KIT | KIT-Bibliothek | Impressum | Datenschutz

Applying a Cut-Based Data Reduction Rule for Weighted Cluster Editing in Polynomial Time

Schulz, H. ; Nichterlein, A. ; Niedermeier, R. ; Weyand, C. ORCID iD icon 1
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)

Abstract:

Given an undirected graph, the task in Cluster Editing is to insert and delete a minimum number of edges to obtain a cluster graph, that is, a disjoint union of cliques. In the weighted variant each vertex pair comes with a weight and the edge modifications have to be of minimum overall weight. In this work, we provide the first polynomial-time algorithm to apply the following data reduction rule of Böcker et al. [Algorithmica, 2011] for Weighted Cluster Editing: For a graph $G = (V,E)$, merge a vertex set $S ⊆ V$ into a single vertex if the minimum cut of G[S] is at least the combined cost of inserting all missing edges within G[S] plus the cost of cutting all edges from S to the rest of the graph. Complementing our theoretical findings, we experimentally demonstrate the effectiveness of the data reduction rule, shrinking real-world test instances from the PACE Challenge 2021 by around 24% while previous heuristic implementations of the data reduction rule only achieve 8%.


Verlagsausgabe §
DOI: 10.5445/IR/1000154538
Veröffentlicht am 16.01.2023
Originalveröffentlichung
DOI: 10.4230/LIPIcs.IPEC.2022.25
Scopus
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Informatik (ITI)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 14.12.2022
Sprache Englisch
Identifikator ISBN: 978-3-9597726-0-0
ISSN: 1868-8969
KITopen-ID: 1000154538
Erschienen in 17th International Symposium on Parameterized and Exact Computation (IPEC 2022) , Ed.: H. Dell
Veranstaltung 17th International Symposium on Parameterized and Exact Computation (IPEC 2022), Potsdam, Deutschland, 07.09.2022 – 09.09.2022
Verlag Schloss Dagstuhl - Leibniz-Zentrum für Informatik (LZI)
Seiten Art.-Nr.: 25
Serie Leibniz international proceedings in informatics ; 249
Schlagwörter Correlation Clustering, Minimum Cut, Maximum s-t-Flow
Nachgewiesen in Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page