KIT | KIT-Bibliothek | Impressum | Datenschutz

Conditional Generative Adversarial Networks for modelling fuel sprays

Ates, Cihan ORCID iD icon 1; Karwan, Farhad 2; Okraschevski, Max ORCID iD icon 1; Koch, Rainer 2; Bauer, Hans-Jörg 2
1 Institut für Thermische Strömungsmaschinen (ITS), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)

Abstract:

In this study, the probabilistic, data driven nature of the generative adversarial neural networks (GANs) was utilized to conduct virtual spray simulations for conditions relevant to aero engine combustors. The model consists of two sub-modules: (i) an autoencoder converting the variable length droplet trajectories into fixed length, lower dimensional representations and (ii) a Wasserstein GAN that learns to mimic the latent representations of the evaporating droplets along their lifetime. The GAN module was also conditioned with the injection location and the diameters of the droplets to increase the generalizability of the whole framework. The training data was provided from highly resolved 3D, transient Eulerian–Lagrangian, large eddy simulations conducted with OpenFOAM. Neural network models were created and trained within the open source machine learning framework of PyTorch. Predictive capabilities of the proposed method was discussed with respect to spray statistics and evaporation dynamics. Results show that conditioned GAN models offer a great potential as low order model approximations with high computational efficiency. Nonetheless, the capabilities of the autoencoder module to preserve local dependencies should be improved to realize this potential. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000154504
Veröffentlicht am 13.01.2023
Originalveröffentlichung
DOI: 10.1016/j.egyai.2022.100216
Scopus
Zitationen: 6
Dimensions
Zitationen: 6
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Thermische Strömungsmaschinen (ITS)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 04.2023
Sprache Englisch
Identifikator ISSN: 2666-5468
KITopen-ID: 1000154504
Erschienen in Energy and AI
Verlag Elsevier
Band 12
Seiten 100216
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Nachgewiesen in Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page