
Expert Systems With Applications 215 (2023) 119345

Available online 26 November 2022
0957-4174/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Data-driven extraction and analysis of repairable fault trees from time
series data

Parisa Niloofar a,*, Sanja Lazarova-Molnar b,a

a Mærsk Mc-Kinney Møller Institute, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
b Institute of Applied Informatics and Formal Description Methods, Karlsruhe Institute of Technology, Kaiserstr. 89, Karlsruhe 76133, Germany

A R T I C L E I N F O

Keywords:
Classification
Data-driven simulation
Fault tree analysis
Multi-state system
Proxel-based simulation
Reliability analysis

A B S T R A C T

Fault tree analysis is a probability-based technique for estimating the risk of an undesired top event, typically a
system failure. Traditionally, building a fault tree requires involvement of knowledgeable experts from different
fields, relevant for the system under study. Nowadays’ systems, however, integrate numerous Internet of Things
(IoT) devices and are able to generate large amounts of data that can be utilized to extract fault trees that reflect
the true fault-related behavior of the corresponding systems. This is especially relevant as systems typically
change their behaviors during their lifetimes, rendering initial fault trees obsolete. For this reason, we are
interested in extracting fault trees from data that is generated from systems during their lifetimes. We present
DDFTAnb algorithm for learning fault trees of systems using time series data from observed faults, enhanced with
Naïve Bayes classifiers for estimating the future fault-related behavior of the system for unobserved combinations
of basic events, where the state of the top event is unknown. Our proposed algorithm extracts repairable fault
trees from multinomial time series data, classifies the top event for the unseen combinations of basic events, and
then uses proxel-based simulation to estimate the system’s reliability. We, furthermore, assess the sensitivity of
our algorithm to different percentages of data availabilities. Results indicate DDFTAnb’s high performance for
low levels of data availability, however, when there are sufficient or high amounts of data, there is no need for
classifying the top event.

1. Introduction

Fault Tree Analysis (FTA) is a prominent method in analysing safety
and reliability of systems (Vesely et al., 1981; Lee et al., 1985; Ruijters
and Stoelinga, 2015). While in most of the real-world cases, it is
necessary to consider both failures and repairs for components of a
system, traditional fault trees do not consider repairable components.
Repairable fault trees address this issue and consider information not
only about failure times of basic components, but also about mainte
nance or repairs within a system.

Multi-state fault trees have the same structure as regular fault trees,
but the components or the system may have more than two functioning
levels. If the system and its components, either completely function or
fail, reliability analysis for this system has a binary perspective. None
theless, there are systems that operate at various levels of performance,
which usually yields more than two states associated with basic events
(Lisnianski and Levitin, 2003). Studies have been dedicated to analyse
these types of systems (Compare et al., 2017; Barlow and Heidtmann,

1984; Nadjafi et al., 2017; Caldarola, 1980).
Many extensions of fault trees have been proposed in the literature,

each having their own variety of shortcomings and assumptions. How
ever, even with the emerging availability of data through Internet of
Thing (IoT) devices and all existing software tools, yet fault tree analysis
requires a lot of manual effort and expert knowledge. Hence, the pos
sibility to use data-driven methods to extract information about the
status of a system under study has not yet been fully explored. Data-
driven approaches are gaining attraction in many areas for their abil
ity to analyse data from a system to derive the system’s behaviour
(Huang et al., 2021; Solomatine and Ostfeld, 2008). Big data are
nowadays collected in a large portion of manufacturing systems, espe
cially in non-safety–critical systems, where faults are more common
occurrence and do not have associated catastrophic consequences. Data-
driven fault detection, diagnosis or prediction are well-studied using
machine learning and data mining methods (Dogan and Birant, 2021;
Ayvaz and Alpay, 2021). However, completely ignoring human cogni
tive capabilities and expert knowledge causes a great loss of informa
tion, which might only be compensated by collecting large amounts of

* Corresponding author.
E-mail addresses: parni@mmmi.sdu.dk (P. Niloofar), sanja.lazarova-molnar@kit.edu (S. Lazarova-Molnar).

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

https://doi.org/10.1016/j.eswa.2022.119345
Received 2 December 2021; Received in revised form 16 September 2022; Accepted 22 November 2022

mailto:parni@mmmi.sdu.dk
mailto:sanja.lazarova-molnar@kit.edu
www.sciencedirect.com/science/journal/09574174
https://www.elsevier.com/locate/eswa
https://doi.org/10.1016/j.eswa.2022.119345
https://doi.org/10.1016/j.eswa.2022.119345
https://doi.org/10.1016/j.eswa.2022.119345
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2022.119345&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Expert Systems With Applications 215 (2023) 119345

2

data that is costly in many aspects. Hence, a systematic method for
fusion of data and expert knowledge can increase the accuracy in reli
ability analysis of a system (Niloofar and Lazarova-Molnar, 2021).

Models extracted from observational data are often used to predict
future behaviours of systems under study for unseen inputs of the
models. When it comes to learning/extracting fault tree models from
fault records of the components in a system, one also needs to know how
unseen events/failures of components or combinations of events/fail
ures of components impact the overall system, i.e., whether they lead to
system failures or not. To address the issue of unavailability of data for
unseen events or combinations of events, we present DDFTAnb that adds
a classification functionality to the DDFTA algorithm introduced by
Lazarova-Molnar et al. (2020), in an attempt to forecast system’s
behavior for unobserved combinations of basic events. Our proposed
extended algorithm, DDFTAnb, first extracts repairable multi-state fault
trees from observational multinomial time series data, then analyses the
results to estimate reliability and maintainability distributions of basic
events, and finally estimates the future behaviour of the system for the
unobserved occurrences of combinations of basic events. Data-driven
modelling can detect hidden causes of a system failure which are not
evident utilizing solely expert knowledge. However, expert knowledge
can be deployed as a prior information into the model and can also be
supplemented for model validation. The highlights of the paper are:

1. Learning structures of repairable multi-state fault trees using only
time series data from faults and other relevant basic events that
contribute to a system failure

2. Working with reliability and maintainability distributions other than
exponential

3. Estimating future fault-related behaviours of systems in terms of
fault tree structures and systems’ reliabilities

4. Simulating fault trees using proxel-based simulation, which is espe
cially well suited for simulating complex stochastic dependencies
and different probability distributions.

The rest of the paper is organized as follows. Section 2 presents the
literature review. Section 3 provides the methodology where DDFTAnb
with its classification module are described in details. In Section 4, two
case studies are demonstrated, and finally, in Section 5, we conclude the

paper.

2. Literature review

Classic FTA is primarily knowledge-driven, rather than data-driven.
This can limit the capacity of the generated fault trees in depicting the
true fault-related behaviours of the corresponding systems, especially as
systems often evolve and change their behaviours during their lifetimes,
rendering initial fault trees obsolete. Model building based on experts’
knowledge alone is becoming outdated with evolving systems designs,
data collection technologies, and blockchain-based data storage and
access frameworks.

Automation of extracting dependability information from system
models has led to the field of model-based dependability analysis
(MBDA) (Sharvia et al., 2016; Aizpurua and Muxika, 2013; Kabir, 2017).
Different tools and techniques have been developed as part of MBDA to
automate the generation of dependability analysis artefacts such as fault
trees (Papadopoulos and McDermid, 1999; Feiler et al., 2006; Arnold
et al., 2000). Besides model-based approaches, statistical and artificial
intelligence methods are another solution for automating or semi-
automating the extraction of dependability information from systems
(Jardine et al., 2006; Zhang et al., 2017).

While model-based methodologies need information about the
physical characteristics of the system for the establishment of an explicit
mathematical model, statistical models use historical data to represent
and predict the future behaviour of a system. In addition, artificial in
telligence techniques are suitable for addressing the complex and large-
scale nonlinear problems that mostly requires no statistical assumptions
about the data. Neural computation, evolutionary algorithms, and fuzzy
computing as different categorizations of computational intelligence
(which is a branch of artificial intelligence) have been applied for fault
detection and classification (Chen et al., 2008; Zheng et al., 2017;
Theodoropoulos et al., 2021; Brito et al., 2022). The applications of
(explainable) artificial intelligence techniques for fault diagnosis and
machinery monitoring is a subject based on the theory of signal pro
cessing and pattern recognition, and these techniques are mostly used
for estimating the remaining useful life (Sikorska et al., 2011; Ayvaz and
Alpay, 2021). However, some researchers combine artificial intelligence
and statistical approaches with FTA, which we note in the following.

Nomenclature

AADL Architecture Analysis & Design Language
ACC Accuracy
AltaRica Altarica Language and Its Semantics
BE Basic Event
DAG Directed Acyclic Graph
DDFTA Data Driven Fault Tree Analysis
DDFTAnb Data Driven Fault Tree Analysis enhanced with Naïve

Bayes classifier
Dij Disk number ij
FN False Negative
FP False Positive
FTA Fault Tree Analysis
f/h failures per hour
HiP-HOPS Hierarchically Performed Hazard Origin & Propagation

Studies
IE Intermediate Event
IFT Induction of Fault Trees
ILTA Interpretable Logic Tree Analysis
IoT Internet of Things
LIFT Learning Fault Trees from observational data
MAP Maximum a Posteriori

MBDA Model Based Dependability Analysis
MCS Minimal Cut Sets
Mi Memory number i
MILTA Multi-Level Interpretable Logic Tree Analysis
MP Multiprocessor
MTTF Mean Time to Failure
MTTR Mean Time to Repair
NB Naïve Bayes
Pi Processor number i
Proxel Probability Elements
PS Power Supply
RBC Radio Block Center
RMSE Root Mean Square Error
SHyFTA Stochastic Hybrid Fault Tree Automaton
T Total time
TE Top Event
TN True Negative
TP True Positive
Ui Unavailability at time step i
Ûi Estimated unavailability at time step i
Δt Size of a time step

P. Niloofar and S. Lazarova-Molnar

Expert Systems With Applications 215 (2023) 119345

3

Lampis and Andrews (2009) applied Bayesian Belief networks to
diagnose faults in a system. They first constructed fault trees to indicate
how the component failures can combine to cause unexpected de
viations in the variables monitored by the sensors, and then converted
these fault trees into Bayesian networks for further analysis. Cai et al.
(2015) addressed a case study of subsea pipe ram BOP system by pro
posing a new method for real-time reliability analysis through a com
bination of traditional and dynamic Bayesian networks. In this study,
prior reliability knowledge of the system (failure distributions) is
updated via dynamic Bayesian networks. In FTA, basic components are
assumed to be independent and this is a strong assumption for some
dynamic systems. Guo et al. (2021) proposed a reliability analysis model
for dynamic systems with common cause failures based on discrete-time
Bayesian networks. They applied their model for fault diagnosis of a
digital safety-level distributed control system of nuclear power plants.
These studies do not apply observational/historical data to build or to
learn the fault tree structure, but some researchers use data to update or
estimate the failure rates (Cai et al., 2015).

Observational data were used to generate FTs with the IFT (Induction
of Fault Trees) algorithm (Nolan et al., 1994) based on standard
decision-tree statistical learning. Later, Liggesmeyer and Rothfelder
(1998) coined the term formal risk analysis and developed an approach
for automatically generating a fault tree from finite state machine-based
descriptions of a system where the generated fault tree is complete with
respect to all failures assumed possible. Mukherjee and Chakraborty
(2007) describe a technique to automatically generate fault trees using
historical maintenance data in text form. Their technique relies on
domain knowledge and linguistic analysis. Majdara and Wakabayashi
(2009) represent a new system of modelling approach, composed of
some components and different types of flows propagating through
them, for computer-aided fault tree generation. Chiacchio et al. (2016)
combined the Dynamic Fault Tree technique and the Stochastic Hybrid
Automaton within the Simulink environment that represented an
important step ahead for the delivering of a user-friendly computer-
aided tool for the dynamic reliability. They also developed a library
called Stochastic Hybrid Fault Tree Automaton (SHyFTA) that allows the
accurate dependability analysis of repairable multi-state systems
(Chiacchio et al., 2020). Nauta et al. (2018) introduced LIFT (Learning
Fault Trees from observational data) to learn structures of static fault
trees from untimed data bases with Boolean event variables, however,
their method needs information about intermediate events. Linard et al.
(2019) applied an evolutionary algorithm to learn fault trees from
untimed Boolean basic event variables. Instead of the independence test
in the LIFT algorithm, they used a score-based algorithm to extract fault
trees. Furthermore, Waghen and Ouali (2019) proposes interpretable
logic tree analysis (ILTA), which characterizes and quantifies event
causality occurring in engineering systems with the minimum involve
ment of human experts. Their method is an integration of two concepts:
knowledge discovery in database and fault tree analysis, which was
improved to a multi-level interpretable logic tree (MILTA) (Waghen and
Ouali, 2021). Qian et al. (2021), for the first time, applied association
rule analysis to extract fault trees from overhead contact system of an
electrified railway. They first transform the failure records of overhead
contact system into transaction database, and then the extracted asso
ciation rules from the data are converted to a fault tree. Lazarova-Molnar
et al. (2020) introduce DDFTA algorithm that uses time series data of
faults to extract repairable multi-state fault tree of a system.

The above-mentioned techniques have different requirements;
however, except for the work of Lazarova-Molnar et al. (2020), they
cannot extract reliability models from time series data recorded from
multi-state/repairable systems. Also, labelling the top event is not
studied in the literature. Time series data of a system consists of a
sequence of status change times for each basic event and the system
state. In this study, we follow the work of Lazarova-Molnar et al. (2020)
and add a classification module so that the algorithm does not only
extract repairable multi-state fault trees from observational data, but

also makes predictions on the future reliability state of the system. Being
able to label the system state (classify the top event), becomes more
important when the system contains rare events (or components with
rare failures), which is the case for safety critical systems, or for systems
composed of so many components that observing all the possibilities
becomes unfeasible and non-realistic.

In the following, we provide background on the relevant concepts
and methods that we refer to in this paper, i.e., repairable multi-state
fault trees, Naïve Bayes classifier and proxel-based simulation.

2.1. Repairable multi-state fault trees

A fault tree is a Directed Acyclic Graph (DAG) whose leaves are the
basic events (typically basic faults), and the root represents the top
event, which is typically a system failure. The gates in a fault tree
represent the propagation of failure through the tree (Ruijters and
Stoelinga, 2015). Multi-state fault trees have the same structure of
regular fault trees, except that the components or the system may have
more than two functioning levels. In other words, the state space of the
system and its components may be represented by {0,1,⋯,M}, where
0 indicates a completely failed state, M indicates a perfectly working
state, and the others are degraded states. Repairable fault trees consider
both faults and repairs within a system. Hence, for each basic event that
is typically associated with a fault, there are probability distributions
that describe the fault’s occurrences and repair times.

There are two essential analysis techniques for fault trees, qualitative
analysis, and quantitative analysis. Qualitative analysis considers the
structure of the fault tree, while the quantitative analysis computes
failure probabilities, reliability, etc. of the system represented by the
fault tree. The first step towards computing reliability of a system is to
extract the structure of the system’s underlying fault tree. When the
structure of the fault tree is extracted, using the probability distribution
functions of the basic events, we can calculate the reliability of the
system, the likelihood of a top event occurrence, as well as those of the
basic events that have caused the occurrence of the top event. The re
sults of quantitative analysis give analysts an indication about system
reliability and also help to determine which components or parts of the
system are more critical so analysts can put more emphasis on the
critical components or parts by taking necessary steps, e.g., including
redundant components in the system model (Kabir, 2017).

2.2. Naïve Bayes classifier

The Naïve Bayes (NB) classifier is a probability-based supervised
learning classification method which is well studied in the literature. NB
is among the simplest Bayesian Network models and has received much
attention due to its simple classification model and excellent classifica
tion performance. An early description can be found in Duda and Hart
(1973). Domingos and Pazzani (1996) discuss its feature independence
assumption and explain why Naïve Bayes performs well for classification
even with such an over-simplified assumption.

In this paper, we apply NB to classify the state of the system for the
unobserved combinations of basic events. Basic events, which are al
ways considered independent, are the features in NB, and the top event
is the class variable. We use observed data from fault occurrences related
to basic events as a training set to fit the NB model, and we use the
unobserved combinations of basic events as a testing set. NB first cal
culates the posterior for the top event and then applies the maximum a
posteriori (MAP) decision rule: the label is the class with the max
imum posterior. Those combinations of basic events in the testing set for
which the top event is classified as “failed”, along with those in the
training set, where the state of the top event is “failed”, are considered
cut sets. These predicted cut sets are used to extract minimal cut sets that
will construct the predicted behaviour of the system in terms of a fault
tree.

Challenging point in data-driven modelling of faults for classification

P. Niloofar and S. Lazarova-Molnar

Expert Systems With Applications 215 (2023) 119345

4

tasks is the imbalanced proportion of classes as faults are rarely
observed, especially for highly reliable systems. Hence, we are troubled
with an imbalanced classification where one class of the dependent
(response) variable (here, working state) outnumbers the other class
(failed state) by a large proportion. There are many ways to combat this
issue, where the very best is to accumulate more data. This, however, is
not possible in our case. Another approach is to manually balance the
classes. One common method of doing this is to upsample/oversample
the minority class or undersample the majority class using resampling
(bootstrapping) techniques. In this study we upsample the faulty state to
balance the classes and apply bootstrapping techniques.

2.3. Proxel-based simulation

Proxel-based simulation is a state space-based simulation method to
compute transient solutions for discrete stochastic systems. It relies on a
user-definable discrete time step and computes the probability of all
possible single state changes (and the case that no change happens at all)
during a time step. The target states along with their probabilities are
stored as so-called proxels (short for probability elements). To account

Fig. 1. Overall framework of DDFTAnb algorithm with the classifica
tion module.

Fig. 2. The process workflow of the DDFTA algorithm.

Fig. 3. Workflow of classification module for DDFTAnb algorithm.

P. Niloofar and S. Lazarova-Molnar

Expert Systems With Applications 215 (2023) 119345

5

for aging (i.e., non-Markovian) transitions, proxels contain supplemen
tary variables that keep track of the ages of all active and all race-age
transitions. For each proxel created, the algorithm iteratively com
putes all successors for each time step. This results in a tree of proxels
where all proxels having the same distance from the tree root belong to
the same time step and all leaf proxels represent the possible states being
reached at the end of the simulation.

Proxel-based simulation explores all possible future developments of
the system each with a determined computable probability, based on the

distribution functions which describe the events, as well as the time they
have been pending, in discrete time steps. It determines all possible
follow-up states and the rendering probability of the corresponding state
transitions. The proxel-based simulation is well-known for its ability to
cope with stiff models, as fault models are typically (Lazarova-Molnar
and Horton, 2003; Lazarova-Molnar, 2005).

3. Methodology

In this section, we describe the methods and techniques that we
developed to enable the data-driven reliability modelling and analysis to
extract repairable multi-state fault trees from observational data and to
estimate the future reliability state of the system. The overall framework
that describes the high-level workflow of DDFTAnb algorithm is shown
in Fig. 1, and more detailed workflows are illustrated in Fig. 2 and Fig. 3.

DDFTA, as illustrated in Fig. 2, comprises of three steps (Lazarova-
Molnar et al., 2020): 1) converting time series data of faults into a truth
table with time steps, 2) structure learning and parameter learning of the
fault tree, and 3) estimating reliability measures. To learn the structure
of the fault tree, we extract the minimal cut sets (MCS) from the time

Table 1
Time series data of faults converted into a truth table.

Time BE1 BE2 BE3 BE4 BE5 TE

17.96968 0 0 1 1 0 0
18.63438 0 1 1 1 0 1
20.1585 0 1 1 0 0 0
21.11844 1 1 1 0 0 0
21.52825 0 1 1 0 0 0
22.12907 0 0 1 0 0 0
23.07983 0 0 1 1 0 0
24.67361 0 0 1 0 0 0
24.74219 1 0 1 0 0 0
25.01376 1 0 1 1 0 1

Table 2
Sets of cut sets and minimal cut sets for the truth table data of
Table 1.

Cut sets Minimal cut sets

{BE2, BE3, BE4} {BE2, BE3, BE4}
{BE1, BE3, BE4} {BE1, BE3, BE4}

Table 3
Constructing the fault tree based on the minimal cut sets of
Table 2.

Step Boolean representation

1 TE=(BE1.BE3.BE4)
+(BE2.BE3.BE4)

2 TE=(BE1 + BE2). (BE3.BE4)

3 TE = IE1.IE2

Fig. 4. Fault tree constructed from data of Table 1.

Table 4
Truth table with a multi-state event BE1 (up) turned into a truth table with bi
nary events (down).

Time BE1 BE2 BE3 TE

17.96968 0 0 1 0
18.63438 0 1 1 1
20.1585 2 1 1 1
21.11844 1 1 1 0
21.52825 0 1 1 0
22.12907 0 0 1 0
23.07983 2 0 1 0
24.67361 0 0 1 0
24.74219 1 0 1 0
25.01376 1 0 1 1

Time BE1_1 BE1_2 BE2 BE3 TE

17.96968 0 0 0 1 0
18.63438 0 0 1 1 1
20.1585 0 1 1 1 1
21.11844 1 0 1 1 0
21.52825 0 0 1 1 0
22.12907 0 0 0 1 0
23.07983 0 1 0 1 0
24.67361 0 0 0 1 0
24.74219 1 0 0 1 0
25.01376 1 0 0 1 1

Fig. 5. Multi-state fault tree extracted from the data in Table 4.

P. Niloofar and S. Lazarova-Molnar

Expert Systems With Applications 215 (2023) 119345

6

series data set, and then use Boolean algebra to build a fault tree that is
aimed to be mathematically identical to the true fault tree of the system.
For parameter learning, reliability and repair distribution functions of
the basic events, along with the fault tree structure, are inputs to the
proxel-based simulation in the final step, which is used to calculate the
system’s reliability measures, in form of complete transient solutions.
The classification module of DDFTAnb algorithm is described in the
Section 3.1.

3.1. Classification module for DDFTAnb algorithm

The basic DDFTA approach performs reliability analysis based on
observed components’ faults. DDFTA, however, does not provide a
robust solution for very rare events or cases of small amounts of data
with low resolution, where not all possible combinations of basic events
have occurred and the corresponding top event statuses are unknown.

The DDFTA approach (Fig. 2) begins by converting time series data of
faults to a truth table with time steps. The next steps are structure
learning and parameter learning, and the final step is estimating reli
ability measures. In this section, the classification module of the
advanced DDFTAnb approach, as illustrated in Fig. 3, is described in
detail.

The classification module for the DDFTAnb algorithm consists of six
steps: 1) dividing the truth table with time steps into training set and
testing sets, 2) fitting Naïve Bayes classifier to the training set, 3) clas
sification of the top event for the testing set using the fitted Naïve Bayes
model, 4) learning the fault tree structure from the combination of
training and testing data set, 5) learning the fault tree parameters from
the training set, and finally 6) estimate reliability measures. DDFTAnb
with its classification module are better explained through an illustra
tive example in the next section.

Fig. 6. First three time steps of proxel simulation.

Fig. 7. Unavailabilities of basic events along with the top event for the fault tree from Fig. 4.

P. Niloofar and S. Lazarova-Molnar

Expert Systems With Applications 215 (2023) 119345

7

3.2. Illustrative example

Assume that time series data on faults for a system with five basic
components (BEi, i = 1, 2, …, 5) and the top event (TE) are collected
until a specific point in time. The goal is to use these observed time series
data to assess the current reliability of the system and estimate the future
structure of the system’s fault tree as well as its reliability measures. For
simplicity and without loss of generality, we assume that the observed
data contain 10 records as in Table 1.

3.2.1. DDFTA algorithm
According to DDFTA, the first step is to convert the time series data of

faults to a truth table with time stamp. Table 1 shows the time-stamped
truth table of the collected data, where 0 indicates working state and 1
shows failure state.

Structure Learning: To build the structure of the fault tree, we need
to extract the minimal cut sets. Those rows in Table 1, where the system
is failed (TE has label 1) indicate the cut sets (Table 2), and since they
cannot be reduced to smaller cut sets, they are also minimal cut sets.
These minimal cut sets build the structure of the fault tree (Table 3),
which is also shown in Fig. 4.

To extract the minimal cut sets of a multi-state fault tree, the multi-
state events with m (>2) number of states, are converted into m-1 binary
events. Assume a system with three basic events {BE1, BE2, BE3}, in

Table 5
The power set for the five binary basic events and the number of occurrences in parentheses.

BE1 BE2 BE3 BE4 BE5 TE (#) BE1 BE2 BE3 BE4 BE5 TE

1 1 0 1 0 0 0 (1) 17 1 0 0 0 0 NA
2 0 0 1 0 0 0 (2) 18 1 0 0 0 1 NA
3 0 0 1 1 0 0 (2) 19 1 0 0 1 0 NA
4 0 1 1 0 0 0 (2) 20 1 0 0 1 1 NA
5 0 1 1 1 0 1 (1) 21 0 0 0 1 0 NA
6 1 1 1 0 0 0 (1) 22 1 0 1 0 1 NA
7 1 0 1 1 0 1 (1) 23 0 1 0 0 0 NA
8 0 0 0 0 0 0 24 0 1 0 0 1 NA
9 1 1 1 1 1 1 25 1 1 0 0 0 NA
10 1 0 1 1 1 1 26 1 1 0 0 1 NA
11 1 1 1 1 0 1 27 1 1 0 1 0 NA
12 0 1 1 1 1 1 28 1 1 0 1 1 NA
13 0 0 0 1 1 NA 29 0 0 1 1 1 NA
14 0 0 0 0 1 NA 30 1 1 1 0 1 NA
15 0 1 0 1 0 NA 31 0 0 1 0 1 NA
16 0 1 0 1 1 NA 32 0 1 1 0 1 NA

Table 6
Classification results for the top event using Naïve Bayes classifier.

BE1 BE2 BE3 BE4 BE5 Classified TE

13 0 0 0 1 1 0
14 0 0 0 0 1 0
15 0 1 0 1 0 1
16 0 1 0 1 1 1
17 1 0 0 0 0 0
18 1 0 0 0 1 0
19 1 0 0 1 0 1
20 1 0 0 1 1 1
21 0 0 0 1 0 0
22 1 0 1 0 1 0
23 0 1 0 0 0 0
24 0 1 0 0 1 0
25 1 1 0 0 0 0
26 1 1 0 0 1 0
27 1 1 0 1 0 1
28 1 1 0 1 1 1
29 0 0 1 1 1 0
30 1 1 1 0 1 0
31 0 0 1 0 1 0
32 0 1 1 0 1 0

Table 7
Updated sets of cut sets and minimal cut sets based on the Clas
sifications in Table 6.

Cut sets Minimal cut sets

{BE2, BE3, BE4} {BE2, BE4}
{BE1, BE3, BE4} {BE1, BE4}
{BE2, BE4}
{BE2, BE4, BE5}
{BE1, BE4}
{BE1, BE4, BE5}
{BE1, BE2, BE4}
{BE1, BE2, BE4, BE5}

Table 8
Boolean representation of the fault tree based on the
minimal cut sets of Table 7.

Step Boolean representation

1 TE=(BE1.BE4)
+(BE2.BE4)

2 TE=(BE1 + BE2). (BE4)

3 TE = IE1. BE4

Fig. 8. Extracted fault tree based on the minimal cut sets of Table 7.

P. Niloofar and S. Lazarova-Molnar

Expert Systems With Applications 215 (2023) 119345

8

which BE1 has three states: working (0), failed (1), idle (2) and the
recorded data of Table 4. Here, CS={{BE2, BE3}, {BE1_1, BE2, BE3},
{BE1_1, BE3}}is the set of cut sets and hence the minimal cut sets are
MCS={{BE2, BE3}, {BE1_1, BE3}}. Finally the fault tree equals TE=
(BE2.BE3)+(BE1_1.BE3) = BE3.(BE2 + BE1_1), which is also illustrated
in Fig. 5.

• Parameter Learning: Once the structure of the fault tree is extracted
from data, we use it to calculate the reliability metrics of the con
structed fault tree (here is the fault tree of Fig. 4). The first step to the
quantitative analysis is to estimate reliability and maintainability
probability distribution functions of the basic events, based on the
time series data. Suppose we are interested in estimating the reli
ability distribution of BE1. We calculate the times to failures by
looking at the points in time where the state of the basic event
changes from working (label = 0) to failed (label = 1). For example,
the first two times to failures for BE1 are:

r1 = 21.11844 – 17.96968 = 3.14876, r2 = 24.74219 – 21.52825 =
3.21394.

Also, times to repairs are calculated by looking at the points in time
where the state of the basic event changes from failed (label = 1) to
working (label = 0). Hence, m1 = 21.52825–21.11844 = 0.40981. ri’s
and mi’s are then used to estimate not only the parameters of the reli
ability and maintainability distributions, but also types of the

Fig. 9. Unavailability of the system changes by the new structure of the fault tree in Fig. 8.

Table 9
2*2 confusion matrix that depicts all four possible outcomes in classification.

True fault tree

Reconstructed fault tree Identified Not identified

Identified True Positive (TP) False Positive (FP)

Not identified False Negative (FN) True Negative (TN)

Fig. 10. A fault-tolerant multiprocessor system with a multi-state compo
nent PS.

Table 10
Reliability and maintainability distribution functions of the basic events in
Fig. 10.

Basic events Reliability distribution
(rate in f/h)

Maintainability distribution

1 Disk Dij Exp(8.0e-05) Weibull(5, 0.75)

2 Proc Pi Exp(5.0e-07) Exp(0.25)

3 Mem Mj Exp(3.0e-08) Weibull(5, 20)

4 Bus N Exp(2.0e-09) Exp(0.006)

5 Power supply PS

P. Niloofar and S. Lazarova-Molnar

Expert Systems With Applications 215 (2023) 119345

9

distributions themselves, because our algorithm can cope with distri
butions other than the common exponential distribution.

The packages in R, gamlss (Rigby and Stasinopoulos, 2005) and fit
distrplus (Delignette-Muller and Dutang, 2015), cover a wide range of
probability distributions supported on the interval [0,∞). Hence, we
applied these R packages for the distribution fitting part. MTTF and
MTTR for each basic event are the means of the reliability and main
tainability distributions, respectively.

For exponential distributions, unavailability of an event is MTTR/
(MTTR + MTTF), but for non-exponential distributions we need more
advanced methods to calculate the unavailability of the system. Un
availability is the probability that the component or system is not
operational. Proxel-based simulation (Lazarova-Molnar and Horton,
2003; Niloofar and Lazarova-Molnar, 2022) is not limited to exponential
distributions, and can be used to determine the instantaneous unavail
ability of basic components with nonexponential distributions and
multi-state events.

Assume a binary repairable basic event where the reliability distri
bution is estimated as an Exponential distribution function with rate 0.1
and the estimated repair distribution function is Normal with mean 2
and the standard deviation of 1. Fig. 6 illustrates the first three-time
steps of the proxel simulation process for this basic event. Each proxel
is a vector with three elements: State, Age intensity (which tracks the
time that each of the possible state changes has been pending) and
Probability.

Assuming that Δt = 0.1, the detailed calculation of p1, p2 and p3 in
Fig. 6 are as follows:

p1 = Δt ×
f (AgeIntP0)

1 − F(AgeIntP0)
= 0.1 ×

0.1e− 0.1×0
∫∞

0 0.1e− 0.1xdx
= 0.01

p2 = Δt ×
f (AgeIntP00)

1 − F(AgeIntP00)
= 0.1 ×

0.1e− 0.1×0.1
∫∞

0.1 0.1e− 0.1xdx
= 0.01

p3 = Δt ×
f (AgeIntP01)

1 − F(AgeIntP01)
= 0.1 ×

1̅̅̅̅̅̅̅̅̅
2π(1)2

√ e−
(0− 2)2

2(1)2

∫∞
0

1̅̅̅̅̅̅̅̅̅
2π(1)2

√ e−
(x− 2)2

2(1)2 dx
= 0.0055

We, then, propagate the unavailability of each individual component
through the fault tree to calculate the unavailability of the system. Fig. 7
shows the unavailability related to the basic events and the top event, for

the fault tree from Fig. 4.

3.2.2. DDFTAnb algorithm
The system’s fault tree along with the corresponding reliability

measures are extracted from the observed time series data of faults using
DDFTA algorithm. The observed data in Table 1 is only a portion of what
can happen in a system with five components, and not all possibilities
can be considered in fault tree analysis of the system. For example, the
state of the system is unknown when only basic events 4 and 5 occur and
other components are working perfectly (row 13 in Table 5). In
DDFTAnb’s classification module, we address the problem of the un
observed combination of basic events.

Step 1: Obtaining training and testing sets is the first step of the
classification module. To obtain the training and testing sets, we need
the power set for the 5 binary basic events. The power set for {BE1, BE2,
BE3, BE4, BE5} or the set of all possible subsets of these basic events has
25 = 32 elements, as shown in Table 5.

Combinations shown in rows 1 to 7 in Table 5 are observed and the
state of the system (TE) for these combination of basic events can be
extracted from the truth table in Table 1. Also, the number of occur
rences for each row is indicated in the parenthesis in the TE column. For
example, row 2 belongs to the case where all components are working,
except for the one linked to the basic event BE3. We see this combination
in Table 1 at times 22.12907 and 24.67361, along with the state of TE as
working. Obviously, the state of TE when all basic events are working
and when all of them are failed (rows 8 and 9 of Table 5) is 0 and 1,
respectively. The top event also occurs in rows 10 to 12 because minimal
cut sets {BE1, BE3, BE4} and {BE2, BE3, BE4} (Table 2) are subsets of
these rows. The state of the top event is unknown for rows 13 to 32,
because we have no information on these combinations of basic events.
It is worth noticing that at this stage we have the highest percentage of
missing values for TE, as not enough data is collected from the system
yet. We take rows 1 to 12 as the training set with TE as the class variable,
and rows 13–32 with missing information on TE belong to the testing
set.

Step 2 and 3: In the next two steps, Naïve Bayes classifier as a su
pervised machine learning algorithm is fitted to the training set and the
state of TE is classified by applying the fitted model to the testing set.
Once we label the values of TE for these rows, we apply the method
explained in Section 2.2.1, to build an updated structure of the fault tree.
The extracted fault tree at this stage is most probably not reliable

Fig. 11. Instantaneous unavailabilities for the fault-tolerant multiprocessor of Fig. 10.

P. Niloofar and S. Lazarova-Molnar

Expert Systems With Applications 215 (2023) 119345

10

enough, because it is estimated using 12/32 = 37.5 % of the data.
Classification results of the top event for rows 13–32 can be found in
Table 6.

Step 4: the rows in Table 6 where “classified TE” has label 1, construct
the new cut sets that should be added to the ones in Table 2. Table 7
shows that the new cut sets impose a great change in the minimal cuts
sets which consequently affects the constructed fault tree as can be seen
in Table 8 and Fig. 8.

Step 5 and 6: Since the results of the top event using Naïve Bayes
model are not time-stamped, they cannot be used to update the esti
mates for the reliability and maintainability distributions. Hence, we use
the estimated distribution functions of the DDFTA algorithm and the
extracted fault tree of Fig. 8 to estimate unavailability of the system
through proxel-based simulation. The unavailability of the system
changes by the new structure of the fault tree and this change is depicted
in Fig. 9.

As more data are recorded, newly observed data can be added to the
training set to update the fault tree analysis and increase the classifi
cation accuracy.

3.3. Performance evaluation

To measure the performance of DDFTA in depicting a system’s
behaviour, we assume that the true behaviour of that system follows a
repairable fault tree with a set of reliability and maintainability distri
butions as its parameters. We call this fault tree the original fault tree,
and in the first simulation step, time series data are fabricated from this
model. In the second step, truth table of the generated data set with time
steps is used as an input to DDFTA algorithm. The structure of the fault
tree is learnt and the unavailability of the system is computed. Finally,
using DDFTAnb, future fault tree of the system and its unavailabilities
are estimated. Hence, the performance of the presented method needs to
be evaluated in regard to three aspects: structure learning evaluation,
evaluation of reliability measures estimation and classification
evaluation.

3.3.1. Structure learning evaluation
To compare the reconstructed fault tree with the original fault tree,

we use the 2*2 confusion matrix of Table 9, that depicts all four possible
outcomes.

In this confusion matrix, true positive represents the number of sets
that are both in the MCS of the reconstructed fault tree and the true fault

Table 11
Results of the DDFTA and DDFTAnb algorithms for the multiprocessor fault tree of Fig. 10 considering different levels of data availability.

Data Availability

10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

DDFTA Structure
learning
measures

Sen 0.1091
±

0.0238

0.1909
±

0.0178

0.2636
±

0.0178

0.3273
±

0.0394

0.4000
±

0.0713

0.7182
±

0.0178

0.6566
±

0.0376

0.8889
±

0.0248

0.9182
±

0.0178

1.0000
±

0.0000

Spe 0.9904
±

0.0004

0.9895
±

0.0011

0.9911
±

0.0004

0.9926
±

0.0011

0.9941
±

0.0007

0.9965
±

0.0004

0.9957
±

0.0007

0.9987
±

0.0006

0.9985
±

0.0005

1.0000
±

0.0000

ACC 0.9881
±

0.0003

0.9874
±

0.0011

0.9891
±

0.0005

0.9908
±

0.0012

0.9925
±

0.0009

0.9956
±

0.0004

0.9948
±

0.0008

0.9984
±

0.0007

0.9983
±

0.0005

1.0000
±

0.0000

Parameter
Learning
measures

Ûn 3.2673
e-10

±

1.03
e-10

6.35589
e-07

±

1.24
e-06

5.0887
e-06

±

1.65
e-06

2.6121
e-06

±

2.03
e-06

6.4228
e-06

±

1.54
e-15

5.1527
e-06

±

1.65
e-06

6.4228
e-06

±

8.27
e-13

5.7172
e-06

±

1.31
e-06

6.4228
e-06

±

1.19
e-12

6.4228
2,649,198

e-06

±

0.0000

RMSE 6.3411
e-06
±

1.02
e-10

5.7111
e-06
±

1.23
e-06

1.2983
e-06
±

1.64
e-06

3.7822
e-06
±

2.01
e-06

3.5645
e-12
±

1.41
e-15

1.2606
e-06
±

1.64
e-06

3.1690
e-12
±

7.36
e-13

7.0034
e-07
±

1.30
e-06

2.4905
e-12
±

1.06
e-12

0.0000
±

0.0000

DDFTAnb Structure
learning
measures

Sen 0.4182
±

0.0606

0.5545
±

0.0675

0.4545
±

0.0000

0.5727
±

0.0597

0.5545
±

0.0675

0.7545
±

0.0380

0.6967
±

0.0398

0.9091
±

0.0000

0.9818
±

0.0238

———

Spe 0.9928
±

0.0012

0.9922
±

0.0013

0.9890
±

0.0005

0.9892
±

0.0007

0.9894
±

0.0014

0.9926
±

0.0006

0.9914
±

0.0010

0.9962
±

0.0003

0.9977
±

0.0003

———

ACC 0.9912
±

0.0013

0.9910
±

0.0015

0.9876
±

0.0005

0.9881
±

0.0007

0.9882
±

0.0016

0.9920
±

0.0007

0.9906
±

0.0010

0.9960
±

0.0003

0.9977
±

0.0003

———

Parameter
learning
measures

Ûn 6.4229
090,742

e-06

±

3.52
e-11

6.4228
257,002

e-06

±

1.05
e-12

6.4228
261,012

e-06

±

7.82
e-13

6.4228
248,979

e-06

±

1.28
e-12

6.4228
252,955

e-06

±

1.20
e-12

6.4228
232,938

e-06

±

1.05
e-12

6.4228
229,310

e-06

±

8.28
e-13

6.4228
264,911

e-06

±

1.52
e-15

6.4228
264,919

e-06

±

1.96
e-17

———

RMSE 7.6858
e-11
±

3.18
e-11

7.2144
e-13
±

9.29
e-13

3.6145
e-13
±

6.93
e-13

1.4266
e-12
±

1.13
e-12

1.0729
e-12
±

1.06
e-12

2.8470
e-12
±

9.29
e-13

3.1686
e-12
±

7.36
e-13

7.6663
e-16
±

1.40
e-15

1.9424
e-17
±

1.57
e-17

———

P. Niloofar and S. Lazarova-Molnar

Expert Systems With Applications 215 (2023) 119345

11

tree (correctly identified sets). False positive is the number of sets in the
MCS of the extracted fault tree which are not in the MCS of the true fault
tree (incorrectly identified sets). False negative is the number of incor
rectly rejected sets and finally, true negative is the number of correctly
rejected sets. Using the confusion matrix, we calculate the sensitivity,
specificity, and accuracy (ACC):

Sensitivity=
TP

TP+FN
, Specificity=

TN
TN +FP

, ACC =
TP+TN

TP+TN +FP+FN

Larger values of above-mentioned measures indicate higher perfor
mance in structure learning.

3.3.2. Reliability measures estimation
When the structure of the fault tree is extracted from the data set, the

unavailability of the system can be calculated using proxel-based

simulation. Since unavailabilities are calculated as transient solutions
for each time step, we have a vector of instantaneous unavailabilities
calculated for the extracted fault tree {Ûi}, i = 1,2,⋯,n, where n is the
total number of time steps. For the original fault tree, there is also an
associated vector of instantaneous unavailabilities: {Ui}, i = 1, 2,⋯, n.
Root Mean Square Error (RMSE) is used to compare these vectors of
unavailabilities:

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(Ui − Û i)

2

n

√
√
√
√
√

(1)

Better estimation of unavailability leads to a smaller distance be
tween {Ûi} and {Ui}, hence smaller values of RMSE. We also report Ûn

and Un as the final stable unavailability values.

3.3.3. Classification evaluation
In the classification module, first the training set (observed cut sets)

and the testing set (unobserved cut sets) are prepared. Then, a Naïve
Bayes model is fitted to the training set and the fitted model is applied to
classify the top event in the test set. Since the classification module in
cludes extracting the structure and the unavailability of the learnt fault
tree, it is evaluated in regard to structure learning and estimation of the
reliability measures. Hence, the methods of Sections 3.3.1 and 3.3.2 are
applied for the classification module as well.

We assess the performance of our algorithm using two repairable
fault trees: 1) A fault-tolerant multiprocessor system shown in Fig. 10
(Malhotra and Trivedi, 1995); 2) Radio Block Center (RBC) fault tree
(Fig. 12) explained in Galileo textual format (Sullivan and Dugan, 1996).
The general steps in the experiments are as follows:

1. Generate time series data from the basic events of each original fault
tree.

2. Build the timely truth tables based on each generated time series.
3. Obtain training and testing sets using the truth table with time

stamps.
4. Learn the fault tree (structure and parameters) from the observed

data set using DDFTAnb algorithm.
5. Compare the MCS of the reconstructed fault tree with that of the

original fault tree in terms of sensitivity, specificity, accuracy (ACC).

Fig. 12. Radio Block Center fault tree with six different types of basic events.

Fig. 13. Unavailability values for the RBC fault tree in Fig. 12.

P. Niloofar and S. Lazarova-Molnar

Expert Systems With Applications 215 (2023) 119345

12

6. Use the reconstructed fault tree and the reliability and maintain
ability distributions to obtain the reliability measures of the top
event as well as those of the basic events.

7. Estimate the structure and reliability measures of the system for the
unobserved combinations of the basic events using DDFTAnb’s
classification module.

8. Report the evaluation measures in terms of 95 % confidence
intervals.

3.4. A fault-tolerant multiprocessor system

Fig. 10 shows the fault tree of a fault-tolerant multiprocessor system
which consists of two processors Pi (i = 1, 2) with private memories Mi (i
= 1, 2) and M3 as a shared one. A processor and a memory form a
processing unit. Each processing unit is connected to a mirrored disk
system Dij (i = 1, 2 and j = 1, 2), forming a processing subsystem. Both
the processing subsystems and M3 are connected via an interconnection
Bus N. (Bobbio et al., 2001) refine the description of the multiprocessor
system by adding the component power supply (PS) such that, when
failing, it causes a system failure. The PS is modelled with three possible
modes: working, defective and failed, where the first corresponds to a
nominal behaviour, the second to a defective working mode with
abnormal voltage provided, while the last mode (failed) corresponds to a

situation where the PS cannot work at all. As anticipated, the failed
mode causes the whole system to be down. According to the literature,
the failure distribution of all components (except for the PS) is assumed
to be exponential with failure rates given in Table 10, expressed in
failures per hour (f/h). State changes diagram for PS, is also illustrated in
Table 10, where it has exponential probability distribution with the rate
of 3.0e-05 (Exp(3.0e-05)) as the transition probability from working to
defective state. PS fails with a rate following Normal(0.25, 0.1) distri
bution function, and it is repaired again with Uniform(0.1, 0.2) transi
tion proability. For binary events, we add individual repair distributions
that are not limited to exponential distribution to highlight the ability of
our algorithm to cope with non-exponential probability distribution
functions, as well as repairable and multi-state components.

Unavailability values, calculated using proxel-based simulation for
the basic events and the system (top event), are illustrated in Fig. 11, and
the system unavailability (Un) is 6.422826e-06. The results of the
DDFTA algorithm for the fault tree in Fig. 10 considering 10 % to 100 %
data availabilities are shown in Table 11. As we observe more data
points, unavailability and RMSE values converge to the true value
6.422826e-06 and the ideal value of 0, respectively. As expected, the
best structure learning performance occurs with the highest data avail
abilities and worsens as the data availability decreases. As can be seen,
Naïve Bayes classifier, indicated by NB, performs relatively well for

Table 12
Results of the DDFTA and DDFTAnb algorithms for the RBC fault tree considering different percentages of data availabilities.

Data Availability

10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

DDFTA Structure
learning
measures

Sen 0.1250
±

0.0000

0.2750
±

0.1200

0.3250
±

0.0980

0.4500
±

0.1660

0.4750
±

0.1430

0.5000
±

0.1550

0.6500
±

0.1630

0.7500
±

0.1340

0.7750
±

0.1429

1.0000
±

0.0000

Spe 0.9972
±

3e-04

0.997
±

5e-04

0.9974
±

5e-04

0.9981
±

7e-04

0.9983
±

7e-04

0.9983
±

7e-04

0.9990
±

8e-04

0.9995
±

6e-04

0.9995
±

6e-04

1.0000
±

0.0000

ACC 0.9967
±

3e-04

0.9966
±

6e-04

0.9971
±

6e-04

0.9978
±

8e-04

0.9980
±

7e-04

0.9981
±

8e-04

0.9988
±

8e-04

0.9994
±

6e-04

0.9994
±

7e-04

1.0000
±

0.0000

Parameter learning
measures

Ûn 1.80e-
13

±

3.54e-
13

1.76e-
12

±

4.82e-
13

2.61e-12

±

1.01e-12

3.71e-
12

±

1.16e-
12

4.39e-
12

±

1.29e-
12

4.20e-
12

±

1.87e-
12

5.29e-
12

±

8.59e-
13

5.78e-
12

±

1.19e-
12

6.09e-
12

±

1.19e-
12

6.86e-
12

±

0.0000

RMSE 6.48e-
12
±

3.44e-
13

4.94e-
12
±

4.59e-
13

4.12e-12
±

9.74e-13

3.06e-
12
±

1.12e-
12

2.41e-
12
±

1.25e-
12

2.59e-
12
±

1.81e-
12

1.53e-
12
±

8.29e-
13

1.06e-
12
±

1.16e-
12

7.60e-
13
±

1.16e-
12

0.0000
±

0.0000

DDFTAnb Structure
learning
measures

Sen 0.3500
±

0.1800

0.3500
±

0.2616

0.5000
±

0.1550

0.6250
±

0.1096

0.6562
±

0.1049

0.6500
±

0.1200

0.7250
±

0.1429

0.8250
±

0.0600

0.8250
±

0.0600

———

Spe 0.9989
±

4e-04

0.9981
±

7e-04

0.9982
±

4e-04

0.9983
±

5e-04

0.9982
±

7e-04

0.9983
±

6e-04

0.9987
±

7e-04

0.9994
±

3e-04

0.9995
±

3e-04

———

ACC 0.9985
±

3e-04

0.9978
±

8e-04

0.9979
±

5e-04

0.9981
±

5e-04

0.9981
±

8e-04

0.9982
±

6e-04

0.9985
±

8e-04

0.9993
±

4e-04

0.9994
±

3e-04

———

Parameter learning
measures

Ûn 1.48e-
06

±

1.78e-
06

7.40e-
07

±

9.67e-
07

2.47e-07

±

4.84e-07

9.47e-
12

±

2.46e-
12

7.64e-
12

±

2.57e-
12

7.89e-
12

±

3.00e-
12

7.28e-
12

±

1.32e-
12

6.51e-
12

±

4.33e-
13

6.51e-
12

±

4.33e-
13

———

RMSE 1.45e-
06
±

1.74e-
06

7.24e-
07
±

9.47e-
07

2.41e-07
±

4.73e-07

2.87e-
12
±

1.94e-
12

2.36e-
12
±

9.93e-
13

2.15e-
12
±

2.20e-
12

1.16e-
12
±

7.00e-
13

3.51e-
13
±

4.21e-
13

3.51e-
13
±

4.21e-
13

———

P. Niloofar and S. Lazarova-Molnar

Expert Systems With Applications 215 (2023) 119345

13

small amounts of training data because it has a low propensity to overfit.

3.5. Radio block center

Radio Block Center (RBC) is the most important subsystem of The
European Railway Traffic Management System / European Train Con
trol System (Flammini et al., 2005). It is responsible for guaranteeing a
safe outdistancing between trains by managing the information received
from the onboard subsystem and from the interlocking subsystem. In the
RBC fault tree illustrated in Fig. 12, “BUS1” lambda = 4.4444e-6 repair
= 4 means that the reliability and maintainability distribution of the
basic event “BUS1” are exponential with a failure rate of 4.4444e-6 and
a repair rate of 4, respectively. Estimated unavailability of the system is
6.8699e-12 and the instantaneous unavailabilities are illustrated in
Fig. 13. Results shown in Table 12, demonstrate that this fault tree has
been affected by loss of data more than the other two examples, because

even with 90 % of data availability, DDFTA’s sensitivity is 0.775. We
suspect that the reason for this is that the fault events are rare, and the
system is highly reliable.

4. Discussion

In this paper, we investigate two fault trees as case studies, a fault-
tolerant multiprocessor (MP) and the radio block center (RBC). MP
has a lower reliability measure than RBC since the unavailability value
for MP is 6.4228e-06 and that of the RBC equals 6.86e-12. Furthermore,
MP has a multi-state event (PS) and repair rates that follow distributions
other than exponential.

In terms of structure learning, comparing the accuracies of the two
fault trees indicate that for lower data availability applying the classi
fication module is highly promising (Fig. 14). For RBC, as a highly
reliable system, average ACC values when applying the classification

Fig. 14. ACC mean values for MP and RBC fault trees, considering different levels of data availability, for DDFTA and DDFTAnb.

Fig. 15. Ûn means of MP and RBC fault trees, considering different levels of data availability, for DDFTA and DDFTAnb.

P. Niloofar and S. Lazarova-Molnar

Expert Systems With Applications 215 (2023) 119345

14

module (NB) are higher even for 60 percentage of data availability.
Accuracy values of DDFTA with classification module for MP are higher
only for very low levels of data availabilities. In general, DDFTA with
and without classification module has a higher accuracy for RBC fault
tree.

Considering parameter learning, as illustrated in Fig. 15, estimated
unavailability values converge to the true unavailability values as data
availability increases. For both fault trees, estimated unavailabilities
using DDFTA are lower than the true unavailability value, as opposed to
DDFTAnb where the estimated unavailabilities are higher than the true
unavailability value. The reason is that the sets of minimal cut sets
predicted using DDFTA are always subsets of the real set of minimal cut
sets. Unavailability values calculated using DDFTAnb are always higher
(for low data availabilities) or equal (full data availability) to the true
unavailability value which makes this algorithm more conservative
since it estimates the reliability of the system lower than it really is.
DDFTA calculates lower (for low data availability) or the same (for full
data availability) unavailability values compared to the true unavail
ability value, which is risky since it shows the system as more reliable
than it truly is.

DDFTAnb is affected by a set of experimental parameters. The
structure learning step is affected by the number of basic events,
whether basic events are multistate or binary, repairable/nonrepairable
events and the number of minimal cut sets. Numbers of basic events and
multistate or binary events affect the size of the truth table. For example,
a system with 7 binary basic events has 27 = 128 possible combinations
of basic events, whereas a system with 13 binary events and an event
with three states has 213 × 31 = 24,576 number of combinations of basic
events. The quantitative analysis part of the DDFTAnb is responsive to
repairable/nonrepairable events, rare events, size of the time step and
the total simulation time. If the total simulation time is 5 years and the
size of the time step is 1 day, then the total number of time steps are 5 ×
365 = 1,825. For the same total simulation time of 5 years, if we take
time steps of one month then we only have 5 × 12 = 60 time steps to
calculate instantaneous unavailabilities.

For a single fault tree, all the above parameters are fixed and the
experimenter cannot change them, except for the total simulation time
and the size of the time step. DDFTAnb’s results are not very sensitive to
these parameters in general. However, for rare events DDFTAnb may
obtain different unavailabilities for a fixed fault tree if we choose
different total simulation time and size of the time step. Rare events may
require larger total time and smaller time steps, hence larger number of
time steps are necessary. Also, state changes of repairable events define
the number of proxels that need to be calculated at each time step.

Table 13 summarizes the computation time on a workstation with 16
GB RAM and processor Core i7 2.8 GHz for the MP and RBC case studies.
For the parameter learning step, the number of different types of basic

events and the number of time steps are considered, and for the structure
learning, we access the number of combinations of basic events and the
number of minimal cut sets for both MP and RBC (computation times are
reported in seconds).

According to Table 13, DDFTA and DDFTAnb algorithms are not very
efficient for complex systems with rare events. The main drawback is
that as the number of cut sets, or the number of basic components in
creases with the size of the system, the presented algorithm becomes
slower. Also, some types of basic events need larger T (total time) with
smaller Δt (size of the time steps). Hence, the quantitative analysis be
comes more time-consuming. One way to overcome this difficulty is to
divide the whole system into its major subsystems and use parallel
computing methods to overcome these issues.

5. Conclusion

We presented DDFTAnb algorithm, an efficient and novel algorithm
for extracting repairable fault trees from incomplete multinomial time
series data to extract the future fault-related behaviour of a system in
terms of a fault tree and estimate the system’s reliability measures. We
extended the work of Lazarova-Molnar et al. (2020) by providing clas
sification capability to address the issue of missing or unobserved cut
sets in fault occurrences of basic events. Classifying the top event for
unseen combinations of events becomes more critical when the system
of interest is highly reliable with significantly rare events, or when it is
composed of significantly many basic components. We demonstrated
that our approach has clear benefits through two case studies.

DDFTAnb can extract and analyse multi-state repairable fault trees,
compute reliability metrics for probability distributions other than the
usual exponential probability distribution and estimate the future reli
ability of the system. In addition, DDFTAnb is highly recommended in
cases when there is insufficient amount of data. In terms of our case
studies, we observed the following: for 10 % of data availability, accu
racies of DDFTAnb (DDFTA) are 0.9912 (0.9881) and 0.9985 (0.9967)
for MP and RBC, respectively. However, in cases when there are suffi
cient or high amounts of data, DDFTA alone has a high performance: for
90 % of data availability, accuracies of DDFTAnb (DDFTA) are 0.9977
(0.9983) and 0.9994 (0.9994) for MP and RBC, respectively. Moreover,
the reliability measure calculated by DDFTA for a system of interest is
higher than the system’s true reliability value, while DDFTAnb calcu
lates a lower reliability measure than the system’s true reliability.

DDFTAnb can be used to analyse any system where its fault tree can
be expressed in terms of its minimal cut sets and has no limitations in
this regard. The main limitation of the presented algorithm is that as the
number of cut sets, or the number of basic components increase with the
size of the system, it becomes slower and parallel computing can be
considered as a solution. As future work, we intend to improve the
classification performance of the presented algorithm and extend the
tool to model and extract dynamic fault trees with more types of gates.

CRediT authorship contribution statement

Parisa Niloofar: Conceptualization, Methodology, Software, Visu
alization, Validation, Writing – original draft, Writing – review & edit
ing. Sanja Lazarova-Molnar: Supervision, Writing – review & editing,
Conceptualization.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

Table 13
Computational times (in seconds) for RBC and MP fault trees.

Parameter Learning

Fault
Tree

different
types
of basic events

time steps

50
(T = 5, Δt =

0.1)

100
(T = 5, Δt =

0.05)

500
(T = 5, Δt =

0.01)

MP 5 12.68 58.07 1529

RBC 6 22.73 94.17 2067.95

Structure Learning

Fault
Tree

combinations
of basic events

minimal cut
sets

MP 3 × 210 = 3,072 11 78.18

RBC 214 = 16,384 8 3380.05

P. Niloofar and S. Lazarova-Molnar

Expert Systems With Applications 215 (2023) 119345

15

References

Aizpurua, J. I., & Muxika, E. (2013). Model-based design of dependable systems:
Limitations and evolution of analysis and verification approaches. International
Journal on Advances in Security, 6(1), 12–31.

Arnold, A., Griffault, A., Point, G., & Rauzy, A. (2000). The Altarica language and its
semantics. Fundamenta Informaticae, 34(2–3), 109–124.

Ayvaz, S., & Alpay, K. (2021). Predictive maintenance system for production lines in
manufacturing: A machine learning approach using Iot data in real-time. Expert
Systems with Applications, 173, Article 114598.

Barlow, R. E., & Heidtmann, K. D. (1984). Computing K-out-of-N system reliability. IEEE
Transactions on Reliability, 33(4), 322–323.

Bobbio, A., Portinale, L., Minichino, M., & Ciancamerla, E. (2001). Improving the
analysis of dependable systems by mapping fault trees into Bayesian networks.
Reliability Engineering & System Safety, 71(3), 249–260.

Brito, L. C., Susto, G. A., Brito, J. N., & Duarte, M. A. (2022). An Explainable Artificial
Intelligence Approach for Unsupervised Fault Detection and Diagnosis in Rotating
Machinery. Mechanical Systems and Signal Processing, 163, Article 108105.

Cai, B., Liu, Y., Ma, Y., Liu, Z., Zhou, Y., & Sun, J. (2015). Real-time reliability evaluation
methodology based on dynamic Bayesian Networks: A case study of a subsea Pipe
Ram Bop System. ISA transactions, 58, 595–604.

Caldarola, L. (1980). Fault tree analysis with multistate components. In G. Apostolakis,
S. Garribba, & G. Volta (Eds.), Synthesis and analysis methods for safety and reliability
studies. Boston, MA: Springer, US.

Chen, J., Roberts, C., & Weston, P. (2008). Fault detection and diagnosis for railway track
circuits using Neuro-Fuzzy systems. Control Engineering Practice, 16(5), 585–596.

Chiacchio, F., Aizpurua, J. I., Compagno, L., & D’Urso, D. (2020). Shyftoo, an object-
oriented Monte Carlo simulation library for the modeling of stochastic hybrid fault
tree automaton. Expert Systems with Applications, 146, Article 113139.

Chiacchio, F., D’Urso, D., Compagno, L., Pennisi, M., Pappalardo, F., & Manno, G.
(2016). Shyfta, a stochastic hybrid fault tree automaton for the modelling and
simulation of dynamic reliability problems. Expert Systems with Applications, 47,
42–57.

Compare, M., Baraldi, P., Bani, I., Zio, E., & Mc Donnell, D. (2017). Development of a
bayesian multi-state degradation model for up-to-date reliability estimations of
working industrial components. Reliability Engineering & System Safety, 166, 25–40.

Delignette-Muller, M. L., & Dutang, C. (2015). Fitdistrplus: An R package for fitting
distributions. Journal of statistical software, 64(4), 1–34.

Dogan, A., & Birant, D. (2021). Machine learning and data mining in manufacturing.
Expert Systems with Applications, 166, Article 114060.

Domingos, P., and M. Pazzani. 1996. Beyond Independence: Conditions for the
Optimality of the Simple Bayesian Classi Er. In Proc. 13th Intl. Conf. Machine
Learning, edited 105-112: Citeseer.

Duda, R. O., & Hart, P. E. (1973). Pattern classification and scene analysis. New York:
Wiley.

Feiler, P. H., Lewis, B. A., & Vestal, S. (2006). The Sae architecture analysis & design
language (Aadl) a standard for engineering performance critical systems. In 2006
IEEE Conference on Computer Aided Control System Design, 2006 IEEE International
Conference on Control Applications, 2006 IEEE International Symposium on Intelligent
Control, October 4th-6th (pp. 1206–1211). Germany: Munich.

Flammini, F., N. Mazzocca, M. Iacono, and S. Marrone. 2005. Using repairable fault trees
for the evaluation of design choices for critical repairable systems. In Ninth IEEE
International Symposium on High-Assurance Systems Engineering (HASE’05), October
12th-14th, Heidelberg, Germany, 163-172.

Guo, Y., Zhong, M., Gao, C., Wang, H., Liang, X., & Yi, H. (2021). A discrete-time
Bayesian network approach for reliability analysis of dynamic systems with common
cause failures. Reliability Engineering and System Safety, 216, Article 108028.

Huang, W., Zhang, Y., Yu, Y., Xu, Y., Xu, M., Zhang, R., … Liu, Z. (2021). Historical data-
driven risk assessment of railway dangerous goods transportation system:
comparisons between entropy weight method and scatter degree method. Reliability
Engineering & System Safety, 205, Article 107236.

Jardine, A. K., Lin, D., & Banjevic, D. (2006). A review on machinery diagnostics and
prognostics implementing condition-based maintenance. Mechanical Systems and
Signal Processing, 20(7), 1483–1510.

Kabir, S. (2017). An overview of fault tree analysis and its application in model based
dependability analysis. Expert Systems with Applications, 77, 114–135.

Lampis, M., & Andrews, J. (2009). Bayesian belief networks for system fault diagnostics.
Quality and Reliability Engineering International, 25(4), 409–426.

Lazarova-Molnar, S. (2005). The Proxel-based method-formalisation, analysis and
applications. Magdeburg, Germany: Otto-von-Guericke-University. Ph.D. thesis.

Lazarova-Molnar, S., & Horton, G. (2003). Proxel-based simulation of stochastic petri
nets containing immediate transitions. Electronic Notes in Theoretical Computer
Science, 85(4), 203–217.

Lazarova-Molnar, S., Niloofar, P., & Barta, G. K. (2020). Automating reliability analysis:
Data-driven learning and analysis of multi-state fault trees. In 30th European Safety

and Reliability Conference and 15th Probabilistic Safety Assessment and Management
Conference, November 1st-5th (pp. 1805–1812). Italy: Venice.

Lee, W.-S., Grosh, D. L., Tillman, F. A., & Lie, C. H. (1985). Fault tree analysis, methods,
and applications-a review. IEEE Transactions on Reliability, 34(3), 194–203.

Liggesmeyer, P., & Rothfelder, M. (1998). Improving System Reliability with Automatic
Fault Tree Generation. Digest of Papers. Twenty-Eighth Annual International Symposium
on Fault-Tolerant Computing (Cat No. 98CB36224). IEEE. edited 90–99.

Linard, A., D. Bucur, and M. Stoelinga. 2019. Fault trees from data: Efficient learning
with an evolutionary algorithm. In 5th International Symposium on Dependable
Software Engineering: Theories, Tools, and Applications, November 27th–29th,
Shanghai, China, 19-37.

Lisnianski, A., & Levitin, G. (2003). Multi-state system reliability: Assessment, optimization
and applications. Singapore, Singapore: World scientific.

Majdara, A., & Wakabayashi, T. (2009). Component-based modeling of systems for
automated fault tree generation. Reliability Engineering & System Safety, 94(6),
1076–1086.

Malhotra, M., & Trivedi, K. S. (1995). Dependability modeling using petri-nets. IEEE
Transactions on Reliability, 44(3), 428–440.

Mukherjee, S., and A. Chakraborty. 2007. “Automated Fault Tree Generation: Bridging
Reliability with Text Mining”. In 2007 Annual Reliability and Maintainability
Symposium, January 22nd-25th, Orlando, USA, 83–88.

Nadjafi, M., Farsi, M. A., Jabbari, H., & Management. (2017). Reliability analysis of
multi-state emergency detection system using simulation approach based on fuzzy
failure rate. International Journal of System Assurance Engineering, 8(3), 532–541.

Nauta, M., Bucur, D., & Stoelinga, M. (2018). Lift: Learning fault trees from observational
data. In 15th International Conference on Quantitative Evaluation of Systems, September
4th-7th (pp. 306–322). China: Beijing.

Niloofar, P., & Lazarova-Molnar, S. (2021). Fusion of data and expert knowledge for fault
tree reliability analysis of cyber-physical systems. In 2021 5Th International
Conference on System Reliability and Safety (ICSRS), November 24th-26th (pp. 92–97).
Italy: Palermo.

Niloofar, P., and S. Lazarova-Molnar. 2022. Collaborative data-driven reliability analysis
of multi-state fault trees. Proceedings of the Institution of Mechanical Engineers, Part O:
Journal of Risk and Reliability:1748006X221076290.

Nolan, P. J., M. G. Madden, and P. Muldoon. 1994. Diagnosis using fault trees induced
from simulated incipient fault case data. In Second International Conference on
Intelligent Systems Engineering, edited 304–309.

Papadopoulos, Y., and J. A. McDermid. 1999. Hierarchically performed hazard origin
and propagation studies. In International Conference on Computer Safety, Reliability,
and Security, September 27th-29th, Toulouse, France, 139-152.

Qian, K., Yu, L., & Gao, S. (2021). Fault tree construction model based on association
analysis for railway overhead contact system. International Journal of Computational
Intelligence Systems, 14(1), 96–105.

Rigby, R. A., & Stasinopoulos, D. M. (2005). Generalized additive models for location,
scale and shape. Journal of the Royal Statistical Society: Series C, 54(3), 507–554.

Ruijters, E., & Stoelinga, M. (2015). Fault tree analysis: A survey of the state-of-the-art in
modeling, analysis and tools. Computer Science Review, 15, 29–62.

Sharvia, S., Kabir, S., Walker, M., & Papadopoulos, Y. (2016). Model-based dependability
analysis: State-of-the-art, challenges, and future outlook. Software Quality Assurance,
251–278.

Sikorska, J. Z., Hodkiewicz, M., & Ma, L. (2011). Prognostic modelling options for
remaining useful life estimation by industry. Mechanical Systems and Signal
Processing, 25(5), 1803–1836.

Solomatine, D. P., & Ostfeld, A. (2008). Data-driven modelling: Some past experiences
and new approaches. Journal of Hydroinformatics, 10(1), 3–22.

Sullivan, K., and J. B. Dugan. 1996. Galileo User’s Manual & Design Overview,
University of Virginia. https://www.cse.msu.edu/~cse870/Materials/
FaultTolerant/manual-galileo.htm, accessed 28 March 2021.

Theodoropoulos, P., Spandonidis, C. C., Giannopoulos, F., & Fassois, S. (2021). A deep
learning-based fault detection model for optimization of shipping operations and
enhancement of maritime safety. Sensors, 21(16), 5658.

Vesely, W. E., F. F. Goldberg, N. H. Roberts, and D. F. Haasl. 1981. Fault Tree Handbook.
Technical Report NUREG-0492, Nuclear Regulatory Commission Washington DC,
USA.

Waghen, K., & Ouali, M.-S. (2019). Interpretable logic tree analysis: A data-driven fault
tree methodology for causality analysis. Expert Systems with Applications, 136,
376–391.

Waghen, K., & Ouali, M.-S. (2021). Multi-level interpretable logic tree analysis: A data-
driven approach for hierarchical causality analysis. Expert Systems with Applications,
178, Article 115035.

Zhang, W., Jia, M.-P., Zhu, L., & Yan, X.-A. (2017). Comprehensive overview on
computational intelligence techniques for machinery condition monitoring and fault
diagnosis. Chinese Journal of Mechanical Engineering (English Edition), 30(4), 782–795.

Zheng, J., Pan, H., & Cheng, J. (2017). Rolling bearing fault detection and diagnosis
based on composite multiscale fuzzy entropy and ensemble support vector machines.
Mechanical Systems and Signal Processing, 85, 746–759.

P. Niloofar and S. Lazarova-Molnar

http://refhub.elsevier.com/S0957-4174(22)02363-6/h0005
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0005
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0005
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0010
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0010
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0015
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0015
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0015
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0020
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0020
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0025
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0025
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0025
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0030
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0030
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0030
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0035
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0035
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0035
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0040
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0040
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0040
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0045
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0045
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0050
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0050
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0050
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0055
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0055
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0055
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0055
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0060
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0060
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0060
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0065
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0065
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0070
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0070
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0080
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0080
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0085
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0085
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0085
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0085
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0085
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0095
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0095
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0095
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0100
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0100
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0100
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0100
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0105
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0105
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0105
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0110
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0110
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0115
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0115
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0120
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0120
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0125
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0125
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0125
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0130
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0130
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0130
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0130
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0135
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0135
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0140
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0140
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0140
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0150
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0150
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0155
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0155
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0155
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0160
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0160
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0170
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0170
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0170
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0175
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0175
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0175
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0180
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0180
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0180
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0180
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0200
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0200
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0200
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0205
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0205
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0210
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0210
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0215
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0215
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0215
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0220
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0220
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0220
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0225
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0225
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0235
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0235
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0235
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0245
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0245
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0245
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0250
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0250
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0250
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0255
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0255
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0255
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0260
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0260
http://refhub.elsevier.com/S0957-4174(22)02363-6/h0260

	Data-driven extraction and analysis of repairable fault trees from time series data
	1 Introduction
	2 Literature review
	2.1 Repairable multi-state fault trees
	2.2 Naïve Bayes classifier
	2.3 Proxel-based simulation

	3 Methodology
	3.1 Classification module for DDFTAnb algorithm
	3.2 Illustrative example
	3.2.1 DDFTA algorithm
	3.2.2 DDFTAnb algorithm

	3.3 Performance evaluation
	3.3.1 Structure learning evaluation
	3.3.2 Reliability measures estimation
	3.3.3 Classification evaluation

	3.4 A fault-tolerant multiprocessor system
	3.5 Radio block center

	4 Discussion
	5 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	References

