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Abstract
The Parameterized Algorithms and Computational Experiments challenge (PACE) 2022 was devoted
to engineer algorithms solving the NP-hard Directed Feedback Vertex Set (DFVS) problem. The
DFVS problem is to find a minimum subset X ⊆ V in a given directed graph G = (V, E) such that,
when all vertices of X and their adjacent edges are deleted from G, the remainder is acyclic.

Overall, the challenge had 90 participants from 26 teams, 12 countries, and 3 continents that
submitted their implementations to this year’s competition. In this report, we briefly describe
the setup of the challenge, the selection of benchmark instances, as well as the ranking of the
participating teams. We also briefly outline the approaches used in the submitted solvers.
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1 Introduction

Over the last two decades, significant advances have been made in the design and analysis
of fixed-parameter algorithms for a wide variety of graph-theoretic problems. This has
resulted in an algorithmic toolbox that is by now well-established. Recently, these theoretical
algorithmic ideas have received attention from the practical perspective [2, 3, 25, 40, 50].
A large part of this effort is driven by the Parameterized Algorithms and Computational
Experiments Challenge (PACE) which was conceived in Fall 2015 to deepen the relationship
between parameterized algorithms and practice. Topics from multivariate algorithms, exact
algorithms, fine-grained complexity, and related fields are in scope. The mission of PACE is
to bridge the divide between the theory of algorithm design and analysis, and the practice of
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algorithm engineering, inspire new theoretical developments, investigate in how far theoretical
algorithms from parameterized complexity and related fields are competitive in practice,
produce universally accessible libraries of implementations and repositories of benchmark
instances as well as to encourage the dissemination of these findings in scientific papers. In
each iteration of the challenge [20, 21, 12, 24, 51, 47] participants of the competition have
been asked to provide implementations for one or two specifically chosen problems. Moreover,
there are often two types of tracks: a track in which participants have to provide algorithms
that solve a problem to optimality and a track in which heuristic solvers are allowed (and
solutions are ranked accordingly). The challenge tackled already a wide range of problems.
In previous iterations, the challenge tackled the following problems:

First Iteration: Treewidth and Undirected Feedback Vertex Set [20]
Second Iteration: Treewidth and Minimum Fill-In [21]
Third Iteration: Steiner Tree [12]
Fourth Iteration: Vertex Cover and Hypertree Width [24]
Fifth Iteration: Treedepth [51]
Sixth Iteration: Cluster Editing [47]

Since its inception, PACE challenges have established themselves as highly competitive
with typically around 50 participants submitting their solvers from all over the world.
Moreover, the challenges have already had a significant impact on the community as a whole.
There is a wide range of research articles based on concrete implementations competing
in previous editions of PACE that were published in prestigious conferences on algorithm
engineering such as ACDA, ALENEX, ESA Track B, SEA, and WADS. Moreover, the
challenges already successfully inspired new research, i.e. after the challenge there are also
new results that improve on the previously best implementations from a particular challenge.

In this article, we report on the seventh iteration of the PACE implementation challenge.
The problem chosen for this year’s iteration has been the directed feedback vertex set problem.
The challenge featured two tracks: an exact track and a heuristic track. In the exact track,
the task was to find an optimal solution of each directed feedback vertex set instance within
a time limit of 30 minutes. In the heuristic track, the task was to compute a valid solution
that was as small as possible within a time limit of ten minutes.

The PACE 2022 challenge was announced and tracks were specified in September 2021.
In January 2022, public instances were made available to the challenge participants. In
March 2022, challenge participants were able to submit their solvers into the optil.io platform
in which they could test their solvers on the instances that were publicly available. The
platform also provided a provisional ranking. The final version of the submissions was due 1st
June 2022. Afterwards, the submissions were evaluated on the publicly available as well as the
private (hidden) instances. The results were announced in July 2022. The award ceremony
took place during the International Symposium on Parameterized and Exact Computation
(IPEC 2022).

2 Directed Feedback Vertex Set

The Directed Feedback Vertex Set (DFVS) problem is to find a minimum subset X ⊆ V in a
given directed graph G = (V, E) such that, when all vertices of X and their adjacent edges
are deleted from G, the remainder is acyclic. Thus a feedback vertex set of a graph is a set
of vertices whose deletion leaves a graph acyclic. Figure 1 shows an example.

The DFVS problem has a wide range of applications including deadlock resolution [33],
program verification [57] and VLSI chip design [54]. The decision variant of DFVS (asking if
there exists a feedback vertex set of size at most k) is NP-complete [46] even if restricted to
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Figure 1 An input graph and a feedback vertex set (red) is shown on the left. In this example,
deleting/removing the red vertex and its edges in the left graph results in the graph on the right
hand side and leaves the remaining graph without any cycles.

graphs with maximum in- and out-degree two. The optimization variant of DFVS can be
solved in O∗(1.9977n) time due to an algorithm by Razgon [69]. Chen et al. [17] showed
that the problem is fixed-parameter tractable if parameterized with the solution size k,
giving an algorithm with running time O(4kk!k3n4) = 4kk!nO(1). With improvements to
solving the Skew Edge Multicut problem, this running time is reduced to O(4kk!k4nm) [18,
Corollary 8.47]. Lokshtanov et al. developed an improved algorithm with running time
O(4kk!k5(n+m)) [60], which has only linear dependence on the input size. It is open whether
DFVS has a polynomial kernel in k, however a polynomial kernel exists when parameterized
on the feedback vertex set of the underlying undirected graph [10], and for the compound
parameterization of k plus the size of a treewidth-η modulator for any constant η [61]. Note
that the problem is equivalent to the edge-deletion variant commonly called Feedback Arc
Set: there are reductions in both directions that preserve the value of the optimal solution
and only increase the size of the graph (sum of vertices and edges) by a polynomial factor [27].
Faster algorithms exist for undirected graphs [49, 76, 29], as well as for orientations of
complete graphs (called tournament graphs) [34, 29].

The best approximation algorithm for DFVS is due to Even et al. [27], who gave an
algorithm with approximation factor O(min{log τ∗ log log τ∗, log n log log n}) where τ∗ is
a lower bound, such as the optimal fractional solution in the LP relaxation. By Karp’s
reduction [46], DFVS is APX-hard, meaning that there is no polynomial-time approximation
scheme (PTAS) for DFVS assuming P̸=NP. Furthermore, assuming the Unique Games
Conjecture, DFVS does not admit a polynomial-time constant factor approximation [37, 38].
However, Lokshtanov et al. give a 2-approximation algorithm for DFVS when the input is a
tournament graph [59].

3 Challenge Setup

There were two tracks in which the participants could compete: an exact and a heuristic
track. For each track the 200 instances were selected by the Program Committee (PC), half
of them publicly available before the submission deadline. The instances were sorted by the
time our internal solvers needed to solve the instance. In the testing phase the instances were
evaluated on the online judging platform optil.io [75]. For the final evaluation, we tested the
instances on a local machine: an AMD EPYC 7702P 64-Core CPU, 200W, 2.00GHz, 256MB
L3 Cache, DDR4-3200, Turbo Core max. 3.35GHz. Both evaluations used the same time
limits: 30 minutes for the exact track and 10 minutes for the heuristic track.

3.1 Track Descriptions
The exact and the heuristic track followed essentially the same rules as in previous iterations
of PACE. We now shortly describe the tracks:
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Exact Track. In this track submissions had to find an optimal (minimum) feedback vertex
set within 30 minutes. We expected each submission to be an exact algorithm, although
we did not ask for proof of it. If we found through code checks or experiments that the
algorithm of a submission is not an exact algorithm, it was excluded from the track. If for
some instance the program returned a solution that has not been optimal within the time
limit, either because it is not minimum or not a feedback vertex set, then the submission has
been disqualified. The ranking has been determined by the number of solved instances. In
case of a tie, the winner has been determined by the time required to solve all instances.

Heuristic Track. In the heuristic track, submissions had to provide a feedback vertex set
within 10 minutes for a given instance. The submissions have been ranked by the geometric
mean over all instances of 100 × best solution size

solution size . Here, solution size is the size of the solution
returned by the submission and best solution size is the size of the smallest solution known
to the PC (which may not be optimal). If the output of the program turned out to be not a
feedback vertex set (or there is no output on SIGKILL) for some instance, solution size for
the instance has been considered as |V |.

3.2 Internal Solver
Our goal was to create instances that are easy to solve, as well as instances that are as
challenging as possible for the submissions. We implemented several data reduction rules
and heuristics which we then used in our ILP solver to compute optimal solutions for the
instances described in Section 3.3. We will now give a brief description of the algorithms.

Reduction Rules. We implemented four data reduction rules which are also summarized in
the work of Lin and Jou [58]. We first compute all strongly connected components (SCC)
using Tarjan’s algorithm [74] and remove all edges connecting two SCCs. We then solve
each SCC separately. Further, we contract each node u with in-degree or out-degree one
onto its unique predecessor or successor v. Intuitively, all cycles containing u also contain
v. The last reduction rule creates an auxiliary graph G′ by removing all undirected edges
from the original graph (an edge {u, v} is undirected if the graph contains the directed edges
(u, v) and (v, u)) and then computes all SCCs of G′. An edge that connects two SCCs in
G′ can be removed from the original graph. For each undirected edge {u, v} either u or v

must be part of a DFVS (each undirected edge induces a cycle of size two) and therefore,
the directed edges (u, v) and (v, u) are not part of the subgraph induced by removing any
DFVS. Edges that connect two SCCs in G′ are not part of a cycle when we remove one node
of each undirected edge, and thus can be removed from the original graph. We apply the
data reductions until none of them are applicable.

Random Walk Heuristic. A random walk on a directed graph G = (V = {v1, . . . , vn}, E)
can be modeled as a Markov chain with transition probabilities pij = 1

d(vi) where d(vi) is
the out-degree of node vi. The stationary distribution π = (π1, . . . , πn) of this Markov chain
describes the probability distribution of visiting a node after a sufficiently long time (π is
the solution of the linear equation Pπ = π). Moreover, π−1

i represents the mean return time
to node vi in random walks. Thus, the stationary distribution π encodes information about
the global structure of all cycles and a node vi with the highest πi value is very likely to be
visited most frequently (and also contained in many cycles). A heuristic based on this idea
was proposed by Lemaic and Speckenmeyer [70, 55]. We implemented a simple version of
this algorithm that performs the random walk explicitly. We select a random start node and
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visit 10|V | nodes. We remove the node that is visited most often. Afterwards, we recompute
the SCC that the corresponding node was part of and remove all edges connecting two SCCs.
The algorithm terminates if the graph is acyclic.

Maximum Acyclic Subgraph Heuristic. The DFVS problem is equivalent to finding a
set V ′ of maximum cardinality such that the subgraph G[V ′] is acyclic. The set V \ V ′ is
then a minimum DFVS. If a graph G = (V, E) is acyclic, then there exists a topological
ordering T = ⟨v1, . . . , vn⟩ of the nodes V such that for all edges (vi, vj) ∈ E holds that i < j.
Galinier et al. [32] propose a local search algorithm that constructs an acyclic subgraph
G[V ′] such that |V ′| is maximized. Consider an acyclic subgraph G[V ′] with V ′ ⊆ V and its
topological ordering T = ⟨v1, . . . , vn′⟩ with n′ = |V ′|. If we insert a node u /∈ V ′ into T after
the position i, we have to remove all nodes in Vin(u, i) := {vj ∈ V ′ | (vj , u) ∈ E ∧ j > i}
and Vout(u, i) := {vj ∈ V ′ | (u, vj) ∈ E ∧ j ≤ i} from T such that T still represents a valid
topological ordering of the subgraph G[V ′′] with V ′′ = (V ′ ∪ {u}) \ (Vin(u) ∪ Vout(u)). Thus,
we can efficiently evaluate if a node u /∈ V ′ increases the cardinality of the acyclic subgraph
G[V ′] by computing the gain g(u, i) := 1 − |Vin(u, i)| − |Vout(u, i)|.

Our local search algorithm uses the well-known label propagation heuristic [68, 79]. The
algorithm works in rounds and in each round it visits the nodes in random order. We initially
start with an empty topological ordering T (V ′ = ∅). If we visit a node u /∈ V ′, we insert u

into T after position i that maximizes g(u, i) and remove all nodes in Vin(u, i) and Vout(u, i)
from T . Note that we only evaluate positions in {i | (vi, u) ∈ E ∨ (u, vi) ∈ E} and add u to
T if g(u, i) ≥ 0. Further, insertions with g(u, i) = 0 naturally perturb the solution and we
observed that this enables frequent improvements also in later iterations of the algorithm.
The algorithm terminates if we reach a predefined number of rounds (= 200). To maintain the
topological ordering, we use a sparse table priority queue implementation [42] that provides
(amortized) constant time operations for access, insertions and removals of nodes.

We additionally made two major improvements to the original algorithm proposed by
Galinier et al. [32]. Both exploit the fact that the topological ordering of the subgraph G[V ′]
is not unique and therefore provide some flexibility in the ordering of the nodes in T . If
we are not able to insert a node u into the topological ordering T (i.e., g(u, i) < 0 for all
possible positions i), we shift all nodes vi ∈ T adjacent to u via an in-arc (vi, u) ∈ E to the
left and all nodes vj ∈ T adjacent to u via an out-arc (u, vj) ∈ E to the right in T (both as
far as possible such that T still represents a valid topological ordering of G[V ′]). If then the
indices of all nodes in T adjacent via an in-arc to u are smaller than the ones adjacent via
an out-arc to u, we can increase the cardinality of the acyclic subgraph by inserting u in
between. We further diversify the search by periodically computing a random topological
ordering of G[V ′] using Kahn’s algorithm [45] (every fifth round).

Both techniques significantly improved the solution quality of the original algorithm (more
than 10% on most instances). In practice, this heuristic was often an order of magnitude
faster than our random walk algorithm. We also see more potential in this method as the
concepts of gains allow the development of more sophisticated local search techniques.

Exact Solver. For the exact track, we solved the instances using a branch-and-cut ILP
formulation and used Gurobi as a solver. Moreover, the we integrate the data reduction
rules described above into the solver. On the obtained irreducible instance, we run acyclic
subgraph heuristics from above to get an initial feasible DFVS and provide the solution as an
upper bound to the ILP solver that solves the following ILP to compute an optimal solution
on the instance:

IPEC 2022
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min
∑
v∈V

xv

s.t.
∑

i

xvi
≥ 1 ∀ cycles C = {v1, v2, ..., vk} in G.

Note that the number of constraints here can be exponential. As this would result in an
intractable ILP, we add constraints lazily as follows. Initially our solver adds all constraints
for cycles of length two. In addition, for each node u ∈ V , we add three cycle constraints
representing cycles in which u is the node with smallest ID (ensures that the cycle constraints
are distinct). We will call such a cycle an elementary cycle of u. We then solve the ILP using
Gurobi and check if the solution is a feasible DFVS, i.e. after removal of the solution vertices
there is no cycle remaining. If this is the case, then the solution is also an optimal solution
to our input instance. If it is not a DFVS then after removing the vertices from the graph
there must be a cycle. We then add for each node u in the remaining graph one additional
elementary cycle and repeat the process.

Surprisingly, our exact solver was able to compute optimal solutions for some of the
real-world instances in the heuristic track with up to 500k edges within a few minutes.
However, the running time increases drastically for denser graphs (even if they contain only
a few thousand edges). Thus, we believe that the density of a graph is a good indicator for
the hardness of an instance.

3.3 Instances

We obtained instances from a wide range of different sources. In particular, as there is a wide
range of random graph models available [66], we generated instances from different graph
classes using KaGen [30], included several real-world instances from public graph repositories,
and lastly generated instances that are hard for typical heuristic solvers such as heuristics
based on random walks.

Generation and Selection Process. Our instance generation and selection process worked
as follows: for both the exact and the heuristic track we generated a very large set of
instances. From the graphs that are bidirected, we removed a random amount of edges
p ∈ {0, 10, 20, 30, 40, 50} to also obtain directed instances from those models. The amount
of instances that we generated internally has been much larger the necessary 200 instances
for the public and private set of instances for each track. The instances that we generated
are described by a wide-range of parameters of different graph families (see below for more
details). From the large set, we filtered instances that had more than 1 000 strongly connected
components, less edges than nodes and excluded instances that had a file size above 50MB.
On the remaining set of instances, we ran our exact and heuristic solvers. For the exact
track, we then further excluded instances that our solver could handle in less than a second.
Afterwards, we sampled instances uniformly at random. In particular, we included easy
instances that could be solved within a couple of seconds as well as instances that were hard
to solve. For the heuristic track, we tried to include instances that are hard for heuristics.
From the instances that our exact solver could solve in this track, we included the ones where
the result of heuristic solver had significantly more vertices than the optimum solution. Here,
we also included real-world instances as well as instances designed to be hard for heuristics.

The instances we used can be categorized as follows:
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Erdős-Rényi Graphs. The first version of the Erdős-Rényi (ER) model was proposed by
Gilbert [35] and is denoted as the G(n, p) model. Here, each of the n(n − 1)/2 possible edges
of an n-node graph is independently sampled with probability 0 < p < 1 (Bernoulli sampling
of the edges).

The second version, proposed by Erdős and Rényi [26], is denoted as the G(n, m) model.
In the G(n, m) model, we choose a graph uniformly at random from the set of all possible
graphs which have n vertices and m edges.

Random Geometric Graphs. Random geometric graphs (RGGs) are bidirected spatial
networks where we place n vertices uniformly at random in a d-dimensional unit cube [0, 1)d.
Two vertices p, q ∈ V are connected by an edge iff their d-dimensional Euclidean distance
dist(p, q) =

√∑d
i=1(pi − qi)2 is within a given threshold radius r. Thus, the RGG model

can be fully described using the two parameters n and r. Note that the expected degree of
any vertex that does not lie on the border, i.e. whose neighborhood sphere is completely
contained within the unit cube, is d̄(v) = π

d
2

Γ( d
2 +1) rd [65]. Here, we used two and three

dimensional random geometric graphs as available in KaGen.

Random Hyperbolic Graphs. Random hyperbolic graphs (RHGs) are bidirected spatial
networks generated in the hyperbolic plane with negative curvature. Analogous to RGGs,
RHGs are parameterized by the number of vertices n and a hyperbolic radius R = 2 log n+C.1
Additionally, this model is given a power-law exponent γ ≥ 2. To generate a RHG graph, n

vertices are placed on a disk of radius R in the hyperbolic plane.
Each vertex has an angular coordinate ϕ and a radial coordinate r. The angular coordinate

is sampled uniformly at random from the interval [0, 2π). The radial coordinate r is chosen
using the probability density function

f(r) = α
sinh(αr)

cosh(αR) − 1 .

The parameter α = γ−1
2 controls the growth of the random graph and determines the vertex

density. Krioukov et al. [52, 36] show that for γ ≥ 2 the degree distribution follows a
power-law distribution with exponent γ. Two vertices p, q are connected iff their hyperbolic
distance

distH(p, q) = cosh rp cosh rq − sinh rp sinh rq cos |ϕp − ϕq|

is less than R. Therefore, the neighborhood of a vertex consists of all the vertices that are
within the hyperbolic circle of radius R around it.

Random Delaunay Graphs. A d-simplex is a generalization of a triangle (d = 2) to d-
dimensional space. A d-simplex s is a d-dimensional polytope, i.e. the convex hull of
d + 1 points. The convex hull of a subset of size m + 1 of these d + 1 points is called an
m-face of s. Specifically, the 0-faces are the vertices of s and the (d − 1)-faces are its facets.
Given a d-dimensional point set V = {v1, v2, . . . , vn} with vi ∈ Rd for all i ∈ {1, . . . , n}, a
triangulation T (V ) is a subdivision of the convex hull of V into d-simplices, such that the set
of the vertices of T (V ) coincides with V and any two simplices of T intersect in a common

1 The parameter C controls the average degree d̄ of the graph [52].

IPEC 2022



26:8 PACE 2022: Directed Feedback Vertex Set

v1

v2

v4 v5

v3

π1 = 0.28

π5 = 0.17π4 = 0.12

π2 = 0.23 π3 = 0.19

Figure 2 Graph that is hard to solve for heuristics based on random walks. The πi values denote
the stationary distribution if we interpret the graph as a Markov chain with transition probabilities
pij = 1

d(vi) .

d − 1 facet or not at all. The union of all simplices in T (V ) is the convex hull of point set V .
A Delaunay triangulation DT (V ) is a triangulation of V such that no point of V is inside
the circumhypersphere of any simplex in DT (V ).

Barabási-Albert Graph Model. Barabási and Albert [7] define the model that is perhaps
most widely used because of its simplicity and intuitive definition: One starts with an arbitrary
seed network consisting of nodes 0..n0 − 1 (a..b is used as a shorthand for {a, . . . , b} here).
Nodes i ∈ n0..n − 1 are added one at a time. They randomly connect to d neighbors using
preferential attachment, i.e., the probability to connect to node j ≤ i is chosen proportionally
to the degree of j. The seed graph, n0, d, and n are parameters defining the graph family.
Since all edges only point to nodes with a smaller node ID the resulting directed network is
acyclic. Hence, we generated graphs according to the Barabási Albert and modified them to
become cyclic in the following way:
First, we computed a topological ordering of the instance. Then we inserted p · m random
edges, where p ∈ [0.05, 0.2]. More precisely, we picked a random node to be a source, and
afterwards picked a random node with a smaller number in the topological ordering.

Real-World Instances. This category includes instances from the SNAP [56] data set. We
took 15 large directed graphs having between 7 115 and 2 394 385 nodes. In particular,
we used web graphs, social networks, wikipedia graphs as well as purchase networks and
autonomous system graphs. These instances were used in the heuristic track only.

Generated Hard Instances for Heuristic Solvers. In Figure 2, we show a graph where
heuristics based on random walks choose a node that is not in the optimal DFVS with
high probability. The optimal solution is to remove v2 and v3. However, v1 has the highest
probability in the stationary distribution (π1 = 0.28) and, if removed, leads to a DFVS
of size 3. We create larger instances by replicating this five-node graph N times (optimal
DFVS has size 2N). We additionally connect the N copies with directed edges (10 edges per
copy) such that the size of the optimal DFVS does not change and the probabilities in the
stationary distribution of visiting v2 and v3 in each copy do not increase. Furthermore, we
generate a random graph GR = (VR, ER) with |VR| ∈ [2.5N, 5N ] nodes (chosen uniformly
and at random) and an average degree of 5. We then connect each node u ∈ VR to a random
node representing v1 in one of the copies and connect the nodes {v2, v3, v4, v5} of each copy
to a random node v ∈ VR. This hides the internal structure of the graph and adds some
noise to the size of the DFVS. We generate 25 instances of this graph with N ∈ [102, 105]. In
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our experiments, the size of the DFVS computed by our random walk algorithm was in most
cases 1.5 times larger than the size of the optimal DFVS. The instances were used in the
heuristic track only.

4 Participants and Results

There were 13 and 17 teams that officially submitted a solution to the exact and heuristic
tracks, respectively. Several teams participated in more than one track; in total there were
26 distinct teams. The participants represented 3 continents and the following 12 countries
(number of authors from the respective country is given in brackets): Germany (12), China
(12), Czechia (10), France (7), Austria (5), India (5), Portugal (5), Norway (3), Romania (2),
United States (2), Netherlands (1), Poland (1). The results are listed below.

4.1 Exact Track

The ranking for the exact track is listed subsequently; We list the number of solved instances
from the 200 overall instances.

Rank 1 goes to solver raki123 having solved a total number of 185 instances; Authors:
Andre Schidler and Rafael Kiesel; Affiliation: TU Wien; URL of solver: https:
//github.com/ASchidler/dfvs. Zenodo: [48]
Rank 2 goes to solver grapa-java having solved a total number of 165 instances; Authors:
Enna Gerhard, Jona Dirks, Moritz Bergenthal, Jakob Gahde, Thorben Freese, Mario
Grobler and Sebastian Siebertz; Affiliation: University of Bremen; URL of solver:
https://gitlab.informatik.uni-bremen.de/grapa/java/. Zenodo: [9]
Rank 3 goes to solver mt-doom having solved a total number of 152 instances; Authors:
Sebastian Angrich, Ben Bals, Niko Hastrich, Theresa Hradilak, Otto Kissig, Jonas
Schmidt, Leo Wendt, Katrin Casel, Sarel Cohen and Davis Issac; Affiliation: Hasso
Plattner Institute; URL of solver: https://github.com/BenBals/mount-doom/tree/
exact. Zenodo: [4]
Rank 4 goes to solver goat_exact having solved a total number of 151 instances; Authors:
Radovan Červený, Michal Dvořák, Xuan Thang Nguyen, Jan Pokorný, Lucie Procházková,
Jaroslav Urban, Václav Blažej, Dušan Knop, Šimon Schierreich and Ondrej Suchy; Affili-
ation: Czech Technical University in Prague, Faculty of Information Technology; URL
of solver: https://gitlab.fit.cvut.cz/pace-challenge/2022/goat/exact. Zen-
odo: [80]
Rank 5 goes to solver THS_exact having solved a total number of 140 instances; Authors:
Henri Froese, Jonathan Guthermuth, Lars Huth, Marius Lotz, Johannes Meintrup, Timo
Mertin, Manuel Penschuck and Hung Tran; Affiliation: Goethe University Frankfurt
and THM, University of Applied Sciences Mittelhessen; URL of solver: https://github.
com/goethe-tcs/breaking-the-cycle. Zenodo: [19]
Rank 6 goes to solver mndmky having solved a total number of 130 instances; Authors:
Timon Behr; Affiliation: University of Konstanz; URL of solver: https://github.
com/mndmnky/duck-and-cover. Zenodo: [8]
Rank 7 goes to solver DUM having solved a total number of 125 instances; Authors:
Henri Dickel, Matija Miskovic and Lennart Uhrmacher; Affiliation: Philipps-Universität
Marburg; URL of solver: https://github.com/HenriDickel/DFVS-Solver/tree/
PACE. Zenodo: [22]
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Rank 8 goes to solver yos having solved a total number of 120 instances; Authors:
Yosuke Mizutani; Affiliation: University of Utah; URL of solver: https://github.
com/mogproject/dfvs-2022. Zenodo: [64]
Rank 9 goes to solver rubengoetz having solved a total number of 88 instances; Authors:
Ruben Götz; Affiliation: Karlsruher Institut für Technologie; URL of solver: https:
//gitlab.com/rubenGoetz/dfvs-algo. Zenodo: [39]
Rank 10 goes to solver DRIP having solved a total number of 32 instances; Authors:
Aman Jain, Sachin Agarwal, Nimish Agrawal, Soumyajit Karmakar and Srinibas Swain;
Affiliation: IIIT, Guwahati; URL of solver: https://zenodo.org/record/6618812.
Zenodo: [43]

The following teams submitted a solver, but as described in the rules, their submissions were
disqualified because of at least one suboptimal solution. Afterwards the teams sent us an
updated version of their solver which then computed only correct results in the challenge.
The number of solved instances reported below.
1. Solver Timeroot has solved a total number of 175 instances; Authors: Alexander Meiburg;

Affiliation: UC Santa Barbara; URL of solver: https://github.com/Timeroot/DVFS_
PACE2022/tree/pace-2022. Zenodo: [63], ArXiv: [62]

2. Solver swats has solved a total number of 160 instances; Authors: Sylwester Swat;
Affiliation: Poznań University Of Technology; URL of solver: https://github.com/
swacisko/pace-2022. Zenodo: [72]

3. Solver satanja has solved a total number of 144 instances; Authors: Stefan Tanja;
Affiliation: Eindhoven University of Technology; URL of solver: https://github.com/
satanja/Hex. Zenodo: [73]

Strategies Used in the Submissions
Winning Team. The approach by Andre Schidler and Rafael Kiesel [48] from TU Wien,
Austria, applies a wide range of preprocessing techniques. These techniques stem a) from
well-known reduction rules as well as b) non-trivial adaptations of reduction rules originally
designed for the vertex cover problem. On the reduced instance, the team runs a MaxSAT
solver that incrementally adds constraints.

Runner-Up. The approach by Enna Gerhard, Jona Dirks, Moritz Bergenthal, Jakob Gahde,
Thorben Freese, Mario Grobler and Sebastian Siebertz from University of Bremen also applies
a wide range of reduction rules to first decrease the size of the input. The team uses known
as well as new reduction rules. Depending on the number of remaining undirected edges
(forward and backward edges are present), the authors employ different strategies: a hitting
set ILP formulation, an ILP formulation that models the problem as finding a topological
order and if the later does not terminate within a specific time limit, the team runs a vertex
cover solver to tackle the problem. If the solution of the last solver does not return a solution
for the feedback vertex set problem, then no solution is returned.

Third Place. The team that achieved the third place are Sebastian Angrich, Ben Bals, Niko
Hastrich, Theresa Hradilak, Otto Kissig, Jonas Schmidt, Leo Wendt, Katrin Casel, Sarel
Cohen and Davis Issac from the Hasso Plattner Institute. As the first and second place, the
team applies reduction rules first to reduce the input size. The team solves the remaining
instance by repeatedly solving vertex cover instances. These instances are further reduced by
the reductions of the PACE 2019 winning solver [41] and afterwards the instance is solved
using a SAT-and-Reduce solver for the vertex cover problem [67].
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4.2 Heuristic Track

The ranking for the heuristic track is listed subsequently; We list the score for the 200 overall
instances. The score has been computed as outline in Section 3.1. Larger is better.

1. Rank 1 goes to the solver swats with a score of 99.912; Authors: Sylwester Swat;
Affiliation: Poznań University Of Technology; URL of solver: https://github.com/
swacisko/pace-2022. Zenodo: [72]

2. Rank 2 goes to the solver Nanored with a score of 99.911; Authors: Gabriel Bathie,
Gaétan Berthe, Yoann Coudert-Osmont, David Desobry, Amadeus Reinald and Mathis
Rocton; Affiliation: École normale supérieure de Lyon and Université de Lorraine,
CNRS, Inria, LORIA; URL of solver: https://github.com/Nanored4498/DreyFVS.
Zenodo: [31]

3. Rank 3 goes to the solver hust_huawei with a score of 99.852; Authors: Yuming
Du, Qingyun Zhang, Junzhou Xu, Shungen Zhang, Chao Liao, Zhihuai Chen, Zhibo
Sun, Zhouxing Su, Junwen Ding, Chen Wu, Pinyan Lu and Zhipeng Lv; Affiliation:
SMART, School of Computer Science and Technology, Huazhong University of Science
& Technology and Huawei TCS Lab Shanghai; URL of solver: https://github.com/
1774150545/PACE-2022. Zenodo: [77]

4. Rank 4 goes to the solver KennethLangedal with a score of 99.832; Authors: Kenneth
Langedal, Johannes Langguth and Fredrik Manne; Affiliation: University of Bergen and
Simula Research Laboratory; URL of solver: https://github.com/KennethLangedal/
DFVS. Zenodo: [53]

5. Rank 5 goes to the solver fedrer with a score of 99.611; Authors: Aman Jain, Sachin
Agarwal, Nimish Agrawal, Soumyajit Karmakar and Srinibas Swain; Affiliation: IIIT,
Guwahati; URL of solver: https://zenodo.org/record/6618777. Zenodo: [44]

6. Rank 6 goes to the solver Florian with a score of 99.435; Authors: Florian Sikora;
Affiliation: LAMSADE; URL of solver: https://github.com/fsikora/pace22. Zen-
odo: [28]

7. Rank 7 goes to the solver _UAIC_ANDREIARHIRE_ with a score of 99.156; Authors:
Andrei Arhire and Paul Diac; Affiliation: Alexandru Ioan Cuza University of Ias, i; URL
of solver: https://github.com/AndreiiArhire/PACE2022. Zenodo: [6]

8. Rank 8 goes to the solver INESCIDteam with a score of 98.619; Authors: Daniel Castro,
Luis Russo, Aleksandar Ilic, Paolo Romano and Ana Correia; Affiliation: INESC-ID &
IST; URL of solver: https://github.com/Daniel1993/pace-2022. Zenodo: [16]

9. Rank 9 goes to the solver goat_heuristic with a score of 98.278; Authors: Radovan
Červený, Michal Dvořák, Xuan Thang Nguyen, Jan Pokorný, Lucie Procházková, Jaroslav
Urban, Václav Blažej, Dušan Knop, Šimon Schierreich and Ondrej Suchy; Affiliation:
Czech Technical University in Prague, Faculty of Information Technology; URL of
solver: https://gitlab.fit.cvut.cz/pace-challenge/2022/goat/heuristic. Zen-
odo: [81]

10. Rank 10 goes to the solver orodruin with a score of 98.245; Authors: Sebastian Angrich,
Ben Bals, Niko Hastrich, Theresa Hradilak, Otto Kißig, Jonas Schmidt, Leo Wendt, Katrin
Casel, Sarel Cohen and Davis Issac; Affiliation: Hasso Plattner Institute, Potsdam, Ger-
many and Digital Engineering Faculty, University of Potsdam, Potsdam, Germany; URL
of solver: https://github.com/BenBals/mount-doom/tree/heuristic. Zenodo: [5]
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11. Rank 11 goes to the solver THS_heuristic with a score of 95.357; Authors: Jonathan
Guthermuth, Lars Huth, Marius Lotz, Johannes Meintrup, Timo Mertin, Manuel
Penschuck, Lukas Schwarz and Hung Tran; Affiliation: Goethe University Frank-
furt and THM, University of Applied Sciences Mittelhessen; URL of solver: https:
//github.com/goethe-tcs/breaking-the-cycle. Zenodo: [19]

12. Rank 12 goes to the solver grapa-rust with a score of 94.744; Authors: Ozan Can
Heydt, Leon Stichternath, Kenneth Dietrich and Philipp Haker; Affiliation: Universität
Bremen; URL of solver: https://gitlab.informatik.uni-bremen.de/grapa/rust/
mimung. Zenodo: [71]

13. Rank 13 goes to the solver dfvsp-julia with a score of 92.644; Authors: Maria Bresich,
Günther Raidl and Johannes Varga; Affiliation: TU Wien; URL of solver: https:
//github.com/NunuNoName/dfvsp-solver. Zenodo: [13]

14. Rank 14 goes to the solver grapa-java with a score of 91.369; Authors: Enna Ger-
hard, Jona Dirks, Moritz Bergenthal, Jakob Gahde, Thorben Frese, Mario Grobler
and Sebastian Siebertz; Affiliation: Universität Bremen; URL of solver: https:
//gitlab.informatik.uni-bremen.de/grapa/java/. Zenodo: [9]

15. Rank 15 goes to the solver BreakingCycles with a score of 74.613; Authors: Mert Biyikli;
Affiliation: Heidelberg University; URL of solver: https://github.com/MertBiyikli/
BreakingCycles.git. Zenodo: [11]

There were two more submissions from the team of the hust_huawei solver (Rank 3), however,
only their best solver (hust_huawei) was ranked:

1. Solver xjz_huawei with a score of 99.651; Authors: Yuming Du, Qingyun Zhang,
Junzhou Xu, Shungen Zhang, Chao Liao, Zhihuai Chen, Zhibo Sun, Zhouxing Su, Junwen
Ding, Chen Wu, Pinyan Lu and Zhipeng Lv; Affiliation: SMART, School of Computer
Science and Technology, Huazhong University of Science & Technology and Huawei
TCS Lab Shanghai; URL of solver: https://github.com/xuxu9110/PACE2022.git.
Zenodo: [23]

2. Solver adu with a score of 99.618; Authors: Yuming Du, Qingyun Zhang, Junzhou Xu,
Shungen Zhang, Chao Liao, Zhihuai Chen, Zhibo Sun, Zhouxing Su, Junwen Ding, Chen
Wu, Pinyan Lu and Zhipeng Lv; Affiliation: SMART, School of Computer Science and
Technology, Huazhong University of Science & Technology and Huawei TCS Lab Shanghai;
URL of solver: https://github.com/Zhang-qingyun/pace_2022_HUST_solver.git.
Zenodo: [78]

Strategies Used in the Submissions

Winning Team. The winning solver was due to Sylwester Swat from Poznań University
Of Technology. The solver reduces the input using data reduction rules. It then finds some
initial solution of the reduced graph using fast heuristics. It then tries to improve the found
solution by using a variety of heuristic approaches. In the end the solution is transferred to
the input instance. More specifically, if the input instance is somewhat close to a bidirected
graph, then fast vertex cover solvers NuMVC [15] and FastVC [14] are used to compute an
initial solution. Another heuristic employed is based on agent flows. Specifically, each node
is assigned a fixed number of tokens. Then the algorithm proceeds in rounds. In each round,
each token assigned to a node is moved to a random out-neighbor. When all rounds are
finished, the node having most tokens is added to the feedback vertex set and the process is
repeated until the obtained graph is acyclic.
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Runner-Up. The team scoring the second rank consists of Gabriel Bathie, Gaétan Berthe,
Yoann Coudert-Osmont, David Desobry, Amadeus Reinald and Mathis Rocton from École
normale supérieure de Lyon and Université de Lorraine CNRS, Inria, LORIA. After performing
data reductions, their algorithm first performs a guess on the reduced instance by leveraging
the Sinkhorn-Knopp algorithm. The solution is then improved by pipelining two local search
methods. The first local search algorithm is a vertex swapping algorithms, i.e. the algorithms
removes a vertex from the current solution and if this creates a cycle it adds a random vertex
of the current cycle to the solution. If removing the vertex does not create a cycle, then the
solution size has been improved by one. The second local search algorithm uses the fact that
a digraph is acyclic if and only if a topological ordering can be computed. The team then
shows that a unique feedback vertex set can be created from any topological ordering and
thus obtain a local search method by shuffling vertices in the topological ordering.

Third Place. The team Yuming Du, Qingyun Zhang, Junzhou Xu, Shungen Zhang, Chao
Liao, Zhihuai Chen, Zhibo Sun, Zhouxing Su, Junwen Ding, Chen Wu, Pinyan Lu and
Zhipeng Lv from SMART, School of Computer Science and Technology, Huazhong University
of Science & Technology as well as Huawei TCS Lab Shanghai scored the third place. As
the other solvers, data reduction rules are applied to first reduce the size of the instance.
Afterwards, the authors use a simulated annealing algorithm. To obtain an initial solution
the authors first transform the problem into a vertex cover problem and then solve it using a
heuristic for this problem. This is done using a time constraint. The time constraint depends
on the number of bidirectional edges, i.e. the larger the fraction of bidirectional edges, the
more time is assigned to the vertex cover heuristic. The local search used to improve the
solution is based on topological orderings of the graph [32].

5 PACE Organization

The program committee of PACE 2022 consisted of Ernestine Großmann, Tobias Heuer,
Christian Schulz (chair) and Darren Strash. During the organization of PACE 2022 the
Steering Committee was as follows:

(since 2016) Holger Dell (Goethe University Frankfurt and IT University of Copenhagen)
(since 2019) Johannes Fichte (Technische Universität Dresden)
(since 2019) Markus Hecher (Technische Universität Wien)
(since 2016) Bart M. P. Jansen (chair) (Eindhoven University of Technology)
(since 2020) Łukasz Kowalik (University of Warsaw)
(since 2021) André Nichterlein (Technical University of Berlin)
(since 2020) Marcin Pilipczuk (University of Warsaw)
(since 2020) Manuel Sorge (Technische Universität Wien)

6 Conclusion and Future Editions of PACE

We thank all the participants for their enthusiasm, strong and interesting contributions.
Special thanks go to the participants who also presented at IPEC 2022. We are very happy
that this edition attracted many people as well as strong contributions and hope that this
will continue for future editions by considering popular problems to the community or even
by repeating previously posted problems. As in previous challenges, we provided the public
and private instance set in a public data library2.

2 https://github.com/PACE-challenge/pacechallenge.org/tree/master/files
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We welcome anyone who is interested to add their name to the mailing list on the PACE
website to receive updates and join the discussion. We look forward to the next edition.
Detailed information will be posted on the website at pacechallenge.org. Also see the
Twitter account3. In particular, plans for PACE 2023 will be posted there.
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