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Abstract

Extending the celebrated results of Alexandrov (1958) and Korevaar—Ros (1988) for smooth
sets, as well as the results of Schneider (1979) and the first author (1999) for arbitrary convex
bodies, we obtain for the first time the characterization of the isoperimetric sets of a uniformly
convex smooth finite-dimensional normed space (i.e. Wulff shapes) in the non-smooth and non-
convex setting, based on a natural geometric condition involving the curvature measures. More
specifically we show, under a weak mean convexity assumption, that finite unions of disjoint Wulff
shapes are the only sets of positive reach A C R"! with finite and positive volume such that,
for some k € {0,...,n— 1}, the k-th generalized curvature measure @i(A, -), which is defined on
the unit normal bundle of A with respect to the relative geometry induced by ¢, is proportional
to the top order generalized curvature measure @ﬁ(A, ). If Kk = n — 1 the conclusion holds for
all sets of positive reach with finite and positive volume. We also prove a related sharp result
about the removability of the singularities. This result is based on the extension of the notion
of a normal boundary point, originally introduced by Busemann and Feller (1936) for arbitrary
convex bodies, to sets of positive reach.

These findings are new even in the Euclidean space.

Several auxiliary and related results are proved, which are of independent interest. They
include the extension of the classical Steiner-Weyl tube formula to arbitrary closed sets in a
finite dimensional uniformly convex normed vector space, a general formula for the derivative
of the localized volume function, which extends and complements recent results of Chambolle—-
Lussardi-Villa (2021), and general versions of the Heintze-Karcher inequality.
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1 Introduction

The following result is fundamental in the geometry of submanifolds: if a smooth hypersurface in
a Euclidean space encloses a bounded domain and one of its mean curvature functions is constant,
then it is a Euclidean sphere. We refer to this statement as the soap bubble theorem. We remark
that we are considering only hypersurfaces that enclose a domain (i.e. they are embedded); otherwise
(i.e. for immersed hypersurfaces) it is well known that such a uniqueness result is in general true
only in very special situations; see and [Wen86]. The aforementioned fundamental result
was proved by Alexandrov for the mean curvature function in [Ale58] and by Korevaar and Ros for
the higher-order mean curvature functions in [Ros88] and [Ros87]. Several other proofs were found
earlier under various additional hypotheses (e.g. convexity, star-shapedness, mean convexity type
assumptions) starting from the pioneering work of Jellett in [Jel53] in the nineteenth century; see
[Hsi54] (and the references therein). An analogous result is true for hypersurfaces embedded in finite
dimensional uniformly convex normed spaces, provided that the Euclidean mean curvature functions
and the Euclidean sphere are replaced by their anisotropic counterparts (in particular the role of the
sphere is played by the Wulff shape); see [HLMGQ9].

A key feature of all the results mentioned so far is that they hold for smooth hypersurfaces. In fact,
since these results are about hypersurfaces with constant mean curvature functions, the smoothness
hypothesis may appear to be natural and somehow unavoidable. However, considering different but
equivalent points of view, it turns out that the soap bubble theorem is only part of a more general
and more natural problem that does not require any a-priori smoothness assumption. There are at
least two standard ways to adjust the soap bubble theorem: via the variational approach based on
the notion of a critical point of the isoperimetric functional, and via the integral-geometric approach
based on the notion of curvature measures.

Let us first briefly describe the variational approach. A standard computation shows that if
a smooth hypersurface with constant mean curvature encloses a bounded domain €2, then  is a
critical point of the Euclidean isoperimetric functional among all sets of finite perimeter. Therefore,
the Alexandrov theorem can be equivalently stated saying that a critical point of the isoperimetric
functional is a sphere, provided it has a smooth boundary. The same is true for the anisotropic
counterpart studied in [HLMGO9], if a suitable anisotropic isoperimetric functional is considered.
From this point of view the assumption of smoothness appears to be a possibly convenient condition
rather than a necessary restriction. In fact, one can ask whether it is true that all critical points of
the Euclidean isoperimetric functional are Euclidean balls. It should be remarked that the regularity
theory in geometric measure theory does not imply that a critical point is automatically smooth.
Hence, in the non-smooth framework the problem genuinely involves hypersurfaces which a priori
may have severe singularities. A positive resolution of this type of problem is given in [DMT9] for the
Euclidean case and in [DRKS20] in an anisotropic setting, under some additional hypotheses.

We now focus on the integral-geometric approach, which is the one adopted in the present work.
The Weyl tube formula asserts that for all sufficiently small radii p > 0 the volume of a tubular
neighbourhood C, around a domain C' C R"*! with C%-boundary dC is a polynomial function in p;
in other words,

n

L£re,\ ) Z Cn—j for all sufficiently small p > 0.
—0/

The coefficients ¢;, can be obtained integrating over C' (or, equivalently, over the unit normal bundle
of C) the (n — k)-th mean curvature function of 9C (with respect to the exterior normal map)
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for k € {0,...,n}. In the special case of smooth convex domains or of convex polytopes in R?
with d € {2,3}, this formula has already been found in the nineteenth century by Steiner. Now if
k € {1,...,n}, then the k-th curvature measure of C is defined as the Borel measure obtained by
integrating over a given Borel subset of dC the (n — k)-th mean curvature function of 9C. Tt has
been Federer’s fundamental discovery in [Fed59] that the existence of the curvature measures and
the validity of the polynomial Weyl tube formula are independent of the smoothness hypothesis. In
the same seminal paper, Federer laid the foundation of a theory of sets of positive reach, a class that
includes all convex bodies, all embedded C2-submanifolds and much more; indeed the boundary of
a domain with positive reach need not even be a topological manifold (see the example described
at the end of this section). The soap bubble theorem can be equivalently stated saying that if C'
is a bounded domain with smooth boundary such that one of the curvature measures of C is a
multiple of the area measure associated to the boundary of C, then C is a Euclidean ball. At this
point the most compelling problem is to establish a corresponding uniqueness result without any
smoothness hypothesis. In fact, this is a classical task in convex geometry. For an arbitrary convex
body and for the 0-th mean curvature measure, Diskant accomplished this task and even established
a sharp stability result in [Dis68]. A decade later, Schneider [Sch79] resolved the problem for all
curvature measures associated with a general convex body (see also [Sch14] Theorem 8.5.7]). Different
approaches to prove and generalize Schneider’s theorem were found by Kohlmann in [Koh98a] and
[Koh98b]. The extension to the anisotropic setting of the results of Schneider and Kohlmann can be
found in [Hu99]. On the other hand, as far as we are aware of, up to now no results are available
for arbitrary sets of positive reach, and thus the problem has remained unexplored in the non-convex
and non-smooth setting. The main goal of this paper is to address this problem in full generality.
Our main theorems, Theorem [6.15, Theorem and Corollary extend Alexandrov’s theorem
to all sets of positive reach and extend its higher-order version, considered by Korevaar and Ros in
the smooth setting, to sets of positive reach under a natural mean convexity hypothesis. Actually we
treat this problem directly in the more general setting of uniformly convex finite-dimensional normed
spaces, hence generalizing also the main result in [HLMGQO9] to arbitrary sets of positive reach.

A central notion of this paper are the generalized curvature measures of a set of positive reach
in the relative (Minkowski) geometry induced by a uniformly convex C?-norm ¢ in R"*1. If ¢ is
the Euclidean norm, then Federer’s tube formula for sets of positive reach allows to introduce the
Euclidean curvature measures (see [Fed59] and [Za86]). On the other hand, for non-Euclidean norms
a general tube formula for non-smooth and non-convex sets was missing so far. In the recent paper
[CAL16], an attempt to obtain an anisotropic tube formula for arbitrary sets of positive reach has
been impeded by difficulties to obtain Lipschitz estimates for the nearest point projection (which in
the Euclidean setting were established by Federer in [Fed59]); see the comments after Theorem 1.1
in [CALI6, p. 472]. Given this premise, the first task in this paper is to lay the foundation of the
theory of curvature measures in the anisotropic setting for sets of positive reach and, more generally,
for arbitrary closed sets. For this purpose, let 6ﬁ and l/ﬁ be the distance function and the Cahn-

Hoffman map of A with respect to the metric induced by the conjugate norm ¢* of ¢ (see equations
(I0) and (II) below). Then we define the ¢-unit normal bundle N?(A) of A by

N?(A) = {(a,n) : a € A, n € IW?, §%(a+ ) = r for some r > 0},

where W? = {n € R"*! : ¢*(n) < 1} is called the Wulff shape of ¢. In general, uﬁ is a multivalued
map and N?(A) is a countably (", n) rectifiable subset of A x 9W?. Employing recent results on
the Lipschitz and differentiability properties of I/ﬁ provided in [KS21], we introduce the ¢-principal
curvatures

—o0 < k% 4(a,n) < ... < kY, (a,m) < 400

of Aat H" a.e. (a,n) € N?(A), similarly as in the smooth or convex case, as follows: if xﬁyl(a—i—rn) <
. < xﬁyn(a + 1) denote the eigenvalues of D v (a + r7), then we define

¢
Xa,i(a+mm)
Hi,i(aa 77) = -

= p € (—o0, 400,
1— TXAJ-(G, +rn)

where the right-hand side is independent of r, if r > 0 is chosen sufficiently small, depending on
(a,n). We denote by N?(A) the set of points (a,n) € N?(A) where the principal curvatures exist
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(hence H™(N?¢(A) \ N®(A)) = 0) and define Nj(A) to be the set of all (a,n) € N?(A) such that
njd(a,n) < oo and njdﬂ(a,n) = +oo. In particular, N¢(A) is the set of all (a,n) € N?(A)
such that the ¢-principal curvatures of A at (a,n) are finite. The i-th ¢-mean curvature function
Hﬁ ;(a,n) of Aat H" a.e. (a,n) € N?(A) is defined by taking certain combinations of the elementary
syn{metric functions of the ¢-principal curvatures (if A is a smooth submanifold, then we recover
classical definitions); see Definition BI1l As a consequence of Theorem BTG, the volume of the
tubular neighbourhood B?(A4,p) \ A = {x € R"*!:0 < 6?1(:5) < p} of an arbitrary compact set A
can be expressed by the formula

LB AN =3 T [ o @) T en) it (o )PS0 aH )

Here rﬁ is the reach function of A (see (I4)), Ji is a Jacobian-type function encoding the tangential

properties of the normal bundle (see Definition B.I7) and n? is the Euclidean exterior unit-normal
of W? (see (). For an arbitrary compact set A, the right side of the tube formula is in general not
a polynomial function in p (the volume growth is sub-polynomial) and the mean curvature functions
H¢ . are in general not integrable on N?(A) (in spite of the fact that the integral is well defined
due to the power of the reach function under the integral). On the other hand, if the ¢-reach of A
(see Definition [B1]) is greater than or equal to some positive threshold py > 0, then rf‘ (a,m) > po for
every (a,n) € N?(A) and we obtain a polynomial-type formula

n

LY (B?(A,p) \ A) =

pJ+1 o
) J4(a,n) HY (a,n) dH" (a,
3 FT s OO S50 B ) 0

for p € (0, po). Noting that the functions Jﬁ : Hﬁi are integrable on N?(A) if A has positive reach,
we define the m-th generalized ¢-curvature measure of A as the signed Radon measure supported on
N?(A) given by

1

OnAB) = T

/ ¢(n?(n)) J4(a,m) HY ., (a,n) dH" (a,n)
N(A)NB

for every bounded Borel set B C R""! x R"*! and m € {0,...,n}. If ¢ is the Euclidean norm,
these measures coincide with the classical generalized curvature measures for sets of positive reach
(up to the normalization); see [Za806]. Moreover, if ¢ is the Euclidean norm, then the curvature
functions and the tube formula from Section [ agree with those in [HLW04]. However, our approach
here is substantially different from the one in [HLW04]. In fact, in [HLW04] the Euclidean principal
curvatures of an arbitrary closed set are introduced by means of an approximation with sets of positive
reach (see Stachd’s approximation Lemma in [HLW04, Lemma 2.3] and [Sta79]). Observe that such
an approximation argument is not available in the anisotropic case, since there is no fully fledged
theory of sets with positive reach ready to be used in the current more general framework (see the
discussion above on [CdL16]).

An important consequence of the tube formula for arbitrary closed sets (see also Corollary B.I8])
is the sharp integral-geometric inequality in Theorem [3.20] for which equality is attained only by
disjoint unions of finitely many rescaled and translated Wulff shapes (assuming an a priori bound
for the mean curvature). Theorem generalizes the geometric inequality known as the Heintze—
Karcher inequality for sufficiently smooth sets (see [Ros87] and [MR91]) to arbitrary closed sets in
Euclidean space, under a natural (weak) mean convexity assumption. For sufficiently smooth sets
C, the Heintze-Karcher inequality provides an upper bound for the volume of C' by the integral
average over the boundary of C' of the reciprocal of the mean curvature function of C'. For convex
bodies (compact convex sets with non-empty interiors) this inequality was proved in [Koh98b] (in the
Euclidean case) and in [Hu99, Lemma 2.45] (in the anisotropic framework). The general anisotropic
version for arbitrary closed sets given in Theorem [B.20 will be specialized to sets of positive reach in
Theorem [5.T5] and this result is one of the pillars for the subsequent soap bubble theorems.

In Section Bl we also provide a detailed analysis of the curvature functions of an arbitrary closed
set A in relation to the dimension of the fibers of the ¢-unit normal bundle N?(A) of A. This analysis
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allows us to obtain the general disintegration formula stated in Theorem B.27 which in the present
generality is new even in the special Euclidean case (see [CHO0, Theorem 5.5] for sets with positive
reach and [Hu99, Theorems 1.56 and 1.57] for convex bodies).

As another consequence of the tube formula, we obtain differentiability properties of the parallel
volume function in Section @ In Theorem we determine the left and right derivatives of the
localized volume function of the tubular neighbourhood around a closed set A with respect to ¢
and provide a novel necessary and sufficient condition for the existence of the two-sided derivative.
Although this result is not needed in the proof of the soap bubble theorems, we have decided to
include it here since it is of interest in itself. Indeed the derivative of the volume function has been
the subject of several investigations; see [Sta76], [HLWO04], [HLWO0G6], [RWI0] and [CLV21]. The
most recent contribution [CIV21, Theorem 5.2] treats arbitrary and possibly asymmetric norms and
establishes formulae for the left and the right derivative of the volume function in terms of area-
integrals on the boundary of the tubular neighbourhood of a compact set. Theorem 5.2 in [CLV21]
can be compared with the third equality in (B5) and in (B6) (notice, however, that the results in
[CLV21] are not localized). On the other hand, the main novelty of our results are the formulae for
the left and the right derivatives of the localized volume function in terms of curvature integrals on
the ¢-unit normal bundle of A. As a consequence, our result establishes the relation between the
(localized) area integrals on the boundary of the tubular neighbourhood of A with the corresponding
(localized) curvature integrals on the ¢-unit normal bundle of A.

In Section [ we generalize the classical notion of a normal boundary point of a convex body (see
[Sch14] and [Schi5] and the references therein) to arbitrary sets of positive reach. It is well known
that the boundary of a convex body C' is locally the epigraph of a convex function around each of
its boundary points. Employing the classical theorem of Alexandrov on the twice differentiability of
convex functions, one can see that the normal boundary points are precisely those boundary points
where the locally representing function is twice differentiable. Consequently, the notion of a pointwise
second fundamental form and pointwise defined mean curvature functions can be introduced at each
such boundary point. Some authors refer to the normal boundary points as Alexandrov points, and
for this reason we denote the set of these points by A(C). If p : R**! x R*™! — R"* p(a,n) =a
for (a,n) € R"*!1 x R"*!, is the projection onto the first coordinate, it is known that for an arbitrary
convex body C' C R"*! it holds that

A(C) = p(N(O)).

Moreover, the pointwise defined mean curvature functions of €', associated with the pointwise second
fundamental form, coincide with the mean curvature functions defined on N?(C'); see [Hu98, Lemma
3.1] and [Hu99]. We extend these results to arbitrary sets of positive reach in an arbitrary uniformly
convex normed space. A key difference to the case of convex bodies is that the boundary of a set C'
of positive reach is in general not graphical around each of its points. Therefore we define 9C' as
the set of points a € dC where the fibre N(C,a) of the Euclidean unit normal bundle of C' contains
only one vector (the same set is obtained if 9VC is defined with respect to the fibres of N®(C) and a
general norm ¢). In Theorem 5.7 we show that a set of positive reach C is locally the epigraph of a
semiconvex function around each point a € 9VC and we prove that this function is twice differentiable
at a if and only if /ﬁgi(a,n) < oo fori=1,...,n, where N®(C,a) = {n}. This result opens the way
to introduce the notion of an Alexandrov point for a set of positive reach: these are all points of 0V A
where the semiconvex function locally representing A is twice differentiable. We denote the set of all
Alexandrov points of C' by A(C) and, as in the convex case, each Alexandrov point entails pointwise
curvature information that we express by the mean curvature functions h‘é o for k€ {0,...,n}; see
Definition We prove that N 1
A(C) = p(N7(C))nd°C
and

hgk(a) = Hg,k(a,n) for every a € A(C) and N®(C,a) = {n};

see Corollary 5100 In the remaining part of Section Bl employing the geometric inequality for closed
sets from Theorem .20 we derive a version of the Heintze—Karcher inequality for sets of positive
reach in Theorem [B.T5 As a consequence, we obtain Corollary .16 which states that the only sets



C of positive reach with finite and positive volume such that

nP?(C)

R ]

for H™ a.e. a € A(C), (1)

are finite unions of rescaled and translated Wulff shapes of radius %. Here P?(C) is the

¢-perimeter of C', namely
PYC) = [ ¢(n(C,a))dH" (a),
a*C

where 9*C' is the reduced boundary of C' and n(C, -) is the measure-theoretic Euclidean unit normal
of C' (notice that a set of positive reach has always locally finite perimeter, see Lemma 2.I0). One
can easily see that the lower bound in () is sharp by considering convex bodies obtained as unions
of congruent spherical caps; see Remark 0.7l A key feature of these results is that they provide
information on the global geometry of a set C' of positive reach requiring only assumptions on points
in 9¥C. This is quite surprising in view of the fact that there exist sets C' of positive reach with
finite volume and non-empty interior such that H™(0C \ 9"C') > 0 (an explicit example is obtained
by taking the function f in the example described at the end of this introduction such that {f = 0}
has positive £! measure). Corollary .10 plays a key role for the soap bubble theorems in Section ]
but is also of independent interest.

A special case of our first soap bubble theorem (Theorem [.1H) can be stated as follows. In view
of condition (), we point out that while the Radon measures @f(C’, ), for 5 =0,...,n—1 and a set
C C R™*! of positive reach, are signed in general, the measure ©%(C,-) is always non-negative. The
hypothesis in [2]), as well as the hypothesis in ([B]) and (@), respectively, of the subsequent theorems,
is the natural generalization of the hypothesis of “k-convexity” for smooth domains (see [CW13] and
references therein) to the singular setting of the present paper. If C'is a convex body in R"*!, then
all generalized curvature measures @?(C, -) are non-negative. In fact, a set C C R"*! of positive

reach is convex if and only if @f(C’, J>0foralj=0,...,n—1.

Theorem A (cf. Theorem 6I5). Let k € {1,...,n}, and let C C R"*! be a set of positive reach
with positive and finite volume. Assume that

@fiﬂ-(C, ) is a non-negative measure fori=1,... k—1 (2)
and
0% _.(C,)=X62(C,-) for some A € R\ {0}.
Then C' is a finite disjoint union of rescaled and translated Wulff shapes of radius %(ng;(c) and
A> 0.

If k = 1, then the conclusion holds for every set of positive reach with finite and positive volume
and for every A € R.

In Theorem [6.15 we point out how the common radius of the translated and rescaled Wulff shapes
can be expressed in terms of A\, n and k. Conversely, whenever C' is a finite disjoint union of rescaled
and translated Wulff shapes, each of the generalized curvature measures ®$7k(0, -) is proportional
to the top order curvature measure ©%(C,-). For the proof of Theorem [G.I5] we first establish an
anisotropic extension of the Minkowski—Hsiung formulae for arbitrary sets of positive reach, which is
provided in Theorem 6.8 and adds to several previous versions available in the literature (see [Koh94l
Theorem 3.4], [Fu98, Corollary 3.4], [Hu99, Theorem 2.42]). It is interesting to notice that the
hypothesis in (2] is preserved for limits of sequences of smooth sets satisfying a positive lower bound
on the reach; see Lemma and Corollary [6.131 Henceforth Theorem [Al might be helpful to study
global geometric properties of limits of smooth almost k-th mean convex sets. We remark that if C'
is a smooth set, then the hypothesis in (2) is redundant, because the existence of an elliptic point in
combination with the continuity of the principal curvatures guarantees the non-negativity hypothesis
in ). This is a classical argument outlined in [Ros87]. In the general situation of Theorem [A] we do



not have any continuity for the curvature functions and it is unclear whether the hypothesis in (2]
can be relaxed further (beyond the mean convexity assumption of Theorem [G.13]).

If the assumption (@) is strengthened to include also the condition that @i, x(C, ) is a non-negative
measure, then we obtain the following version of Theorem [A] which is a special case of Theorem [6.16]
In the statement of the result, we use the ¢-curvature measures Cf(C’, ), j €10,...,n}, of C, which
are the Radon measures on R"! that are obtained as the image measures of the generalized curvature
measures @f(C’, -) under the projection map p, that is, Cf(C’, )= @f(C, - X OW?).

Theorem B (cf. Theorem B18). Let k € {1,...,n}, and let C C R™*! be a set of positive reach
with positive and finite volume. Assume that

@fiﬂ-(C, -} is a non-negative measure for i =1,...,k (3)

and
ij—k(ca ) =AC%(C,:) for some \ > 0.

(nt1L"H(C)

Then C is a finite union of rescaled and translated Wulff shapes of radius P C)

In the particular case where C is a convex body (and condition (3) is automatically satisfied
as pointed out above), Theorem [Bl has already been established in [Hu99, Theorem 2.43]. In the

framework of convex bodies the single measure on the left side of the hypothesis Cf:_k (C,)y = \CL(C,-)
can even be replaced by a non-negative linear combination of curvature measures Cf:_ x(C,-) with

k €{1,...,n}. Related stability results have been proved in [Hu99, Theorems 2.47 and 2.48]. In fact,
the results in [Hu99l Section 2.7] completely establish (in generalized form) Conjecture 8.2 stated in
[AW21)].

Theorems [A] and [B] can be seen as measure-theoretic versions of the soap bubble theorem. Em-
ploying the notion of pointwise curvature in Alexandrov points, we obtain the following differential-
geometric version.

Theorem C (cf. Corollary [BI8). Suppose that k € {1,...,n}, A€ R\ {0} and @ # C C R""! is a
set of positive reach with positive and finite volume such that H™(OC \ 0°C) = 0. If k = 1 we allow
A€ R. Assume that

hgi(a) >0 fori=1,....k—1 and for H" a.e. a € A(C) and (4)
hgk(a) =X for H" a.e. a € A(C).

Then C' is a finite union of rescaled and translated Wulff shapes of radius
H'F[p(N(C) \ N2(0))] = 0.

The hypothesis H"™(OC \ 9C) = 0 is equivalent to require that P(C) = H"(9C), where P(C) =
H™(0*C) is the Euclidean perimeter of C; see Corollary 510l Hence the condition P(C) = H"™(9C')
is an alternative way to say in a geometric-measure theoretic sense that 0C' encloses C. As mentioned
in the first paragraph of this introduction, this is a fundamental prerequisite to obtain soap bubbles
in arbitrary dimension and without any topological assumptions, from the hypothesis that one of
the mean curvature functions is constant. The hypothesis H™(9C \ 0"C) = 0 implies that H" a.e.
a € p(N?(C)) is an Alexandrov point (see again Corollary[5.10). Based on the disjoint decomposition

%&;(C) , provided that

P(N?(C)) = p(N(C)) Up(N?(C) \ N(C) and  p(N:(C)) Np(N?(C)\ N(C)) = 2,

provided in Theorem 5.0 the set p(N¢(C)\ N2(C)) can be seen as the set of singular points of C.
Consequently, the hypothesis H"~* [p(]vd’(C) \ ]\7,?(0))} = 0 is (in general) a sharp assumption on
the smallness of the singular set. For & = 1 the example of the union of two congruent spherical
caps shows that the condition on the Hausdorff measure cannot be relaxed. On the other hand,
for k = n the examples of peaked spheres (see [GHMI3|] and [FLWI9, Section 2 and Theorem 15]),
including as a special case a set resembling an American football [FLWT9, Section 4], demonstrate
that the condition on the Hausdorff measure is sharp. (The construction of corresponding examples
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for 1 < k < n seems to be an interesting problem.) In this sense, Theorem [C] can also be seen as a
result on removable singularities.

We remark that the class of sets of positive reach (with finite and positive volume) satisfying the
assumption H"(OC' \ 9"C') = 0 not only includes all sets that can be locally represented as epigraphs
of semiconvex functions (in particular all convex bodies), see Lemma [620, but it includes many
other examples of sets whose boundaries are not topological manifolds. One such example can be
constructed by reflecting around the z-axis in R? the set {(x, f(z)) : x € R}, where f : [a,b] — Ris a
non-negative smooth function such that f(a) = f(b) = 0, lim, 4+ f'(2) = 400, lim,p— f/(z) = —c0
and {f =0} is a Cantor set of £!-measure zero (in this case dC \ 9°C = {f = 0}).

We conclude this introduction with a few comments on some lines of research, which are naturally
related with the results of the present paper.

It is well known that the soap bubble theorem also holds for smooth hypersurfaces in Riemannian
manifolds of constant sectional curvature, where the bubbles are realized by geodesic spheres. This
was proved long ago by Alexandrov [Ale62] for the mean curvature case by means of his celebrated
method of moving planes, and extended by Montiel-Ros in [MR91] to the case of higher-order mean
curvature functions employing the integral-geometric approach. Looking at more general Riemannian
spaces, soap bubble theorems in warped product spaces have been the subject of intensive research in
the last two decades. In this direction a fundamental contribution is made by the work of Brendle in
[BreI3], where it is proved that a compact and embedded hypersurface with constant mean curvature
in a suitable class of warped product spaces is a slice; in a subsequent work [BEI3] Brendle and
Eichmair treat the case of constant higher order mean curvature hypersurfaces under special convexity
hypothesis. In the smooth setting stability results for the aforementioned soap bubble theorems are
currently subject of intensive research; see [CRV21] and [SX22] and the references therein.

While in these investigations the smoothness assumption is crucial, it is natural to aim at exten-
sions of the results of the present paper to non-Euclidean ambient spaces in a non-smooth framework
as well. In this respect, several important foundational investigations should be mentioned. Wal-
ter (see his survey of related work up to 1981 in [Wal&1]), Kleinjohann [KIS(, [KI&1] and Bangert
[BaT8al [Ba78bl Ba79l [Bal2] studied intensively notions of convexity, sets with the unique footpoint
property and regularity properties of the associated normal bundles in general Riemannian spaces. In
his PhD-thesis (1988) Kohlmann (see also [Koh98a]) considered Alexandrov’s soap bubble problem
for general convex sets in constant curvature spaces via curvature measures, but in the non-Euclidean
case his methods did not allow to resolve the important mean curvature case. Sets with positive
reach and curvature measures have been intensively studied in Euclidean space (see [RZ19] and the
works cited there). In the Riemannian setting, the theory of curvature measures and its connection
to valuation theory is currently developed; see, e.g., the recent contribution by Fu and Wannerer
[EW19]. It remains to be explored whether some of these curvature measures can be used for ob-
taining uniqueness results as considered in the present work. Important structural information about
sets with positive reach in Riemannian spaces, such as upper curvature bounds and characterization
results, has been derived by Lytchak [Ly04], but a complete structural description of general
sets with positive reach is not even available in Euclidean spaces so far. However, useful foundational
results on distance functions, cut sets and curvatures in Riemannian spaces (or, more specifically, in
Cartan-Hadamard manifolds) can be found in the recent works by Kapovitch and Lytchak [KL21]
and by Ghomi and Spruck [GS22].

The present work is mainly motivated by classical problems in differential geometry and the
calculus of variations. However, local Steiner formulas and differentials of basic geometric functionals
of convex bodies, as considered here for more general classes of sets, also play a crucial role in the
Brunn-Minkowski theory [Sch14] and its applications. These formulas naturally lead to the curvature
measures, which are a major topic of the current investigation, but also to surface area measures,
quermassintegrals, and to L, Orlicz and dual versions of these fundamental functionals and measures.
We refer to the seminal work by Huang, Lutwak, Yang and Zhang [HLYZI6], where several new
measures are introduced and connections to classical geometric measures are explored. In [HLYZ16]
then all these measures are combined in the investigation of associated Minkowski problems, which

have received much attention in recent years (see, e.g., [BLYZ13| [BLYZ13, [BHP1S8| [HLYZ18| LYZ1S,



2 Preliminaries

2.1 Notation and basic facts

In general, but with few exceptions explained below, we follow the notation and terminology of [Fed69]
(see [Fed69), pp. 669-676]). In particular we adopt the terminology from [Fed69) 3.2.14] when dealing
with rectifiable sets.

If X is a topological space and S C X, then we denote by int(S) the interior part of S, by 95 the
topological boundary of S and by clos(.S) the closure of S; moreover, the characteristic function of S
islsg. FQC X xY and S C X, weset QS = {(z,y) € Q:x €S} We denote by e a fixed scalar
product on R"*! and by | - | its associated norm. Hence S"™ = {x € R"*! : |x| = 1} is the Euclidean
unit sphere. The maps p : R"! x R*"*!1 — R"*! and ¢ : R"*! x R"*! — R"*! are the projection
onto the first and the second component respectively, i.e. p(z,n) = x and gq(x,n) = 7.

If S C RP and a € RP, then we denote by Tan(S, a) and Nor(S, a) the tangent and normal cone of
S at a (see [Fed69l 3.1.21]). Always following [Fed69] we use the symbol Tan™ (H™ L S, a) for the cone
of all (H™ S, m) approzimate tangent vectors at a (see [Fed69l 3.2.16]). For an (H™,m) rectifiable
and H™ measurable set S C RP, the cone Tan™(H™ L S,a) is an m-dimensional linear subspace for
H"™ a.e. a € S. Each Lipschitz function f : RP — R? has at H"™ almost all points of ¢ € S an
(H™ L S,m) approzimate differential apD f(a) : Tan™(H™ L S,a) — RY (see [Fed69] 3.2.16, 3.2.19]).
If this approximate differential exists, for k € {1,...,m} we define the (™ L S, m) approximate k-th
Jacobian of f aat a as

ap Ji; f(a) = || A, ap D f(a) || = sup{|[Ay apD f(a)](€)] : € € Ay Tan™ (H™ L S,a), [€] =1}, (5)

where A,apD f(a) : A, Tan™(H™ L S,a) = A, R? is the linear map induced by apD f(a) (see
[Fed69, 1.3.1]). The norms |-| on the right-side of (Bl denote the norm induced on A, Tan™ (H™ L S, a)
and /\, R? by the inner products of Tan™(H"™ L S, a) and R, respectively (see [Fed69, 1.7.5, 1.7.6]).
The approximate Jacobian of a Lipschitz map will be repeatedly used in this paper in applying the
following version of Federer’s coarea formula for Lipschitz maps on rectifiable sets, for which we refer

to [Fed78| pp. 300-301].

Lemma 2.1 (Federer). If W is an (H™,m) rectifiable H™ measurable subset of RP, f : W — R4
is a Lipschitzian map, k € {0,...,m} and S C RY is a countable union of Borel subsets of R? with
finite H* measure, then

/ 6(x) ap YV f(z) dH™ (z) = / / () dH™ () dH* (y)
Wnf=1(S) SJIwnf=r({y})

for every H™ measurable function ¢ : W — [0, 00].

Following Federer [Fed69, page 15] we denote by A(n,m) the set of all increasing maps from

{1,...,m} into {1,...,n}. We now introduce the k-th elementary symmetric functions. For x =
(x1,...,2n) € R"and k € {1,...,n}, we define
Sk(w) = Z A1) TA(R)- (6)
AeA(n,k)
Then

Iy :={xeR":S(x)>0,...,5(z) >0}
is an open convex cone whose closure is the (pointed) closed convex cone
Ip:={xeR":S(x)>0,...,S(z) >0}

with apex 0 (see [TW99, Section 2, page 582] or [Sal99, Proposition 1.3.2]).

For a vector x with positive components the next lemma is well known. In the present more
general form, it is in fact harder to find an explicit reference.



Lemma 2.2. Let k € {1,...,n}. If x € T, then

Si : S; o
( ,@) z( J,@) for1<i<j<k
(7) (5)
Proof. See [Sal99, Proposition 1.3.3 (4)]. We indicate an alternative argument here. First, Newton’s
inequality holds for any # € R", as shown in [Ro89]. Let So(z) := 1 and E,(z) := S,(x)/(T) for

r=20,...,k. If z € Ty, then the asserted inequalities can be obtained (as usually) by repeated
application of Newton’s inequality Ey(1)Ep2(z) < E¢(7)? via

Sl

1:[ (Ee(2)Brpa() ™t < [[ Be(2)* forre{l,....k—1}.
(=0 (=1

Since I'j, is the closure of the open convex cone I'}, the assertion for z € I', follows by an obvious
approximation argument. O

2.2 Multivalued maps

A map T defined on a set X is called Y -multivalued, if T'(x) is a subset of Y for every x € X. If
T (z) is a singleton, with a little abuse of notation we denote by T'(x) the unique element of the set
T(x) CY. Suppose that (X, || -||) and (Y,]| - ||) are finite-dimensional normed vectorspaces and T is
a Y-multivalued map such that T'(x) # @ for every z € X.

(1) We say that T is weakly continuous at x € X if and only if for every e > 0 there exists § > 0
such that if y € X and ||y — z|| < J, then

T(y) CT(@)+{veY || <e}
if, additionally, T'(x) is a singleton, then we say that T is continuous at .

(2) We say that T is strongly differentiable at x € X if and only if T'(x) is a singleton and there
exists a linear map L : X — Y such that for every € > 0 there exists d > 0 such that if y € X,
ly — z|| < ¢ and w € T(y), then

lw—T(z) — L(y — 2)[| < elly — =f|;

cf. [KS21] Definition 2.28]. The linear map L is unique (cf. [KS2I, Remark 2.29]) and we
denote it by DT'(x). Moreover we denote by dmnD T the set of points x € X at which T
is strongly differentiable. In the following, we simply write “differentiable” when we actually
mean “strongly differentiable”.

The following general fact on the Borel measurability of the differential of a multivalued map will be
useful.

Lemma 2.3. Let (X, -||) and (Y, - ||) be finite-dimensional normed vectorspaces, and let T be a
Y -multivalued weakly continuous map such that T'(x) # & for x € X.

Then {x € X : T(x) is a singleton} and dmnDT are Borel subsets of X and DT : dmnDT —
Hom(X,Y) is Borel measurable.

Proof. We define U = {x € X : T(x) is a singleton} and the function diam : 2¥ \ {@} — [0, 0] by
diam S = sup{||y1 — y2|| : y1,y2 € S} for every S € 2Y \ {@}. Noting that diamoT : X — [0, +o0] is
upper semicontinuous, we conclude that U = { € X : diam(7T'(x)) = 0} is a Borel subset of X.

For positive integers i, j € N we define

1 1
Cij = {(x,L) €U x Hom(X,Y) : ||lw—T(z) — L(h)|| < =||h|| for ||h]| < = and w € T'(z + h)}
¢ J
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We prove that Cj; is relatively closed in U x Hom(X,Y'). By contradiction assume that C;; is not
closed. Then there exists (x¢, Lo) € (U x Hom(X,Y))\ C;; and a sequence (zy, L) € C;; converging
to (20, Lo). Hence that there exist hg € X with [|ho| < % and wg € T'(xo + ho) such that

1
llwo = T(x0) = Lo(ho)ll > ~llhol.

We define hy = xo + ho — x for k > 1 and select kg > 1 so that [|h] < % for k > kg. Since
(xk, L) € Cij, ®o + ho = x + hy, and wo € T'(xy + hy) for k > 1, we infer that

1
llwo — T(xk) — Li(hy)]| < Z||hk|| for k > k.
Noting that T'(z) — T(x¢) and hj, — hg as k — oo, we deduce that
1
lwo = T(0) = Lo(ho)ll < ~lholl,

and we obtain a contradiction.
Let G := {(#,DT(z)) : ® € dmnDT} and 7x : X x Hom(X,Y) — X, nx(z,T) = z for every
(z,T) € X x Hom(X,Y). Noting that

G=) U Cijs
i=1j=1
we infer that G is a Borel subset of U x Hom(X,Y). Since 7x|G is injective, we obtain from [Fed69]
2.2.10, bottom of page 67] that {x € dmnDT : DT (z) € B} = nx(GN (X x B)) is a Borel set in X
if B C Hom(X,Y) is a Borel set, which implies the remaining assertions. O

Remark 2.4. The case of single-valued continuous functions is treated in [Fed69, page 211] with a
similar proof.

The following elementary lemma will be useful in Section

Lemma 2.5. Let U C R* be open, let F : U — RF be differentiable at a € U, and assume that
DF(a) : R* — RF is invertible. Let V. C RF be open with x = F(a) € V and assume that
G :V — RF is Lipschitz. Further, assume that F(U) CV and Go F = Idy. Then G is differentiable
at z and DG(x) =D F(a)~ L.

Proof. Let v € R¥. Let e > 0. Then there is some § > 0 such that if £ € R with 0 < [¢| < §, then
a+tveU and

= Tip(G)’

—DF(a)(v)

‘F(a—i—tv)—F(a)
t

Then we obtain

t t
‘G(F(a +tv)) — G(F(a) +tD F(a)(v)) ‘
t
F(a+tv) — F(a)
t

_ ‘ G(F(a) +tD F(a)(v)) — G(F(a) G(F(a+tv)) — G(F(a))

IN

Lip(G) - ‘ —DF(a)(v)| <e.

Since D F'(a) : R* — RF is invertible, this shows that if w € R*, then

G(z + tw) — G(x)
t

lim
t—0

~DF@ w)| =0
and hence G is differentiable at  with D G(z) = D F(a)™1. O
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2.3 Norms and Wulff shapes.

Let ¢ be a norm on R"'. We say that ¢ is a C*-norm if and only if ¢ € CF(R"+!\ {0}). We say
that ¢ is uniformly convez if and only if there exists a constant v > 0 (ellipticity constant) such that
the function R"™! 3 u +— ¢(u) — y|u| is convex. If ¢ is a uniformly convex C*-norm then

D? ¢(u)(v,v) = ylv?

for all w € R""! with |u| = 1 and for all v € R"*! perpendicular to u. In the following, a compact
convex set with non-empty interior will be called a convex body. The symmetric (with respect to the
origin 0) convex body B = {z € R"*!: ¢(x) < 1} is the unit ball or gauge body associated with ¢.
Conversely, the gauge function (norm) of B is just ¢, i.e.

9(B,x) = gp(z) = ||z||p := min{\ > 0: 2z € AB} = ¢(z).

For a compact convex set @ # K C R"™ we write hx = h(K,-) for its support function, which is
defined by h(K,z) := hx(x) := max{z ez : 2 € K}, and we denote by K° := {z € R"™ : r ey <
1 for y € K} the polar body of K. Note that K° is again a convex body if the origin o is an interior
point of K. Hence we have
¢ =gB = hpe
(see [Schi4l Section 1.7.2, page 53]).
For any norm ¢ we denote by ¢* the conjugate norm of ¢ which is defined by ¢*(u) = sup{vew :

¢(v) = 1} for u € R™1. Then we also have
¢* =hp = gpe.

It is well known that if ¢ is a uniformly convex C2-norm then ¢* is a uniformly convex C2-norm. In
geometric terms, this is equivalent to the property that B and B° both have a boundary of class
C? and positive Gauss curvature everywhere (we then say that these bodies are of class Cf_) In
particular, the spherical image map (Gauss map) up : OB — S™ is a diffeomorphism of class C*
whose inverse is given by the restriction of Vhg to S™. We refer to [DRKS20, Lemma 2.32] for this
and other basic facts on ¢ and ¢* and to [Schi4] Section 2.5] for the relations between smoothness
properties of B and B°. These facts will be tacitly used throughout the paper.
We define the Wulff shape (or Wulff crystal) of ¢ as

W? ={zeR": ¢*(z) <1} = B°.

Hence, if ¢ is a uniformly convex C?-norm, then the Wulff shape of ¢ is a uniformly convex set with
Ci boundary. In this case the exterior unit normal (spherical image) map of W¢ is the map

n? : oW? — S™; (7)

we remark (see [DRKS20, 2.32] or [Schl4l Section 2.5]) that n® = upo is a C!-diffeomorphism onto
S™ and
Vé(n®(z)) =z for x e OW?, n?(Vo(u)) =u for u € S™. (8)

Since D(V@)(u) e u = 0 for u € S™, we notice that
Tan(S", u) = D(Ve)(u)[Tan(S™, u)] = Tan(dW?, Vo (u)).

Moreover, we have ¢(n?(x)) = n?(x) e z for x € OW?. We also point out (cf. [DRKS20, Lemma
2.32(f)]) that the compositions of the gradient maps V¢ : R"*1\ {0} — dB° and V¢* : R"T1\ {0} —
0B satisfy the relations

V¢* o V¢|8B = IdaB and V¢ o V¢*|330 = Idé)BO . (9)

2.4 Distance function and normal bundle

Warning. In this paper we occasionally refer to [KS21]. However, notice that in this paper we use
the same symbols with a different meaning (the roles of ¢ and ¢* are changed). Hence the definitions
below have to be compared carefully with those given in [KS21, Sections 1 and 2].

12



Convention. If ¢ is the Euclidean norm, then the dependence on ¢ is omitted in all the symbols
introduced below.

Let @ # A C R"! be a closed set, and let ¢ be a uniformly convex C?-norm on R"*!. The
¢-distance function Jﬁ : R — R is defined by

Jﬁ(z):min{(b*(zfc) cc€ A =min{A\>0:2 € A+ \B°} for x € R, (10)
Next we define the level and sublevel sets at distance r > 0 with respect to 6?3 by
S(A,r) ={z e R :6%x)=r} and  B?(Ar) ={zeR":8%(x) <r}.

For a € R""! we set B?(a,r) = B?({a},r) = a+rB°. Moreover, an open neighborhood of A is defined
by U%(A,r) = {z € R : §%(z) < r} = int(B?(A,7)), and again we set U?(a,r) = U({a},r).
Clearly, 6ﬁ is a Lipschitz map; moreover it is a classical fact that 765’3 is semiconvex on R"*1\ B®(A4,r)
for r > 0; (cf. [KS2Il Lemma 2.41(b)] and the references therein).

The nearest ¢p-projection Eﬁ : R™ — 24 is the A-multivalued map defined by

() ={ce A:8%@x) = ¢*(x — )}  forxze R

This is a weakly continuous map by [KS21, Lemma 2.41(f)]. By Unp®(A) we denote the set of all
z € R"1\ A such that there exists a unique point ¢ € A with ¢*(z — ¢) = 8%(z), i.e., Unp®(4) =
{z e R\ A: ’Ho(éi(x)) = 1}. For = € Unp?(A) we simply write fﬁ(x) =cif fﬁ(z) = {c}. Notice
that Unp?(A) is a Borel subset of R"! by Lemma 23 (see [HLO0, Lemma 3.12] for a more general
fact). Tt is well known that R"1\ (AUUnp?(A)) equals the set of points in R"1\ A where §% is not

differentiable (cf. [KS21, Lemma 2.41(c)]. Moreover, R"1\ (AU Unp?(A4)) can be covered outside a
set of H™ measure zero by a countable union of n-dimensional graphs of C2-functions; for the proof
of this result one can proceed as in the Euclidean case which is treated in [Haj22].

The ¢-Cahn-Hoffman map of A is the 9AV?-multivalued function l/i R\ A — 20V’ defined
by
vi(x) = 8% (z) " (& — €5(x)) for z € R"1\ A. (11)

Next we introduce the map 9% : R\ A — 24 x 20W° by
P () = (€5(x),vi(x)  forze RM\ A
Recall the relations
VoS (x) = Vo' (z — €5(x)) € IW? and  V¢(V%5(2)) = v (z) € IWV? (12)

for z € Unp?(A), cf. [KS21, Lemma 2.41(c)] (but recall that the notation and in particular the roles
of ¢ and ¢* are changed in comparison with [KS21]). The equivalence of these two relations can be
seen from (@). It follows from [DRKS20, Lemma 2.32] or from (I2]) and basic properties of strictly

convex bodies that Vﬁ(l‘) ° V&f‘f1 (z) = qﬁ(V&ﬁ(z)) =1 for z € Unp?(A).
The ¢-unit normal bundle of A is defined by

N?(A) = {(x,n) € A x OWV? : 8% (x + rn) = r for some 7 > 0} = {%(2) : z € Unp?(A)},
and we set
N?(A,x) = {n € dW?: (x,n) € N°(A)} forze A.

We recall (cf. [DRKS20, Lemma 5.2]) that N?(A) is a Borel subset of R"*1 x R"*! and it can be
covered up to a set of H™ measure zero by a countable union of n-dimensional graphs of C!-functions;
moreover we have

N?(A) = {(a, Vé(w)) : (a,u) € N(A)}. (13)
The ¢-reach function of A is the upper semicontinuous (see [KS21, Lemma 2.35]) function rﬁ :

N?(A) — (0,+0oc] given by

% (a,n) = sup{s > 0: 8% (a + sn) = s} for (a,n) € N?(A), (14)
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and the ¢-cut locus of A is given by
Cut?(A) = {a+ rﬁ(a,n)n : (a,m) € N¢(A)}.

The strict convexity of ¢ implies that R™*\ (4 U Unp?(A)) C Cut?(A); see Lemma 2.41 (c) and
Remark 4.1 in [KS21] as well as further references given there. Moreover Cut?(A) is always contained
in the closure of R"*1\ (AUUnp?(A)); cf. [Fr97, Theorem 3B]. We recall that (cf. [DRKS20, Remark
5.10])

L (Cut?(A)) = 0. (15)

On the other hand, the closure of R"*1\ (AU Unp?(A)) might have non-empty interior even if A is
the closure of the complement of a convex body with C1'-boundary (see [San21] for this and other
critical examples). If A is convex, then Cut?(A) = @. A related function which will be useful in the
sequel is defined by

p%(z) = sup{s > 0: 6% (a + s(x — a)) = s6%(2)} for z € R"1\ A and a € €5 ().

This definition does not depend on the choice of a € £ﬁ($) and the function pﬁ R\ A = [1

is upper semicontinuous; cf. [KS21, Lemma 2.33]. Notice that {z : p%(x) > 1} C Unp?(A)
Lemma 2.33 and Remark 4.1 in [KS21] and

+o0]
(see

rf‘(a,n) = Tpﬁ(a +rn) for (a,n) € N¢(A) and 0 <r < rf‘(a,n), (16)

as shown in [KS21, Lemma 2.35].
The following two results from [KS21], which we recall here for the ease of the reader, plays an
important role in the next section. The norm ¢ is always assumed to be uniformly convex and C? in

R\ {0}.

Lemma 2.6 (cf. [KS21, Corollary 3.10]). Let @ # A C R"! be closed, 1 < A\ < o0, 0 < s <t < o0,
i Ay ={z e R"\ A: ph(z) > N, s < 8%(x) < t}.
Then £ﬁ|A>\157t is Lipschitz continuous.

Before we can state the next result we need to recall from [KS21] the reach-type function ﬂ :
N?(A) — [0, +oc] defined by

LY A, N B(a+ 1, p))

® _ . @ : o npP))
7“_14(a,77)—sup{ar.a>1,0<7°<7“A(a,77),plir(l)aJr o (Bla ) =1,U{0},
where A, = {p% > o}. Notice that 7% (a,n) < r%(a,n) for every (a,n) € N®(A); see [KS21, Remark
4.10]. This function plays a central role in [KS21] in the study of the structure of the set dmnD %
which coincides with the set of twice differentiability points of 64 by [KS2I, Lemma 2.41(e)]).

Lemma 2.7 (cf. [KS21 Theorem 1.5]). If @ # A C R""! is a closed set, then
Lntt (R"""1 \ (AUdmnD Vﬁ)) =0

and
{a+m:0<r< rﬁ(a,n)} C dmn(D I/ﬁ) for H™ almost all (a,n) € N?(A).

The function rﬁ is Borel measurable. Moreover, if a + sn € dmnDl/fZ for some s € (O,rﬁ(a,n)),

then a + 11 GalnDl/fi5 for allr € (O,ﬂ(a,n)). Finally,

rh(an) =ri(a,n)  for H" ae. (a,n) € N?(A).
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Lemma 2.8. Suppose @ # A C R"! is a closed set, ¢ : R"T! — R"*! is an arbitrary function
such that £(y) € £ﬁ(y) for y € R and

u(y) = Vo'l = EW). fory e R*TH\ A,

Ve (y —£(w)
For z € dmnDv%, r = 6%(x) and T = Tan(S?(A, r), z) the following statements hold.
(a) p%(x) > 1, imDvS(x) C T and D ()4 (x)) = 0.

(b) The maps D(Ve)(u(z))|T and Du(z)|T are self-adjoint (with respect to the underlying scalar
product e) automorphisms of T,

D? 8% (z) (11, m)

Duﬁ(:c) =D(Ve)(u(z)) oDu(x) and Du(z)(r) e = 3 for i, eT.
|V (z) ()]
(c) There is a basis T1,...,T, of T of eigenvectors 0fDVf§(x)|T and the corresponding eigenvalues
X1 <... < Xn OfDl/jZ(:L') are real numbers such that
1 1
1 <l a7)
(1= pl(x))r r

2.5 Boundaries and perimeter

Let AC R and a € A. For x € R"!, w € S™ and r > 0, we define the open halfspace through
x with (inner and outer, respectively) normal u by H'(z,u) := {z € R""! : (z — z) e u > 0} and
H™(z,u) := {z € R"™ : (z — x) eu < 0}. Following [Fed69 Section 4.5.5], we say that a vector
u € S™ is an exterior normal of A at a if

LY (HT (a,u) NU(a,r) N A)

rl—i>%1+ 7"”+1 =0
and
o Lontl (H_ (a,u) NU(a,r)\ A)
lim =0.
r—0+ rntl

Clearly, in this definition U(a,r) can be replaced by B(a,r) and the open halfspaces can be replaced
by the corresponding closed halfspaces. Recall also from [Fed69, Section 4.5.5] that if u and v are
exterior unit normals of A at a, then u = v. The set of points where the exterior normal of A exists
is denoted by 9™ A; we define n(A4,-) : ™A — S™ to be the Euclidean exterior normal map of A.
We extend this definition by n(4,z) = 0 for = ¢ 9™ A. Notice the equality n(W?,-) = n® on W?.

For an £"*! measurable set A C R™"! one can also consider the essential boundary 0*A; see
[AFP00, Definition 3.60]. Recalling the notions of approzimate discontinuity set S, and approximate
jump set J, of a function u € L (R"™1), see [AFP00, Definitions 3.63 and 3.67], we notice that
if A C R*! is an £™*! measurable set, then 0*A = S1, and 0™A = Jp,, and it follows from
[AFPQO0, Proposition 3.64] and [AFP00, Proposition 3.69] that ™A and 9*A are Borel subsets of
R"! n(A,-) is a Borel function and

OmAC O A.

Employing an argument similar to [Sanl9, Lemma 5.1], one can still prove that if A C R"*! is an
arbitrary set, then 9™ A is a Borel subset of R"*! and n(4,-) is a Borel function.

We recall that an £"*! measurable subset A of R"*! is a set of locally finite perimeter in R™+!
if the characteristic function 14 is a function of locally bounded first variation (see [AFP00, Chapter
3]). If A C R™*! is a set of finite perimeter, we denote by F A the reduced boundary of A (see [AFPQ0]
3.54]). An important result of De Giorgi, see [AFP00, Theorem 3.59], implies that

FACIO™A.
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A result of Federer (see [AFP00, Theorem 3.61]) yields that if A is a set of locally finite perimeter,
then

H" (0 A\ FA) =0. (18)

Another result of Federer (see [Fed69, Theorem 4.5.11]) implies that if A C R"*! and H"(K NJA) <

oo for every compact set K C R™*!, then A is a set of locally finite perimeter.

Definition 2.9. Let A € R™"! be a Borel set with locally finite perimeter, and let ¢ be a uniformly
convex C?-norm on R™"!'. The ¢-perimeter of A is the Radon measure P?(A,-) supported in 9A
such that

P?(A,S) = / d(n(A, z)) dH" (x) for Borel sets S C R"™.
SnomA

The total measure is denoted by P?(A, R"T1) = P?(A, 0™ A) = P?(A) € [0, 00].

Clearly, we have P?(A) > 0 if and only if H"(9™A) > 0.

The following lemma will be needed in Section We refer to this section and the references
provided there, for the definition and the basic facts concerning sets of positive reach.

Lemma 2.10. (a) If A C R""! is a Borel set of locally finite perimeter such that 0 < LPTH(A) <
00, then H"(FA) > 0.

(b) If A C R™*! is a set of positive reach, then H™"(K NOA) < oo for every compact set K C R,
and consequently A is a set of locally finite perimeter.

Proof. Noting [AFP00, Theorem 3.59] and [AFP00, Theorem 3.36], the statement in (a) directly
follows from the isoperimetric inequality in [AFP00, Theorem 3.46].
We now prove (b). We fix 0 < r < reach(A4) and note that S(A,7) is a closed C!-hypersurface and
& :=€4|S(A,r) is a Lipschitz map with £(S(4,7)) = OA. Since 9AN B(0,s) C (£~ HOA N B(0,5)))
and £71(OAN B(0,s)) C S(A,7) N B(0,r + s) for s > 0, we infer that
H"(B(0,8) NJA) < Lip(§)"H"(S(A,r) N B(0,s+1r)) for s> 0.

The right-hand side is evidently finite, since S(A,r) N B(0,s + r) is a compact subset of the closed
C'-hypersurface S(A, ). O

It will be sometimes useful to consider another notion of boundary: if A C R"*! is a closed set,
then we define the wviscosity boundary of A by

O"A={acdA:H'(N(A,a)=1}.

This is precisely the set of boundary points a € 9A for which there is a unique (outer unit normal)
vector u € S™ with (a,u) € N(A). For s > 0 we also define 9y A to be the set of points a € VA such
that there exists a closed Euclidean ball B of radius s such that B C A and a € 9B. We set

0vA=|]JorA

s>0
Remark 2.11. We notice that 01 A C 0™ ANp(N(A)) C 9"A and
N(4,a) ={n(A,a)} for a € 9M AN p(N(A)).

Moreover, N(R"*\int(A), a) = {—n(A,a)} for every a € 95 A. Finally, if s > 0 then ¢ A is a closed
subset of A and B(a — sn(A,a),s) C A for every a € 07 A.

The following lemma (or rather the consequence of it discussed in Remark [Z14]) will be relevant
in the special case of sets with positive reach in Section (see Remark [13)).

16



Lemma 2.12. Let A C R"*! be a closed set and x,y € OA. Let 0 < r < s/2. Suppose that u,v € S™
are such that

Bz —ru,7) CA, U(x+su,s)NA=0, Bly—rv,r)CA U(y+sv,s)NA=10.

ol < max 2(s —2r) 2 .
o=l < {7’(57’)7 7’(57’)}| yl

Proof. Since y € A, we have y ¢ U(x + su, s), hence |y — x — su|? > s2, which yields

Then

ly —2* + 5% —2s(y — ) e u > s°

or | 2
y—x
— < S 19
(- a) o< U (19)
By symmetry, we also have
(o —y)ov< TV (20)
- 2s
Noting that  — ru + rv € B(x — ru,r) C A, we conclude from (20) that
_ N2
(x—ru+trv—y)ev < 2=y +rv=w)
2s
1 2
< gle—ylP 4+ = o’ + S(w—y)e (v - ).
Exchanging  and y (and using (), we also get
= roru—a)eu< eyt Do+ ) e ()
—rvtru—z)eu < —|r— —lu—wv —(y—x)e(u—nv).
4 ~ 2s 4 25 S 4
Now we sum the last two inequalities to obtain
1 72 2r
@) ew—wtrio—uP < eyt Do + L)oo ),
and we infer i 5
r(lfz)|u—v|2§—|xfy|2+(17—r)|$*y||ufv|. (21)
s s s
If %|z —yP2 < (1 — il)|$ — y||lu — v|, then
2(s —2
uof? < 222200y
r(s—r)
If Yo —y> > (1 - 2)|z — y[|lu — v], then
2 < 2
lu—v|” < T(S_T)Iz yl,
which yields the asserted upper bound. O

Remark 2.13. For convex bodies, Lemma 2.12] is provided in [Hu99, Lemma 1.28] (see also [Hu96l
Lemma 2.1] for a less explicit statement and the literature cited there). In this special case, it can be
seen from (2]]) that the Lipschitz constant is bounded from above by 1/r (with s = 00).

Remark 2.14. For a closed set A C R and r,s > 0, let X, ;(A) denote the set of all a € A such that
B(a—ru,r) C Aand U(a+su,s)NA = for some u € S™. Then X, ,(A) C 9™A, for any a € X, 4(A)
the unit vector u is equal to n(4,a) (and uniquely determined) and {n(4,a)} = N(4,a) N S™. If
0 < r < s/4, then Lemma yields that n(A4, )| X, s(A) is Lipschitz continuous with Lipschitz
constant bounded from above by 3/r, since

2(s — 2r) 2s 2s 81 3

=0 =--<
r(s—r) ~ r(s—s/4) r%s 3r " r

and




3 A Steiner-type formula for arbitrary closed sets

Throughout this section, we assume that ¢ is a uniformly convex C?-norm. Recalling Lemma 2.7] we
start by introducing the following definition.
3.1 Normal bundle and curvatures

We start introducing the principal curvature of the level sets S?(A,r) of the distance function Jﬁ
taking the eigenvalues of the normal vector field l/i defined in equation ([T]).

Definition 3.1. Suppose @ # A C R™"! is closed, # € dmn(Dv%) and r = 8%(z). Then the
eigenvalues (counted with their algebraic multiplicities) of D Vﬁ(z)| Tan(S?(A,r), ) are denoted by

XL (@) < <X ().
Lemma 3.2. The set dmn(D l/jg) C Unp?(A) is a Borel subset of R"™! and the functions Xfl,i :
dmn(D l/jg) — R are Borel functions fori € {1,...,n}.

Proof. Let X be the set of all ¢ € Hom(R"", R"*!) with real eigenvalues. For each ¢ € X we define
Ao(p) < ... < A\u(¢) to be the eigenvalues of ¢ counted with their algebraic multiplicity, and then
we define the map A : X — R"*! by

A@) = (Ao(@), .- Anlp))  for pe X.

We observe that X is a Borel set and \ is a continuous map by [HMS87, Theorem A]. Moreover we
notice that dmn(D l/i) = dmn(D é’i) and that this is a Borel subset of R"*! by Lemma For
each 2 € dmn(D £%), we have D €% (z)(v% (x)) = 0 and 6% (z) - v4(z) = 2 — €% (z), hence

Xo(DEG(x)) =0 and Xi(DEG () = 1—6ﬁ($)Xﬁ7n+1_i($) >0 fori=1,...,n,

where also (I7)) was used. Since the map D&ﬁ : dmn(D é’i) — X is a Borel function, we obtain the
assertion. g

Remark 3.3 (cf. [KS2I, Lemmas 2.41 and 2.44]). Suppose @ # A C R is closed, € Unp?(A),
r=84(), 0 <t < Land y = €4(x) + trw(x) = €4(2) + 1z — €4(2). Then y € Unp?(4),
Tan(S%(A,r), ) = {v € R™! : v e V&% (z) = 0},

Vé% () = Vo4 (y) and Tan(S?(A,r),z) = Tan(S?(A, tr), y).
Remark 3.4. For (a,n) € N(A) and 0 < r < rﬁ(a, 1) we have
Tan(S?(A,r),a 4 rn) = Tan(OW?, 7).

Vﬁﬁ (a+rn)

Settlng u = m

, this assertion follows from Remark B3] noting that (see (8) and ([I2))

Vo(u) = Vo(VeS(a+m)) =n,  n’@n) =u

Lemma 3.5. Suppose @ # A C R"*! is a closed set, (a,n) € N?(A), 0 <r < s < rﬁ(a,n) so that
a+1rn,a+sne dmnDl/?} and 71, ...,7, € Tan(OW?, 7).

Then D Vﬁ(a—i—m)ﬁ- = xﬁyi(a—i—rn)n fori=1,...,n if and only if D I/ﬁ(a—l—sn)n = Xﬁﬁi(a—i—sn)ﬁ
fori=1,...,n, in which case it holds that

Xﬁﬂ-(a +17) B Xﬁﬂ-(a + s1m)
L—rXf(atrm)  1—sXG (a+sn)

fori=1,....,n.
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Proof. We define x = a+1n, y =a+snand t =< € (0,1). We notice that £ﬁ is differentiable at y
and
D gﬁ (y)l Tan(6W¢, 77) = IdTan(6W¢,n) —sD Vﬁ (y)l Tan(6W¢, 77)'

Let & : R"*1\ A — A be such that £(z) € £€5(2) for z € R\ A. Then define v : R"*1\ A — g9
by v(z) = 8%(2) " (2 — £(2)) for z € R™1\ A. Tt follows from the strict convexity of ¢ (see [KS21]
Remark 2.17]) that

v(E(z) +t(z —&(2))) = v(z) for z € R" ™1\ A.

Differentiating this equality in y, we obtain

Du(z) o [DE(y) + t(Idrn+r — DE(y))] = Du(y).
Assume now that Dv(y)r; = Xfm(y)n fori =1,...,n. Then
D& ()i =7 —s-Dvi(y)m = (1 - sx%. )7,
and hence we get
Xﬁﬂ.(y)ﬂ- =[1-(s— r)XfM(y)] Dv(x)T; fori=1,...,n.
Note that by ([B) we have p%(y)s — s > 7 — s, and hence by the lower bound in (I7) we get

T+ (r—s)X4,(y) > 14+ (r—s . =1 0
+(r—s)X5,(y) = 1+ ( )(1,pﬁ(y))s pﬁ(y)8*5>

that is, 1 — (s — T)Xﬁyi(y) >0 for i =1,...,n. We conclude that

X%
Dulair = Xa(ayme XGale) =y A,Z<)yX>¢ )
S=T)X4;

and . .
Xai(@) X ()
1— rXﬁﬂ-(ac) 1— sXﬁﬂ-(y)
for i =1,...,n (where this common ratio may be infinite).

The last paragraph shows in particular that D v(x)| Tan(d9W?,n) and D v(y)| Tan(0W?, 1) have
the same number k of distinct eigenvalues. Denoting by Ni(z),..., Ni(x) and Ni(y),..., Nk(y) the
eigenspaces of D v(z)| Tan(dW?,7) and D v(y)| Tan(0W?, n) respectively, we can also derive from the
last paragraph the inclusions N;(y) C N;(z) for i = 1,...,k. Since

Ni(y) @ -+ @ Ni(y) = Tan(OW?, 1) = Ni(z) © - - & Ni(x),
we conclude that N;(y) = N;(x) for i = 1,...,n and the proof is completed. O
Definition 3.6. Suppose @ # A C R"*! is closed. We define
N?(A) = {(a,n) € N®(A) : a + rn € dmn(D v%) for some r € (O,ﬁ(a,n))}

and
X% i(a+rn)

1 rXfLi(a +rn)

Hi,i(aan) € (—O0,00]

for (a,n) € N?(A), 0 < r < r%(a,n) with a + 7 € dmnDv% and i = 1,...,n. The numbers

Hﬁ Ja,m), i € {1,...,n}, are called anisotropic (with respect to ¢) generalized curvatures of A at
(a,n) or generalized ¢-curvatures of A at (a,n).
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Remark 3.7. Lemma [30] demonstrates that the definition of Ki ;(a,n) does not depend on the choice

of 7 and Lemma 77 implies that H"(N?(A) \ N*(A)) = 0. Moreover, Lemma 7 ensures that all
points of the open segment {a 4+ rn: 0 <r < rfl(a, 1)} are points of differentiability of uﬁ for every

(a,n) € N?(A); in other words,
N?(A) = {(a,n) € N?(A) :ﬂ(a,n) >0, a+ 1y € dmnD v for every r € (O,ﬂ(a,n))}.

Combining Lemma B2 and Lemma 27 it follows that N?(A) is a Borel subset of N®(A). Moreover by
Lemma[B2we deduce that the functions /iﬁJ- are Borel measurable. Since the eigenvalues Xﬁ, ;(a+rn),

1=1,...,n, are arranged in increasing order, we also have —oco < ﬁﬁ (a,m) <. < fﬁﬁ n(a,m) < oo.
Remark 3.8. Using (6], Lemma [Z7, Lemma 2.8 (a), (I7) and Definition B.6, we obtain that

< % :(a,n) < 400

for (a,n) € N°(A) and i =1,...,n.

Lemma 3.9. Let @ # A C R"*! be closed. Suppose 1; : N¢(A) — R, fori =1,...,n, are
defined so that 11(a,n), ..., T(a,n) form a basis of Tan(OW?, n) with

Dl/ﬁ(a—l—rn)(n(a,n)) :Xiﬁi(a—l—rn)n(a,n) fori=1,....n and0<r<ﬂ(a,n). (22)
Let (; : N¢(A) — R x R fori=1,...,n, be defined so that

(a _ (Ti (a’a 77)7 Hﬁ,i (a’a U)Ti (av 77)), if Hﬁ,i (av 77) < 00,
e = {(o,n<a,n>>, if 58 o(a,7) = +oo. 29

Let W C N?(A) be an H™ measurable set with H" (W) < oo. Then, for H"™ almost all (a,n) € W,
the set Tan" (H™ L W, (a,n)) is an n-dimensional linear subspace and (1(a,n), ..., C¢u(a,n) form a basis
of Tan"(H™ L W, (a,n)). Moreover,

|Tl(a’a77) AN Tn(aan)|
|C1(a’7n) AN Cn(aﬂm

ap J, p(a,n) = 1504 (am)

for H™ almost all (a,n) € W.
Proof. Assume that W C N?(A) is H" measurable with %" (W) < oo and A > 1. For r > 0 we define

W, = {(‘1777) ew: Tﬁ(aaﬁ) - ﬂ(avn) > /\7’},

which is an H"™ measurable subset of W. Furthermore, we denote by W the set of all (a,n) €
W, such that Tan"(H"™ LW, (a,n)) is an n-dimensional linear subspace and Tan(H"™ L W, (a,n)) =
Tan™ (H" L W,, (a,n)). Tt follows from [Fed69, 3.2.19] that H"(W, \ W) = 0. Moreover, by the
coarea formula there exists J C (0,00) with H!(J) = 0 such that H"(S?(A4,r) \ Unp?(A)) = 0 for
ré¢.J.

We fix r > 0, r ¢ J, and define

M, ={a+rn:(a,n) € W,.}.

It follows from (I8) that M, C {z € S(A,7) : p%(x) > A} (see also (B)); moreover, M, is H"
measurable. By Lemma [2.0] the function '¢ﬁ|MT is Lipschitz; moreover, we notice that Q/Jﬁ(MT) =W,
and (1,bfl|MT)*1(a,n) = a + rn for (a,n) € W,. We denote by M} the set of all x € M, such that

Tan(S?(A,r),z) is an n-dimensional linear subspace and Tan"(H" L M,,x) = Tan(S?(A,r),z). It
follows from Remark [33] and [Fed69) 3.2.19] that H"™ (M, \ M) = 0. We conclude that
H (W2 \ (W] N (M) = 0.
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Further, if (a,n) € (W N4 (M) N N?(A) it follows from [San20, Lemma B.2] and Remark 34
that {1(a,n),..., n(a,n)} is a basis of Tan(S?(A,r),a + 1),

D wﬁ (a + rn)[Tan(Sd’(A, r),a+rn)] = Tan" (H" L W, (a,n))

and

1 . )
Wg(a,n), if HA,i(a,n) < 0,
D% (a+ m)(ri(a,n)) = {1* % (@) o
;Ci(a” 77)) lf HA,i(a/’ 77) = +o00.

This proves that {(i(a,n),...,Cn(a,n)} is a basis of Tan" (H"™ L W, (a,n)) for H™ a.e. (a,n) € W, and
for every r ¢ J.

Since W\ Ur>0 W, has H" measure zero and W, C W, for 0 < s < r, there exists a sequence
ri N\ 0, 75 & J, so that W\ |J;2, W,,, has H™ measure zero, which completes the proof. O

Remark 3.10. The existence of a basis 71(a,7), . .., Tn(a,n) of Tan(dW?,n) such that ([22) is satisfied
is based on Lemma (c).

We now provide an alternative but equivalent description which leads to some additional infor-
mation that will be useful in the proof of Theorem B2 Let (a,n) € N?(A), r € (0,7%(a,n)) and

r=a+rn Let u:R" 1\ A — S" be the map defined in Lemma 28 and notice that u(z) = n®(n).
Hence we have Tan(OW?, 1) = u(z)t = {z € R"*! : z e u(z) = 0}. We define a symmetric bilinear
form (i.e. an inner product)

B, : Tan(OW?,n) x Tan(0W?, ) — R
setting
By(r,0) = Dn?(n)(r) e 0 = [D(Ve)(u(@))|u(z)"]7 () ¢ &
for 7,0 € Tan(OW?, ) = u(x)*. Using Lemma E§(b), we see that

B,(Dv4(z)(1),0) = Du(z)(r) e 0 = 7 @« Du(z)(0) = B,(1,Dv%(z)(0)) for 7,0 € u(x)*.

This shows that D uﬁ (z)|u(z)?t is self-adjoint with respect to B,. Hence there is an orthonormal basis

m1(a,n), ..., m(a,n) of u(z)t with respect to B, consisting of eigenvectors of Dv%(z). Henceforth
we can assume that 71(a,n),...,7(a,n) are chosen in this way.

We now consider the natural extension of the inner product B;, to the product space Tan(OW?, n) x
Tan(OW?, 1) = n®(n)+ x n®(n)* given by

En((7'170'1>, (TQ,O’Q)) = Bn(leo—l) —+ Bn(TQ,O'Q)

for (11,01), (12, 02) € Tan(OW?, 1) x Tan(dW?,n) and for every n € 9W?. With respect to this inner
product, the linearly independent vectors (i(a,7), ..., (a(a,n) from ([23) are pairwise orthogonal. Let
| - |, denote the norm induced by B, on A, (n?(n)* x n?(n)*), for m € {1,...,n}. Then using
continuity and compactness one can show that
0<c:=inf{|Al,: A€ A, (n’(n)" xn®(n)"),|A=1,n€ W’ me {1,...,n}}
< sup{|A|77 A€ Am(n¢(n)L X n¢(n)J‘) Al =1,n¢€ OW?. m e {1,.. ,n}} =:(C < o0.

Thus we obtain the inequality

1
|C1(a’7n) ARR /\Cﬂ(a’an” 2 6 |<1(a’777) AREN /\Cn(a777>|n
1
= 6|<1(a7n)/\/\Cm(avn)|n|<’m+1(a7n)/\/\C’ﬂ(avnﬂn
2
> Z[Glam) A AGn(@m)| - [Grer(am) A AGalan)] . (24)

which will be used in the proof of Theorem

21



In the following, it will be useful to distinguish how many of the generalized curvatures are finite
for a given (a,n) € N?(A).

Definition 3.11. Let @ # A C R"™! be closed. We define

N7(A) = {(a,n) € N*(A) : &% 4(a,n) < 00,65 41(a,n) =00} forde{l,...,n—1},

N§(A) = {(a,n) € N*(A) : k% 1 (a,n) = o0}
and

N2(A) = {(a,n) € N*(A) : k4 ,(a,n) < o0},

n

For a € A we set Kfj(A,a) ={n:(a,n) € ]\fo(A)} Moreover, for j € {0,...,n} we define the map
Ef% ;: N(A) - R by

p Z Hﬁﬁ,\(l) (aa 77) o Hiﬁ,\(j) (a’7 77)) if (a7 77) € Nj(A) and d > ja
EY j(a,n) = { reA(d.) N
0, if (a,n) € N?(A) and d < j,

and for j = 0 this means that Eﬁo = 1. Finally, for r € {0,...,n} we define the r-th ¢-mean
curvature of A as

T T
¢ ¢
H,, = Z Ei,j 117/;;”4(,4) - ZEA,PZ' 11\73;%(A)'
j=0 =0

Remark 3.12. The sets ]\fo(A) and functions H f:r introduced in Definition BT are Borel measurable
(see Remark B.7)). In particular, by definition we have Hﬁ,o =1g500a)

The next result will be used repeatedly in Section [@l in the special case of sets with positive reach.
We prepare it by recalling a fact from linear algebra, which can be easily deduced from the standard
spectral theorem (cf. [DRKS20, Remark 2.25]).

Remark 3.13. Suppose X is an n-dimensional Hilbert space, My, My € Hom(X, X) are self-adjoint
and M is positive definite. Then there exist C' € Hom(X, X) self-adjoint and positive definite, n real
numbers A\; < ... < )\, and an orthonormal basis v1,...,v, of X such that C' o C = M; and

(M7 o Ms)(C(v;)) = NiC(vy) fori=1,...,n.
Lemma 3.14. For every closed set @ # A C R™"*! the following statements hold.

(a) Suppose s,r >0, x € dmn(D I/i) NS?(A,r) and V is an open neighbourhood of x in R"*1 such
that U%(z — sv%(x), s) N S?(A,r) NV = &. Then

[V

Xﬁﬂ.(z)g fori=1,... n.

(b) If (a,n) € N%(A), a € Y A and r > 0 such that U?(a—rn,r) C int A, then (a,n) € N?(A) and

S =

K (a,m) <

(c) Suppose a € A\ 8°A, (a,n) € N?(A), W C R™ is an open set with a € W and f :
W N (a+nt) — R is a function such that f(a) = 0, f is continuous at a and graph(f) C A.
Then (a,n) € N?(A).

Proof. [(a)] Choose a function & : R"™! — R"*! with £(y) € ﬁﬁ (y) for every y € R"*! and define

u(y) _ v¢*(y - 5(:‘/)) for y c Rn+1 \ A.

- Ver(y — @)l
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Note that ([I2) and RemarkB3yield u(z) = |§Z"’E ;‘ Define the linear subspace T' = Tan(S?(A, r), x)

and the open convex set U = U?(z— sv%(x),s). Since 2 € dmn(D v%), recalling [KS21], Lemma 2.44],
we deduce that u(z) L T = Tan(0U,x) and there exist a relatively open subset W of x + T with
x € W and a continuous function f : W — R that is pointwise twice differentiable at x such that

f(x)=0,D f(x) =0

b
V&4 ()]

Let g : W — R be the smooth function such that g(z) =0, Dg(z) = 0 and {b— g(b)u(z) : b€ W} C
AU . Since u(z) e v%(x) = [V8%(x)|™" > 0 and U N S?(A,r) NV = @, we infer that f(b) < g(b) for
beW. Let v: 90U — S" be the exterior unit normal of OU and notice that v(z) = u(x). From
[KS21], Lemma 2.45] and Lemma [28(2b) we infer that

Du(z)(r)eT = D? flx)(r,7) < D? g(x)(1,7) =Du(z)(1) e T

for 7 € T. Recalling again Lemma [Z8(2b), we can apply Remark with the automorphisms
M, = D(V¢)(u(z))|T and My = Du(z)|T on T (and the induced scalar product of R"*1) to infer
the existence of a selfadjoint linear map C' : T — T and an orthonormal basis 71,...,7, of T
such that D(V¢)(u(z))|T = C o C and C(11),...,C(7,) is a basis of eigenvectors of D Vﬁ(:c)|T, ie.

D v (x)(C(mi)) = Xﬁﬂ-(x) C(m;) fori € {1,...,n}. Employing [DRKS20), Lemma 2.33], we notice that

{b— f)u(z):be W} C S?(A,r)NV and D? f(z)= D2 6% (z)|(T x T).

sTHC(T)? = (CT1 o D(Vgou)(x) o C)(1) ¢ 7 = (C™' o D(V)(v(w)) o Du(x) o C)(7) o 7
=(CoDu(z)oC)(1)eT=Du(x)(C(r)) e C(1)
>Du(z)(C(r)) o C(1) = C™ o D(Vhou)(x) o C)(7) o T
= (C oDv(x) 0 O)(7) @7

for 7 € T'. Evaluating this inequality at 7 = 7; for ¢ = 1,...,n we obtain the conclusion.

Choose 0 < s < rf‘(a,n). We observe that S?(A,s) NU%(a —rn,r +5) = @ and a + sy €

S?(A,s) N OB?(a —rn,r + 5). Since a + sn € dmnD l/jg and I/i(a + sn) =1, we can apply [(a)] with
z and s replaced by a + sn and r + s respectively, to conclude that

¢ 1
Xan(a+ sn) 1
X4, (a+sn) < and k% (a,n) = A’"d)( <= <t
We may assume that ¢ = 0, and we denote by 7 the orthogonal projection onto 7. We notice
that there is some s > 0 such that U?(—sn,s) N A = &. Then we choose 0 < r < inf{s, rﬁ(a, n)} and

we notice that U?(rn,r) N A = @. Set Uy = n(U?(—sn,s)) and let g : Uy — R be the continuous
function such that g(0) = 0,

{b4+gb)yn:be Uy} COU?(—sn,s) and U®(—sn,s) C{b+tn:t < g(b), be Uy}

Since U?(—sn,s) N A = @ it follows from the continuity of f at 0 that there is ¢ > 0 such that
g(b) < f(b) < % for every b € n with |b| < e. We can assume that W = {b € n* : |b| < €} C Up.
Since ) € dmn D v% it follows from [KS21, Lemma 2.44] that there exists an open neighbourhood V/
of rn in R"*! such that S?(A4,7) NV is equal to the graph of a continuous function. Therefore we
can choose V small enough so that (V) C W and

T
s v C{y:ly—rmen < % n?}.

We claim that [(S?(A,r)NV) —rn] NU?(—sn,s) = @. In fact, assume by contradiction that there is
some z € [(S?(A,7) N V) —rn] NU?(—sn,s). Then we obtain that

—+ °
r oz 7’2) n
2 Il

ponl <ol and S5 <g(n(2) < f(n(e) <
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It follows that 7(z)+ f (7 (z))n lies in the open segment joining z with z+rn. Since w(z)+ f(7(z))n € A
and z 4+ € S?(A,r), it follows that r = 5ﬁ (z+rn) < r, which is a contradiction. Now we can use
@ to conclude that

and nﬁyn(a,n) < < 00.

®» | =

XG4 () < P

O
Remark 3.15. Tt follows from LemmaB I that (N?(A)|8% A)\N2(A) € N¢(A)\N?(A). In particular,

H((N4(4)[07 A) \ N2(4)) = 0.

3.2 Steiner-type formula and disintegration of Lebesgue measure

The following result extends the Steiner-type formula from [HLO0O] (see also the literature cited there
such as [Sta79]) to the anisotropic setting.

Theorem 3.16 (Steiner-type formula for closed sets). Let @ # A C R™! be a closed set, let
TiyeooyTn and (1, . .., Cp be functions satisfying the hypotheses in Lemmal3d and let J be the function
defined on H™ almost all of N®(A) by

_ |Tl(a’a77) AN Tn(aan)|
|C1(a’7n) AN §n(aa77)|

Then the following statements hold.

J(a,n) € (0,00) for H™ a.e. (a,n) € N®(A).

(a) For0<s<ooand0<t<slet

Se={xeS?At): ph(x)>s/ty  and N, ={(a,n) € N°(4) : 7% (a,n) > s}.

Then H™ (NN (B x OW?)) < oo for every compact set B C R"*1 and '¢ﬁ|5§ is a bi-lipschitzian
homeomorphism with 1¥4[Sf] = N, and (14]S$)~ (a,n) = a + tn for each (a,n) € Nj.
(b) If r1,...,7),Cl, ..., C is another set of functions satisfying the hypotheses of Lemma[3d, then

(@) A AT (an)
Ci(am) A AC(an)]

for H™ a.e. (a,n) € N®(A). Moreover J is H™ L N®(A) measurable.

J(a,n)

(c) If p>0 and B C R"! is compact, then

/ inf{p, P4}/ J - |HY | dH" < oo (25)
N®(A)N(BxOW?)

forj=0,....,n and
/ (pop?)dLmt!
B?(A,p)

\A

~ 1 ¢ - é L g n

= . p(a,n) ¢(n®(n)) J(a,n) inf{p, 74 (a,n)}’ " HY ;(a,n)dH" (a,n) (26)
=0 1 Jnea)

or every bounded Borel function ¢ : R x R"T! — R with compact support.

J Y @ P PP

Proof. Fix s > 0 and a compact set B ¢ R"t!. We define B, = {z € R"" : §%(z) < t} for
t > 0. One can easily check that ¥%[S;] = N, ¥4|S; is injective and (4%]55) " (a,n) = a + tn for
(a,m) € N5y and 0 < t < s. Consequently ¢ﬁ|5§ is a bi-lipschitzian homeomorphism by Lemma 2.0l
for 0 < t < s. Moreover, we notice that

NN (B x OW?) Cy%(SinB,) Cyh(SinB,)  for0<t<s
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and infer that
H (N, N (B x OW?)) < Lip(4]S:)" H"(S?(A,t) N B,)  for 0 <t <s. (27)

Using the coarea formula, we get

/oo H(S?(A,r) N B,)dr = / J16% (2) dL™H (z) < oo,
0

BS

whence we infer that H"(S?(A,r) N By) < oo for £! a.e. » > 0. Consequently, there exists some
t € (0,5) so that H"(S?(A,t) N B,) < 0o, and hence (Z7) implies that

H™ (N, N (B x OW?)) < .

This proves@
For each 0 < s < s’ we define f, : Ny — R"™ by fi(a,n) = a+ sn for (a,n) € Ny. We apply
Lemma to compute

d
ap J,JZVS’fS(a,n) . lﬁj(A)(a’ n) = J(a, n)s"id < H(1 + S’ifx,j(a, 77))) 1;?/5(,4) (a,n) (28)
j=1

for H™ a.e. (a,n) € Ns. Since 1+ smﬁyi(a,n) >0 fori=1,...,n and for H™ a.e. (a,n) € Nas by
Remark B8 we conclude that

n d -1
J(a,n) = ap 3> fo(a,m) Y 84" ( [T +sk% ,(a, n))) Lo (ay(an)
d=0 j=1

for H™ a.e. (a,n) € Nas and for every s > 0. Noting that the right-hand side of the last equation does
not depend on the choice of 7, ..., 7, (1, ..., (, and defines an H"™ L N?(A)-measurable function, we

obtain @

We fix p > 0. Then we define
8(a,n) = inf{p,r4(a,n)}  for (a,n) € N?(A),

Q= {(a,n,1) : (a,n) € N®(A), 0 <t <7%(a,n)}
and the bijective (locally) Lipschitz map

f:Q—= R\ (AU Cut?(A)), fla,n,t) =a+tn for (a,n,t) € Q.
We choose an arbitrary sequence s; — 0+ and define
Q; ={(a,n,t): (a,n) € Ng,, O<t<rﬁ(a,n)} for 1 > 1.
Notice that Q@ = J;2, Q,
Tan" T (H T Ly, (a,m,t)) = Tan™(H" L Ny, (a,n)) x R for H" T ae. (a,n,t) €

and Tan"(H" L Ng,, (a,n)) is an n-dimensional linear subspace for H" a.e. (a,n) € Ny, by [Fed69]
3.2.19]. We apply again Lemma B0 for H"*! a.e. (a,n,t) € ©; and for every i > 1, to compute

1]?/5(,4)(‘1, n) - ap Jr?jﬁf(aﬂla t)

[ma,m) A - .. ATaa,n) /\nl -
1\, n n—d
=1z . t II (1+t¢
N;(A)(a’)n) |<1(0J,77) /\Cn(a 77 o + K‘A] a, 77))

d

71(a, Tn(a,n) An® B
— L) - (0 () o) IR O DA E (T 1414 )
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d
Lo (ay(@n) - d(n®(m)J (a,mt" = TT (1 + tw (0, m)). (29)

j=1

Note that
B?(A,p)\ (AUCut?(A) = f({(a,n,t) € :0 <t < p})

and recall that £ (Cut?(A)) = 0. Let h : R"t! — [0, 00) be a Borel function. Then we employ the
monotone convergence theorem, the coarea formula, Fubini’s theorem and ([29) to get

/ h(z)dL" ™ (x)
B?(A,p)\A

n 5(a,mn)
= lim / / h(a + tn) apJT?i fla,n,t)dtdH"(a,n)
l._mz; o ot o ( 11/ (a,m,t) (

5(a,mn) d
Z/N (A)¢ (n®(n J(mﬁ)(/o h(a +tn)t" H(lth’fﬁ,j(avn))dt) a1 (@), (30)

j=1
We notice the equality
d
" dHlthliA]a?] Zt" dﬂEAJan) (31)
j=1
for (a,n) € N;(A) and t > 0. If h(x) = (go 0 %)(x) for every 2 € Unp?(A) for some Borel function
o : R" x R" — [0, +00), then h(a +tn) = ¢(a,n) for every (a,n,t) € Q and we obtain from (B0)
and (BI)) that
/ (p o) dLm+t
Be(A,p\A

d
6a’77" d+j+1 "

B E% (a,n) dH"(a,n). 32

Z/N(A) J(a,m) n—d+j+1 4 (a.m) (a,n) (32)

Jj=

If BC R"" is a compact set, we can choose ¢ = 1, a¢ in ([B2) to infer that

d (5 a,n n d+j+1 ¢ N
J(a,n) Z dﬂ+1 EY ;(a,n) dH" (a,n) < o0 (33)

Jj=

/ﬁg’(A)m(Bxawab)

ford=0,...,n
We now proceed as in [HCWO04] to prove that for d = 0,...,n and [ = 0,...,d there exists a
constant &(I,d,n) > 0 so that

d
S(a, )=t ) o
j;o m Eﬁ,j(am) > c(l,d,n) 6(a,u) 4L |EA,1(‘1777)| >0 (34)

for (a,n) € ]\fo(A) For i =1,...,d and (a,n) € Nf(A) we define x; (a,n) = sup{ﬁAl(a 7),0} and
k; (a,n) = inf{ﬁﬁ,i(a, 7),0}. We set

J J
E]J'r(aa 77) = Z H Hir(h) (aa 77)) EI (aa 77) = Z H K;(h) (aa 77)
NEA(d,j) h=1 NeA(d,j) h=1

for (a,n) € N;b(A) and j = 0,...,d (notice Ef =1 and E° = 1). Weset k = n —d+ 1. For
(a,m) € N;(A) we observe that

j
Eﬁ]an:ZEl ]l(an) for j=0,...,d
1=0
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and, noting that Ef (a,n)E; (a,n) =0 for s >d — [ and —1 < 6(a,u)k; (a,n) <0fori=1,...,d by
Remark B.§ we employ [HLW04, Lemma 2.4] to conclude

d 5(a k+]
Z kﬂ % (a.m)

Jj=

5(a, )"+
K+

Il
<.
i Mg
[}
~ 7
I Mu
N (e}

B (a,m) B} (a,n)

5((1 n)kJrlJrs
k+1+s

d a 1
(a,m)5(a, ) (l_o Ao gy (a,m)

I
M=~

El_ (av U)E:r (av 77)

Il
=)
w
Il
=]

I
&
>+

@
i
o

E{ (a,n)d(a,n)**c(d, n, 5),

M-

@
i
o

where ¢(d,n, s) is a positive constant depending only on s, d and n. Since

d
sup §(a,m)'\E; (a,n)] < <l> fori=0,...,d,
(amENF(A)

we conclude that

d o(a 7] Yktd ¢ & d \ " .
>N B e = Y B @St edns) (1) B, (alatan
7=0 s=0

d
> 6(a,n)*e(l,d,n) > B (a,n)| B (a,n)]
s=0

> 6(a,n)*e(l,d ”)|EA1(‘1 n)l

for (a,n) € ]\fo(A) and [l =0,...,d, where &(l,d,n) = min {c(d,n, s)(lils)i1 :5=0,.. .,d} > 0.

Let B C R™*! be a compact set. It follows from (B3] and ([B34]) that

/JW(A) (BxoWH) o(n®(n)) J(a,n) d(a,n) 4T+t |Eﬁ7l(a7n)| dH™(a,n) < oo (35)
d n(Bx

for/=0,...,dand d =0,...,n. Since
n n d
S(a,n)* (a,p)"
Zﬁm{maﬁ | < Z d+j+1 [E (@) 150 4)(am),
i=0 d=0 j=0
where equality holds if the absolute values are omitted on both sides of this equation, we obtain (23])

from (BA). In addition, we conclude from (B2) that

/ (<P o "bﬁ) d£"+1
{zeR"1:0<8% (2)<p}

_ / FCCUECIRTED S %Hﬁﬁm(a, ) dH" (@)
N¢ —~ r
_ Z TL¢ (n)) J(a; 77) 5((],7 n)TJrl Hﬁ,r(av 77) AH™ (a7 7]) (36)

T—|—1 N¢(A)

for every bounded Borel function ¢ : R"*! x R"*! — R with compact support, where we use the
integrability property in (23] to obtain the equality in (B4]). O

It is convenient to introduce the following function.
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Definition 3.17. For every non-empty closed set A C R"™!, we denote by Jﬁ the H" L N?(A)
measurable function J introduced in Theorem [3.16

The arguments in the proof of Theorem [B. 16 readily provide the following change-of-variable-type
formula. This formula plays a central role in the proof of Theorem B.20

Corollary 3.18 (Disintegration of Lebesgue measure). Let A be a closed set, and let h : Rt — R
be a non-negative Borel function. Then

/ h(z) AL ()
R\ A

n Tﬁ(am) d
= Z/~¢(A) ¢(n?(n)) Jﬁ(a,n)/o h(a+tn) "= [T+ 6% ;(a,m)) dt dH" (a, ).

d=0" "N, j=1

Proof. During the proof of Theorem we have proved (see eq. (B0)) that

/ h(z) dL™ T (z)
B?(A,p)\A
d

n 5 " inf{p,r4 (a,n)} W é
:Z/ﬁm) $(n (n))JA(a,n)/O h(a+tn)t"~* T] (1 + &% ;(a,m)) dt dH™ (a, n)
d

d=0 j=1

for every p > 0. The conclusion now follows letting p — 4oc0. (|

3.3 A Heintze—Karcher inequality for closed sets

The following theorem provides a very general version of a Heintze—Karcher inequality under minimal
assumptions on a closed set and its complement. Several consequences will be derived for sets with
positive reach in Section

We start with a lemma.

Lemma 3.19. Suppose A C R"*! is a closed set, sy > 0 and rﬁ(a,u) > 59 for H™ a.e. (a,u) €
N®(A). Then {x € R" : 8% (2) < so} € Unp?(A).

Proof. Let 0 < s < so. Define Qf = {(a,n,t) : (a,n) € N®(A), 0 < t < inf{s,7%(a,n)}} and the
bijective map
f:Q:%{z:O<5ﬁ(z)<s}\Cut¢(A), fla,n,t) =a+tn.

Moreover we define Q, = Q* N {(a,7,t) : 7% (a,n) > so} and we notice that the hypothesis implies
H QI Q) = 0.

Consequently £7T1(f(Q2)\ f()) = 0 and, recalling that £*T'(Cut?(A)) = 0, we conclude that
f(y) is dense in {z : 0 < Jﬁ(:n) < s}. We choose now = € R"*! so that 0 < 5ﬁ($) < s and a
sequence (a;,1;,t;) € Qs so that a; + t;m; — x. Up to subsequences we can assume that there exist
a€ A, nedW?and 0<t<ssothat a; — a, n; — n and t; — t. Therefore = a + tn and

0 < &8%(x) = lim 6%(a; + tin;) = lim t; = ¢.

71— 00 71— 00

It follows that (a,7) € N?(A) and the upper semicontinuity of 4 implies that 7% (a,n) > so > s >t

and © € Unp?(A). In conclusion, we have proved that {z : éﬁ(z) < s} C Unp?(A) for every
0<s<sp. O

Theorem 3.20. Let C C R™"™ be a closed set with 0 < LT (int(C)) < oo. Let K =R\ int(C)
and assume that

im?i(a,n) <0 for H™ a.e. (a,n) € N®(K). (37)
i=1
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Then

(n+ 1)L (int(C)) < n/ J% (a, H)M dH"™(a,n). (38)

N () |H o (a,n)]

If equality holds in B8) and there exists ¢ < oo so that |H}?1(a,n)| < q for H" a.e. (a,n) € N?(K),
then there are N € N, ¢1,...,cy € R"™ and Ply--s PN > % such that

N
int(C) = U int(c; + pW?), int (ci + piW¢) N int (Cj + ij¢) =@ fori#j.
i=1

Proof. Note that (Z) implies that H"(N¢(K)\ N¢(K)) = 0.
For the proof we may assume that |H§; ((a,n)| > 0 for H™ a.e. (a,n) € N?(K), since otherwise
the inequality (B8] is obviously true (with strict inequality). By Remark we infer that

93 n n Ng)
ri(an) < ————— for H" a.e. (a,n) € N, (K)
H;)(J(avn)

and 1+ tm%i(a,n) > 0 for H"™ a.e. (a,n) € Kf,‘f(K), 0<t< r?}(a,n) and 7 = 1,...,n. Employing
the change of variable formula in Corollary BI8 (with A = 1) and the classical arithmetic-geometric
mean inequality, we can estimate

r? (am) ™
£ (int(C)) = /mm B(n? (1)) T4 (a. ) / T 1+ s s (aym)) dt dH™ (0, )

j=1
¢ 7’?((”’1”7) t ¢ n
<[ ewraan [T (14 1H @) dan )
N (K) 0

n

T H? na,n t n n
< [ et san [ RO (L HE an) drdi (o)
NZ(K) 0 n

o b )
RS /mm T gy T 39

We discuss now the equality case. We assume that |Hf(71(a,n)| < q for H™ a.e. (a,n) € N,f(K)
If (B8) holds with equality, then the inequalities in the derivation of ([B9) become equalities. In

particular, we deduce that
n

HK,1(aa77)

for H" a.e. (a,n) € N?(K) (40)

< |3

i (a,n) =

and the condition
Kyey(an) =... =k (a,n)  for H" ace. (a,n) € NS(K). (41)

Consequently, we infer from Lemma BT that {z € R : 6% (z) < i c Unp?(K), which means
that reach?(K) > 2 (see Definition B.I). We define £, = {z € R 6‘;}@) > r} for r > 0 and
notice that 0F, = S¢(K, r) for r > 0. We fix now 0 < r < %. It follows that OF, is a closed C11-
hypersurface by [DRKS20], Corollary 5.8] and X%l, . X%n are the anisotropic principal curvatures

of OF, with respect to the anisotropic normal 1/;’(|8ET (which points towards C). It follows from ([@0)
and [AI) that

1 1
¢ ¢
XS (2) = ... = X% (2) = > —(
! r—rpEx (@), vi() T
for H" a.e. © € OFE,; in particular, Xf(i(:c) <0Ofori=1,...,n and H" a.e. x € JE,. Hence, an
application of [DRKS20, Lemma 3.2]1 to each of the at most countably many connected compo-
nents of OF, shows that there exist at most countably many points ci, ¢z, ... € R**! and numbers

qr —n)*l
q

INotice that the last line of [DRKS20, Lemma 3.2] contains a typo: one should replace the equality M =
OBF (a,|A|71) with M = 8B (a, |A|~1), which is what the proof shows.
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A1, Ao ... > =10 g0 that

N
E. = U(cl + AW?) and (ci FAW) N (c; + AW =@ fori# 7,

1=

—_

where N € N U {oo}. Since £ (int(C)) < oo, it follows that N < co. If i € {1,...,N} and
z € OW?, we have
V(S?;(Ci + )\lz)
V8% (i + Xiz)]

and, noting (&) and ([I2)), we conclude

= —n%(2)

2= Vo(n?(2)) = —Vo(VI% (ci + Niz)) = —vi(ci + Niz).
For 0 < s < r we define the bilipschitz homeomorphism f, : OE, — OF,_ by fs(x) = — suﬁ (z) for
x € OF,. Then we get

N
fslei + )\Z-(?W¢) =c¢+ N+ 5)8W¢ fori>1, OE,_, = U (Ci + (N + 5)8W¢)

i=1

and
(ci + (Xi + )W) N (e + (N + 8)OW?) =@ for i # j.

Consequently, for 0 < s < r,

N
E._s= U (ci + (N +5)W?), (ci+ N+ W) N (¢j+ (N +s)W?) =2 for every i # j.
i=1
and the proof is complete. O

3.4 A general disintegration formula
For the next definition we need to recall that if A is a closed set in R*t! and a € A, then the set
Dis(A4,a) := {u € R"" : §4(a +u) = |u|}

is a closed convex set (see [Fed59, Theorem 4.8 (2)] or [MS19]). If X is a convex set, then dim X
denotes the dimension of the affine hull of X.

Definition 3.21. Let @ # A C R""! be a closed set and i € {0,...,n + 1}. We define the i-th
stratum of A as .
A% = {a e A:dimDis(A,a) =n +1—i}.

Remark 3.22. Evidently, we have A = [J/7} A® and A+D) = A\ p(N(A)). Noting that N(A,a) =
{u/]u| € S™ : u € Dis(A, a) \ {0}} for every a € p(N(A)), we can easily deduce from (T3] that

A(i):{aeA:0<’H"7i(N¢(A,a))<oo} fori=0,...,n.

We recall that A is a countably i-rectifiable Borel set which can be covered outside a set of ‘-
measure zero by a countable union of C?-submanifolds of dimension i, for i = 0,...,n; see [MS19].

Lemma 3.23. If @ # A C R""! is a closed set, m € {0,...,n} and S C R""! is a countable union
of Borel subsets with finite H™ measure, then

H((N?(A)AN\UL_ NP (A) =0 forj=0,....n (42)

and
H'((N*(A)AD NS \U NP(A) =0 for j > m. (43)
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Proof. Recall that Ny = {(a,n) € N?(A) : rﬁ(a,n) > s}, for every s > 0, has finite H™ measure on
each bounded set (see Theorem B.I0) and therefore is (H™, n) rectifiable.

Fix j € {0,...,n — 1} and notice that H7*1(AW)) = 0. Therefore we can apply Lemma 2] to
conclude that

/ apJYpla,m) dH (0, = [ HPTII(N[{a}) dH(a) = 0
N.|AG AG)

for every s > 0. It follows that ap ijflp(a,n) =0 for H" a.e. (a,n) € Ny|AY) and s > 0. We infer
from Lemma that

K4 i (am) =+oo  for H" ace. (a,m) € N?(A)|AD),

which is precisely the assertion in ([@2).

If m = 0, then S is a countable set and H"(N?(A,a)) = 0 for every a € AY) and for every j > 1.
This implies @) for m = 0. Fix now j > m > 1. Noting that H"~"™(N?(A,a)) = 0 for a € AY) we
apply again the coarea formula in Lemma 2] to obtain

/ ap JNep(a, 1) dH" (a,17) = / H (N, {a}) dH™ () = 0
N |SNAG) SNAG)

for s > 0. As above this implies that fﬁjm(a, n) = +oo for H" a.e. (a,n) € N?(A)|AU) N S, which is
equivalent to the assertion in (43). O

Remark 3.24. If A, m and S are as in Lemma [3.23] then
Hfffm(a,n) = 1];,3;(14)(@,77) for H" a.e. (a,n) € N®(A)|AM™),
H?  (a,n)=0  for H" ac. (a,n) € N°(A)|AD) and j <m
and _
H?  (a,n)=0  for H" a.e. (a,n) € N®(A)|(AY N S) and j > m.
Lemma 3.25. For every closed set A C R the following statements hold.
(a) HO(N?(4,a)) €{1,2} for a € p(N(A)).
(b) H™ ({a € Alm) c yn=m(N?(A,a) \ N,ﬁ(A,a)) > 0}) =0 form e {0,...,n}.

(c) H"(p[N?(A) \Kf,‘f(A)D = 0; in particular, H'(N?(A,a)) € {1,2} for H" a.e. a € p(N?(A)).
(d) N?(A,a) = —N?(A,a) for a € A with H'(N?(A,a)) = 2.
(€) 17 X = p(N*(4) \ N¢(A)) 1 p(NL(A), then H(N*(4)|X) = 0.

Proof. (a) Let (a,n) € N?(A) and 0 < r < r%(a,n). Then 1 —rxﬁﬂ.(a—i—m) >0fori=1,...,n and,

since these numbers are the eigenvalues of D €% (a + rn)| Tan(S¢(A, r),a + 1), we conclude (noting

Remark B4 and [Fed69] 3.1.21])

Tan(OW?, ) = D &4 (a + rn)[Tan(S®(A,r),a + )] € Tan(4, a).
Since N(A4,a) C Nor(A,a) € Nor(OW?,n) and dim Nor(OW?,n) = 1, it follows that HO(N?(A, a)) €
{1,2} and|[(a)]is proved.

(b) First, let m € {1,...,n}, define P = |J,_,, Nf(A) and recall that A(™ is a countably m-
rectifiable set (see above). For s > 0 define N, as in Theorem .16 and set W, = [N, \ P]|A™), which
is an (H",n) rectifiable set. Noting from Lemma B9 that ap JVp(a,n) = 0 for H" a.e. (a,n) € Wi,
we conclude from Lemma 2] that

o H (N Hah) \ (P{z})) dH™ () = 0,
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and thus we infer that
Hm ({z € A ynm (N, {z}) \ Pl{z}) > 0}) —0.

Furthermore, we have

{w e AT 1 (ND(A )\ (PHa})) > 0} = [ J{z € AU o H (NG Hah) \ (P{a}) > 0}

=1

for any positive sequence s; N\, 0. Since also H"(N?(A,a)\ N?(A,a)) = 0 for a € A®, we obtain

that
H™ <{a e Am)  qn-m (N¢(A,a) U Nf(A,a)) > o}) =0 (44)

for m € {0,...,n}. Now let m € {0,...,n — 1}. Since by Lemma [3.23 it holds that

n

w(ewian U 8w) <o

i=m-+1

an application of the coarea formula in Lemma [2.1] yields that

H T <N5|{x} N U N?(A, z)) dH™(x) =0 for every s > 0,
Alm)

1=m-+1

whence, as above, we infer

H™ ({a e Am) ; qn-m <N¢(A,a) N Lnj Nf(A,@) > o}) =0. (45)

i=m-+1
Now the assertion follows from ([@4]) and (45).
Since p(N?(A)) = Uy AD, H(AD) = 0 for j € {0,...,n — 1} and p[N?(A) \ N2(A)] =
p(N?(A)) N {a: HO(N?(A,a) \ N¢(A,a)) > 0}, we conclude that [(¢)] directly follows from [(B)] with

m=n.

(d)] The cone {tu : t > 0, u € N(A,a)} is convex for a € p(N?(A)). Consequently, we have
N(A,a) = —N(A,a) for a € A with HO(N(A,a)) = 2. Since V(N (A,a)) = N?(A,a) for a €
p(N?(A)), we conclude that N?(A,a) = —N?(A,a) for a € A with HO(N?(A,a)) = 2.

@ Finally, let X be the set defined in @ Employing again the sets Ny as defined in Theorem
B.I6l we notice that ap JN*p(a,u) > 0 for H" a.e. (a,u) € N?(A) and, by the coarea formula and
(c), we get

/ - ap J°p(a,n) dH" (a,n) =0
(N, ANE(A))X

for every s > 0. It follows that H"(N¢(A)|X) = 0. Since by [(a)| and [(d)] we have that
NO(A)|X = (N(A)|X) U{(a,—n) : (a,m) € N(A)|X},
we obtain@ 0

Remark 3.26. If A C R"*! is a convex body (with non-empty interior), then H°(N?(A,a)) = 1 for
every a € p(NZ(A)).

We now prove a very general disintegration formula. This result, which is of independent interest,
plays a key role in the proof of Corollary [6.I8 through Lemma [6.0] and the subsequent Lemma [6.7

Theorem 3.27. Let & # A C R"! be a closed set and m € {0,...,n}. Then there exists a positive
real-valued H™ . N?(A) measurable function pﬁ’m on N?(A) such that the following statements hold.
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(a) 0< piﬁm(a,n) < c for H" a.e. (a,n) € N?(A), where ¢ depends only on ¢ and n.
(b) If m € {0,n} or if ¢ is the Euclidean norm, then pjm(a, n) =1 for H™ a.e. (a,n) € N(A).

(c) For every Borel set B C R"" with o-finite H™ measure it holds that
Hﬁ,n—m (a’? 77) 1N¢(A)|B(a’) 77) = 1N,‘¢L(A)|(A(m)ﬂB) (a” 77) (46)

for H™ a.e. (a,n) € N®(A)|B and
/  Lp{amoln® () 5 a.m) HY 0. 1" (0.1)
/ / (0, )d(n® (1)) s . (0 m) dHP"(n) dH™ ()
BNnA(m) N¢(Aa)

for every Borel set D C R™! x R*t1,

Proof. Since N?(A)|B = Uj—o(V ¢(A)|(B N AW)), the equality in (@B) follows from Remark B2
Since the case m = 0 is easy to check directly, we assume that m > 1 in the following.
Let 7; : N?(A) — R"! and ¢; : N?(A) — R"! x R"! be the maps defined in Lemma
for i = 1,...,n. For (a,n) € N?(A) we define T(a,n) to be the lincar space gencrated by
Gi(a,n),...,Cula,n) and we notice that

1= [[plT (@™ = A, (pIT (@) |

Gla,m) A A Gm(a,m) e, ) A AT (a,n)]
’/\mp(Kl (a,m) A -ACm(a,U)I)‘ S a@m A Aem@n)] (47)

for (a,n) € N%(A). Therefore we define

J4(a,n)
0% (@) = ¢ (A @IT (@ )|
1 for (a,n) € N?(A)\ N%,(A).

for (a,n) € N§,(A),

Notice that piﬁn(a,n) =1 for H" a.e. (a,n) € N®(A) by Lemma E3
If me{l,...,n— 1}, we combine

|7'1((177]) A /\Tn(a’an” S |7-1(a’577) A /\Tm(aﬂm ' |Tm+1(av77) AU /\Tn(aﬂm

(see [Fed69, 1.7.5]) with the estimate in ([24) from Remark B.I0 to get

o [Ti(a,m) A ATa(a,m)| [Gila,n) A AGn(a,n)
Paim @) < E @y A A Ca@m)] [ @) A A )
C |Tm+1(aa77)/\"'/\7-n(aan)|

c? |CM+1(a7n)/\/\Cﬂ(a’an)| B c?

for (a,n) € ]V,?L(A), which provides the required finite upper bound with constants 0 < ¢ < C' < o0
depending only on n, ¢.

Let Ns be the set defined in Theorem for s > 0. By Lemma B3 we have ap JY=p(a,n) =
| A (PIT(a,m))|| for H™ a.e. (a,n) € Ny, for s > 0. An application of the coarea formula shows that

/ $(n?(n) J4(a,m) 1p(a,n) Lgs 4 (a,n) dH" (a,n)
Ng|(BNA(m)

-/ ] o(n® (1) 1 (0L 1) (@) Lo (a,m) M~ (a, ) dH"™ (a)
BnAM JN.np-1({a})
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for s > 0. Applying the monotone convergence theorem in combination with Lemma 25 (b) and
(g, we obtain

/ 1p(a, m)(n®(n) T4 (arn) HY . (a,n) dH" (a,1)
Né(A)|B

= /~¢ P(n®(n)) 4 (a,n) 1p(a,n) dH" (a, )
N (A)|(BnAGm)

=[] omP el e Lola,m) a0 a0
BNA(M) JNE (A,a)

— [ st )k e o) 4R ) 4 @),
BnA(m JN¢(A,a)

Finally, suppose that ¢ is the Euclidean norm. Then {(x1)(a,n) A ... A Cygmy(a,n) : A € A(n,m)}

is an orthogonal basis of A, T(a,n) for every (a,n) € N(A). Fix now (a,7) € N2(A) and £ €
N, T'(a,n) such that

) g)\(l)(aa 77) AN C/\(m) (aa 77)
|§)\(1)(aa 77) ARRRA C/\(m) (aa 77)' .

€l =1 and £= Z Cx

AEA(n,m)

It follows from the orthogonality that |cyx| < 1 for every A € A(n,m). Therefore, denoting with
Ao € A(n,m) the map such that A\o(z) = ¢ for every i € {1,...,m}, we notice that

7_1(0’577) AL /\T’m(a’an)
|§1(aan) AN Cm(aan”

/\mp(f) = Cxo

and we infer in combination with (@) that

— |T1(a’777> AL /\Tm(aﬂm.
|C1(a’a77) AT /\C’m(aan”

I\ (PIT(a, )|

We can now easily conclude that giﬁm(a, n) = 1 for every (a,n) € N2 (A) is a suitable choice. O

3.5 Relation between Euclidean and anisotropic curvatures
We consider the map
T:R" x oW? - R™ x S, (a,n) — T(a,n) = (a,n®(n)).

By equation () in the introduction, T is a C!-diffeomorphism whose inverse is T~1(a, u) = (a, Vo(u))
for (a,u) € R"*! x 8", In particular, D T'(a,n) : R x Tan(dW?, ) — R"! x Tan(S", n?(n)) is
an isomorphism and

DT (a,n)(r,v) = (1,Dn?(n)(v)) for (r,v) € R""! x Tan(dW?,n).

As already recalled in (I3]), we have T(N?(A)) = N(A).

Remark 3.28. Suppose X is a normed vector space, i is a measure over X and f,g: X — Y are
functions differentiable at a. If the m dimensional density of p{x : f(z) # g(z)} is zero at a, then
D f(a)(v) =Dg(a)(v) for every v € Tan™ (i, a),
where Tan™ (p, a) is the cone of the (1, m) approximate tangent vectors of u at a (see [Fed69, 3.2.16]).

One can check this remark from the definitions.

The following result expresses the mean curvature functions Hi, i lge = Eﬁﬁ i g (A) in terms
of the Euclidean generalized curvatures £4,1,...,k4,, of A.
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Theorem 3.29. Let a#AC R be a closed set, and let ¢ be a uniformly conver C? norm.
Then H™(T(N, (A))ANd(A)) =0 ford=0,...,n. Moreover, if e1,...,en : N(A) = R"1 are
maps such that

Dva(a+ru)(ei(a,u)) = Xai(a+ru)ei(a,u) fori=1,....,n, 0<r <rala,u) and (a,u) € N(A),

then

Eﬁj(a n) Z (HHA A ( )))

AEA(n,j)

x (:/\D(ng)(nd)(n))(ex(i)( ) /]\ ex) (T >

i=1

for H™ a.e. (a,n) € NS(A) and j € {1,...,n}.

Proof. Given the maps ey, ..., e, as in the statement of the Theorem, we define the maps z; : N(4) —
Rt x R**! fori=1,...,n, so that

zi(a,u) = {(ei(a,u), Kai(a,u)ei(a,u)), if kai(a,u) < oo,
(AN (O,ei(a,u)), if HA,i(a,u) = +o00.

Then we choose the maps 71,...,7, and (1, ..., (, as in LemmaB9 Notice that ey (a,u)....,e,(a,u)
form an orthonormal basis of Tan(S"™,u) = Tan(OW?, Vo(u)).

Suppose W C N?(A) is H™ measurable and H"(W) < oo and define W* as the set of (a,n) € W
such that

Tan™ (an LW, (a’ 77)) = Span{cl (aa 77)’ ceey gn (aa 77)}

and
Tan"(H" . T(W),T(a,n)) = span{z1(T(a,n)),...,zn(T(a,n))}.
Since T is a bi-lipschitz map it follows from Lemma [B.9 that H™(W \ W*) = 0. Fix now (a,n) € W*

and define V' = ker[p| Tan" (H" L W, (a,n))], d = n — dimV, V' = ker[p| Tan" (K" . T (W), T (a,n))]
and d' =n — dim V’. By [San20][Lemma B.2] we infer that

D T'(a,n)(Tan" (K" L W, (a,1))) = Tan™ (K" L T(W), T (a,n)),

whence we can easily deduce that DT (a,n)(V) = V'. This implies in particular that d = d’. Conse-
quently it holds that

T(W* N N2(A)) C Ng(A) and  Ng(A) NT(W*) C T(N?(A))

for every d = 0,...,n. Since N?(A) is a countable union of " measurable sets W with finite H"
measure, we conclude

H™(T(NJ(A)ANg(A)) = 0.

For » > 0 we define
Qr = {(a,n) € N?(A) : 7% (a,n) =7, 7a(T(a,n)) > 1}

From the upper semicontinuity of rﬁ and 74 (see [KS21, Lemma 2.35]) it follows that @, is relatively
closed in N?(A) (in particular it is a Borel set) and H" L Q, is finite on compact sets by Theorem
BI6(a). Notice that Q. C Qs is s < r and |J,.Qr = N?(A). In addition, for 7 > 0 we define Q7
as the set of all (a,n) € Q, such that r4(a,n) = ra(a,n), the n-dimensional density of H™ L (R"T! x
Rn+1) \ Qr is zero at (aa 77) and Ta‘nn(Hn LQr, (a’a n) = hn{cl (aa 77)’ R gn(aa 77)} By Lemma B9
[Fed69l 2.10.19] and Lemma 277 it follows that H"(Q, \ Q) = 0 for every r > 0; moreover, one can
check directly from the definitions (see [Fed69l 3.2.16]) that Q* C Q% if s <.
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Fix now (a,7) € NJ(A)NT~(Ng(A)) NQ: for some r > 0. For s > 0 define L, : R"! x V¢ —
R" by Ls(a,n) = a+ sn®(n). Choose a function u : R"*! — R"*! such that u(x) € va(z) for
every v € R""1\ A. For 0 < s <r,

(Voouo Lg)(a,n) = q(a,n) =n for (a,n) € Qs

and Voouo Ly is differentiable at (a,7) by Remark[B7 Remark B28yields D(Vgpouo Ly)(a,n)(§) =
q(§) for £ € Tan"(H" L Qs, (G,17)). Hence, for 1 < i < d and s < r we compute

[D(Ve)(n?(#)) o Dua + sn® ()] (ri(a,0) + sx ;(a,7) Dn®(0)(ri(a, 7)) = &5 (@, )7, 7). (48)
Noting that

sDu(at sn¢(ﬁ))<2 [Dn®(3)(ra(a, ) » €5 (7@, )] ej(T(d,ﬁ)))

.y D n?(4)(7:(a, 7 (6, 7)) — 4 T@ D) o —0

- S; [ n (n)(Tl(a’n)) b e]( (a”n))} 1 + SHAJ'(T(&, 77))6.7 a,n as s
and

sDu(a+ sn¢<ﬁ>>( S [Dn?(3)(ri(a ) o e (T(a, )] e; (Ta, ﬁ)))
j=d+1
= > [Dn?()(7i(a,n)) o e;(T(a,9))]e;(T(a,)) for s >0,
Jj=d+1
we conclude from ([@8)) that
lim [D(Ve)(n? (7)) o Du(a + sn®(9)] (ri(a, 7)) (49)
= k% (@, m)ri(a, n)
—K4,(a,1) Y [Dn?()(ri(a, 7)) e e;(T(a,9))] D(Ve)(n® (7)) (e;(T(a,7)))
j=d+1

for i <d.

Now choose d = n in the previous paragraph and define the linear maps T, : Tan(OW?, 7)) —
Tan(OW?,h) by
Ty = D(V¢)(n? (i) o Du(a+ sn®(7)
and Ty : Tan(OW?, 7)) — Tan(dW?, 1) by To(ri(a, 7)) = &% ,(a,7)7(a,7) for i = 1,...,n. Denoting
by || - || the operator norm, we notice that sup . ||T5]| < oo and Ty(v) — To(v) for each v €
Tan(OW?.5) by @J). Therefore, lims_,, || Ts — Tp|| = 0 and by continuity

Hﬁyj(d, 7]) = trace (/\jTo)
= trace (/\J 21_% T;) = 21_% trace (/\st)-

Q>
=
~
~

>

m

Computation of the trace (/\st) by means of the orthonormal basis {/\g:1 exq) (T'(
A(n,j)} of A\, Tan(OW?, 1), we get the conclusion. O

4 Differentiability of the volume function

In this section, employing the Steiner-type formula from the previous section, we study the differentia-
bility properties of the (localized) parallel volume function V' of an anisotropic tubular neighbourhood
around an arbitrary compact (closed) set. In particular, we obtain an expression for the left and right
derivative of V in terms of the anisotropic curvatures of the compact set and we deduce a geometric
characterization of the differentiability points of V. The results of this section extend [HLW04, eq.
(4.5) and (4.6), Corollary 4.5] and complement some of the results in [CLV21], see also Remark .4l

below and the preceding work [Sta76, RW10, Wil9].
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Remark 4.1. Notice that if p > 0, y € S?(4, p) and a € £f‘(z), that is, a € A and ¢*(y —a) = 6i(y),
then
U®(a,p)NS?(A,p) =@ and B%(a,p) C B*(A,p).

Hence we deduce that p(N(B?(4,p))) = 0"B?(A, p) = 0% B?(A,p) and the function u defined in
Theorem 3] satisfies u(x) = n(B?(A4, p), z) for every x € 3 B?(A, p).

The following auxiliary result is used in the proof of Theorem 3l At the same time it provides
an interesting insight into the nature of the cut points in Cut?(A) N Unp?(A). In fact, in this regard
we recall that there are closed (compact) sets A C R™! such that H"[S?(A,p) \ (0B?(A,p) U
Unp?(A))] > 0 for some p > 0; for instance, let A C R? be the union of two parallel lines (segments)
at distance 2 and p = 1. In view of these simple examples, the second equation in (B3) (which
holds for every p > 0!) is quite surprising since Cut?(A4) N Unp?(A) can be a much larger set
than R™*1\ (A U Unp?(A)). In fact, since R"*1\ (4 U Unp?(A)) is always an n-dimensional set
(see section ), it follows from the example in [BHOS| that the set Cut®(A) N Unp?(A) can be an
(n + 1)-dimensional set!

Lemma 4.2. Let A C R""! be a closed set and p > 0. Let f, : N®(A) N {ri > pt — S?(A,p) be
defined by f,(a,n) = a+ pn. Then

Fo(N?(A) N {r > p}) = S°(4, p), (50)
Fo(N?(A) N {rf} > p}) = 9y B(A, p) C S?(A, p) N Unp?(A), (51)

S?(A,p) N Unp®(A) C OB?(A,p), H"(S?(A,p) N Unp®(A)\ 9L B%(4,p)) =0, (52)
9YB?(A,p) N Cut?(A) =2 and H"(S®(A, p) N Unp?(A) N Cut?(A4)) = 0. (53)

Proof. We start with (50). “C”: Let (x,7) € N®(A) N {r% > p}. Then 8% (z +tn) =t for 0 < t < p,
hence also for t = p since 6% is continuous. Thus, f,(z,1) € S?(A, p).

“27: Let 2z € S?(A4,p), that is, 6?1(2:) = p and there is some z € A with ¢*(z — ) = p. Set
n=p Yz —x). Then ¢%(x +tn) = z for 0 < t < p by [DRKS20, Lemma 2.38 (g)]. It follows that
(x,n) € N(A), v (x,n) > p and f,(z,7) = 2.

Next we deal with (5I). Let (z,7) € N®(A) N {r% > p}. Then f,(z,n) € S?(A, p) by @). Since
rﬁ (x,7n) > p it follows from (I that pi(:ﬁ—i—pn) > 1, and therefore also f,(z,n) = x+pn € Unp?(A).
This yields f,(N?(A) N {r% > p}) € S?(A, p) N Unp?(A).

Now we show that f,(N?(A) N {rﬁ > p}) = 0YB?(A,p) by proving two inclusions. “C”: Let
(r,m) € N*(A) N {rﬁ > p}. In view of Remark BTl it suffices to show that = + pn € dB?(A, p). For
this, choose p € (p, rﬁ (z,m)). Then we have already shown that = + pn € S?(A, p) N Unp?(A) and
clearly Eﬁ(m + pn) = x. We now claim that 52(%47/3) (x + pn) = x + pn, which will imply the required
inclusion. Since

t4+pme@+pn+ (5—p)B)NBY(Ap)  and  (¢+pm+(5—p)int(B°) N B(A,p) = 2,

we get x + pn € £§¢(A7p)(:c + pn) and 5f;¢(,47p)($ +pmm)=p—p>0. Let z € §§¢<A7p)(x + pn) be
arbitrarily chosen. Then

ze€(@x+pn+(p—p)0B°)N(a+ pdB°) for some a € A

and
(x+ pn+ (p— p)int(B°)) N (a + pint(B°)) = @.

Hence z = a+ pm = .+ pn + (p — p)nz for some 11,12 € IB°. Since B° is smooth and strictly
convex, it follows that 7, = —n9. This implies that a = x + pn + pns € ﬁﬁ (x 4+ pn), thus @ = z and
1n = —n2 = 11, which yields z = x + pn.

“2": Let z € 05 B(A, p). Then there is some z € A with

z€x+pB° C B?(A,p) and z e S%(A,p).
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Furthermore there are y ¢ B?(A, p) and € > 0 such that
z€y+eB° and (y + eint(B°)) N B?(A, p) = @.
This implies that Jﬁ(y) = p + €. Moreover,
pte<o’(y—z) <9 (y—2)+¢"(z—x) <e+p,

and hence ¢*(y —x) = p+e¢, ¢*(y —z) = € and ¢*(z — x) = p. Since ¢* is strictly convex, we also get

y—z = s(z — x) with some s > 0 and therefore z = ﬁer 152 Weset n= (p+e)~Hy—=x) € 0B°

and thus get 8% (y) = 6% (x + (p + €)n) = p + e. From [DRKS20, Lemma 2.38 (g)] we now conclude
that (z,n) € N?(A) and rﬁ(m,n) > p+ e > p, which yields z = f,(z,n) € f,(N?(A)N {7“?31 > p}).

Now we turn to (GZ). We fix an arbitrary p > 0 and = € S®(A, p) N Unp?(A). Recall that Jﬁ
is semiconcave on R"*1\ B?(A,s) for every s > 0 (see section 24). Since = € S?(4, p) N Unp®(A),
the distance function Jf‘ is differentiable at « with 0 ¢ {V&ﬁ ()} = 85ﬁ (x), where we use that the
generalized subgradient coincides with the subgradient from convex analysis for semiconcave functions
(see [Ful5, Remark 1.4] and the references to [CI190] given there). Hence we infer from [Fu85, Theorem
3.3 and Proposition 1.7] that there exist €, > 0, v € S™ and a lipschitzian semiconvex function
f:z+ut — R such that

epl(f) N Ue,é(ma ’U,) = Bd)(Aa p) N Ue,é(xa ’LL) and gra‘ph(f) N Ue,ﬁ(ma ’U,) = S¢(Aa p) N Ue,ﬁ(ma u)

(One can easily see that u = V&% (x)/|Vé%(z)|, but this is not relevant here). Since semiconvex
functions are pointwise twice-differentiable almost everywhere by a classical theorem of Alexandrov,
we conclude that for H" a.e. y € S?(A, p) N U, s(z,u) there exists an open ball B C U, s(x,u) such
that BN B?(A,p) = @ and y € clos(B) N B?(A, p). Therefore it follows from Remark 1] that

H"(S?(A, p) N Ues(x,u) \ 0L B?(4, p)) = 0.
Since x is arbitrarily chosen in S?(A, p) N Unp?(A), we obtain the assertions in (52).

The assertions in (B3] follow immediately from what we have already shown. O
For a closed set A C R™*!, a bounded Borel set D € R"*! x B° and p > 0, we define
PY(4,D) = {z € Unp(A) \ A: 9% (z) € D,8%(z) < p}
and
.9 .— pntlipg

Recall that W? = B°. If ¢ : R""1\ A — 94 and v : R\ A — OW? are two Borel functions such
that
£(r) €€4(x) and  v(x) €vi(a), (54)

then we also define
Py(A, D) = {x € R™I\ A (¢(2), (@) € D, 85 (x) < p}
and o .
V(A,D;p) == L™} (P}(A, D)).

Clearly, we have V (A, D;p) = V(A,D;p), and if D = A x B°, then V(A4,D;p) = V(A,D;p) =
LPY(B?(A, p) \ A). Furthermore, note that if 2 € S?(A4, p) N Unp?(A) \ 4, then &(z) =z — p - v(x).

Theorem 4.3. Let A C R"! be a closed set, and let ¢ be a uniformly convexr C?-norm on R"T1,
Let D C R x W? be a bounded Borel set, and let £ : R"T1\ A — 0A and v : R"T1\ A — oW?
be Borel functions as in (B4)). Define a Borel function u : R\ A — S™ by u(x) = n®(v(x))
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for x € R"\ A, Then, for every p > 0 the right derivative V. (A, D;p) and the left derivative
V' (A, D;p) of V at p exist and are given by

d

ViD= [ o ()T () "~ [T (1 -+ pif s, m)) dH" ()
=0/ NS (A)NDN{r, >p} i

>0 8 ()73 0. ) H, a,m) 41 (a,1)
i—0 N¢(A)NDN{r%>p}

_ / 1p(€(2), v(2))d(u(z)) dH" (z) (55)
0v B?(A,p)
and
n d
/ . — n¢ ¢ a n—d K,¢ (a e
V4D =3 /W(Am{rm IS TRV | (R RE )

= Zpi/ ¢(n®()J4 (a,n) HY ;(a,n) dH" (a,7)
i—0 N (A)NDN{r%>p}

~vi(A.ip)+ | (oo — pr(a). v()) (56)
5¢(A,p)\Unp?(A)

+1p(x + pr(z), —v(z)) d(u()) dH" ().

Consequently, V (A, D;-) is differentiable at p > 0 if

/ o(n® () I (a.)HY (a,) dH @) =0 fori=0,....n,
N¢(A)NDN{r%=p}

and this happens for all but countably many p € (0, 00).
Furthermore, V (A, D;-) is differentiable at p > 0 if and only if

/ (Ip(z — pv(z),v(2)) + 1p(z + pr(z), —v(z)) d(u(z)) dH" (z).
S?(A,p)\Unp®(A)

In particular, V (A, (R*1)2:.) is differentiable at p > 0 if and only if H"(S?(A, p) \ Unp?(A)) = 0.

Proof. Note that if (a,n) € N?(A) and 0 < t < rf‘(a,n), then a + tn € Unp?(A) and therefore
E(a+tn) = €% (a+1tn) = a and v(a+tn) = v%(a+1tn) = 1. Therefore, choosing h(z) = 1p(£(x), v(z))
in Corollary 318 we get that

V(A,D;p)
n p d
=3 [ et ( [ 1< s e T+ o) ) ab )
d=0"Na (A)N i=1

for p > 0. Since the integrand is non-negative, we can exchange the order of integration by Fubini
theorem [Fed69, Theorem2.6.2] and obtain

V(A,D;p)

p [ d
-/ <Z | G (O t”-dHa+m;‘;,i<a,n>>dw<a,n>> it
d=0 4 NDN{T 4

=1
for p > 0. For p > 0, we define
n d
s => [ o () 74 am) "~ T+ i o m)) a” (e
;) N?(A)NDN{r%>p} E '
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and f, : N, — S?(A, p) by f,(a,n) = a+ pn (where N, is defined as in Theorem [EI6). Since
Loog(an) A le y(am)  as s\t for (a,n) € N°(A),

an application of the dominated convergence theorem gives that limg; g(s) = g(¢) for ¢ > 0. Using
the formula ([28) in the proof of Theorem B.I6 we get

olt) = / o(n®(n)) ap I fu(a, n) dH™ (a,n) < oo (57)
N¢(A)NDN{rS >t}

for ¢ > 0. Now, noting that V (A, D; p) fo s) ds, we readily obtain that

—/

V. (A, D;p)=g(p)  forp>0. (58)
By Lemma B2, we have f,(N?(A) N {r4 > p}) = 9Y B?(A, p) C Unp?(A) N S?(A, p); moreover,

a(f, '({z}) = {v(2)} = {¥i(x)}  forz €} B(A,p).

Noting (&1, we can apply the coarea formula to conclude that
o) = [ 1pg(e) v@)dlu(e) dH" () for p >0,
9Y BY(A,p)

Now we deal with the left derivative. Since
1{rﬁ>s} \( l{TiZt} as S / t,

it follows again from the dominated convergence theorem that

n

lim g(s) =

d
¢ ¢ n—d b "
n 77))J a,n)t 1+tk Sa,m dH a’n)
9 =2 [ amonizg “ A [T+ o)

i=1
for t > 0. Hence we deduce again using the formula ([28)) in the proof of Theorem that
, n d
L(ADip) =) / o(n® (m)J3 (an) p" = [T+ prty s(a,m) dH" (a, )
NS (A)NDN{r%>p} i

- / o(n® () ap IV £, (a, ) dH" (a, )
Ne(A)NDN{r%>p}

/ / a,)o(n (n)) dHO (a, ) dH" (),
S?®(A,p) {r}

where (B0) and the coarea formula have been used in the last step.

If z € S?(A, p) N Unp?(A), then there is a unique (a,7) € N?(A) N {rff1 > p} with f,(a,n) = =,
and we have &(z) = £€5(z) = a, v(z) = v4(z) = n and u(z) = n?(n). On the other hand, if
z € 8%A,p)\ Unp?(A), then H° (q(f,;'({z}))) > 1, and in addition we have

a(f, ' ({z})) S N?(S(4,p),x)  forz € SP(4,p). (59)
Consequently, we deduce from Lemma that
a(f, ({a}) = {v(z), ~v(x)}  for H" ae. x € S?(A, p) \ Unp?(A). (60)
Thus we conclude that

V_(A,D;p) = 1p(&(x), v(x))o(u(x)) dH" (x)

/qu(Aﬁp)ﬂUnpd’(A)
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(1p(z — pr(z), v(2))¢(n’ (v(z))

+1p(a + pr(a), —v(@)é(n? (~v(x))) dH" ().

It follows from (BI) and (B2]) that the first summand on the right side of the preceding equation
equals V/Jr (A, D;p). We now obtain the asserted representation of v (A, D; p) by observing that
n?(+v(z)) = +u(z).

To check the second equality both in (B5]) and in (B6]) we notice that

+
S (A,p)\Unp?(A)

n d n
Z pre H(l + p/ﬁiyi(a, n)) 1]\7;(,4) (a,n) = Z szi,i(aa n) for (a,n) € N¢(A)
d=0 i=1 =0

and we use the integrability condition in (23] proved in Theorem B.I6l to interchange summation and
integral.
Finally, for ¢ > 0 and s > 0 the set

fo={telo: [ o ()75 ) LS ()] 00 >
N¢(A)N{rs=t}
is finite by the integrability property in (28). This readily implies that
/ O ()T (a, ) FL (a,m) dH" a,1) # 0
N(A)N{rS=p}
for at most countably many different values of p. [l

Remark 4.4. The derivative of the volume function has been the subject of several investigations; see

[Sta76], [HLIWO04], [HLW0G], [RW10] and [CLV21].

In order to compare our characterization of the differentiability of the parallel volume function
of a compact set (in the non-localized setting) with the one in [CLV2I], we introduce the following
notation. If F/ C R"*! is a measurable set, then we write F'' for the set of all z € R™*! for which
the (n + 1)-dimensional density of F at z equals 1. Let A C R"*! be compact and p > 0. Then it
follows from (B9) and (G0) that

H™ (18%(4,p) \ Unp?(A)] \ BY(4,p)") = 0.
On the other hand, we also have
H™ (S9(4,p) N BY(4, p)' N Unp?(4)) = 1" (S%(A, p) N Unp?(4) \ 9 BY(4, p) ) =0,

where we use (52) and the fact that B®(A, p)' N84 B?(A, p) = @. Thus we see that if A denotes the
symmetric difference operator for subsets of R"*!, then

' ([S%(4, p) 0 BY(4, p)'JA[S? (4, p) \ Unp?(4)]) = 0.

More generally, our method allows us to study the differentiation of local parallel volumes in an
anisotropic setting. Such a localization was suggested in an isotropic framework by results in [Wil9]
(note however that [Wil9, Lemma 2.9] is not correct, which affects the proof of [Wil9, Proposition
2.10] for instance).

Remark 4.5. By the arguments in the proof of Theorem E.3it also follows that V7 (A, D;-) is contin-
uous from the right and V' (A, D;-) is continuous from the left.

5 Alexandrov points of sets of positive reach

Throughout this section, ¢ is a uniformly convex C2-norm on R"*! with corresponding gauge body

B. For p > 0 we set B®(p) = pB° = pW? and B® = B° = W?. Recall that if ¢ is the Euclidean
norm, then the upper index ¢ is omitted.
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Notation. For a € R*"!, u € S" and ¢, > 0 we define
ut={zcR"" : zeu=0},
Ucla,u) ={z €a+ut:|v—a| <e}, U.sa,u) ={x+u:zcUla,u), X € (—4,0)}.

If f:a+u’" — Ris a function (and u is a given orienting normal vector), we write
graph(f) = {z — f(z)u:z € a + ut} and epi(f) ={x —su:s> f(z),x €a+ut} (61)

for the graph of f and the epigraph of f (with respect to u), respectively.

5.1 Positive ¢-reach

Definition 5.1. Let A C R"*! be a closed set. The ¢-reach of A is defined as the non-negative
number

reach?(A) = sup{p > 0: B®(4, p) C Unp?(A)}.
The set A is said to have positive ¢-reach if reach?(A) > 0.

In the following, we say that a convex body L C R™*! slides freely inside a convex body K ¢ R"**+!
if for each z € OK there is some t € R"*! such that # € L+t C K (see [Sch14, Section 3.2]). In
particular, L slides freely inside K if and only if L is a summand of K. It follows from [Sch14, Theorem
3.2.12] that if L, K C R™"! are convex bodies of class C%, then there is some p > 0 (depending on
L, K) such that pL slides freely inside K.

Lemma 5.2. Let A ¢ R*t! be a closed set. Let ¢, ¢ be uniformly convex C% norms on R+ with
corresponding gauge bodies B, B. Let p > 0 be such that B?(p) = pB° slides freely inside B® = B°.
If reach?(A) > r, then reach?(A) > pr.

Proof. Assume that reach”(A) > r and B?(p) = pB° slides freely inside B® = B°. Then sB°
slides freely inside rB° if 0 < s < pr. Aiming at a contradiction, we assume that there is some
z € R"1\ A and there are 71,75 € A with x1 # 22 and such that {z1, 22} C (2 + s0B°) N 4 and
int(z + soB°) N A = () for some s¢ € (0, pr]. Then x; — 2z € d(soB°) and N(soB°,xz; — z) = {v;} for
some unit vector v;, for i = 1,2 (since B° is smooth). In particular, we have x; — z = soVhpo (v;) for
i =1,2. Since B° is of class Cf_ (and hence a Euclidean ball slides freely inside B°), it follows that

—v; € N(A,z;) for i = 1,2. Since reach‘g(A) > r, we conclude that

(z; — rVhgo(v;) +rB°) N A = {x;}. (62)
Using first that x; — soVhpo (v;) = z for i = 1,2 and then that soB° slides freely inside rB°, we get

{21,13} C 2+ 80B° C x; — 50Vhpo(v;) + s0B° C x; — rVhpo (v;) + rB°.
But then (G2)) yields -
x9 € (£1 —rVhgo (v1) + rB°)N A = {11},

a contradiction. O
Remark 5.3. Assume that ¢,1) are any two uniformly convex C2-norms. Then reach¢(A) > 0 if and
only if reach?(A4) > 0. We say that a closed set A C R""! is a set of positive reach if reach(A) > 0,

that is, if A has positive reach with respect to the Euclidean norm. Hence, a set has positive reach if
and only if it has positive ¢-reach for some (and then for any) uniformly convex C2-norm ¢ on R"+1.

Remark 5.4. The class of sets of positive reach as defined here is precisely the class of sets of positive
reach introduced in [Fed59, Definition 4.1]. We recall from [Fed59, Theorem 4.8 (12)] that if A C R"*?
is a set with positive reach, then

N(A) ={(a,u):a € A,u € Nor(4,a),|u| = 1}.
Moreover it follows from Lemma [2.6] that £ﬁ|{x eR" 0 < 6ﬁ($) < reach?(A)} is a locally Lips-
chitz map and 4| S?(A,r) is a locally bilipschitz homeomorphism onto N¢(A) for r € (0, reach?(A)).

In particular, S?(A,r) is a C'! closed hypersurface for r € (0,reach?(A)) and N?(A) is a closed
Lipschitz n-dimensional submanifold of R"*! x R"*1,
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In the next section we exploit the fundamental connection between sets of positive reach and
semiconvex functions. We will refer to the fundamental work [Fu85] (see also the cited references
therein). Here we recall the notion of a semiconvex function.

Definition 5.5. Suppose U C RF is open and convex. Then a function f : U — R is called
semiconvex if there exists 0 < k < oo such that the function U > y — x|y|?> + f(y) is convex. We
denote the generalized Clarke gradient of f at a € U by df(a) (see [Fu85] or [CI90)]).

5.2 Alexandrov points and pointwise curvatures
The first main result of this section (see Theorem [L.0]) states that for a set A of positive reach the
set p(N?(A)) (which is the set of curvature points of A) can be partitioned as follows

P(N?(A)) = p(N?(A) \ N}/(4)) Up(N;(A)) (63)

For a convex body this partition is well known, as p(N?(A)) is the set of normal boundary points
(also known as Alexandrov points); see [Schl4l Notes for Sections 1.5 and 2.6], [Hu98, Lemma 3.1]
and the literature cited there. The second goal of this section is to extend the notion of an Alexandrov
point to sets of positive reach. This notion will play a central role in most of the subsequent rigidity
statements; see for instance Theorem and Corollary £.I0] in the next section.

Theorem 5.6. Let A C Rt be a closed set with reach(A) > 0.
If (a,n) € N2(A), u € N(A,a) with Vé(u) =1 and v € S™ \ ut, then the following statements
hold.

(a) There exist e(v) > 0 and a function f, : Uy (a,v) — R which is differentiable at a and such
that graph(f,) C 0A.

(b) There exists a map 1 : Ugyy(a,u) — OW? such that 7j(b) € N?(A,b+ fu(b)u) for every b €
Uew)(a,u), n(a) =, 1 is differentiable at a and the eigenvalues \y < ... < X, of D7)(a) satisfy

Ai :ﬁﬁ,i(a,n) fori=1,...,n.

Moreover, p(N2(A)) Np(N¢(A) \ N?(A)) = @.

Proof. @ Suppose a = 0 and 0 < r < reach¢(A). Fix v € 8" \ u’ and let 7, be the orthogonal
projection onto v+. We consider the lipschitz function v, : S?(A,r) — v+, 7, o éi. If H is the
halfspace orthogonal to u which does not contain u, we notice the inclusions

D &% (rn)[Tan(S? (A, r),rn)] C Tan(€%(S?(A,r)),0) C Tan(A,0) C H.
Since D &% (rn)| Tan(S?(A,r),rn) is injective, we infer that
Tan(S?(A,r),rn) =D £ﬁ(rn)[Tan(S¢(A, r),rn)] = ut

and D), (rn) is an isomorphism onto v*. Consequently, we can apply the (right-) inverse function
theorem in [SIO0] to infer the existence of a constant €(v) > 0 and a map @, : Ue)(0,) — S?(A,r)
such that ¢, (0) = 1, @, is differentiable at 0 with D ¢, (0) = D, (rn)~* = D&% (rn) "' o (m, |ut)
and 9, (¢, (b)) = b for every b € U, (a,v). We define f, : Uc,)(a,v) = R by

fo(0) = €5(pu (b)) o for b e Uy, (a,v)
and we readily check that f,(0) = 0, D £,(0) = (m,Ju’)"" e v and b + f,(b)r = &% (¢, (b)) € A for
every b € Uc)(a,v).
We define 7 : Uy (a,u) — oW? by
1
(‘Pu (b) - ﬁﬁ (‘Pu (b))) for b € UE(u)(aa u)

r

1(b)
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and notice that 77(0) = n and 7(b) € N?(A,b+ fu(b)u) for every b € Ug(y)(a,u) and

D(0) = ~(D €% (rm) " urt — 1,.).

T
Noting that {(1— Txﬁﬂ-(rn))*l ©i=1,...,n} are the eigenvalues of D €% (rn)~'|u’, we conclude that
the eigenvalues of D 7j(0) satisfy the equation \; = nﬁ J(a,n) forie {1,...,n}.

Finally, since Vo (u) @ u = ¢(u) # 0 for u € S™ (see B)), the remaining assertion follows from part
[(a)] and Lemma 314 O

A more refined description of a set of positive reach around the points of the viscosity boundary
is given by the following result.

Theorem 5.7. Let A C R""! be a closed set with reach(A) > 0 and a € 9*A. Assume that
N(A,a) = {u} for some v € S™. Then the following statements hold.

(a) There are £,0 > 0 and a semiconver lipschitz function f : a+u* — R such that f(a) =0, f is
differentiable at a with D f(a) = 0 and (with respect to the orienting normal vector u)

graph(f) NUs s(a,u) = 0ANU. s(a,u), epi(f)NUes(a,u) = ANU:s(a,u). (64)

(b) (a,Vo(u)) € N,?(A) if and only if [ is pointwise twice differentiable at a. In this case, every
map v : a+ut — S™ such that v(b) € N(epi(f),b— f(b)u) for every b € a+ut is differentiable
at a and satisfies

D? f(a)(m1,D(Vo)(u)(m2)) =D(Voor)(a)(m) e for T1, 72 € ut.

Proof. Let 0 < r < reach(A). We start with (a). By [Fed69, Theorem 4.8 (12)] we have Tan(A,a) =
{veR"! :veu<0}. Then C ={ve R"" :veu < —L[v[} defines a closed convex cone such that
C Cint(Tan(4,a)) U {0}. Lemma 3.5 in [RZ17] shows that there is some s € (0,7/2) such that

(a+C)N B(a,s) C A. (65)
We consider the set
M, ={z€ 0A:|u—n, <1/4for some n, € Nor(A4,z)NS"}.

It follows from [RZ17, Proposition 3.1 (iii)] that there is some s’ € (0, s) such that if z € AN B(a,s"),
then |u — n,| < 1/4 whenever n, € Nor(A,z) N S™. The proof of [RZ17, Theorem 5.9] then shows
that 0A N B(a,s’) C M, N B(a,s’) is contained in the graph of a lipschitz semiconvex function
f:a+ut — R with f(a) =0, and hence there are ,6 > 0 such that (with respect to the orienting
normal vector u)

OANU,s(a,u) C graph(f) NUes(a,u). (66)

In order to verify the remaining assertions, we use [RZI7, Proposition 3.3] (see [Fed59, Theorem
4.18]). Thus we get

ANB(a,r) Cl{a+z+tu:t < E(zP+82), 2 €urt e R, |z +tu| <1}
Clatz+tu:—r<t<izPzeutteR,|z/<r}. (67)

At this point the equalities in ([G4]) follows from elementary topology by combining (Gal)—(67). More-
over, since Nor(epi(f),a) = Nor(A,a) = {tu : ¢ > 0}, it follows from [Fu85l Remarks 1.4, Lemma
2.9] that the generalized Clarke gradient of f at a contains only 0 and f is differentiable at a with
D f(a) =0.

(b) Let A be the family of all maps v : a + ut — S™ such that v(b) € N(epi(f),b— f(b)u) for
every b € a +ut, where f is chosen according to (64]) with respect to the orienting normal vector w.
For every v € N we define the function g, : U(a,u) — ut by

_ v(b) — (v(b) eu)u
9 (b) = v(b) eu

for b € Uc(a, u).
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(Notice v(b) eu > 0 for every b € U.(a,u) since f is lipschitz). Employing [Fu85] Lemma 2.9] we con-
clude that g, (b) € 8f(b) for every b € Uc(a,u). In particular, if we assume that (a, Vé(u)) € N?(A),
then it follows from Theorem [5.6] that there exists at least one map vo € N that is differentiable at a.
Therefore g,, is differentiable at a and the classical theory of subgradients for (semi)convex functions
(see [Ba79] or [KS21, Lemma 2.39]) implies that f is twice differentiable at a.

Suppose f is twice differentiable at a, a = 0 and v € N. Then the aforementioned theory of
subgradients for (semi)convex functions implies that v is differentiable at 0 with Dv(0) e #(0) = 0
and

Dv(0)(71) @75 =D g, (0)(11) ® 72 = D? £(0)(71, 72) (68)

for ., € ut and for every v € N. Tt follows that
D(Veov)(0)(r1) e 72 = Dr(0)(1) @ D(V)(u)(72) = D? f(0)(r1,D(V¢)(u)(72))

for 71,70 € ut. Now we choose r,¢ > 0 so that 0 < ¢ < r < 7+ ¢ < reach(A) and we define
J=(r—¢,r+¢),n=Vpov and the function F : U.(0,u) x J — R"T! by

F(bt)=b— f(byu+tnb)  forbe U0, u) x J.

Then F is differentiable at (0,7) and, noting that U (reach?(A)n(0), reach?(A)) Nepi(f) N U, 5(0,u) =
@, we conclude from (G8]), employing the same comparison-of-curvatures argument as the one used
in the proof of Lemma BI4] that all eigenvalues of D7(0) are smaller or equal than reach?(A4)~'.
Consequently D F(a,r) is invertible. Let 7 : R"*! — u* be the orthogonal projection onto u. Since
the function G : (5ﬁ)_1(J) — ut x R, defined by G(z) = (W(ﬁﬁ(m)),&ﬁ(m)) for x € (5ﬁ)_1(J), is
Lipschitzian and satisfies

F(U0,u) x J) C (65)71(J) and GoF =1y, (0u)xJs

it follows from Lemma 23] that G and consequently & 4 is differentiable at ru. Since rf‘(O, Vo(u)) >
reach?(A) > r by [KS21, Lemma 4.16], we infer that £% is differentiable at ngb(u)_for every 0 <
5 < 7%(0,Vo(u)). Therefore (0, Vo(u)) € N?(A). Since f is twice differentiable at 0, it follows that
0 €% A and (0, V() € N(A) by Lemma BIA(D)} O

Subsequently, we prefer to write C for a set of positive reach. Theorem [5.7] motivates the following
definition.

Definition 5.8. Suppose C is a set of positive reach, a € 9VC, N(C,a) = {u} and f : a+u* — Risa
semiconvex function locally representing C as in Theorem[5.71 Then « is said to be an Alexandrov point
of C if f is twice differentiable at a. Moreover, if ¢ is a uniformly convex C?-norm and k € {1,...,n},
then the pointwise k-th ¢-mean curvature of C at a is defined by

hék(a) = Sk(D(Vpov)(a)),

where v : a+ut — S™ is a map differentiable at a such that v(b) € N(epi(f),b— f(b)u) for b € a+u*
and Si(D(V¢ o v)(a)) is the k-th elementary symmetric function of the eigenvalues (counted with
multiplicities) of the endomorphism D(V¢ o v)(a) on u=.

We denote the set of Alexandrov points of C' by A(C).

Remark 5.9. If C' is a convex body, then this notion of an Alexandrov point coincides with the
classical notion of a normal boundary point of C; see [Schi4l Notes for Sections 1.5 and 2.6] for
further background information.

Corollary 5.10. Suppose C C R™"! is a set of positive reach and ¢ is a uniformly convex C2-norm.
Then the following statements hold.

(a) A(C) = p(NP(C)) Nd°C = p(N*(C)) N dYLC and

Hg,k(a,n) = hgk(a) for a € A(C) and N®(C,a) = {n}.
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(b) H™(9°C\ A(C)) = 0 and

PC) = [ (n(C.a))dH (a) = / T8 (@, ménd () dH (@, ). (69)
ave Ne(C)|oyC

(c) If LM(C) < oo then

nt(C) A9 <« L'THC)>0 <+ H"(050) > 0.

(d) H"[p(N2(C)) \ A(C)] =0 if and only if H™(DC'\ §°C) = 0.
Proof. The assertions in follow from Theorem [B.6] Theorem .7 and Lemma B.I4l Using @ we

infer

0"C\ A(C) = 9"C'\ p(N{(C)) € p(N*(C) \ (N (C)) € p (N*(C)\ N (0)),

whence we obtain H"(9"C \ A(C)) = 0 from Lemma Since dC' = p(N?(C)) we obtain the
first equality in (@) from Remark 2Z11] and the second equality by combining Remark B.I5] Lemma
and the coarea formula.

We prove [(c)] Clearly, int(C) # @ implies £71(C) > 0. Let us assume £""!(C) > 0. Then
it follows from Lemma that H™(0™C) > 0. Since 0YC C 0™C C 0"C by Remark 2.I1] and
H™(9vC \ 05.C) = 0 by [(D)] it follows that H"(83.C) > 0. It is again clear that H"(04C) > 0 implies
int(C) # @.

Finally, it follows by@ that

dC\ 9°C C [0C \ p(NZ(C))] U [p(NZ(C))\ 8°C] = [9C \ p(NZ(C))] U [p(NZ(C)) \ A(C)]

and, since H"[0C'\ p(ﬁﬁ(C’))] = 0 by Lemma B2H (c), we obtain that H" [p(ﬁ,‘f(C)) \VAC)] =0
implies that H"(0C \ 0"C) = 0. On the other hand, if #"(9C \ 9"C)) = 0, then Lemma (c)
implies again that H" [p(NZ(C))\ 0*C| = 0, and hence H" [p(NZ(C))\ A(C)] = 0 follows from part
(a). O

Remark 5.11. Suppose C' is a closed convex set with int(C) # @. Then C(™ \ 9"C = @ and, recalling
that p(N2(C)) € C™ by LemmaB2H(a)] we infer from Corollary 510 that

5.3 Lower-bounded pointwise mean curvature and bubbling

After some preparations, we will deduce the Heintze-Karcher inequality for sets of positive reach from
the more general version for arbitrary closed sets.

Lemma 5.12. Suppose C C R"*! is a set of positive reach with int(C) # @, K = R\ int(O)
and
v R R — R R

is the linear map defined by 1(a,n) = (a, —n) for (a,n) € R x R+,
Then the following statements hold.

(a) p(N?(K)) = 0%C = 9YK and N?(K,a) = {-V¢(n(C,a))} = —N?(C,a) for a € p(N?(K)).
(b) N¢(K)= N?(K) and H"(N?(K)|S) = 0 for every S C R" with H™(S) = 0.
(c) H?(J-(a,?’]) = —/ﬁgnﬂ_i(a, —n) for H" a.e. (a,n) € N*(K) andi=1,...,n.

(d) H;’(Vl(a,n) = —Hgl(a, —n) for H" a.e. (a,n) € N®(K).

(e) J&(a,n) = ap Jflvdb(K)L(a, n) Jg(a, —n) for H" a.e. (a,n) € N®(K).
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Proof. The statement in readily follows from Remark 2111

For the statement in [(b)] we combine and Lemma to infer that N,?(K) = NY(K).
Moreover if H™(S) = 0, then we can combine Lemma 2] (first applied on N, for some s > 0) with
Lemma to see that

ap J,]Lvdb(K)p(a,u) dH"(a,u) =0
Ni(K)|S
and ap Jflvd)(K)p(a, u) > 0 for H™ a.e. (a,u) € N¢(K). We conclude that H™(N?(K)|S) = 0 provided
that H"(S) = 0. Since H"(N?(K) \ N(K)) = 0, we obtain [[b)}
Next we prove [[c)] We define the open set U = {y € R"*! : 0 < &% (y) < reach?(C)}. For
0<A<1l,yeUandac 5?}(34) we notice that

a—-y

a ¢ = a —
+ A% (y) ) (1+XNa — Ay,
D SO a)=d2Y
M) {6‘;;@)}’ M {6‘;;@)}’
Vg((lJr/\)af/\y) = ;?;(yy), fyg((le)\)af)\y) c V?}(y)
We infer that
v (y) = {—vi(1+Na— X y) :acép(y)y foryeUand0<A<1, (70)

Define S = p(u(N?(K)) \ ]\7‘15(0)) and notice that H™(S) = 0 by Remark Bl It follows from [(b)]
that H™(N?(K)|S) = 0. Fix now (a,n) € N¢(K) with a ¢ S, 0 < r < inf{r% (a,n),reach®(C)} and,
noting that 1 — rx?w(a +7rn)>0fori=1,...,n, weselect 0 < X\ <1 so that
% .(a+rn)<# fori=1,...,n.
K,i (1 +)\)T 9 )
Since a ¢ S, then (a,—n) € N?(C) and I/g is differentiable at a — tn for every 0 < t < reach?(C).

Since a+rn € U and I/g is differentiable at (1+ XN)a — A(a +rn) = a — Arn, we differentiate at a4 rn
the equality in (T0), and thus we get

Dufg(a +rn) = —Dl/g(a —Arn) o ((1+ A)DE‘;}(a +7rn) — Idga+1).

If 71, ..., 7, form a basis of Tan(dW?, n) such that D v (a4 rn)(r;) = X%i(a—i—m)ﬁ fori=1,...,n,
then we infer

Xfe.la+rn)
1+ /\)rx%i(a +rn) —1

Dvé(a—)(r;) = 7 fori=1,....n

Note that Tan(@W?, —n) = Tan(dWY, n) and recall that (1 -+ )\)rx‘f(,i(a +rm)—1<0fori=1,...n.
Hence, we conclude that

X?{J(a’ +rn)
(1+ )x)rx}?i(a +rn) —1

Xgn.ﬂ_i(a —Arn) =

for i =1,...,n. Therefore,

X(lcs',n+17i(a — Arn) X?{,i(a’ + ) é
= = 7KK,1'(0’5 77)

]
Kepp1—i(a, —n) = =
e 1— )\rxgynﬂii(a —Arn) rx?w(a +rn) —1

fori=1,...,n.
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To prove we use |(b)[ and which yields that
K1a77 Z“Kzan Z“Cza_ =—Hg,1(a,—n)

for H" a.e. (a,n) € N?(K).
Finally, we prove@ Let 71, ..., 7n, (1, - - -, (o be H™ L N?(K)-measurable functions satisfying the
hypothesis of Lemma Noting [(b)] and Lemma B we observe that the proof of [(c)] shows that

Dvf(a—tn)(ri(a,n) = XG,41_;(a —tn)7i(a,n)

for H" a.e. (a,u) € N®(K) and 0 < t < reach®(C). Since ngi(a, —n) < oo for H™ a.e. (a,n) € N?(K)

by @ and we infer that

o Inam A ATy
Je(@ =) = e ) A A dCata )]

for H™ a.e. (a,n) € N®(K). Since

. G @m) A A dala )]
ap S e ) = A ena )

the equation in @ follows. O

Remark 5.13. The second statement in Lemma @can also be obtained as follows. Let 0 < s <
reach(C). From [(a)| we get

K)IS = J{(,-Vé(n(C ) :xe SNX: (O}

LeN

The assertion now follows from Remark 2.141

Remark 5.14. We also outline an alternative argument for Lemma First, we obtain that for
H" ae. (a,n) € N2(K) also (a, —n) € N?(C) and

where
Cf((a,n)=( (a,m), K5 i (a,m)m (a, 77)) fori=1,...,n,

the linearly 1ndependent vectors 75 (a,7), ..., 75 (a,n) span an n-dimensional linear subspace V of
R"! and nKﬂ-(a,n) € R, and where

(Tic (av 777)7 7’1211'(0’5 777)7_1'0(0’5 777)) 9 lf K?‘,i(aa 777) < o0,

¢ (a,n) = , ) .
(0’ _HC,i(aa _77)7-1' (a’a _77)) ) if HC,i(aa _77) = o0,
with linearly independent vectors 7 (a, —7), ..., 7S (a, —n) which span an n-dimensional linear sub-

space V' of R*H1,

Since the number of curvatures which are infinite equals the dimension of the kernel of the image
of the linear map p|T', a comparison of the two representations of T' shows that ngﬁi(a, —n) < oo for
i=1,...,n. Hence V.=V’ and p|T is an injective linear map. Therefore the linear map L: V — V
with L = q o p~! is well defined and its eigenvalues are n%i(a, 1) with corresponding eigenvectors
75 (a,n), but also —ﬁ‘g’i(a, —n) with corresponding eigenvectors 7 (a, —n) for i = 1,...,n. This
implies the assertion.

We can now state the Heintze—Karcher inequality for sets of positive reach in the following form.
Recall that H"(0"C \ A(C)) = 0 by Corollary .10
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Theorem 5.15. Suppose @ # C C R"*! is a set of positive reach with finite volume and assume
that
h’%@(a) >0 for H" a.e. a € A(C).

Then

(n+1)L"(C) <n $(n(Ca) dH"(a). (71)

- Jeee hgl(a)

Ifint(C) # @, equality holds in ([[1)) and there exists ¢ < oo so that hgyl(a) < q for H™ a.e. a € A(C),
then there are N € N, ¢1,...,cy € R and Ply--s PN > % such that

N
int(C) = U int(c; + p;W?), dist? (ci+ piW?, cj + ij¢) > 2reach?(C) fori # j.
i=1

Proof. We assume int(C') # @ (otherwise there is nothing to prove) and we define K = R" !\ int(C).
Note that £"*1(9C) = 0 and «(N?(K)) = N?(C)|03C. By Lemma and the assumption, we
infer that

H}?l(a,n) = —Hgl(a, —n) <0 for H" ae. (a,n) € N?(K).

Therefore, applying Theorem B.20] Lemma [5.12 and the coarea formula, we obtain

n®
(n+1)L" T 0) < n/ J% (a,n) M dH"™(a,n)

No(K) |H 1 (a,n)]
[
= n/ ap JTILV¢(K)L(G, 7) Jg(a, -n) M dH"(a,n)
N (K) H¢ ,(a,—n)
¢
—af J¢ayn) 2D gam g,
Neé(C)|ayC HC,l(a’ n)

Since ¢(n?(n)) = ¢(n?(Vo(n(C,a)))) = ¢(n(C,a)) for (a,n) € N*(C)|0%.C, recalling Remark BIH
and Corollary 5.I0] we apply coarea formula in combination with Lemma to obtain

ot D) [ G(Ca)
/N¢<C>|610JC( K H{, \(a,n) W= e h¢.,(a) e,

which yields the first part of the assertion of the theorem.
Assume now that hgl(a) < ¢ for H" ae. a € A(C) and int(C) # @. Combining Corollary 510
with Lemma B.12] we get that

fo(yl(a, n) = Hgl(a, —n) = hgl(a) <q for H" a.e. (a,n) € N®(K).

Therefore if the equality holds in ({T]) then the conclusion follows from the characterization provided
by Theorem [3.20] O

From Theorem .15 we obtain a geometric rigidity result for a set C of positive reach with positive
and finite volume under the assumption of a sharp lower bound on the pointwise ¢ mean-curvature at
almost all points in 9VC. For the set C' in the next theorem we notice that P?(C) > 0 and int(C) # @
by Corollary

Corollary 5.16. Suppose C' C R is a set of positive reach with finite and positive volume and

define p = %{g;(c). Assume that

hgl(a) > % for H™ a.e. a € A(C). (72)

Then there exist N € N and cq,...,cxy € R such that

N
int(C) = U int(c; + pW?),  dist? (ci + pW?,cj + pW?) > 2reach?(C)  fori # j.

i=1
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Proof. Notice that there is at least one point a € 95 C with hgl(a) < 00, hence we obtain p > 0.
Therefore 0 < P?(C) < oo.
For € > 0 we set

7 = {a € A(C) : b (a) > (1 +e>ﬁ}.

p
We claim that H"(Z.) = 0 for € > 0. Suppose that H"(Z,) > 0 for some € > 0. Then we deduce
ove hc,1(a) 9vC\Z. hC,l(a) Ze hc,1(a)

= p/avC\z ¢(n(C,a)) dH"(a) + (1 + 6)_1P/Z d(n(C,a))dH" (a)
< pP?(C) = (n+ 1)L"TLH(C),

where we used (72) on 9C'\ Z, and the lower bound for hgl (a) on Z.. This contradicts the inequality
in Theorem and thus proves the claim.
Since H"(Z.) = 0 for € > 0, we infer that

nP?(C)

¢ R S/ f n v
he 1 (a) L0 or H" a.e. a € 0°C,

whence we infer that

D) y1n0) = (1) ),

e h‘g,l (a)
thus (7I)) holds with equality. We obtain now the conclusion of the theorem by employing the second
part of Theorem [B.15 0

Remark 5.17. Corollary [5.16]is sharp already in the special isotropic case and for convex bodies. In
fact, if we consider the union of two congruent proper antipodal spherical caps of the unit sphere, we
obtain a convex body K whose k-th mean curvature on the smooth part of its boundary is constant
% (Z) We provide the details for completeness. Let P € G(n+1,n) and
n € Pt with || = 1. For every 0 < e < 1 we define

and smaller than

Sr=S"N{z:zen>¢}, Y- =S"N{z:z0n< —c},

PF=B0,)Nn{z:zen=¢}, P =B0,1)N{r:zen=—¢},

€

and we denote by K and K. the convex bodies enclosed by ¥t U PF and X7 U P respectively.
Then we define
Ki={rx—en:ze KX}U{z+en:2€ K_}.

Let X (x) = z for every z € R""!. Since K is a set of finite perimeter, we denote by 7. the exterior
unit normal and we compute by means of the divergence theorem [Fed69, Gauss—Green Theorem
4.5.6] (alternatively by noting that K. = conv({o} UX}) \ conv({o} U P.), where conv denotes the
convex hull operator)

(n+1)LHKY) = / divX dcntt
KX

= /Zmp+ Ne(x) @ X (x) dH™ (z) = H"(ST) — e”™(P]).

We conclude that

WOK) W)
(n+ DL LK) (nt DLri(KD)

H"(PF)
(n+1)LrtL(KF)

>1

n

for 0 < e < 1. Finally, we notice that the k-th mean curvature of K. equals (k) on the smooth part
of OK..
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6 Curvature measures and soap bubbles

6.1 Curvature measures and Minkowski formulae

In the following, we write C' for a non-empty set with positive reach in R**!. For sets with positive
reach, the Steiner formula simplifies in the following way (also in the anisotropic setting).

Corollary 6.1 (Anisotropic Steiner formula for sets of positive reach). Let @ # C' C R""! be a set
of positive reach. Let ¢ : N*(C) — R be a bounded Borel function with compact support. Then

noitl
n P n
/ (powl) et =3 P [ ol (0) T ) HE (o) pla,n) di )
{zERMT1:0<8%,(2)<p} vt Neo
for 0 < p < reach?(C).
Proof. The assertion is a straightforward consequence of Theorem [B.10] O

We can now introduce the generalized curvature measures of a set of positive reach with respect

to ¢. These are real-valued Radon measures (see [Za86, [RZ19, [Hu99, [HLOO|] and the references cited
there).

Definition 6.2. Let @ # C C R""! be a set of positive reach and m € {0,...,n}. The m-th
generalized curvature measure of C with respect to ¢ is the real-valued Radon measure ©%,(C,-) on
R™! x R"*! such that

1

OnC.B) = — =

/1V¢(C)ﬂB ¢(n¢(n)) Jg (a,n) Hg,n—m(aa n) dH" (a,n)

for any bounded Borel subset B C R™! x R"*!. Moreover, we set
Ve (C) =02 (C,N*(C))  forme{0,...,n}.

Remark 6.3. Let C C R""! be a set of positive reach and m € {0,...,n}. The m-th curvature
measure of C with respect to ¢ is the real-valued Radon measure C% (C,-) on R"*! such that

c?(C,B) =0%(C,B x R"t1)

for any bounded Borel subset B ¢ R**1.

Lemma 6.4. Suppose C is a set of positive reach, m € {0,...,n} and let v : C™ — 8™ be a Borel
map such that v(a) € N(C,a) for every a € C"™. Let n(a) = V¢(v(a)). Then

(n—m+1)0%(C,BNN2(C))

~ [ nlan@)sia) (@ (@)
A(C)
[ o) el @) HE (0. n@) + Loa, ~n(@) HE, (0, ~1(a)] dH" (o)
cm\avC

for every Borel set B C N?(C).

Proof. Let B C N?(C) be a Borel set. Combining Lemma [39 and the coarea formula, we get
(n—m+1)05,(C, BN N(C)) :/ _ / Ls(a,n)¢(n® () HE.,, (@, 1) dH () dH" (a).
P(N(C)) JN#(Cla)

Since n?(V¢(v(a))) = v(a) for a € C™| the argument is completed by applying Lemma and
Corollary 510, since N?(C,a) = {£V(v(a))} for a € C™ \ 9°C. O

o1



Remark 6.5. The Lebesgue decomposition of the curvature measure C% (C, -) with respect to H"LOC
is given by ©2 (C, (-x R**1)NN?(C)) (the absolutely continuous part) and ©¢,(C, (-x R" 1)\ N¢(C))
(the singular part). It follows from Lemma @ that these parts are indeed singular with respect
to each other. For the absolutely continuous part, Lemma yields an explicit description. In the
case of convex bodies where C(™ \ 9*C = (), a corresponding analysis can be found in [Hu98] in the
isotropic framework.

The following lemma extends [Fa96, Lemma 2.1] from Euclidean curvature measures of convex
bodies to generalized curvature measures with respect to a C?-norm ¢ and sets with positive reach
(compare also [CHOO, Section 3]). The non-negative Radon measure |02, (C,-)_(A x OW?)| in the
next lemma is the total variation of the real-valued Radon measure %, (C, -)L (A x OW?); see [AFPO0,
Definition 1.4].

Lemma 6.6. Let @ # C C R™! be a set of positive reach. Let A C R™"! be a H™ measurable set
and m € {0,...,n}. Then there is a non-negative constant ¢, depending only on n, ¢, such that

|02 (C, )L(A x OW?)| < c- H™(A).

Proof. For the proof, one can assume that H™(A) < co. An application of Theorem to the
positive and the negative part of ©% (C,-)L(A x OW?) then yields the assertion. O

The following lemma is now an immediate consequence of Lemma 6.6l We do not include the case
m = n in the statement of the lemma, since in this case the hypothesis is always satisfied by Lemma
Bﬁlﬁ and the conclusion holds essentially by definition; see Remark [3.12)

Lemma 6.7. Let @ # C C R"™! be a set of positive reach. Let m € {0,...,n — 1} and assume that
H™ [p(N?(C) \ N2 (C))] = 0.

Then

&(n® () J&(a, ) HE, ., (a,n) dH" (a,7)

(n—m+1)-0%(C,B) :/
NZ(C)NB

for every Borel set B C N?(C).
Proof. An application of Lemma B8 with A = p(N?(C) \ N,?(C)) yields that
O (C. )L (PIN?(C) \ N(C)) x 9W*) =0,
and hence ©% (C, BN N¢(C)\ N?(C)) = 0, which is the desired conclusion. O

We now prove the anisotropic Minkowski formulae for sets of positive reach. The case of convex
bodies has been treated in a different way in [Hu99).

Theorem 6.8. If & # C C R"*! is a set of positive reach with finite volume and r € {1,...,n},
then

(n—r+1) /Nm ¢(n?(n)) Jé(a,n) HE,_y (a.n) dH" (a,m)

= T/NMC) [ae n¢(n)]Jg(a,n) ng(am) dH"(a,n)

and
/ a 0 n?(n) J(a, ) H o0, 1) dH™ (a,7) = (n + 1) £(C).
N9 (C)

s
Proof. We set u(z) = ;ggél;
c x

B?(C, p) is a domain with C'l-boundary dB?(C, p) = S?(C, p) whose exterior unit normal is given
by u|dB?(C, p). Moreover, for 0 < p < reach®(C) the map f, : N¢(C) — S?(C, p) defined by

folasn)=a+pn  for (a,n) € N°(C)

for € Unp?(C) and notice that for 0 < p < reach?(C) the set
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is a bi-lipschitz homeomorphism by Remark B4l We observe (see proof of Theorem BI0) that
TN f(a,n) = Je(a,n) Y pt T HE L (a,m)
m=0

for H"™ a.e. (a,n) € N®(C). We set

Im(C):/ aon‘z’(n)Jg(a,n)Hgn mla,n) dH" (a,n) form=0,...,n.

N¢(C)

The divergence theorem and Remark 34 yield

(n+ DEBCp) = [ weule) i a)

S(C,p)

= /]V¢(C)[(a + P77) ° u(a + pn)] J7]zv¢(c)fp(aa77) dHn(a, 77)

:Z Janfmel )P mEYE ()
m=0 m=0
for 0 < p < reach?(C). Employing the Steiner formula .1l we get
(n+ 1)L (B?(C,p)) = (n+ 1LTHC) + (n+1) Y p" V2 (C)
m=0
for 0 < p < reach?(C). Hence, we infer
n—1
DL (C) = (m+ 1V 4 (O™ + L(C) = (n + DL™HC) =0

for 0 < p < reach?(C). It follows that I, (C') = (m + l)VmH(C’) form =0,...,n—1 and in addition
we have I,,(C) = (n+ 1)L"T(C). O

6.2 The soap bubble theorem for sets of positive reach

The following notion of k-convexity generalizes the classical analogous notion used in the Euclidean
setting to study isoperimetric-type inequalities for Querrmassintegrals (see [Tru94] or the more recent
[CWT3]). Analogous concepts also arise in the context of elliptic differential operators (see [TW99)
and [Sal99] and the references given there to earlier work for instance by Caffarelli, Nirenberg, Spruck
(’85), Garding (’59), Ivochkina (’83, ’85), Li (’90)).

Definition 6.9. Let @ # C C R™*! be a set of positive reach with P?(C) > 0, and let r € {0,...,n}.
We say that C' is (r, ¢)-mean convex if
hgyi(a) >0 forH"ae ac AC)andi=1,...,r—1 (73)

and
HY (a,u) >0 for H" ae. (a,u) € N?(C). (74)

Remark 6.10. Suppose that @ # C C R"™! is a set of positive reach with finite volume. Then
P?(C) > 0 if and only if H" (9% C) > 0 by Corollary 510 This in turn is equivalent to int(C) # @.

Remark 6.11. The (0, ¢)-mean convex sets are all sets of positive reach with non-empty interior,
since by definition we have H, g 0 =1 (o) > 0. Moreover, if C' is a set of positive reach and positive

perimeter such that @fﬁik(C.-) are non-negative measures for all k € {1,...,7}, then C is (r, ¢)-mean
convex.
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Before we can add another remark, we need some preparations. Let d% denote the Hausdorff
distance on the space of closed subsets of the metric space (R"T1, ¢*). We say that a sequence of
closed sets C; € R™!, i € N, converges to a closed set C C R"*! as i — oo if d%(Ci, C) = 0 as
i — oo, which is equivalent to the uniform convergence of 5¢ to 5 as i — oo on R (see [Be85]).
The followmg lemma is well known in the Euclidean settmg (see Theorem 4.13, Remark 4.14 and

Theorem 5.9 in [Fed59] and [RZ01] Section 3.1, pp. 7-9]).

Lemma 6.12. Let @ # C; C R™! for i € N be a sequence of closed sets converging to a closed
set C C R™L. Suppose there is a constant p > 0 such that reach¢(Ci) > p for all i € N. Then

reach?(C) > p and for each k € {0,...,n} the Radon measures @‘,f(Ci, -) converge vaguely to the
Radon measure @i(C, ) as i — 0.

Proof. Let p1 € (0,p). Under the assumptions of the lemma, we show that reach(C) > p;. Let
r € R\ O with 62(95) < p1. There is some i; € N such that if 4 > 4y, then 0 < (5& () < p2 < p,
where py := 1(p + p1). Define z; := «Egi () + p2 - l/gi (x), hence 6& (x;) = pa, (5& (x;) = (5& () and
U®(zi,p2) N C; = @, since r& (52 (x), z/gi (x)) > reach(C;). By compactness, we can find an infinite
subset I C N such «Egl(xl) —£€0C, z; — z, 63(2:) = pa2, U?(2,p2) N C = @ and z € (&, 2), where
I 54— oo. But then clearly U?(z, po) NC = @, z € Unp?(C) and £ = §g(z) This proves the first
assertion.

In view of Corollary B.1] it is sufficient to show that if ¢ : R"*! x R"*! — R is a continuous
function with compact support and ¢ € (0, p), then

/ 1{0 < 02, (2) < (€8, (2), 18, (2)) dL™ () — / 1{0 < 64(2) < tho(€h (@), vE (@) dL™ (a)

as ¢ — 00.
We consider an arbitrary point z € R"*L. If 0 < 52(:0) < t, then also 0 < 5& () <tifieNis
large enough. Moreover, f& (x) — 52 () and 1/& (x) = Vg (x) as i — oo, which can be obtained by

minor adjustments of the proof for [HLO0, Lemma 2.2]. Therefore,

1{0 < 62 (z) < t}p(E2 (x),v2 () — 1{0 < 62(2) < thp(€d(2), vE () (75)

as i — 0.

If 5¢( ) > t, then also 5¢ (z) >t if i € Nis large enough, hence (73)) holds trivially. The same is
true if x € mt(C) which 1mphes that x € C; for all sufficiently large ¢ € N.

Since L1 ({z € R" T : 62( =t} UOC) = 0, the assertion follows from the dominated conver-
gence theorem. O

The preceding lemma implies that a non-negativity condition closely related to Definition is
stable with respect to converging sequences of sets of positive reach, as described in the following
corollary.

Corollary 6.13. Let p > 0 be a fized constant. Let @ # C; C R™! for i € N be a sequence of closed
sets with reach(C;) > p > 0 converging to a closed set C C R"L. Then the following statements
hold.

(a) If ©2(Cj,-) > 0 for all j € N, then also ©F(C,-) > 0.
(b) If C; is (r,¢)-mean conver and smooth for all j € N (so that @27,6((}}», ) > 0 holds for k =
.,7), then @fﬁik(C, ) >0 fork=1,...,r; hence, C is (r,$)-mean conver.

A major ingredient for the proof of the Alexandrov theorem for sets with positive reach is the
next lemma.

Lemma 6.14. Let @ # C C R"™! be a set of positive reach with finite and positive volume. Let
A€R and r € {1,...,n} be such that

07 .(C,) =X05(C, ). (76)
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Then ng(a,n) =0 for H" a.e. (a,n) € N®(C) \fo(C’) and

n—r+1

mvg_ﬂrl(C) for H™ a.e. (a,n) € ]fo(C)

Hg,T(a,n) =(r+1)Ar=

Furthermore, the following two statements hold.
(a) IfN#0,r>2and C is (r —1,¢)-mean converz, then
1 1
hga(o)  (hea@\* o _ (R PUC)
6 B N ) R A N O B A a2
for H™ a.e. a € 0VC.

oo >

(b) If r =1, then Hgl(a,n) > % for H™ a.e. (a,n) € N,?(C)
Proof. From the equality ©2_ (C,-) = A0%(C,-) we get
[ otn® ) Setan) (i HE (o) = 3) dH? (@)
BANZ(C) r+1

)
m+ 1 J(veo)\N¢(©)nB

¢(n?(n)) J&(a,n) HE. (a,n) dH™(a,n) =0
for every bounded Borel set B C N?(C). Since Jg(a, n)¢(n®(n)) > 0 for H™ a.e. (a,n) € N?(C), we
conclude that ng(a, n) = 0 for H" a.e. (a,n) € N?(C)\ N2(C) and ng(a,n) = (r+ 1)\ for H"
a.e. (a,n) € fo(C’) Noting that ngo = 159 (c) and employing Theorem [6.8, we derive

) [ o ) o) HE (o) a1 0, )

=r / [0 0 n® ()] T (0 n) HE,, (a, ) dH" (a, )
N (C)

=r(r+1)A /~ [ae nd)(n)]Jgi(a, n) dH" (a,n)

NZ(C)
=r(r+ A(n+1)L"(C), (77)
from which we infer that
_ 1 ~
HY (an) = ——L10 _y¢ (C)  for H" ae. (a,n) € N2(C), (78)

(n+1)Lr+1(C)
since L"T1(C) € (0,00). In particular, using Corollary 510, we obtain

n—r-+1

") = G )

VS,TH(C’) for H" a.e. a € 90°C.

Notice that the asserted conclusion for r = 1 already follows from (78], since V?(C) > P?(C).

We assume now r > 2, A # 0 and that C is (r — 1, ¢)-mean convex. The non-negativity property
of Hg,r—l in combination with (77) implies that A > 0, that means A > 0. Therefore hg,T(a) >0 is
satisfied for H™ a.e. a € 9VC. Hence we can apply Lemma 2.2] to conclude that

B, (@) (hzr_m)r* (hmo)i (mm)*
’ —_— . = 79
o ) CUD B i

for H™ a.e. a € 9"C. Using again that ngil(a,n) > 0 for H" a.e. (a,n) € N?(C) and the lower
bound for ngfl(a, 7n) from ([79), we get

(n—r+1) / o(n? (1)) JE (a,m) HE,_, (a,n) dH" (a,1)
N9 (C)
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> (n—r+1) / o(n®(n) T (ayn) HE,_(a,n) dH™(a, )
No(O)|oy.C

r r—1

el 007 (1) (1) [ ) e e

(nr+lmr+DM:}Cv7‘<7l)PﬁC) (80)

r r—1

Combining (77) and (80), noting that (n —r + 1)(’;)_1(:1)% = 1 and recalling that A > 0, we
conclude

> D0

Now the remaining assertion follows from (79). O

<l

0o > [\ + 1)

The Alexandrov theorem for sets of positive reach is now a corollary of our previous results.

Theorem 6.15. Let r € {1,...,n}, and let C C R""L be an (r — 1, ¢)-mean convex set with positive
and finite volume such that

0% _(C,)=10%(C,-) for some A € R\ {0}. (81)

Then X\ > 0 and there exist a finite natural number N > 1 and c1,...,cn € R such that

-

int(C) = | int(e; + pW?), dist? (ci + PW? ¢+ pW¢) > 2reach?(C) fori # j,

1

3

where p satisfies the relations (2)% (Ar+ 1))7% =p= %{lg;(c) and A > 0.

If r =1, then the same conclusion is obtained for any A € R and any set C' of positive reach with
positive and finite volume.

Proof. The assertion is implied by a combination of Lemma and Corollary 5.I6] in particular it
follows that A > 0.

1 1
To check the equation p = ()" (A(r +1))” 7, we first observes that :‘iiwd, (a,n) = % for (a,n) €
N?(pW?) (see for instance [DRKS20, Corollary 2.33]); since C' is the disjoint union of N translated
copies of pWV?, one infers that HgT(a,n) = (M)p~" for (a,n) € N?(C). As HgT(a,n) = A(r+1) for
(a,n) € N*(C) by Lemma [6.14] we obtain the aforementioned equation. O

In Theorem [B.T5 we deal with sets which are non-convex, hence it is natural to state the propor-
tionality assumption (RI]) on the r-th ¢-mean curvatures in terms of generalized curvature measures.
However, under a slightly more restrictive mean convexity assumption we also get the following vari-
ant of Theorem in which a corresponding assumption on the proportionality of a curvature
measure is imposed in [82)). The proof is based on a modified version of Lemma [6.14] whose proof
only requires minor adjustments (and uses (G3)) in first part of the argument).

Theorem 6.16. Let r € {1,...,n}, and let C C R""L be an (r — 1, ¢)-mean convex set with positive
and finite volume and such that HgT(a, n) >0 for H" a.e. (a,n) € N®(C). Assume that

Co (C,)=\CP(C,-) for some A > 0. (82)
Then there exist a finite natural number N > 1 and cq,...,cn € R such that

N
int(C) = U int(c; + pW?),  dist® (ci+ oW? i + pW¢) > 2reach?(C) fori # 7,

i=1

where p is given as in Theorem [6.15
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We conclude this section discussing the validity of the hypothesis of Theorem in terms of
Alexandrov points and pointwise curvatures for a large subclass of sets of positive reach, namely
those sets C' for which H™(9C \ 9C') = 0. This class includes all convex bodies, and more generally
all closed sets that can be locally represented as the epigraph of a semiconvex function; see Lemma
6.200 But it includes much more; indeed, it is easy to construct sets of positive reach C' for which
H™(2C \ 9°C) = 0, but the boundary is not a topological manifold (see [RZ17, Example 7.12] or

[ACV08, Example 1]).

The hypotheses in the next statement should be seen in connection with the disjoint union dis-
played in (G3]).
Lemma 6.17. Ifk € {1,...,n}, A € R and @ # C C R"! is a set of positive reach such that
H™(OC \ 0°C) = 0 and P?(C) > 0, then the following two statements hold.

(a) If hgyk(a) =\ for H" a.e. a € A(C) and H"* [p(]v‘b(C) \ ]\N/',‘f(C))} =0, then
(b) If k¢ (a) >0,....he i (a) >0 for H" a.e. a € A(C) and H"~F+1[p(N*(C)\ N2(C))] =0,
then C is (k — 1, ¢)-mean conver.

Proof. (a) Let B C N?(C) be a Borel set. Noting that ©%(C, B) = 0%(C, BOJ\N/',?(C)) by definition of
Hgo, we can use Lemmal[6.7] Lemmal[G4land Corollary[5I0 (a), (b) together with n(a) = Vo(n(C, a))
for a € 9C to compute

0 _,(C.B) = ©7_,(C.BNN(C))
- / - 1p(an(@)o(n(C. @)k, (o) dH" (o)

3 [ Lnan(@)é(n(C,a)) dH" @)
vC
=\0%(C, B).
(b) Arguing as in (a) we can compute

®¢

nkarl(Ca B) = 627k+1 (Ca B N j\vfg(c))

= [ ts(an@)eln(C.aph, (@ (@) > 0

for every Borel set B C N?(C). This means that Hgkfl(a,n) > 0 for H" a.e. (a,m) € N®(C) and
consequently C'is (¢, k — 1)-mean convex. O

Now with the help of Lemma [G.17 the following result can be easily deduced as a special case of
Theorem [6.15]

Corollary 6.18. Suppose k € {1,...,n}, A € R\ {0} and @ # C C R""! is a set of positive reach
with finite and positive volume such that

(1) H*(OC'\ 9°C) = 0 and H"*[p(N¢(C) \ N2(C))] =0,
(2) hgk(a) =X for H" a.e. a € A(C),

(3) hgl(a) >0,..., hg,kﬂ(a) >0 for H" a.e. a € A(C).

Then the conclusion of Theorem holds. If k = 1, then the same conclusion is true for every
AeR.

Remark 6.19. Corollary [6.I8 includes as very special cases the soap bubble theorems of Alexandrov
([Ale58]), Korevaar—Ros ([Ros87] and [Ros88]) and He-Li-Ma—Ge ([HLMGQ9]). In fact for connected
and compact domains with C2-boundary the hypothesis (c) of Corollary can be easily deduced
from the existence of an elliptic point, the continuity of the principal curvatures and the Garding
theory on hyperbolic polynomials (see [Ros88, page 450] for further details). The continuity of the
principal curvatures and the assumption of connectedness play a key role in this argument.
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Recall the definition of epigraph from (&1]).

Lemma 6.20. Suppose C C R™! is a compact set such that for every a € OC there exists u € S”,
€,0 >0 and a semiconvex function f :a+ut — R such that

epi(f) N Uz 5(a,u) = CNU:s(a,u). (83)
Then reach(C) > 0 and H™(OC \ 9°C) =0

Proof. For a € 9C, let £(a),d(a) > 0 and the local representation in terms of a semiconvex function
fa be as in (83). By [Fu85, Theorem 2.3] we know that reach(epi(f,)) > r(a) > 0. Define p(a) =
1 min{e(a), 6(a),7(a)}. Then we have U(a, p(a)) € Unp(C) for every a € OC. If a € int(C), then
there is also a positive number p(a) such that U(a, p(a)) C int(C) € Unp(C). Since the sets U(a, p(a)),
for a € C, are an open cover of the compact set C', we get a finite number of points ay,...,ay € C
such that C C vazl Ul(as, @) Then for 0 < 7 < inf{@, e @}, it holds that for every ¢ € C
there is some a; such that U(c,7) C U(as, p(a;)) € Unp(C). This shows that reach(C) > 7 > 0.
Note that dC = p(N(C)) (see e.g. [RZ19, Corollary 4.12(a)]). Since H°(N(C,a)) # 2 for a € OC
due to ([B3), it follows from Lemma [320] (¢) that H™(p(N(C)) \ 9”C) = 0, which gives the remaining
assertion. O
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