the probability of extreme

precipitation events (Applequist et al., 2002; Herman and

Schumacher, 2018). It has also been applied to predict

the occurrence of orographic cloud cover (Wu and Zhang,

2013) or to forecast the probabilities of low visibility con-

ditions at an airport site (Kneringer et al., 2019).

2.2.1 Algorithm

In the following we describe the algorithm which iden-

tifies FLS formation and dissipation time based on the

binary cloud mask. The algorithm consists of six steps.

These steps are similar for formation and dissipation

time but are conducted separately. The algorithm is

applied to each valid FLS event (defined below) and to

each pixel over the years 2006–2015. The steps described

below are marked with the corresponding numbers in

Figure 2.

To apply the logistic regression to the data set, at first

an FLS formation/dissipation event has to be identified

(step 1). In the case of FLS formation, this means that

over a period of at least ten consecutive 15-min time steps

(2.5 hr) no FLS has to be present (cloud mask = 0). In

the case of FLS dissipation, the requirement is similar

(FLS present (cloud mask = 1) for ten consecutive 15-min

time steps). By choosing a minimum value of 2.5 hr we

are likely to exclude randommisclassifications in the orig-

inal FLS data set as well as advective FLS events with

fast changes between FLS and no-FLS. One should note

that the results can thus only be interpreted with respect
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to such longer-lasting FLS events, and may not be rep-

resentative of FLS events with a shorter life cycle. After

identification of such a start group, its temporal centre

point is then used as the start of the FLS formation or dis-

sipation event (step 2). Looking at the artificial example

in Figure 2, the start group of the formation event (blue

curve) has 20 consecutive 15-min time steps of no-FLS.

The starting point is then defined as the centre, in this case

at the tenth time step of no-FLS.

The end group of a given FLS formation or dissipation

event is defined similarly to the start group. In the case of

FLS formation, this means that for ten consecutive 15-min

time steps FLS has to be present (cloud mask = 1), and in

case of dissipation FLS has to be absent for ten consecutive

15-min time steps (step 3). The end group has to be present

within 30 hr from the start of the formation or dissipation

event. By choosing a time period of 30 hr, it is possible to

capture FLS events that persist for longer than a day. If no

end group can be identified within 30 hr of the start of the

formation/dissipation event (step 2), the formation/dissi-

pation event is omitted, and no time is determined by the

algorithm.

Similar to the determination of the start of the forma-

tion/dissipation event, the end of such an event is then set

to be the centre of the corresponding end group (step 4).

In the artificial example in Figure 2, the end group of the

formation event contains 30 15-min time steps with FLS,

with the end point of formation defined in the centre of the

group at time step 15. During twilight, the groups of con-

secutive FLS or no-FLS are interrupted by NAN values as

outlined in Section 2.1. If the remaining groups then do not

fulfill the requirement of ten consecutive FLS or no-FLS

values, this leads to a potential loss of start and end groups.

Following the identification of the start and end points

of the FLS formation/dissipation events, logistic regres-

sion is applied to the binary time series between the start

and end points to model the probability of FLS presence

(step 5). Then, the decision boundary is used to depict the

formation and dissipation times (step 6). For formation,

the first 15-min time period in which the probability mod-

elled by the logistic regression exceeds 0.5 is defined as

the formation time. For dissipation, the first 15-min time

period where the probability falls below 0.5 is defined as

the dissipation time.

After the calculation of the formation/dissipation time,

these six steps are repeated for each identified start group

for each pixel separately. While the formation and dissipa-

tion situation displayed in Figure 2 can be considered as

an ideal example, with a dissipation event following a for-

mation event right away, there is also the possibility that

a dissipation event is not identified right after a formation

event. This occurs when an end of the dissipation event

cannot be identified within 30 hr, due to alternating FLS

andno-FLS values. If the requirements discussed above are

not fulfilled by either a potential formation or dissipation

event, it is possible that multiple FLS formation or dissipa-

tion events are identified one after another. This leads to

slight differences in the number of formation and dissipa-

tion events identified by the algorithm, which is discussed

in Section 3.1.

2.2.2 Discussion of algorithm uncertainties

It is clear that the quality of the derived FLS formation and

dissipation time products is dependent on the quality of

the underlyingFLSdata set. Therefore, systematic and ran-

dom errors in the FLS data set will propagate to our clas-

sification. However, by focusing on temporally persistent

FLS events, we reduce effects of randommisclassifications

in the data set. Another uncertainty of the derived FLS

formation and dissipation time products is introduced by

differences in the characteristics of the binary variability of

each specific FLS event (Figure 3). An abrupt, temporally

coherent change between the binary classes (little alterna-

tion between FLS and no-FLS values), leads to a higher

absolute value of the slope and a steep curve fit. This leads

to either the classic sigmoid shape (Figure 3a, d) or a very

steep transition (Figure 3b, e), both of which are easy to

interpret with respect to FLS formation and dissipation

time. However, in the case of frequent changes between

FLS and no-FLS values of an FLS event considered, the

fitted logistic curve is flat and the slope value approaches

zero (Figure 3c, f). These flat curves are difficult to inter-

pret with respect to an FLS formation/dissipation time,

and are thus excluded from the data set. We define these

valid situations to feature a slope of > |0.1|. This thresh-

old was defined by conducting a thorough visual analysis

of different events and their corresponding curve shapes.

The exclusion of these high-uncertainty events leads to an

average reduction of 9% of FLS events per pixel.

2.3 Case illustration: 7 February 2011

To illustrate how formation and dissipation time are

derived from the binary FLSmasks, a dissipation case from

7 February 2011 over the Upper Rhine Valley in Germany

is presented in the following. The mean FLS cover and

topography of the region are shown in Figure 4.

Radiation fog is a frequent phenomenon in the Upper

Rhine Valley, especially in the colder months (Kalthoff

et al., 1998; Bendix, 2002; Bendix et al., 2006; Egli et al.,

2017). In this rift valley between the Vosges mountains to

the west and the Black Forest mountains to the east (visi-

ble in Figure 4b and roughly depicted in Figure 4 with the
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(a) (b) (c)

(d) (e) (f)

F IGURE 3 Logistic regression curves for three formation situations (a–c) and three dissipation situations (d–f). The situations in (a, d)

have a classic sigmoid shape and the situations in (b, e) have a sharp transition. The curves in (c, f) do not fulfill the slope requirements

(coefficient > |0.1|). The Coef parameter denotes the slope of the logistic regression curve [Colour figure can be viewed at

wileyonlinelibrary.com]

500m contour), FLS occurs more frequently in the valley

than on the mountain ridges (Figure 4a).

The case illustration of 7 February 2011 focuses on

three pixels in the Upper Rhine Valley (at locations A, B,

C), all of them located in France. As can be seen in the

binary FLS maps (Figure 5), FLS is present mainly in the

northern part of the valley on the morning of 7 February

and then dissipates during the day. To illustrate the deriva-

tion of the dissipation time, the binary time series at the

three locations is extracted (Figure 6). A logistic regression

is calculated for all time series and the time stamp where

the probability of the binary value being equal to 1 falls

below 0.5 is assigned to be the dissipation time. In line

with the binary FLS masks in Figure 5, FLS at location B

dissipates first (0930 UTC) followed by location A (dissi-

pation at 1145 UTC). FLS at location C is most stable and

dissipates in the afternoon (1430 UTC).

The approach presented here for the identification of

dissipation time at the three locations is then applied to

each pixel of the study area, for each identified FLS forma-

tion and dissipation event.

3 RESULTS

3.1 Number and duration of FLS events

As a first view of the data set, the number of formation

events for which a formation time was calculated is shown

(Figure 7a). The number of formation events is represen-

tative of the number of dissipation events, which is very

similar with a difference around +∕−10 events per pixel.

As discussed above, this slight difference is present since

not every formation event is followed by a dissipation
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F IGURE 4 (a) Mean fog and low stratus cover in the Upper Rhine Valley from 2006 to 2015 (data set by Egli et al. (2017)) and (b) mean

height above sea level. The country border between France and Germany also marks the course of the river Rhine. The black dashed line

depicts 500m height above mean sea level [Colour figure can be viewed at wileyonlinelibrary.com]

event which fulfills the requirements discussed above,

and vice versa. The geographic patterns of the number of

detected formation events are similar to the geographic

patterns of mean FLS cover (Figure 1). A high number

of formation events is identified in the northeast of the

study area (1,000–1,200 events over 10 years), as well as

in the Po Valley and at the north coast of Spain. More-

over, a higher number of formation events is detected over

cities, especially visible over Milan and Paris. This is likely

a systematic error of the FLS data set used, as higher FLS

cover over cities can also be seen in Figure 1a. The over-

estimation of FLS cover over cities is likely due to their

high reflectance in the 3.9𝜇m channel due to solar con-

tamination during daytime, which is likely to lead to a

false identification of clouds during this time (EUMET-

SAT, 2019). Higher daytime FLS cover over urban pixels

compared to the rural surroundings can be observed in the

mean diurnal course of FLS cover over London, Paris and

Milan (Figure S1).

A low number of formation events (300–400 events

over 10 years) is detected over the Mediterranean and over

mountain ranges (Alps, Pyrenees). The same geographic

patterns described here for the number of formation events

apply to the number of dissipation events.

The FLS duration is calculated as the difference

between dissipation time and formation time for one

FLS event for each pixel. To decrease the influence of

outliers, the median instead of the mean is shown here.

The geographic patterns of duration are similar to the

FLS mean map and the number of dissipation events.

FLS events tend to be longer in the northeastern part of

the study area (400–600min) and shorter in the Mediter-

ranean (200–300min). The geographic patterns of median

duration are also similar to those of the mean FLS cover

and the number of formation events. This is also visi-

ble when normalizing the three quantities (Figure S2) to

enhance comparability. Still, the spread of values is lower

for the median duration than the mean FLS cover and the

number of formation events.

3.2 Most frequent formation
and dissipation times

For further analysis, the timestamps of formation and

dissipation times are converted into % values as a func-

tion of day length (sunrise–sunset) for formation or dis-

sipation during the day or as a function of night length

(sunset–sunrise) for nighttime formation and dissipation.

This is done to make formation and dissipation time com-

parable across seasons and latitudes.

To facilitate interpretation, these % values are then

assigned to different classes of day- or nighttime (Table 1).

To produce climatological maps of the most frequent

Further appendices
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F IGURE 5 Binary 15-min

FLS masks (data set by Egli et al.

(2017)) from 0900 to 1300 UTC on 7

February 2011. Pixels with FLS

cover are grey, pixels without FLS

are transparent. The background is a

topographic map of the region. The

country border between France and

Germany also marks the course of

the river Rhine. The black dashed

line depicts 500m height above

mean sea level [Colour figure can be

viewed at wileyonlinelibrary.com]

formation and dissipation time, the mode of these classes

is used for each pixel over the entire time period (Figure 8)

and depending on the season (Figure 9).

When considering the entire study period (Figure 8),

FLS forms most frequently around midnight in large parts

of the study area such as areas of France, Germany and

Italy, where secondary mountain ranges as well as rather

flat areas, such as the Danube valley, are present. In the

high-altitude mountain ranges (Alps, Pyrenees) and on

the north coast of Spain, formation is most frequently

around sunset. In the inner plateau of central Spain, west-

ern France and in the PoValley, FLS formsmost frequently

around sunrise and in the morning.

The geographic distribution of most frequent dissipa-

tion time shows similar spatial patterns of equal dissipa-

tion time as was seen for formation time. On the north

coast of Spain, and in high-altitude mountains such as

the Pyrenees and the Alps, FLS dissipates most frequently

around sunrise or in the morning. In secondary moun-

tain ranges such as the Massif Central in southern France

and the pre-alpine areas of southern Germany, dissipa-

tion occurs mainly in the morning or around midday. In

the low-altitude areas of central Europe, such as north-

ern France, northern Germany and Poland but also in the

inner plateau of Central Spain, dissipation occurs most

frequently in the afternoon.

The seasonal patterns of formation and dissipation

times tend to be similar inwinter (DJF) and autumn (SON)

and in spring (MAM) and summer (JJA) (Figure 9). Inwin-

ter and autumn, FLS formation occurs most frequently in

the evening or during the night and dissipation around

midday or in the afternoon. In spring and summer FLS

typically forms later, most frequently around sunrise, but

does not last as long as during winter and dissipates in the

morning. The detailed geographic patterns for each season

are described below.
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F IGURE 6 Logistic regression curves for the dissipation events on 7 February 2011 at the three locations A, B, C marked in Figure 5.

The Coef parameter denotes the slope of the logistic regression curve [Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 7 (a) Number of formation events identified by the algorithm, and (b) the median of the duration of all FLS events in which

both formation and dissipation times could be determined. Both are calculated over the entire period (2006–2015) [Colour figure can be

viewed at wileyonlinelibrary.com]

In winter FLS forms most frequently in the evening or

around midnight, except for large areas in western France

and the inner plateau of central Spain, where formation

most frequently takes place in the morning. During this

time, FLS dissipates most frequently in the afternoon in

most regions, and earlier (in the morning or around mid-

day) in parts of theAlps, in the secondarymountain ranges

of southern Germany or southern Italy.

In spring the most frequent formation time shifts to

sunrise or to the morning hours in large parts of France,

central Spain and in the Po Valley. On the north coast of

Spain, southern France, in the Pyrenees and in the Alps,

FLS forms most frequently at sunset. Dissipation most

often takes place in the morning or around midday in

most parts of the study area. In the Po Valley and in large

parts of Poland, FLS ismore persistent andmost frequently

dissipates in the afternoon.

In summer FLS formation patterns are spatially

diverse, with formation at sunset (central Germany),

around sunrise (Po Valley) or in the morning (France).

This could be influenced by to the lower number of forma-

tion events in summer compared to other seasons in most

Further appendices
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TABLE 1 Day- and nighttime classes with respective %

ranges

Daytime Nighttime

Class

number

Class

name % Range

Class

number

Class

name % Range

1 Sunrise 0–12.4 1 Sunrise 87.5–100

2 Morning 12.5–37.4 8 Night 62.5–87.4

3 Midday 37.5–62.4 7 Midnight 37.5–62.4

4 Afternoon 62.5–87.4 6 Evening 12.5–37.4

5 Sunset 87.5–100 5 Sunset 0–12.4

parts of the study area (compare Figure S3). A clear pattern

of formation at sunrise is visible at the coast of theMediter-

ranean Sea. Dissipation in summer is most frequently in

the morning in large parts of the central study area. FLS

dissipates earlier (around sunrise) at the northern coast

of Spain and in the Alps, and later (in the afternoon) in

western France. Still, these patterns should be interpreted

with care, as FLS occurrence is low inmost of theMediter-

ranean in spring and summer (compare hatched areas of

Figure 9).

In autumn FLS formation shifts again towards night-

time hours in most of the study area, except for parts

of France and Spain, where FLS forms most frequently

in the morning. FLS dissipation also shifts to afternoon

hours in most parts of the study area. In the Alps and

the Pyrenees, FLS most frequently dissipates at sunrise, in

southern Germany around midday.

3.3 Regional study: Upper Rhine Valley,
Germany

While the formation and dissipation times data set can

be used to produce climatological maps for Europe, it can

also be used for a more thorough investigation of forma-

tion and dissipation patterns in regional studies. Such a

regional study is presented here by looking closely at for-

mation and dissipation patterns in the Upper Rhine Valley

(red rectangle in Figure 1 and introduced in Section 2.3)

in southern Germany. The FLS patterns present in that

region are likely to be influenced by local to regional mod-

ulations of the synoptic-scale weather patterns. Thus the

Upper Rhine Valley is an ideal region to showcase the level

of spatial detail provided by the novel data set.

The most frequent formation and dissipation time

over the complete period (Figure 10a) shows two distinct

patches of formation and dissipation anomalies (at∼7.5◦E,

48◦N, and at around 48.7◦N). At these locations, forma-

tion is observed to be in themorning and dissipation in the

F IGURE 8 Most frequent (a) formation and (b) dissipation times over the entire study period (2006–2015) [Colour figure can be

viewed at wileyonlinelibrary.com]
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F IGURE 9 Most frequent (a) formation and (b) dissipation times for DJF, MAM, JJA and SON from 2006 to 2015. Pixels with a mean

seasonal FLS occurrence of less than 2 hr⋅day−1 are marked with a horizontal line [Colour figure can be viewed at wileyonlinelibrary.com]

afternoon (Figure 10a, e). Thus FLS formation and dissipa-

tion at these patches are much later than in other places of

the Upper Rhine Valley, where FLS usually forms around

sunset or around midnight and dissipates in the morning

or around midday. While the anomalies are clearly visi-

ble in the annual averages, they are especially pronounced

in MAM, with formation in the morning and dissipation

in the afternoon extending over the eastern slopes of the

Vosges (Figure 10b, f).

The percentage of values that fall into the most fre-

quent formation and dissipation time classes relative to

all formation and dissipation situations provides a mea-

sure of the representativeness of the mode as a proxy for

the typical formation and dissipation time for each pixel

(Figure 10c, d, g, h). The percentage of values in the most

frequent class lies around 15–20% for the formation over

the complete year and rises to values around 20–25% in

MAM and is highest in the anomalous patches described

above. Considering the dissipation, the geographic distri-

bution of % values is similar but on average 10% higher

than formation, showing that the temporal variability in

dissipation time is lower than the formation time.

This case-study provides two important insights into

the novel formation and dissipation data set. First of all,

the relatively high spatial and temporal resolution (native

SEVIRI resolution; Section 2.1) make it a useful prod-

uct to study regional formation and dissipation patterns.

Secondly, the dissipation time features a lower tempo-

ral variability than the formation time, as evidenced by

the systematically higher fraction of events in the most

frequent class. Over most of the study area, more than two

thirds of dissipation events occur during the day, whereas

formation time is equally distributed between daytime and

nighttime in large parts of the study area (Figure S4). This

is likely due to a higher number of possible formation

pathways and thus formation times, whereas dissipation

is strongly influenced by solar radiation. We evaluate this

further in the discussion below.

4 DISCUSSION

The geographic patterns of formation and dissipation time

clearly underline the role of topography for the occur-

rence and development of FLS events. In large mountain

ranges such as the Alps or the Pyrenees, FLS forms earlier

(around sunset) than in lower terrain but also dissipates

earlier (around sunrise). These geographic patterns may

be interpreted as the signature of regionally characteristic

processes influencing FLS formation and dissipation. It is

likely that formation at sunset in those mountain ranges

is due to advected FLS layers, especially on the windward

slopes of those ranges, for example on the northern slopes

of the Pyrenees. After sunrise, these FLS layers are likely to

be ‘burned-off’ as the sun reaches the mountain tops first.

In the Po Valley in Italy or in the inner plateau of Central

Spain, FLS formation is likely to be due to nocturnal cool-

ing and a subsequent transition into a low stratus cloud

Further appendices
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F IGURE 10 Most frequent (a, b) formation and (e, f) dissipation times in the Upper Rhine Valley and the corresponding % of values

contained in the most frequent (c, d) formation and (g, h) dissipation class for the complete time period (all months) and in spring (MAM).

The country border between France and Germany also marks the course of the river Rhine. The black dashed line depicts 500m height above

mean sea level [Colour figure can be viewed at wileyonlinelibrary.com]

(Roach, 1995). Other potential processes involved could be

topography-induced drainage flows and turbulence (Price,

2019).

In smaller mountain ranges (e.g., the Black Forest), the

dependence of formation and dissipation time on topog-

raphy is not always clear. A potential explanation for this

could be that the local modulation of the meteorological

parameters that determine the FLS life cycle (e.g., relative

humidity, wind) scales with the topographic features. In

areas with moderate topography, the topography-induced

local modulation of the meteorological setting would then

have a weaker effect on the resulting geographic patterns

of formation and dissipation times than in mountainous

areas. In general, topographic features are only modulat-

ing the meteorological drivers responsible for FLS forma-

tion and dissipation. As has been shown in previous stud-

ies (Pauli et al., 2020) meteorological factors are the main

drivers of FLS occurrence over central Europe. In addition,

the presented formation and dissipation times should be

interpreted with care over areas with a low sample size or

high topographic variability, as the pixel size of the prod-

uct (3–5 km, depending on the exact position) is too large

to be able to depict small-scale variations in FLS.

Besides topography, the proximity to the sea is also

important for the timing of FLS formation and dissipation.

In general, coastal fog is strongly influenced by the mete-

orological conditions and ocean–atmosphere interactions

(Gultepe et al., 2021). The results presented here show

a clear pattern of FLS formation at sunrise at the coast

of the Mediterranean Sea in summer (Figure 9). Accord-

ing to Azorin-Molina et al. (2009) humid winds from the

Mediterranean Sea in combination with mountain ranges

close to the coastline can lead to FLS occurrence at the

Mediterranean coast. Therefore, the diurnal cycle of the

coastal circulation is likely a main driver of the observed

patterns in FLS formation and dissipation times at the

Mediterranean coast. At the Atlantic coast of northern

Spain, blocking of FLS by the Cantabrian mountains (Egli
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et al., 2017) and upwelling (Alvarez et al., 2010) might

be important for FLS formation, as the latter plays an

important role in other FLS-prone regions such as at the

southwestern African coast (Olivier and Stockton, 1989;

Cermak, 2012; Andersen et al., 2020). Close to the French

Atlantic coast over the Landes forest south of 45◦N, FLS

forms earlier over the forest (around midnight) than over

its surroundings (FLS formation in the morning), particu-

larly in spring and summer. This is in line with enhanced

nighttime FLS occurrence over this forest compared to

its surroundings shown in Pauli et al. (2022), potentially

due to enhanced emissions of biogenic volatile organic

compounds over the forest, which can serve as cloud con-

densation nuclei (Spracklen et al., 2008; Kammer et al.,

2018).

Another driving factor for the observed patterns is the

solar radiation. As stated above, this is especially true for

the dissipation time, where processes related to down-

welling solar radiation (absorption inside the FLS layer,

sensible heat flux) more strongly influence the dissipation

of FLS compared to other, more subtle, drivers (Wærsted

et al., 2019). Formation can occur through various path-

ways during the day or during the night with formation

patterns showing a much higher variability. To focus on

specific FLS events and to unravel different formation

and dissipation pathways, one could filter for stationary

FLS events using image detection techniques or filter for

meteorological conditions.

Thehigher number of formation anddissipation events

over cities does not transfer to a difference of formation

and dissipation time between cities and the surrounding

land. In contrast to the literature (cf. Yan et al. (2020))

earlier dissipation over cities is not visible in the shown cli-

matological means. On the one hand, this may be due to

the assignment of the dissipation and formation times in

% to different daytime and nighttime classes (Table 1) and

the subsequent calculation of the mode, which could be

investigated inmore detail by looking at the raw formation

and dissipation times over cities and surrounding areas.

On the other hand, as discussed above, the FLS data set is

likely to be flawed over cities during daytime, and thusmis-

classifications are likely to superimpose the actual patterns

in the first place. Applying the proposed logistic regres-

sion algorithm to a robust high-resolution cloudmask over

cities (Fuchs et al., 2022) could add to our knowledge on

the FLS life cycle over urban areas.

As these discussions on the possible processes under-

lying the geographic formation and dissipation patterns

remain speculative, explicit regional analyses on the

drivers of FLS formation and dissipation time are nec-

essary. In addition, the potential influence of multilayer

cloud situations and misclassifications on the presented

FLS formation and dissipation time have to be considered

for the interpretation of the results. In a regional study,

the FLS data set by Egli et al. (2017) used as a basis for

this study has been shown to agree well with active sen-

sor data (Pauli et al., 2022). The formation and dissipation

time patterns shown with this novel FLS formation and

dissipation data set are also in linewith LES andmodelling

studies over Europe (cf. Roach, 1995; Haeffelin et al., 2010;

Bergot, 2016; Steeneveld and de Bode, 2018), showing FLS

formation in the night and dissipation after sunrise. While

modelling, LES studies and local measurements display

the FLS life cycle with high temporal resolution at a spe-

cific site and can also include the vertical component of

an FLS event, the data set presented here provides a geo-

graphic perspective on formation anddissipation time over

the whole of Central Europe.

5 CONCLUSIONS

The central aim of this study was to investigate spatial

patterns of FLS formation and dissipation times over Cen-

tral Europe. For this purpose, an algorithm was designed

which applies logistic regression to a binary satellite-based

FLS cloud mask. With the novel data set, FLS formation

and dissipation times were investigated, largely confirm-

ing known patterns of formation during the night and

dissipation in the morning or in the afternoon. In general,

FLS occurrence, formation and dissipation are dependent

on various drivers (cf. Roach, 1995; Gultepe et al., 2007a;

Price, 2019; Pauli et al., 2020). The results presented here

underline the importance of topography-induced modu-

lation of meteorology for FLS formation and dissipation.

In mountain ranges, FLS forms most frequently at sun-

set and dissipates in the morning. At lower altitudes, such

as in large-scale river valleys, FLS most commonly forms

around sunrise and dissipates in the afternoon. Further-

more, we find a higher variability in formation times than

in dissipation times, with the latter being much more

dependent on solar radiation. The data set adds a geo-

graphic component to our knowledge of FLS formation

and dissipation and provides a basis for future studies.

In the future, a preprocessing step could be imple-

mented by adding a filter to study more specifically sta-

tionary FLS situations which may be indicative of radi-

ation fog, for example using image detection techniques

or focusing on specific meteorological conditions. The

new algorithm can also be applied to other existing

satellite-based FLS data sets with a high temporal resolu-

tion over regions where FLS are an important component

of the climate and environment and stationmeasurements

are lacking, such as in the Namib Desert (Andersen and

Cermak, 2018), and can be compared to diurnal patterns

identified there so far (Andersen et al., 2019). Furthermore

Further appendices

200



14 PAULI et al.

this data set holds promise to help better understand the

drivers of FLS formation and dissipation at continental

scales.
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