Facilitating and Enhancing the
Performance of Model Selection for Energy
Time Series Forecasting in Cluster
Computing Environments

zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften

von der KIT-Fakultat fiir Informatik
des Karlsruher Instituts fiir Technologie (KIT)

genehmigte

Dissertation

von

M.Sc. Shadi Shahoud

Tag der miindlichen Priifung: 02.12.2022
Erster Gutachter: Prof. Dr. Veit Hagenmeyer
Zweiter Gutachter: Prof. Dr. rer. nat. Florian Steinke

Acknowledgement

This dissertation is the result of a very enjoyable challenging journey. Finishing it would
not have been possible without the constant support and assistance of many people.

First of all, I would like to give my deepest gratitude to my supervisor Prof. Veit Hagen-
meyer. Thank you for your guidance, trust, advice and continuous support. Thank you for
granting me the opportunity to carry out my research at the institute. I would also like to
extend my sincere thanks to Prof. Florian Steinke for agreeing to be my external reviewer
and providing feedback.

Thank you Clemens Diipmeier for your inspiring ideas, valuable suggestions and un-
bounded patience while discussing and building this research from ground. Working
directly with you helped me to deepen my knowledge in the research field through the con-
tinuous exchange of ideas. For you, I am incredibly thankful. Thank you Kevin Férderer
for your review and numerous suggestions that helped to improve the quality of my
dissertation.

I want to thank all my students with whom I had the pleasure to work: Sonja Gunnarsdottir,
Moritz Winter and Adrian Beer. Supervising you has been the most rewarding part of my
job. I hope I was able to give you as much as you gave to me.

My gratitude also goes to the old friend and best office mate Hatem Khalloof. Thank you
for all discussions, collaborative work, laughter, guidance and support you have given me
and, yes, also for your cheerful mood, for having listened to my imagination running, and
for having advised me on how to bring imagination back to science. Thanks also to my
colleagues at IAI for the great past five years, especially Dominique, Eric, Richard, Rafael,
Christian, Claudia, Thorsten, Christina, Jianlei and Jannik.

I would like to thank my friends, for always believing in me. Thank you to my family
for everything you gave me, without which I could not be here writing this dissertation.
Thank you for the love, encouragement and unwavering support over the years. Thank
you for having been always present, even when I was far and distracted. I am forever

indebted.

Karlsruhe, December 2022 Shadi Shahoud

Abstract

Applying Machine Learning (ML) manually to a given problem setting is a tedious and
time-consuming process which brings many challenges with it, especially in the context of
Big Data. In such a context, gaining insightful information, finding patterns, and extracting
knowledge from large datasets are quite complex tasks. Additionally, the configurations
of the underlying Big Data infrastructure introduce more complexity for configuring and
running ML tasks. With the growing interest in ML the last few years, particularly people
without extensive ML expertise have a high demand for frameworks assisting people in
applying the right ML algorithm to their problem setting. This is especially true in the field
of smart energy system applications where more and more ML algorithms are used e.g.
for time series forecasting. Generally, two groups of non-expert users are distinguished to
perform energy time series forecasting. The first one includes the users who are familiar
with statistics and ML but are not able to write the necessary programming code for
training and evaluating ML models using the well-known trial-and-error approach. Such
an approach is time consuming and wastes resources for constructing multiple models.
The second group is even more inexperienced in programming and not knowledgeable in
statistics and ML but wants to apply given ML solutions to their problem settings.

The goal of this thesis is to scientifically explore, in the context of more concrete use cases
in the energy domain, how such non-expert users can be optimally supported in creating
and performing ML tasks in practice on cluster computing environments. To support the
first group of non-expert users, an easy-to-use modular extendable microservice-based ML
solution for instrumenting and evaluating ML algorithms on top of a Big Data technology
stack is conceptualized and evaluated. Our proposed solution facilitates applying trial-
and-error approach by hiding the low level complexities from the users and introduces
the best conditions to efficiently perform ML tasks in cluster computing environments.

To support the second group of non-expert users, the first solution is extended to realize
meta learning approaches for automated model selection. We evaluate how meta learning
technology can be efficiently applied to the problem space of data analytics for smart
energy systems to assist energy system experts which are not data analytics experts
in applying the right ML algorithms to their data analytics problems. To enhance the
predictive performance of meta learning, an efficient characterization of energy time series
datasets is required. To this end, Descriptive Statistics Time based Meta Features (DSTMF),
a new kind of meta features, is designed to accurately capture the deep characteristics of
energy time series datasets. We find that DSTMF outperforms the other state-of-the-art
meta feature sets introduced in the literature to characterize energy time series datasets
in terms of the accuracy of meta learning models and the time needed to extract them.

1ii

Abstract

Further enhancement in the predictive performance of the meta learning classification
model is achieved by training the meta learner on new efficient meta examples. To this
end, we proposed two new approaches to generate new energy time series datasets to be
used as training meta examples by the meta learner depending on the type of time series
dataset (i.e. generation or energy consumption time series). We find that extending the
original training sets with new meta examples generated by our approaches outperformed
the case in which the original is extended by new simulated energy time series datasets.

iv

Zusammenfassung

Die manuelle Entwicklung von Problemldsungen unter Nutzung von maschinellem Lernen
(ML) ist selbst fir erfahrene Spezialisten ein mithsamer und zeitaufwéndiger Prozess, der
viele Herausforderungen mit sich bringt, insbesondere, wenn man aus Skalierungsgriinden
Big Data ML-Frameworks einsetzen mochte, die auf leistungsfahigen Rechenclustern
ausgefithrt werden konnen. Durch das wachsende Interesse an ML in den letzten Jahren
besteht auch bei Personen wie z.B. Ingenieuren ohne umfassende ML-Kenntnisse eine
grof3e Nachfrage nach Frameworks, die ihnen bei der Anwendung des richtigen ML-
Algorithmus auf ihre Problemstellung helfen. Dies gilt u.a. auch fiir Anwendungen im
Bereich intelligenter Energiesysteme, wo immer mehr ML-Algorithmen eingesetzt werden,
z. B. fir die Vorhersage von Zeitreihen oder die Zustandsabschatzung,.

Ziel dieser Arbeit war es, zu evaluieren, wie Meta-Learning-Technologie effizient auf den
Problemraum der Datenanalyse fiir intelligente Energiesysteme angewendet werden kann,
um Energiesystem-Experten, die keine Datenanalyse-Experten sind, bei der Anwendung
der richtigen ML-Algorithmen auf ihre Datenanalyse-Probleme zu unterstiitzen. Die Arbeit
wurde im Rahmen der Forschungsarbeiten zur Konzeption und Implementierung einer
digitalen Forschungsplattform fiir deutsche Energieforscher innerhalb des Helmholtz-
Forschungsprogramms ESD durchgefiihrt. Daher sollten die Ergebnisse dieser Arbeit
nahtlos als erweiterbare Losung in diese groflere digitale Forschungsplattform integriert
werden konnen. Fiir die Evaluation und Verifikation der erarbeiteten wissenschaftlichen
Ergebnisse wurden wesentliche Bausteine einer solchen integrierbaren Losung unter Nut-
zung der entwickelten Methoden konzipiert und als Teile einer selbst-konzipierten und
entwickelten Evaluierungsplattform prototypisch implementiert: Diese enthilt u.a. ein
einfach zu bedienendes, modular erweiterbares und auf einer Microservice-Architektur
basierendes Framework fiir die Instrumentierung, Nutzung und Evaluierung von ML-
Algorithmen unter Verwendung von Open Source Big Data ML Software Stacks, welches
auf Computer-Clustern lauffahig ist und tiber eine modulare, webbasierte Benutzeroberfla-
che ohne grofle Kenntnisse der Laufzeitumgebung genutzt werden kann, ein generisches
Meta-Learner-Framework, das diese Umgebung so erweitert, dass Verfahren zur automa-
tischen ML-Modellselektion basierend auf Meta Learning getestet und evaluiert werden
konnen sowie ein generisches Konzept, wie Meta-Features durch Meta-Feature-Sets zu-
nachst unabhéngig von einer gegebenen Aufgabenstellung im Framework repréasentiert
werden konnen.. Des weiteren enthélt das Framework Werkzeuge fiir automatisiertes Da-
tenmanagement, zur Vorverarbeitung und Bereinigung Zeitreihen-basierten Datensitzen
fir Trainings- und Evaluationszwecke sowie zur Erzeugung, zum Management und zur
Pflege von Test- und Trainingsdatensétzen fiir das Meta Learning,.

Zusammenfassung

Um die wissenschaftlichen Fragestellungen zur Nutzbarkeit von Meta Learning zur Un-
terstiitzung von Nicht-ML-Experten bei der Auswahl und Instrumentierung von ML-
Algorithmen mit Hilfe dieses Frameworks evaluieren zu konnen, wurden konkrete An-
wendungsfille auf der Evaluierungsplattform instrumentiert, wobei der Schwerpunkt aus
pragmatischen Griinden (Verfiigbarkeit von Daten, verfiigbare Zeit) auf der Durchfithrung
von Zeitreihenanalysen und Prognosen fiir energie-bezogene Last- und Erzeugungszeitrei-
hen mit Hilfe dafiir geeigneter ML-Modelle lag. Zur Instrumentierung der Algorithmen-
Selektion fiir diese Anwendungsfille wurde des Weiteren ein neuer dedizierter Satz von
Meta-Merkmalen (DSTMF) fiir solche Zeitreihenanalysen zur Algorithmen-Selektion kon-
zipiert und mit anderen bekannten Meta Feature Sets verglichen. Unter Nutzung der
instrumentierten Anwendungsfille wurden dann auf der Evaluierungsplattform zahlrei-
che Datenanalyse-Experimente durchgefithrt, um die wesentlichen Aspekte der Meta-
Lernplattform quantitativ zu erfassen. Diese Evaluationsdaten wurden dann analysiert,
um die Hauptaussagen der in der Einleitung dieser Arbeit vorgestellten Forschungsfragen
zu verifizieren.

Dabei konnte gezeigt werden, dass das iiber eine Weboberflache bedienbare selbst-konzipierte
Microservice-basierte Framework zum Management und zur Ausfithrung von ML-Jobs
selbst ML-Experten bereits ein spiirbare Erleichterung in der Nutzung von Big Data ML-
Berechnungsumgebungen, welche auf Cluster-Computing Umgebungen laufen, bieten
kann, da sich in eine solche Umgebung einer Reihe weiterer Werkzeuge z.B. zur Erzeugung
und zum Management von Test- und Trainingsdatensatzen (hier wurden verschiedene
Losungsansatze fiir die Generierung von Energiezeitreihen fiir Test- und Trainingszwecke
entwickelt und evaluiert), zur automatischen Parametrisierung eines Algorithmus auf
der Cluster-Computing Umgebung, zum Caching bereits trainierter Modelle sowie zur
Anzeige und Erfassung von Laufzeit- und Performanzdaten von Modellen, etc. integrieren
lassen, welche den ML-Experten bei der Evaluation, Parametrierung und Bewertung neuer
Algorithmen auf Cluster-Computing-Umgebung essentiell unterstiitzen. Dabei konnte
auch gezeigt werden, dass solche Werkzeuge die Laufzeitperformanz der Algorithmen
kaum beeintrachtigen sondern ab einer gewissen Komplexitat des Losungsraums drastisch
erhohen, was wiederum den Entwicklungsaufwand solcher Losungen reduziert. Die ge-
samte Umgebung kann dabei hochgradig skalierbar, modular und erweiterbar konzipiert
werden, und lasst sich damit problemlos in andere Microservice basierte Umgebungen wie
die Helmholtz-Plattform zur Energieforschung integrieren.

Des Weiteren konnte gezeigt werden, dass die Integration einer generischen Meta Lear-
ning Losung eine sehr einfache Nutzbarkeit bereits in der Plattform implementierter
ML-Algorithmen durch Nicht-ML-Experten ermoglicht. Eine solche Meta-Learning Lo-
sung lasst sich weitgehend generisch von der Methodik her realisieren, wie dies im Rahmen
der Arbeit durch Entwicklung eines eigenen methodischen Ansatzes hierfiir auch gezeigt
wurde. Allerdings konnte in der Evaluation unter Nutzung des DSTMF-Meta-Feature Satzes
auch gezeigt werden, dass eine solche Methodik fiir jede Anwendungsproblemklasse einen
spezifischen Satz von Meta-Feature-Attributen erfordert, damit die Algorithmen-Selektion
fur diese Anwendungsklasse auch optimal durchgefithrt wird. Bei der Realisierung von
Anwendungsframeworks ist es daher wichtig, dass sich solche Meta-Feature-Sets fiir neue
Problemklassen problemlos in eine bereits bestehende Framework-Umgebung integrieren

vi

Zusammenfassung

lassen, wobei der Meta Learner anschlieffend dann auch fiir die neue Aufgabenstellung
neu antrainiert und hierfiir wiederum geeignete Trainingsdaten verwaltet, erzeugt und
bereitgestellt werden miissen, was dann wiederum Aufgabe von ML-Experten ist. Zur
Unterstiitzung dieser konnen dann wiederum die bereits oben erwahnten Ansatze genutzt
werden.

Im Fazit kann gesagt werden, dass die in der Arbeit entwickelten und beschrieben Ansétze
die Realisierung kommerzieller oder freier ML-Umgebungen zum Einsatz auf Cluster-
Computing-Umgebungen On-Premise oder in der Cloud erméglichen, welche die Nutzung
von ML-Lésungen im kommerziellen Umfeld fiir Nutzer wesentlich erleichtern. Allerdings
ist hierzu noch einiger Entwicklungsaufwand nétig.

vii

Contents

Abstract iiii
Zusammenfassung L e e v
Listof Figures xiii
Listof Tables Xvii
1. Introduction 1
1.1. Motivation L 1

1.2. Research Questions and Contributions
1.3. Structure of the Thesis 11
2. TheoreticalBackground 13
2.1. Machine Learning 13
2.1.1. Machine Learning Scenarios 14
2.1.2. Performance Evaluation 16
2.2. Big Data Software Environments 18
23, MICIrOServiCes o v v v v i it e e 20
2.3.1. Characteristics 21
2.3.2. Bounded Contexts 21
2.3.3. Communication Types 22
2.3.4. REpresentational State Transfer (REST) 23
2.4. Time Series Datasets 24
2.4.1. ENerGO+ e 24
2.4.2. Ausgrid Solar Home Electricity Data 25
2.43. Weather Time Series Dataset 25
3. RelatedWork 27
3.1. Machine learning software andtools, .. 27
3.1.1. Data analytic framework oL 27
3.1.2. ML workflow management and visualization frameworks 29
3.2. Meta learning for energy time series model selection 31
3.3. Generating new time series datasets 34
33.1. Summary e 35

ix

Contents

Enhancing the Applicability of the Trial-and-Error Approach in Big Data Environ-
ments
4.1. Problem Statement,
4.2. ProposedSolution o
4.2.1. Conceptual Microservice-Based Architecture
4.2.2. Execution Workflow
43. Evaluation
4.3.1. Experimental Setup and Configurations
43.2. Resultsand Discussion
44, SUMMATY v v vt e e e e e e

Characterizing Energy Time SeriesDatasets
5.1. Problem Statement
5.2. Proposed Solution
5.2.1. Descriptive Statistics Time-Based Meta Features (DSTMF)

5.2.2. Energy Meta Learning System (EMLS)

5.2.3. Encoded Energy Meta Learning System (EEMLS)

53. Evaluation
5.3.1. Use Case Study: Short-Term Load Forecasting Scenario

5.3.2. Similarity-based Clustering Analysis

5.3.3. Predictive Performance of Meta Learner: Original Representation

of Meta Features

5.3.4. Predictive Performance of Meta Learner: Encoded Representation

of Meta Features Using Autoencoders

54. Summary

Generating Efficient Meta Examples for Energy Time Series Model Selection

6.1. Problem Statement

6.2. Proposed Solution
6.2.1. Dataset
6.2.2. Weather-based Approach
6.2.3. Aggregation-Based Approach
6.2.4. Model-Based Approach

6.3. Evaluation
6.3.1. Use Case Study: Power Generation Forecasting Scenario
6.3.2. Original Representation of Meta Features
6.3.3. Encoded Representation of Meta Features

6.4, SUMMATY o vttt e e e e

. Automated Time Series Model Selection in Big Data Environments

7.1. Problem Statement
7.2. ProposedSolution L Lo
7.2.1. Conceptual Meta Learning Microservice-based Architecture . . .

42
43
43
52
54
54
58
65

69
70
71
72
73
77
78
79
81

84

90
96

Contents

7.3. Evaluation 138
7.3.1. Deployment of Microservice-based Meta Learning Architecture in

Big Data Environments 140

7.3.2. Resultsand Discussion 142

7.4, SUMMATY oot e e e e 151

8. SummaryandOutlook 153

8.1. Summary 153

82. Outlook 157

Bibliography 161

A. ListofPublications 179

el

List of Figures

1.1.

1.2.

2.1.
2.2.
2.3.
2.4.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.

4.7.

4.8.

4.9.

4.10.

5.1
5.2.

5.3.
5.4.

5.5.

5.6.

5.7.

Overview of power grid with integrated renewable sources and its usage of
machine learning techniques in different steps [114].
Simplified Machine Learning Pipeline (MLP).

Prediction of future energy demand and renewable energy generation.

Characteristics of BigData.
HDES architecture [24].
YARN architecture [80].

Basic architecture of the proposed microservice-based framework [141][142].

User Interface (UI)..
User Interface (UI)..
Layered architecture microservice.
Execution workflow.
Tiotal required for training and testing models (untrained model pipeline) and
for testing (pre-trained model pipeline) on simulated energy multivariate time
series dataset withsize4 GB. L.
Effect of input datasets size used for training and testing MLR models on the
framework overhead.
Effect of input datasets size used for training and testing MLR models on the
framework overhead (detailed overview).
Mean Ty, in case of local and cluster (default, custom) configurations mode
to determine the abs_threshold for MLR, DT, RF and GBTs algorithms.

Mean Ty, in case of local and cluster (default, custom) configurations mode
to determine the min_threshold for MLR, DT, RF and GBTs algorithms. . . .

General methodology of meta learning for time series model selection [143].
Methodology of extracting Descriptive Statistics Time-based Meta Features
(DSTMEF). . . . o
Methodology of EMLS and EEMLS [144].
Predictive performance in terms of RMSE for DT, RF, GBTs and LR for buildings
32,617,2713and 459.
Result of applying the k-means algorithm with 8 clusters on the original input
time series datasets. L o
Predictive performance of meta learning classification models in case of using
Random Forest (RF) and Artificial Neural Network (ANN) as meta learners. .
Correlation matrix of 30 DSTMF meta features.

16
19
19
20

44

46

47

49

53

60

61

62

64

66

71

72
78

80

83

86
87

xiii

List of Figures

5.8.

5.9.

5.10.

5.11.

6.1.

6.2.
6.3.
6.4.
6.5.
6.6.

6.7.
6.8.
6.9.

6.10.

6.11.

6.12.

6.13.

6.14.

6.15.

6.16.

6.17.

6.18.

6.19.

6.20.

6.21.

7.1.
7.2.

7.3.

Xiv

A part of DSTMF meta features after removing the features that are > 0.75%

correlated. 88
A part of time series meta features after removing the features that are > 0.75%
correlated. 89
Autoencoder architecture utilized for reconstructing the meta features in
another representation form. Lo Lo 92
The predictive performance of ANN meta learner in case of encoded and
original representation of meta features.. 95

Methodology of enhanced meta learning approach, adapted from Chapter 5

with an additional component for generating new time series datasets. . .. 99
Methodology of enhanced meta learning approach. 100
Segmentation of daytime into different periods. 101
Day with a missing observation before and after linear interpolation. 102
Filtering input time series datasets based on weather conditions. 103
Methodology of the aggregation-based Approach for generating new time

series datasets. L 105
Examples of the time series generated by the aggregation-based approach. . 107
Methodology of the model-based approach. 108
Examples of the time series generated by the model-based approach.. 110
Examples of time series generated by the model-based approach. 111
Methodology of nested time series cross validation [15].. 117
One-day ahead forecasts, where ARIMA performed best. 118
One-day ahead forecasts, where NN performed best. 118
The mean relative accuracy improvement of the meta learner when extending

original with aggregation-based datasets. 121
The mean relative accuracy improvement of the meta learner when extending

original with weather-based datasets. 121
The mean relative accuracy improvement of the meta learner when extending

original with model-based datasets. 122
The mean relative accuracy improvement of the meta learner when extending

original with combination of aggregation- and weather-based datasets. . . . 123
The mean relative accuracy improvement of the meta learner when extending

original with encoded aggregation-based datasets. 125
The mean relative accuracy improvement of the meta learner when extending

original with encoded weather-based datasets. 126
The mean relative accuracy improvement of the meta learner when extending

original with encoded model-based datasets. 126

The mean relative accuracy improvement of the meta learner when extending
original with combination of encoded aggregation- and weather-based datasets. 127

Conceptual framework architecture for meta learning, adapted from Chapter 4. 134
Mapping the different steps of the meta learning approach to the corresponding

IMICIOSEIVICES. v v v i vttt e ettt e e 135
Deployment of Microservices. 141

List of Figures

7.4.

7.5.
7.6.
7.7.
7.8.
7.9.
7.10.
7.11.

Methodology applied to improve the predictive performance of meta learning

classificationmodel. o Lo oo 143
Model Distribution before applying SMOTE. 143
Model Distribution after applying SMOTE. 144
Meta feature extraction: overhead. 148
Meta feature extraction: execution time. 148
Meta feature extraction: extraction time by meta feature groups. 149
Forecasting feature extraction time. 150
The mean T,y in both evaluation and production modes required for building

RF meta learning classificationmodel. 150

XV

List of Tables

1.1.

3.1.

4.1.
4.2.
4.3.
4.4
4.5.
4.6.
4.7.
4.8.
4.9.

4.10.

5.1.
5.2.
5.3.

5.4.

5.5.

6.1.
6.2.
6.3.
6.4.
6.5.

6.6.

7.1.
7.2.

User categories. L

Comparison of the data analytic and ML workflow management frameworks
in related work to our framework. Lo Lo

List of the URL patterns of the J.M.-Service.
List of the URL patterns of the D.M.-Service.
Default and custom cluster configurations used in cluster context.
Default hyperparameters of MLR algorithm in MLlib.
Default hyperparameters of DT algorithm in MLlib.
Default hyperparameters of RF algorithm in MLlib.
Default hyperparameters of GBTs algorithm in MLlib.
ML algorithms hyperparameters after tuning.
Mean computation time for training and testing different algorithms in the
cases of caching and no caching of inputdata.
Execution time and the related overhead required for building MLR models
based on different sizes of datasets.

Internal measures of applying 10 clustering algorithms on time series datasets.
Clustering error for different groups of meta features.
Different groups of meta features after removing the highly correlated meta
features.
The meta features selected by Recursive Feature Elimination (RFE) procedure
for each group of meta features. Lo oL
Setup configurations and evaluation results of EEMLS.

Weather classes defined in the weather-based approach.
Hyperparameters used in building model in the model-based approach. . . .
Different groups of the extracted meta features.
Different extending scenarios of the training dataset.
General comparison of the effect of different meta examples generation ap-
proaches in terms of mean relative accuracy in the case of original represen-
tation of meta features. Lo
General comparison of the effect of different encoded meta examples genera-
tion approaches.

List of the URL patterns of the D.P.-Service.
List of the URL patterns of the M.K.E.-Service.

36

50
51
55
55
56
56
56
57

59

63

82
84

89

128

XVii

List of Tables

7.3.
7.4.

7.5.

7.6.

7.7.

7.8.
7.9.

8.1.

8.2.

XViii

List of the URL patterns of the M.L.-Service. 139
The predictive performance of random forest meta learner after applying
SMOTE technique. 144
The predictive performance of neural network meta learner after applying
SMOTE technique. 145
The predictive performance of random forest meta learner after applying PCA
technique. 145
The predictive performance of neural network meta learner after applying
PCA technique. 146
General Comparison in the case of using random forest meta learner. 146
General Comparison in the case of using neural network meta learner. . . . 146

Relative performance improvement in terms of accuracy achieved by using
extended datasets in the case of using original representation of meta features. 156
Relative performance improvement in terms of accuracy achieved by using
extended datasets in the case of using encoded representation of meta features. 157

1. Introduction

1.1. Motivation

Machine Learning (ML) is a scientific discipline aiming at designing and developing specific
algorithms and concepts allowing computers to evolve behaviors and react to different
actions based on empirical data. Indeed, it can be seen as a core in the field of artificial
intelligence, in which computers can learn from existing data to predict future behavior,
results and trends. Over the last decade, ML has been applied in a lot of problem fields, such
as text classification [139], speech recognition [109], medical diagnostics [126], computer
vision [68] and computer graphics [3].

?
41

] Conventional
| Power Plant A
i ﬁ

"
' Machine Learning

Forecasting
Consumers

: 1 Power Transmission
! csp ! ﬁ ﬁ ﬁ
i . Machine Learning

Demand

, Forecasting Forecasting

Demand/Supply Forecasting

W
y
N

-
i
Ly

Wind i Machine
Power J Learning Machine Learning in Grid Management
Machine Learning Forecasting Prosumers
for Sizing and Location

| i-“ |
l': - e r g

Figure 1.1.: Overview of power grid with integrated renewable sources and its usage of machine learning
techniques in different steps [114].

In the field of energy, ML has also been successfully applied [12][179][43][1][178][38][170].
One usage area in this application domain is to use ML algorithms for intelligent decision
making in unit commitment of decentralized renewable energy resources and flexible loads

1. Introduction

at grid level, where e.g. an accurate prediction of future energy demand and renewable
energy generation is required as seen in Figure 1.1. Such predictions are prerequisites for
optimizing the usage and minimizing wastage of energy in the system, paving the road
for a more efficient usage of power networks at the grid level.

To support the German Energiewende aiming at maximizing the usage of renewable
energy resources, and thereby reducing non-renewable energy production, the German
government funded several larger scale energy labs, e.g. the Energy Lab 2.0 at the KIT or
the Living Lab Energy Campus (LLEC) at FZ], which are used in context of the Helmholtz
research programme Energy Systems Design (ESD) as environments for research on new
smart digital solutions for controlling and managing future energy networks. Instrument-
ing and evaluating new digital system solutions for controlling hybrid energy systems
combining different technologies from different sectors is a very complex task requiring
an adequate software ecosystem for e.g. gathering data and performing data analytics,
modelling and executing control algorithms in experimental settings. Therefore, one main
research subtopic of the ESD programme focuses on the development of a new digital
energy research platform which easens the work of the energy researchers by providing
a ready to go integrated tool ecosystem that hides the IT-related complexities of data
gathering and managing, data analytics, managing and executing control algorithms and
simulation models on high performance computing clusters from the users, which can
then focus on their own research questions. This digital platform should also provide easy
solutions for applying and evaluating the use of existing and new ML algorithms as part
of new smart grid control solutions, and one important sub-case is the application and
evaluation of adequate ML algorithms for forecasting time series data of renewable energy
production and/or volatile load which are then used as part of more complex control
algorithms for e.g. unit commitment of energy resources.

Table 1.1.: User categories.

‘ Category Nr. ‘ User category ‘ Properties ‘
ML knowledge (+)
1 Expert ML Programming skills (+)
ML knowledge (+)
2 Non-expert ML Programming skills (-)

ML knowledge (-)
ML Programming skills (-)

B

The users performing such ML tasks on the digital research platform can be divided into
two different groups, namely experts and non-experts as shown in Table 1.1. On the one
hand, the expert users have a deep understanding of ML and also good programming skills
to implement ML models using, for example, some developing tools like Jupiter Note-
book [116].They have worked with ML libraries before and are capable of programming
algorithms themselves. On the other hand, many energy researchers are non-experts in
programming ML algorithms or even in understanding different ML algorithms. They

1.1. Motivation

are only interested in applying ML algorithms to their problem settings. Therefore, such
non-expert ML users of the platform are grouped into two sub-categories.

The first one includes the users who are familiar with statistics and ML but are not able
or interested in writing the necessary programming code for training and evaluating
ML models particularly in cluster computing or Big Data environments. The second
sub-category of non-expert users has only little to no knowledge about statistics and ML.
They only want to apply ML algorithms to their research problems. The general research
question for the digital energy research platform with respect to ML usage can now be
formulated as “How can we support the two different Non-expert user groups mentioned
before in applying ML algorithms to their research setting without forcing them to become
all ML experts with detailed knowledge in ML methodology and programming?”. This
thesis will try to answer this question while concentrating on a smaller group of use cases
related to time series forecasting for experimentally evaluating the basic ideas for solving
the above problem.

Generally, the process of building ML models, which can then later be applied to a given
problem setting, consists of multiple steps and is commonly called Machine Learning
Pipeline (MLP). Figure 1.2 shows a simplified MLP encompassing data preprocessing,
splitting the data into training and test data, model training and model testing.

Test
N
g Preprocessing ol — | ﬂ ----- .
Training Q :

Data Data o) Model
Model Training Testing
A

Figure 1.2.: Simplified Machine Learning Pipeline (MLP).

For training accurate models for more complex problem settings, often the size and
diversity of the dataset used for training the model is very important. Using large scale
datasets for training, testing, and executing MLP effectively is becoming more difficult
and even complex, requiring the utilization of computing clusters with dedicated ML
software designed for parallel execution of parts of the algorithm (e.g ML tools designed
for cluster computing environments or so called Big Data Platforms [50]). However, gaining
insightful information, finding patterns and extracting knowledge from such datasets are
quite complex tasks for ML users too. Additionally, the right cluster configuration of the
MLP pipeline on the cluster computing infrastructure beside setting up the the required
communication environments to send jobs to the cluster introduce more challenges for
running ML tasks for non-experts, who otherwise must know how parallel execution
of ML frameworks on a cluster computing environment can be optimized for a certain
problem setting.

Building on that, more in-depth research on new methodologies and an even-growing
software solutions for facilitating performing ML tasks for the aforementioned ML users
are existing, see e.g. [26][60][33][185][27][166]. Such solutions can be categorized into

1. Introduction

monolithic single user applications and service-oriented solutions often having web user
interfaces and/or command line interfaces (CLI) as user interface frontend. Newer service-
oriented solutions nowadays often use a microservice based architecture [30]. In contrast
to monolithic applications, an application with a microservice architecture is composed out
of several independent deployable services, where each individual microservice performs a
specific task based on its own technology stack [19]. Microservices represent state-of-the-
art technology, where each service is designed to be horizontally scalable in order to build
highly modular, flexible and scalable solutions. Additionally, microservice applications are
designed to be automatically deployable and manageable on computing clusters providing
a container runtime environment (e.g. Docker) and/or container orchestration software
(e.g. Kubernetes) which is quite common in cluster computing environments nowadays.
They can be easily integrated with other service-oriented applications, e.g. distributed
data analytics or data management environments which nowadays also run seamlessly on
computing clusters providing a container runtime environment. Thus, such applications
can be easily integrated with modern Big Data data analytics frameworks, e.g. Apache
Spark for parallel execution of classical machine learning algorithms or TensorFlow for
executing Deep Learning Algorithms in the same cluster computing environment.

However, most of the existing solutions to support non-expert users in performing ML
tasks were developed in the past as monolithic applications and often also do not support
executing ML jobs in cluster computing environments. These types of applications are
often tuned to allow users to easily perform certain ML tasks, e.g. classification, and
provide a great user experience. But they are not suitable when the problems get more
complex, the datasets for training will become too large for single computer environments,
and therefore the MLP has to be performed on cluster computing environments. Driven
by that, the research on modern energy system solutions must nowaday focus on more
complex real world usage scenarios for making the German Energiewende a reality. And
the evaluation of real world usage scenarios demand very complex system models and
often large scale datasets for e.g. train ML based data analytics algorithm as part of a
solution which can only be executed on computer cluster environments. Therefore, the
working group designing the architecture of the digital energy research platform for the
ESD research program of Helmholtz has decided that this platform will be conceptualized
and implemented using a microservice-based architecture, where all services will run
on Kubernetes based cluster computing environments and the user interfaces will be
implemented as (progressive) web applications which can be used from any frontend
device (e.g. desktop computer, laptop, tablet or smartphone). For executing MLP and
ML tasks on this microservice based platform, the first challenge of this thesis can be
formulated as “designing a Microservice based solution for supporting expert users and
non-expert users, category 2A, in performing ML tasks in a cluster computing environment
with container runtime automation”.

Another problem is, that according to the No Free Lunch (NFL) theorem [173] no single
learning algorithm has always the lowest performance error on a broad problem domain.
Hence, for solving a specific subclass of problems of this broad problem domain, a dedi-
cated learning algorithm must be selected from a set of available solutions with lowest
performance error. This selection process can be defined as an Algorithm Selection Prob-

1.2. Research Questions and Contributions

lem (ASP) [125], which is typically solved by the ML user using a trial-and-error approach.
Le. all possible combinations of learning algorithms with their hyperparameters are tried
to find the most suitable solution. This can take a long time even when using a cluster
computing environment, and has a high computational complexity due to the size of the
search space of possible algorithm candidates. Moreover, expert knowledge is required to
perform such tasks. Driven by that, the second challenge of the thesis can be formulated
in conceptualizing a methodological approach which allows the digital energy research
platform to support non-expert users, category 2B, in selecting the most appropriate ML
model for a specific energy research related task.

According to [81][151][25][70][122][127][45][128], the usage of meta learning approaches
for solving this problem is not new. They have been proposed as good solutions to deal
with the problem of algorithm selection supporting non-expert users shown in Table 1.1
for automatically finding the most appropriate model in scientific literature for a long time.
But the challenge for this thesis is not to decide if meta learning in general can be used to
solve the problem, but more “how meta learning has to be instrumented in the field of
energy for successfully solving the algorithm selection problem”. The term meta learning
is based on the fact that a good set of characteristics of datasets captures powerful insights
into the behavior of these datasets paving the road for determining the most appropriate
ML algorithm [16][55]. But these characteristics of the datasets largely depend on the
characteristics of the system environment where the data was gathered, and therefore
also on the application domain. Consequently, the better the used set of characterization
indicators captures the behavior of a dataset with respect to their dependency on the
domain specific system environment, the more accurate the selection of the best ML
algorithm will be. Therefore, the main challenge for instrumenting meta learning for the
digital energy research platform is finding energy system environment specific metadata
sets for different ML tasks.

However, providing a generic meta learning machinery, which can be adapted by configu-
ration and recurring learning to solve the algorithm selection problem for different ML
tasks, and enhancing the predictive performance of the meta learning classification model
to perform well in a cluster computing environment still represents a challenge that needs
to be faced.

1.2. Research Questions and Contributions

This thesis has the main goal of supporting non-expert users, presented in Table 1.1, in
performing ML tasks in cluster computing environments using e.g. Big Data analytic tools.
Energy load and generation forecasting scenarios are used to experimentally evaluate the
efficiency of the proposed solution. The first group of non-expert users are supported by
developing a conceptual microservice-based framework with highly configurable web-
based UI hiding the low level complexities of the computing cluster infrastructure and
Big Data analytic tools running on the cluster from the users. Such framework can be
seamlessly integrated into the digital energy research platform of Helmholtz. The second

1. Introduction

group of non-expert users are supported by extending the microservice-based solution
to incorporate a generic meta learning solution. This solution is specifically designed for
solving the algorithm selection problem for energy related ML tasks such as energy time
series forecasting. Additionally, scientific questions of what are the good meta features for
e.g. solving the algorithm selection problem for the ML task forecasting of energy time
series and how can the performance of the algorithm selection process be enhanced by
enhancing the training datasets by generating new datasets are addressed. Four research
questions are formulated to cover the main goals of the thesis. The following description
of these research questions also lists the scientific contributions which were worked
out during the thesis to find the answers of these questions and address the motivation
presented in the previous section.

Research Question 1 [RQ1]: How should non-expert users with ML knowledge, but
without programming skills be supported in performing ML tasks on computing
clusters using Big Data ML frameworks?

The rapid extension of successful large scale ML applications and the immense growth of
available data usable for training ML solutions aroused the interest of other developers
and researchers for developing solutions using ML based Big Data analytic tools on cluster
computing environments for solving complex data analytic problems. But programming
ML solutions using Big Data ML tools is challenging for non-expert users who do not have
programming skills in ML and modern Big Data technologies. In addition, a distributed
execution environment is required for training such solutions in a timely manner on a big
training dataset.

Supporting non-expert users, category 2A presented in Table 1.1, in performing ML tasks
by providing easy-to-use tools is nothing new. Such users have a deep understanding of
ML and its related learning scenarios but they are not able to write the programming code
required to perform ML tasks as already discussed before. To support them, there have
been a lot of research projects [23][26][27] which developed dedicated tools implementing
certain classes of ML algorithms (e.g. classification or regression) in a very generic fashion
that allows category 2A users to apply those algorithms to their problem setting without the
need for programming skills. Most of those tools are developed as monolithic applications
which have drawbacks in terms of scalability and maintainability as discussed before. The
majority of them do not have the ability to scale beyond a level where the computing
power or the data management capability of a single computer is not enough for coping
with either the computational complexity of the problem or the amount of training data.
There are some tools (e.g. Jupiter Notebook) found in literature, which use distributed ML
frameworks for executing more complex ML problems on cluster computing environments
using distributed parallel computation algorithms which also allow to distribute needed
data e.g. for learning onto different nodes of the cluster. Such tools are often called Big
Data analytics tools (e.g. Apache Spark for classical ML algorithms or TensorFlow for
Deep Learning). But these frameworks do not hide the low level complexities of the used
Big Data framework and require that the user should have skills and knowledge in both
ML and the structure and working of the underlying framework on a computing cluster
[33].

1.2. Research Questions and Contributions

In this thesis, we tackle the aforementioned challenges and answer the scientific question
of designing an efficient adequate solution for supporting non-expert users by proposing
a microservice-based framework which hides the complexities of the big data runtime
environment from the users allowing them to perform their tasks without caring too much
about the technical issues of the underlying big data platform. The solution can be set up on
any computing cluster providing a container runtime environment for efficient distributed
processing of MLPs by instrumenting already available Big Data ML frameworks and
hiding their usage from the ML users. A modern web-based user interface supports non-
expert users in performing ML tasks from anywhere with any device providing a web
browser. This framework can be integrated with the digital energy platform for ESD. E.g.
datasets stored in that platform can be easily used for training of ML algorithms or ML
algorithms can be directly applied to such datasets.

The scientific work to answer this research question is detailed in Chapter 4. The following
bullet points summarize the main scientific contributions presented in this chapter:

+ Conceptualization of a microservice-based framework to support non-expert users
category 2A in training, testing, managing, storing, and retrieving ML models using
Big Data ML frameworks installed on computing clusters with a container automation
runtime environment.

+ A benchmark evaluation study was carried out for determining the overhead of
such a framework by prototypically implementing the microservice framework
and performing ML tasks instrumenting the use case of energy load time series
forecasting using classic ML algorithms already implemented in the Big Data ML
framework Apache Spark. In this study, the effect of instrumenting the caching of
data in Resilient Distributed Datasets (RDDs) in Apache Spark on the performance
of the forecasting algorithm was also evaluated. The efficiency of the framework
in terms of execution time and overhead is also measured focusing on the effect of
storing and retrieving ML models.

+ Defining and evaluating the thresholds, at which it is highly recommended to switch
to a Big Data clustering infrastructure for time series forecasting because it outper-
forms the usage of the same ML frameworks in single computer context.

After conducting this work for supporting the first category of non-expert users, the focus
is moved to conceptualizing tools for supporting the second category of non-expert users.
After an extensive literature study (see Chapter 3), the instrumentation of a meta learning
solution for automating the process of model selection seemed to be very feasible. To
conceptualize and evaluate this approach,two major aspects and challenges need to be
addressed in this thesis. On the one hand, the meta features that adequately describe the
input datasets are largely dependent on the system context in which the datasets belong
and on the specific ML task which should be performed. Therefore, for evaluating the
meta learning approach by instrumenting the concrete use case forecasting time series
datasets with ML algorithms, adequate meta features need to be found which give a good
prediction performance for finding the right forecasting ML algorithm. On the other hand,
the prediction performance also depends on the number and availability of good training

1. Introduction

meta examples on which the meta learner is trained to recommend the best model for a
specific task. These challenges turned out to be complex research problems by themself
which lead to the second and third research question.

Research Question 2 [RQ2]: How to efficiently characterize energy time series
datasets to enhance the performance of automated model selection?

For evaluating our meta learning approach in the context of energy, time series data
forecasting in energy context is used as a use case. In this approach, the meta learner has
to learn to automatically assign the best ML forecasting model to an energy time series
dataset [38][91]. This is normally done by learning the mapping between the forecasting
performance of ML algorithms and the characteristics of energy time series datasets to
forecast. Meta learning leverages the capability of ML classification algorithms to find such
relationships and to classify input energy time series datasets according to ML candidates,
e.g. determining an adequate forecasting model [118]. Changing the characteristics of
energy time series datasets may affect the assigning process of the meta learner [16].

This raises the question, how to efficiently characterize energy time series datasets to
precisely assign the best forecasting model for them. In meta learning, the characteristics
of datasets are called meta features. They define a set of features (properties) derived from
a dataset which e.g. cover statistical properties describing the time-related behavior of
an energy time series dataset. Describing characteristics of energy time series datasets
using such meta features is not new. There has been a lot of research in this context
[91][151][29]. In addition to the high computation time for most of them, especially for
large amounts of energy time series datasets, the calculation of these meta features is
often subject to privacy and security issues. E.g., the meta features that are calculated by
using knowledge about the physical surroundings (e.g. a certain building) or about human
behavior of people in households. Therefore, those meta features are not optimal for using
them for meta learning because they would need to be applied on all training data sets.
Consequently, it is important for setting up the evaluation use case for the meta learning
framework to design a new set of meta features that indirectly and anonymously captures
the physical and other social properties in energy time series datasets with an acceptable
as well as efficient extraction time.

The scientific work done for designing and evaluating a more suitable set of meta features
for time series forecasting is described in Chapter 5. The main scientific contributions can
be summarized as follows:

« Introduction of Descriptive Statistics Time-based Meta Features (DSTMF) as a new
set of meta features for characterizing the forecasting behavior of time series datasets
to achieve a more accurate and more performant model selection for time series
energy load forecasting.

« A similarity-based clustering analysis study was carried out to evaluate the potential
of DSTMF’s meta features for capturing the deep characteristics of energy load time
series datasets in comparison to other state-of-the-art meta features used in the field
of energy.

1.2. Research Questions and Contributions

« To further assess the effectiveness of DSTMF in characterizing energy time series
datasets, a generic Energy Meta Learning System (EMLS) was conceptualized and
implemented. EMLS allows to perform meta learning with different sets of meta
features for comparison. Using that, an in-depth evaluation study was performed
whereby the predictive performance of our meta learning classification model using
DSTMF was compared to the predictive performance using other state-of-the-art
meta features from the literature.

« The EMLS system was further enhanced by designing the Encoded Energy Meta
Learning System (EEMLS) leveraging the advantage of unsupervised deep learning
to encode the extracted meta features by autoencoders. The resulting meta learning
classification model achieves a very good predictive performance with an average
accuracy value of 90%. This accuracy is achieved even when using a reduced number
of training examples.

Research Question 3 [RQ3]: How to enhance the performance of automated model
selection in the context of energy by creating appropriate learning datasets?

Multiclass classification problems aim at assigning a class label from a set of classes to each
input example. It categorizes the input data according to different classes. Driven by that,
the well-known Algorithm Selection Problem (ASP) is considered as multiclass classifica-
tion problem, where an input dataset needs to be assigned an appropriate algorithm from
different ones available in the class space of algorithms. Typically, the predictive accuracy
of such a classification model not only depends on the features used for classification but
also on the availability of a bigger set of diverse examples required for training.

Similarly, meta learning as a solution of ASP is defined as a multiclass classification problem
[76][91]. The reason for that lies in the fact that the meta learning classification model
captures the mapping between meta features, that describe the data, and the predictive
performance of the best model. As a result, the output of meta learning will be assigning
each input dataset into the best ML model from different model candidates. In addition
to the challenge of availability of efficient meta features that has been tackled in the
previous scientific question, the availability of examples required for training meta learning
classifiers represents another challenge that needs to be faced. An appropriate diverse
training dataset containing time series datasets with different temporal behavior plays
a crucial role in supporting the meta learning classifier to efficiently learn the mapping
between meta features and the best forecasting model. But because of security and privacy
constraints, there aren’t too many load and generation time series datasets available to
the general public.

This led to much research work focusing on generating new synthetic time series datasets
for increasing the number of training examples required for the generalization process
of classifier [47][156][121][65][188][64]. In the present thesis, we answer the scientific
question of enhancing the predictive performance of ASP in the context of energy by
conceptualizing and developing new approaches for generating new adequate time series
datasets for the energy specific application domain for better training of our meta learner.
The advantages of our approaches over existing ones in literature lies in the simplicity of

1. Introduction

the training dataset generation approach, which nevertheless achieves a high predictive
performance of the meta learning classification model in assigning the best forecasting
model for input energy time series datasets.

More details on the scientific work done for answering this research question can be found
in Chapter 6. The following bullet points summarize the main scientific contributions
presented in this chapter:

« Developing and conceptualizing a weather-based approach for generating new en-
ergy time series datasets for i.e. generation scenarios leveraging the advantage of
weather data and its weather conditions. Such conditions are used to classify the
input energy time series dataset into different new ones.

+ Developing and conceptualizing an aggregation-based approach for generating new
energy time series datasets by aggregating the input time series into different granu-
larity levels.

A benchmark evaluation study was carried out using a power generation forecasting
scenario to evaluate the efficiency of the new generating time series datasets. In this
evaluation, the new approaches are compared to the model-based approach existing
in the literature for enhancing the predictive performance of the meta learning
classification model. Moreover, the advantage of unsupervised deep learning was
incorporated into meta learning for achieving a better performance in energy time
series model selection.

Research Question 4 [RQ4]: How should non-expert users with neither ML knowl-
edge, nor programming skills be supported in performing energy time series
forecasting in Big Data environments?

Meta learning in the field of energy is closely linked to the process of finding the map-
ping between meta knowledge that describes the energy time series datasets and the
best performing forecasting models. Having such a mapping, the Algorithm Selection
Problem (ASP) can be solved by recommending the best forecasting model based on the
characteristics of energy input energy time series datasets without the need to follow a
trial-and-error approach. But how can we instrument such a meta learning solution in a
data analytics platform for the energy engineering domain for users in category 2B which
can be integrated easily into the digital energy research platform developed in the context
of ESD research?

In some research projects, meta learning approaches were developed as frameworks with
wizard-like interfaces which are very easy to use for the non-expert [158][75][45][87].
Despite the promising advances achieved in this context, much work remains to be done.
None of those existing frameworks were developed with a software architecture - such as
a microservice-based architecture that allows to easily integrate the meta learner into a
bigger digital energy research platform, nevertheless providing a good maintainability as
well as efficiency of the system and scalability for future use. Moreover, these easy-to-use
meta learner tools typically do not use ML Big Data analytic frameworks for solving the
ASP on cluster computing environments for higher performance in the case of Big Data.

10

1.3. Structure of the Thesis

The scientific work done to answer the fourth research question brought together the
results of the aforementioned research questions to set up a very flexible data analytics
framework which can be easily integrated into the digital energy research platform of
the ESD project. It merges the concepts of meta learning addressed in RQ2 and RQ3 and
the microservice-based solution addressed in RQ1 as a microservice-based meta learning
framework in Big Data environments to automatically select the best forecasting model
for non-expert users of category 2B presented in Table 1.1.

By answering this research question in Chapter 7, the following scientific contributions
are summarized:

« Conceptualization and development of a microservice-based meta learning frame-
work solution to automate the process of Algorithm Selection Problem (ASP) in the
energy field which is easily integratable into the digital energy research platform of
the ESD research program. The proposed framework makes the use of a microservice
architecture built on top of a powerful big data stack for a manageable and highly
scalable solution to solve the problem of model selection in big data environments.

« A benchmark evaluation study was carried out to evaluate the accuracy of the meta
learner, the execution time and the overhead of the framework.

1.3. Structure of the Thesis

According to the research questions presented before, this thesis is structured as follows.
In Chapter 2, we present the basic background knowledge necessary to understand the
subsequent parts of this thesis. Chapter 3 summarizes a variety of previous research
projects that suggest scientific methods and frameworks related to our work. We discuss
the strengths and weaknesses of each project and clarify its relation to our work. Chapter
4 covers the research question RQ1 by developing an adequate runtime environment to
support non-expert users, category 2A in performing energy forecasting in the context
of big data. Besides the execution workflow and the conceptual architecture including
its services and the main functionalities, an in-depth evaluation study concerning the
performance of the proposed framework in terms of execution time and overhead is
presented in this chapter. In chapter 5, we further answer the research question RQ2 in
presenting Descriptive Statistics Time based Meta Features (DSTMF) as a new form of
meta features to deeply characterize energy time series datasets with respect to forecasting.
A benchmark evaluation study for evaluating the performance of DSTMF compared
to the performance of other state-of-the-art meta features existing in literature in the
field of energy is presented in this chapter. Chapter 6 covers the research question RQ3
by enhancing the predictive performance of the meta learning classification model by
generating new meta examples related to the input energy time series datasets. In chapter
7, we address research Question RQ4 by integrating the meta learning concepts introduced
in Chapter 5 and 6 into the overall ML microservice framework defined in Chapter 4 and
providing an easy-to-use wizard-like interfaces to assist non-expert users. The chapter

11

1. Introduction

focuses on the conceptual microservice-based architecture proposed to support non-expert
users, category 2B, in selecting the most appropriate forecasting model by meta learning.
Finally, in Chapter 8, the main findings of the thesis are summarized and an outlook on

further work are given.

12

2. Theoretical Background

For better understanding of the main contributions presented in this work, it is of great
importance to introduce some of the related theoretical background including fundamental
terms and state-of-the-art techniques. The structure of the background is as follows. We
start in Section 2.1 by explaining some fundamental concepts of Machine Learning (ML),
its learning scenarios, application area and the different measurements proposed in the
literature to evaluate the predictive performance of ML models. In Section 2.2, the basic
concepts of Big Data analysis for handling the increasing amount of data generated
everyday are explained. In addition, the microservice-based architecture style as a new
technology for building efficient software solutions is introduced in Section 2.3. Such
architecture is presented along with its characteristics, bounded contexts and the related
service communication types. All this knowledge is necessary for understanding key
concepts of this thesis [146].

2.1. Machine Learning

The ability to learn from already existing data and iteratively find a solution for performing
certain tasks by adjusting the application’s behavior according to knowledge gathered from
the data is the main goal of ML. An essential description of ML is provided by Alpaydin et.
al [10]:

« . o 2
Optimizing a performance criterion using example data and past experience”.

Using machine learning, the computers are able to learn from historical data (experience)
and use the acquired knowledge to efficiently perform further tasks. Another more formal
definition of ML is given by Jordan et. al in [61]:

“A computer program is said to learn from experience E with respect to some task T and
some performance measure P, if its performance on T, as measured by P, improves with
experience E”.

In this definition, the “computer program” termed “machine learning model” can be seen
as an approximate solution of some complex mathematical function (model) which for
some given input variables calculates a set of outputs for performing the given task T
(e.g., a classification). By learning from experience E (i.e., from some data which contains

13

2. Theoretical Background

information about the correct function values for specific input variables settings) the
internal configuration of the ML model will be subsequently changed and thereby optimized
in a learning phase such that the model better performs its approximation. ML has already
been proven in many application areas to be able to provide very good approximate
solutions for problems which are otherwise too complex to e.g. set up differential equations
describing the problem environment with all its real world physical effects, and then
solve the differential equations appropriately. To this end, applying ML to extract useful
knowledge from raw data has become increasingly popular in a variety of areas. One such
field is the health sector where it helps with medical diagnosis [37][126]. Virtual voice
assistance, like Siri and Alexa, is another example, where ML is used to determine the
meaning of voice commands from people like setting the alarm clock or finding specific
information on the internet.

ML is nowadays also used for solving complex problems in technical industrial application
areas, such as smart energy systems. This thesis will later focus on facilitating the usage
of ML for energy load and generation forecasting [12][179][43][1][38][178][170]. Text
classification [62] is a further example of an application of ML which can be used to classify
documents according to more than one category such as sport, medicine, and health care,
to name a few. Moreover, the extraordinary increase in the size of multimedia data led to
an increasing interest in applying ML as a potential way to provide the opportunity to
index, restore as well as to browse such data via keywords semantically [174][119][160].
The field of bioinformatics represents another important application area of ML [80][147]
where proteins and genes are studied and classified according to their functional classes. In
chemical analysis [67], the major advancements in the pharmaceutical industry combined
with new achievements in ML algorithms and learning strategies pave the road for discov-
ering and developing multiple-action drugs. By using ML, it becomes possible to discover
the drugs that have the ability to achieve several therapeutic goals simultaneously.

2.1.1. Machine Learning Scenarios

On top level, four different learning scenarios can be distinguished in the field of machine
learning, namely supervised, unsupervised, semi-supervised, and reinforcement machine
learning scenarios. Those can be further divided into sub-types. The main distinction
between the mentioned scenarios depends on how the ML system knows and therefore
the ML model learns that a certain solution defines a correct answer to the problem for a
given set of input variables.

Supervised Machine Learning: In this scenario, the learning data (i.e. well known sets
of input variable values) are labeled with significant information called labels [7][150][107].
The learning dataset is then split into two parts. The training dataset and the test dataset.
The training dataset is then used to learn the existing mapping between input values
(predictors) and labels. For evaluation, if the trained model performs a good approximation
of this mapping, the test dataset will be used to predict the output values (and therefore
the label values of test data sets) of each test dataset. Then the prediction will be compared
with the labels, and an error for the deviation will be calculated (see later). The error

14

2.1. Machine Learning

will then be used to decide how to proceed with the learning. Both predictors and their
corresponding outputs could be nominal or numeric depending on the source of data. In the
supervised learning settings, we can think of a teacher which provides extra information
i.e., labels to the examples in the training dataset to e.g. give hints on how to predict such
information for the unlabeled examples in the testing dataset.

In the supervised learning scenario, the learning process involves finding the optimal
mathematical mapping between the input predictors and output labels. In practice, often
two well-known types of problems, namely classification and regression problems are
solved using supervised machine learning [135]. In classification, the output are discrete
values (i.e. class names of a classification system) whereas in regression, the output values
are continuous numbers (e.g. from a subset of the real numbers for instance). A common
classification problem is e.g. classifying whether an email is spam or not. In contrast,
regression can be used for the prediction of the prices of houses in certain areas of a town,
or for the prediction of the power generation of renewable energy sources.

When using supervised algorithms, the objective is to train models which generalize well
on input data. However, depending on the actual problem setting, model generalization is
often very difficult to achieve and related to it is the concept of the bias-variance tradeoff
[22][181], where models have either high bias and low variance or low bias and high
variance, and both characteristics cannot be optimised at the same time. Simple ML
models tend to have high bias and low variance in contrast to the real world problems
they should approximate, and therefore they are often unable to capture the complex
underlying patterns of data. The result of this is called underfitting [56] [189], where
the model performs poorly on the training data and is not able to generalise to new data.
On the other hand, overfitting [130][183] is when a model learns too many parameters
and gets too complex, resulting in a high variance but decreased bias. Overfitting is a
common problem in supervised learning, especially when the samples are few and the
feature dimensionality is high. Therefore, it is crucial that the number of data instances is
higher than the independent parameters to lessen the likelihood of overfitting.

Unsupervised Machine Learning: In contrast to the aforementioned scenario, in which
the examples are explicitly labeled, the examples here are unlabeled. There is no informa-
tion in the training set except the features (input variable values) without the corresponding
output [71][28]. In this context, the unsupervised machine learning process e.g. can try
to discover the similar characteristics between groups of input data and/or a significant
structure in data, for example, by grouping them into different meaningful clusters as
seen in Figure 2.1. Some important application examples in the context of unsupervised
machine learning scenario are:

 The k-means algorithm for clustering tasks [4][44].

« The Apriori algorithm for association rule learning tasks [90] [13]. This algorithm
is mainly used in recommendation systems aiming at discovering the behavior of
customers and presenting the appropriate products to them consequently.

15

2. Theoretical Background

Supervised Learning Unsupervised Learning

Figure 2.1.: Prediction of future energy demand and renewable energy generation.

Figure 2.1 shows the main differences between supervised and unsupervised learning
scenarios. The unsupervised learning scenario (shown in the right picture) aims at dis-
covering the structure of data in the context of exploratory analysis. Clustering is an
example of unsupervised learning in which the data points are grouped together into
different clusters based on their characteristics. The supervised learning scenario (see left
picture) aims at classifying the data points in different classes based on some classification
criteria. To achieve that, the learning algorithm learns the relationships between input
data points and the output classes. In this learning process, each data point is mapped to
its corresponding class to formulate the final classification distribution of points.

Semi-supervised Machine Learning: It can be seen as a mixed form of the two aforemen-
tioned learning scenarios, whereby only a part of the data is labeled with some supervision
information i.e., labels [162][180][17]. Consequently, a semi-supervised machine learning
scenario is often easier to instrument than the supervised one because labeling all data sets
can be very difficult and time consuming. It is often difficult to get labeled data because
the annotation of data by humans is expensive and needs expert knowledge.

Reinforcement Machine Learning: In this learning scenario, the interaction with
the environment plays a crucial role to build the model [5]. Reinforcement machine
learning scenario aims at maximizing the rewards by involving an online performance
evaluation in the learning process. In such a learning process, the model will react
to the evaluation feedbacks aiming at increasing the rewards and achieving the best
performance. Reinforcement machine learning has become more important in recent
years, as it produces the best solutions in a lot of world wide used applications, for instance
helicopter flying [176], resource-constrained scheduling [49], robot control systems [59]
and playing backgammon [111].

2.1.2. Performance Evaluation
While performing machine learning tasks, the predictive performance of the model has to

be somehow measured. This is done by defining an adequate error function for the given
problem setting. Because this thesis discusses the forecasting of time series datasets an

16

2.1. Machine Learning

adequate error function for the problem “forecasting of time series data sets” has to be
defined.

In this section, the commonly used forecast error measurements are introduced and
discussed. When comparing different forecasting models for forecasting a time series
dataset, the predictive performance of those models needs to be compared and the lowest
forecast error is always preferred. To achieve such a comparison, an error metric is required.
These metrics measure the error in the model by comparing the actual values with the
predicted values. The difference between different metrics lies in the way of computing
those errors [32][72]. In the following, X represents the predicted value, X represents the
real value, and N is the number of samples in testing set.

Mean Absolute Error (MAE): The MAE as defined by Equation (2.1) is normally used to
identify the average error. This value is more likely used as metric when the errors are
uniformly distributed over all forecasted values.

N
1 .
MAE = ; 1X), — %] (2.1)

Root mean square error (RMSE): The RMSE as defined by Equation (2.2) is used to
evaluate in average the performance of a certain model [32]. The sensibility to outliers in
the data is considered as a concern when using RMSE. Moreover, it gives more weight to
large error since it squares it. However, it has an advantage over the MAE metric because
it doesn’t compute the absolute error and is very suitable when the errors have normal
distribution.

RMSE = VMSE (2.2)
T (X - X))?
MSE = 2= } 2 (2.3)

where: X is an observation and X ; is the corresponding predicted value.

According to Equation (2.3), the MSE is calculated as the sum of the squared forecasting
errors divided by the number of the observed values.

Mean Percentage Error (MPE): The MPE as defined by Equation (2.4) gives us the ability
to decide whether the predictive model estimates values lower than the true values or
higher them. If the sign of MPE is negative, then the model predicts values higher than
the true values i.e., it “over-predicts”. Nevertheless, if the sign is positive, then the model
estimates values below the true values i.e., it “under-predicts”.

N

100 & X, — #
MPE = — Z h — Xh (2.4)
N & X,

17

2. Theoretical Background

Mean Absolute Percentage Error (MAPE): The MAPE as defined by Equation (2.5) eval-
uates the performance of a forecasting model by calculating the mean absolute percentage
error. This makes it more interpretable to any one even without a previous knowledge
about the modeling problem.

N A

100 Xh —

MapE = 20 S X =%l 2:5)
N = Xh

MAPE as well as MPE are not suitable when there are zero values or even very small
values in the ground truth since they are calculated by dividing the difference between
predicted value and actual value over the actual value. Hence, large values and undefined
values in certain situations, namely by dividing over zero can be obtained. Therefore, we
use Mean Error Relative (MER) as an alternative metric.

2.2. Big Data Software Environments

Driven by the rapid growth of Big Data in scientific and industrial domains, efficient
handling of large amounts of data has become an important research topic [133][108][35].
Big Data is often characterized by three properties, namely volume, variety and velocity
as seen in Figure 2.2. Handling data showing all these properties together will make the
process of managing, revealing and gaining insight, knowledge and information from the
data more complex and a challenging task. Typically, larger scale computing clusters are
needed for handling Big Data, because the data couldn’t be stored on a single storage
system or be analyzed on a single computer.

The large amount of high dimensional data leads to the problems of high computational
costs and instability in the performance of the learning algorithms. Moreover, gathering
such data from multiple data sources using different techniques leads to the challenges
of heterogeneity in data. To overcome these challenges, the need for software solutions
for data processing and analysis which make optimal use of high speed networking, large
capacity storage and scalable distributed/parallel processing increased dramatically. Such
software solutions and frameworks are typically called Big Data frameworks.

One of the best known open-source frameworks is Apache Hadoop which supports big
data processing and storage in a distributed computing environment [149]. It encompasses
various components including a distributed file system, the data processing tool MapReduce
and a cluster resource manager. Besides enabling the reliable storage of extensive files in a
cluster, the Hadoop Distributed File System (HDFS) provides fault tolerance by splitting
the files into blocks and replicating these blocks multiple times over the cluster. It provides
fault tolerance by splitting the files into blocks and replicating these blocks multiple times
over the cluster.

Figure 2.3 shows the architecture of HDFS which consists of a Name Node and multiple
Data Nodes. The name node coordinates the operations of the underlying file system (e.g.

18

2.2. Big Data Software Environments

Figure 2.2.: Characteristics of Big Data.

Metadata (Name, replica, ...):
/home/foo/data, 3, ...

Metadata o’p,s_,,v[Name node

-
-

&
(N >
Read Data nodes PN Data nodes
Em| mm O — oo
0 Q\ Replication Dk—m5Blocks
\ Y Write \ ’)
Rack 1 Rack 2

Figure 2.3.: HDFS architecture [24].

opening and closing files, etc.) and manages metadata maps which provide the knowledge
on which piece of a file can be found on which Data Nodes. On the other hand, the data
nodes store the file blocks and serve the read as well write requests. For reliability, also
the Name Node functionality can be set up redundantly.

Hadoop MapReduce [40] is one Big Data processing framework which allows parallel
processing of data according to the well known Map-Reduce data processing method. This
method processes data using two separate steps, i.e. a first “Map” step responsible for

19

2. Theoretical Background

transforming data into key/value pairs and then a second step Reduce, which accepts the
output from the Map task as input, and aggregates the data from the map somehow to
produce the final output of the Map-Reduce operations.

gesourceManager
Client
[% Client--RM | | Scheduler | |
en
\[AMService }
RM - - AM 3

v
MP! ’*[MJ MR
AM (" Container | AM %W}

[Node Manager] [Node Manager] { Node Manager]

Figure 2.4.: YARN architecture [80].

One of the state-of-the-art technologies in resource management is Yet Another Resource
Negotiator (YARN) [167]. It is based on the idea of decoupling the application and the
required computational resources e.g. CPUs, RAM, etc. Figure 2.4 illustrates YARN’s
architecture which is mainly composed of a Resource Manager (RM), multiple Node
Managers (NM) and an Application Master (AM) for each program. When an application is
submitted to the RM, the RM allocates a container accommodating the required resources
for the application and contacts the related NM to launch this container. The container
then executes the Application Master (AM) which coordinates the application scheduling
and task execution and sends resource requests to the RM.

Another Big Data Analytics framework is Apache Spark [134], which also supports the Map-
Reduce processing method but in general provides a more generic and more performant
parallel processing framework which also comes with a library of ready to use ML models
already implemented. The Map-Reduce implementation container in Spark is several
factors quicker than the original implementation in the MapReduce framework and also
more reliable.

2.3. Microservices

Developing web applications using a monolithic architecture where the database, the
server and the client code are maintained in a single codebase have drawbacks if the
application gets more complex in terms of maintainability and their ability for adding new
functionality quickly and easily. If the application can only be deployed as a whole, it is also
limited in terms of scalability. With the upcoming of cloud technologies, more and more
companies like Amazon, Netflix and Zalando have shifted from a monolithic architecture

20

2.3. Microservices

to a newer more scalable and maintenance friendly architecture called microservices
architecture [2][18][39]. In this section, the basic background required to understand the
advantages of a microservice architecture is provided. For the sake of simplicity, the term
service in this thesis refers to microservice.

2.3.1. Characteristics

The main idea behind microservices is that the whole application is decomposed into
multiple smaller services or runtime artefacts where each of them can be deployed and
run as an operating system process independently from the others. The decomposition of
the functionalities into services (runtime artefacts) are done according to the application’s
business functionalities. Each service follows the Single Responsibility Principle (SRP)
and implements only a certain business functionality [88]. By following the SRP, the
services become highly cohesive and decoupled, leading to an easier code maintainability.
In contrast to that, the monolithic applications lack hard boundaries and, with added func-
tionality, tend to become complex and tightly coupled which in turns leads to difficulties
when changes are made since they often span multiple components.

Another advantage of microservices is that they do not require the redeployment of the
whole application when implementing new features or fixing bugs. Instead, only parts of
the application including the corresponding service need to be adapted and redeployed.
Furthermore, microservices of a single application are not constrained to be implemented
with the same set of technologies and frameworks. This allows teams working on different
microservices to use independent technology stacks resulting in different programming
languages and data storage technologies suitable to the data they process.

2.3.2. Bounded Contexts

It is of great importance in the design and implementation process of a microservice-based
application to identify the scope of each microservice in the application. To find the
cohesive and loosely coupled boundaries in a system, a pattern called bounded context
which originated in Domain-Driven Design (DDD) is often utilized as a guideline [95].
Before describing the bounded context, the terms domain, domain model and subdomain
which are integral parts of DDD, first need to be introduced. The domain can be defined
as a sphere of knowledge, influence or activity [88]. Essentially, the domain is the problem
space that the system addresses. The domain model is used to depict the key elements of a
domain. This is done by establishing a ubiquitous language, an important communication
tool between developers and domain experts containing a fundamental knowledge about
the domain.

To facilitate the modeling of complex applications, the domain is usually decomposed into
subdomains. Each one of them is responsible for a separate business capability. These
subdomains are then mapped, preferably one-to-one, to bounded contexts which describe
the solution space of the system [120]. The main idea behind defining a bounded context is

21

2. Theoretical Background

to form the explicit boundaries of a domain model, delimiting its applicability to a specific
context which helps team members to have a shared understanding of what needs to be
consistent and how it relates to other contexts.

Although the bounded context is a favored approach to design a microservices architecture,
the scopes of the services are often affected by the boundaries of an organization. This
effect is called Conway’s law which states that organizations which design systems are
constrained to produce designs which are copies of the communication structures of these
organizations".

2.3.3. Communication Types

Driven by the nature of a microservices architecture in which the services are isolated
from each other and distributed over a network, the communication with and between
microservices are becoming the most relevant gluing part to assemble the set of microser-
vices into a full application. Therefore, it is often said that microservices should have smart
endpoints and dumb pipes, meaning that the smart logic should be inside of the services
and only lightweight mechanisms and standards should be used for their communication
[41].

Communication styles are usually divided into request/response and event-based tech-
niques [95]:

« Request/response: in this technique, two services can directly communicate with
each other, where one service initiates a request to another and in return expects a
response.

« Message-based: Using message-based communication, a communication partner
creates a message which is then sent to a Message Oriented Middleware (MOM)
which forwards the message asynchronously to one or more receivers. Receivers
typically register themself in a MOM for receiving messages from certain types of
message queues.

« Event-based: this is a special form of message-based communication where the sent
message corresponds to events, where one service or producer communicates an
event as a message to a MOM and all services that have subscribed to the event type
as message type will receive the message.

Typically request/response based communication will be instrumented by a microservice
application for directly invoking a certain business functionality provided by a service, e.g.
a user interface uses the business capability of a certain background service. It can also be
used when one service has to use the business functionality provided by another service.
For implementing such request/response interfaces, nowadays often REST-based com-
munication interfaces are used which are very “lightweight”. Asynchronous event-based
communication is often used in a microservice architecture to synchronize state or more
generic data between several microservices. The event-based MOM framework therefore

22

2.3. Microservices

often also implements coordination algorithms for performing necessary coordination
between the distributed instances of the microservices.

2.3.4. REpresentational State Transfer (REST)

To implement the request/response communication style, microservices follow the REST
(REpresentational State Transfer) principles, a protocol-agnostic architectural style that
commonly uses HTTP as a communication protocol. The term REST was first coined by
Fielding et al. in [46] and is made up of the following 6 constraints.

1. Client-server: to improve the portability of the client i.e. user interface and scalability
of the server entities, the client and server should be separated. This constraint
enables the independent involvement of both.

2. Stateless: this constraint affects the communication between the client and server
and declares that it should be stateless, meaning that the client requests to the server
must contain all necessary information.

3. Cache: improving the network efficiency by requiring data within a response to be
labeled as cacheable or non-cacheable.

4. Uniform interface: this constraint emphasizes the importance of a uniform interface
between components. To obtain it, a variety of interface constraints are defined
e.g. identification of resources, manipulation of resources through representations,
self-descriptive messages and hypermedia as the engine of application state.

5. Layered system: to reduce the complexity of an overall system, hierarchical layers
should be implemented which constrict the components’ behavior.

6. Code-on-demand: this is an optional constraint that allows client functionality to be
extended by downloading and executing code in form of applets or scripts.

As already said, REST-based communication interfaces (also called REST-APIs), will be
typically implemented using web technology and therefore HTTP(s) as request/response
protocol. URL patterns together with HTTP header fields and optionally a HTTP payload
define a request to a web server hosting the service which typically returns a HTTP
response consisting of a status code, HTTP header fields and a payload in an adequate
Multipurpose Internet Mail Extensions (MIME) format [136]. The payload of a response or
a request has often a machine and human readable structure which is often technically
implemented by using an application specific JSON or XML format. The usage of such
a communication interface requires only a small framework for performing HTTP calls
and creating, interpreting and manipulating JSON and/or XML, and is therefore very
lightweight. Such REST frameworks exist for all common generic computer languages and
REST APT’s are typically designed so that they are completely independent from the under-
lying operating system and hardware environment. This makes REST services accessible
from any platform with any language and this makes REST services ubiquitous.

23

2. Theoretical Background

2.4. Time Series Datasets

A time series is defined as a sequence of values (univariate) or data tuples (multivariate)
which is indexed and ordered by points in time (often described by a timestamp), which
typically correspond to observations (measurements) made at that point in time. Time
series are used for a wide range of application scenarios, such as energy, weather and
finance. In this thesis different time series datasets are used to evaluate the proposed meta
learning concepts for the ML use case “forecasting of time series” and obtain the desired
results. Therefore, several sets of time series data will be used which will be described in
the following subsection.

2.4.1. ENerGO+

The ENerGO+ software system was set up at the KIT Campus North, the former Karlsruhe
Research Center and now a Helmholtz research center, as central measuring system which
records the consumption of Energy by the KIT institutes at Campus North. The datasets
collected in this system contain time series for the energy consumption of building parts
or technical plants for electricity, gas, thermal energy from the district heating system and
water.

All time series consumption data gathered between 01- 01-2006 and 06-08-2018 available
through web-based user interface ENerGO+ were extracted. About 70 GB of raw data
used in this thesis for evaluation was provided in CSV format which contains a variety of
different measurements. For providing a interpretation context for each dataset, a metadata
file was provided with additional information about each measuring station and the type
of consumption data contained in the time series:

« Stdid: unique identifier of measurement time series.

Anlage: identifier of the building the measuring station is located in.

Teilanlage: sub-division of the building or a single technical plant.

Medium: Indicates what is measured. For example electricity, gas or water.

Erfassungsart: Type of acquisition: manual or auto.

Bm_zw_ausgang einheit: Unit of measured medium. For example kWh for electricity
or m3 for water flow

For the evaluations in this thesis, only electricity consumption is of interest, so all other
measurements were discarded. Because equidistant measurements are easier to handle
for forecasting, only electricity meters with equidistant auto-acquisition of data were
considered. Each electricity meter at the Campus is configured to provide energy con-
sumption data every 15 minutes. From the 2125 time series all but 761 were discarded in
this pre-selection phase. To further exclude unusable time series, a deeper analysis of the
actual data was required. We decided to not use time series data with a time span of less

24

2.4. Time Series Datasets

than one year, which also lead to a few discarded short time series. Some time series also
contained large gaps (maybe, because some meters were defect over a longer period in
time) which is also problematic. This led to the decision to discard all time series with
gaps greater than two weeks. Additionally, we decided to only use time series with less
than 2% of the data missing, therefore a few more time series had to be discarded as the
pre-processing of the data progressed. Finally, to enhance the quality of the data even
further - depending on the evaluation use case - several automatic quality enhancement
procedures e.g. interpolation missing data points were performed prior to the evaluation.
200 time series datasets are resulting from these filtering steps. Further details about these
will be provided later in this work in the corresponding evaluation chapters.

2.4.2. Ausgrid Solar Home Electricity Data

A further dataset used for some evaluations was the Ausgrid Solar Home Electricity Data
Set. This time series dataset provided by the state-owned Australian energy provider
Ausgrid 1. It offers time series observations for 300 solar customers with installed PV
systems. All time series extracted from this dataset with time samples n=1, ..., N have a
temporal resolution of 30 minutes and contain measurements from 01-06-2010 to 30-07-
2013.

For each customer three readings categories were recorded at half-hourly intervals:
+ GC: General Consumption.
+ CL: Controlled Load Consumption.
+ GG: Gross Generation.

Additionally, for every customer the generator capacity of the installed solar systems was
recorded in Kilowatt Peak (kWp). In this work we used only GG.

2.4.3. Weather Time Series Dataset

For the evaluation scenarios using the generation data from the Ausgrid Solar Home
Electricity dataset, also corresponding weather data was important. A corresponding
time series weather dataset is provided by the Bureau of Meteorology of the Australian
Government *. The measurements were carried out at a weather station in the city of
Sydney, which lies in the same area where the houses for capturing the time series dataset
explained in 2.4.2 were located. The weather dataset contains observations for the same
time frame as the power generation time series dataset from section 2.4.2. Namely, day-
to-day observations for evapotranspiration, maximum and minimum relative humidity,
maximum and minimum temperature, precipitation and solar radiation are provided.

! https://www.ausgrid.com.au/
2 http://www.bom.gov.au/

25

3. Related Work

A variety of learning algorithms, methods and approaches are already offered for applying
ML models to different use cases whereby the selection and adaptation of a good performing
model is still a complex, long lasting and error prone process [166]. To simplify the usage
of ML, the ML community therefore also developed powerful techniques, frameworks
and tools to make the usage of ML more accessible to end users. In this chapter, several
research projects with the main goal of supporting users in performing ML tasks in Big
Data environments are presented. Section 3.1 summarizes a group of research projects
for facilitating and managing ML tasks. These projects are mainly categorized into data
analysis and ML workflow management frameworks. Section 3.2 covers another group of
research projects using meta learning to help the user in finding an adequate model for
a given ML task. This section introduces projects focusing on the type of meta features,
algorithms instrumented as meta learners and methodologies used to achieve the main goal
of automated model selection. In Section 3.3, state-of-the-art research projects existing in
the literature for the purpose of generating new time series datasets to augment the set of
training data are introduced.

3.1. Machine learning software and tools

The process of selecting, configuring and training a good performing ML model for a
given use case is still characterized by an iterative trial-and- error procedure where in each
iteration, the ML user discovers new essential insights into the effectiveness of certain
configuration settings on the model and thereby influencing future experiments. To aid
users to go in the right direction, many frameworks are developed which help users by
providing ML frameworks with already given configurable model implementations, or
tools for organizing and analyzing this trial-and-error approach. Such frameworks can
be categorized into data analytic and ML workflow management as well as visualization
frameworks.

3.1.1. Data analytic framework

Frameworks like Apache Spark [187] which is a data analytic framework containing a good
library for more traditional ML algorithms, or TensorFlow [110] which is dedicated to deep
learning, are low level frameworks that help data scientists in programming ML algorithms
which could then be executed on a local computer or even for better performance on a

27

3. Related Work

computing cluster. Such frameworks typically don’t provide easy-to-use user interfaces
for non-experts by themselves but there are additional (Open Source) tools (e.g. Jupiter
Notebook [73]) which provide lean web user interfaces to such frameworks for hiding
the details of the background cluster runtime environment from the user. Typically, these
interfaces are aimed towards more experienced data scientists and less towards non-expert
users who just want to apply ML algorithms.

Contrary to the tools aimed for the experienced ML programmers, there are nice User
Interface (UI)-based tools targeted to non-expert users with little to no programming
experience at all. Johanson et al. in [60] developed OceanTEA, a framework to analyze
time series datasets in a climate context. OceanTEA leverages web technology such as
microservices and a nice web UI to interactively visualize and analyze time series datasets.
It is a cloud-based software platform, consisting of a microservice back-end and a web Ul,
similar to the framework implemented in this thesis. Both components communicate with
each other through an API gateway utilizing REST communication and each microservice
is deployed independently using container automation through a Docker. OceanTEA
provides four main Ul interfaces for the exploration and analysis of oceanographic times
series data including functionalities of time series data management, data exploration,
spatial analysis and temporal pattern discovery.

Another project focused on the acceleration of research in energy data management and
analysis is WattDepot presented by Brewer and Johnson in [26]. This software platform
is also open source and internet-based. It supports the collection, storage, analysis and
visualization of data coming from energy meters. The architecture encompasses three types
of services, namely sensors, servers and clients. The sensors collect the data from different
energy meters and send it to the services which store the incoming data by utilizing the
provided RESTful APIs. Since the services are not coupled to a specific database, flexible
data storage options are provided. For analysis and visualization, the clients request the
data from the services in the format XML, JSON or CSV. The applications of WattDepot
include a web application for a dorm energy competition and a power grid simulation
mechanism.

However, both WattDepot and OceanTEA typically provide hard-coded dedicated ML
based analysis features which are specifically tuned towards specific application use cases
and therefore e.g. other ML tasks such as forecasting which is needed in the energy
application field are not included in them.

Shrestha et al. in [148] developed a user-friendly web application to analyze health
and education datasets. This tool also includes ML algorithms for the forecasting of
time series data. The application also has a nice and easy-to-use user interface that was
developed using human-computer interaction design guidelines and principles and targeted
at novice and intermediate users. The technologies used were Java, the Play framework
and Bootstrap. But only linear regression, logistic regression and back propagation were
utilized to perform forecasting on the input datasets. However, this framework is also not
able to solve more complex ML tasks by using Big Data analysis frameworks executable
on cluster computing environments, and it can only be used as standalone application on
a desktop computer.

28

3.1. Machine learning software and tools

Apache PredictionlO [33] is an open source ML framework for developers. Besides support-
ing the deployment of ML algorithms, Apache PredictionlO allows expert users to train
and test ML models and query results via RESTful APIs. It is built on top of state-of-the-art
scalable open source Big Data frameworks, e.g. Hadoop, HBase, Elasticsearch and Apache
Spark. The drawback here is the non-existence of an easy to use UI layer to facilitate
performing ML tasks by non-programmers.

With the increasing interest in ML, a new market called ML as a Service (MLaa$S) is
existing, whereby ML functionalities like training and deploying ML models are typically
provided through web services. Ribeiro et al. [124] introduced a scalable and flexible open-
source MLaaS architecture, including a graphical user interface (GUI), for building multiple
predictive models from various data sources simultaneously. It is based on a service
component architecture and is implemented using Node.js and JSON. The architecture
was evaluated by implementing three algorithms; Multi-Layer Perceptron (MLP), Support
Vector Regression (SVR), and K-Nearest Neighbors (KNN). The resulting models were
compared based on their accuracy using mean absolute errors and mean squared error
as well as their computing performance, which the GUI visualizes in addition to their
predictions. Another leading cloud-based MLaaS platforms is google cloud machine
learning engine. This platform simplify the usage of ML by abstracting away the many
challenges related to ML including making the infrastructure more affordable and scalable
[182]. The distinguishing factor compared to the framework developed in this thesis is that
these MLaaS platforms at least until now do not provide an integrated model management,
and therefore the possibility to store and retrieve ML models for future usage.

3.1.2. ML workflow management and visualization frameworks

Model and data versioning is also an important area of research that has produced systems
to manage the process of building ML models. The process of building a satisfactory ML
model by a data scientist is characterized as an iterative trial-and-error procedure, where
in each iteration the user reveals essential insights into the effectiveness of algorithm
configurations. Since the models may become numerous, it is important to keep track of
the relevant information so that the model’s performance with different configurations can
easily be tracked and analyzed. This leads to the need of an efficient model management
which encompasses the storage and retrieval of the models and related metadata (e.g.
hyperparameters, evaluation performance, etc.) in order to analyze them collectively
[166].

Multiple recent research projects have been introduced addressing model management
as a part of the ML workflow. Vartak et al. in [166] introduced ModelDB, a system for
tracking and versioning ML models in the form of pipelines. The authors argued that data
scientists are reluctant in using other environments than their favored ones, especially
those with a GUI and therefore they provide native client libraries for scikit-learn and
Spark MLIib which can be used to track and store models and related metadata. The
framework consists of a front-end and a back-end encompassing a relational database and
custom storage engine. The front-end is implemented as a web UI and supports the review,

29

3. Related Work

inspection and comparison of the tracked and indexed models and pipelines through a
tableau-based interface. In addition, the information can be explored and analyzed using
SQL. The limitations here are that ModelDB is developed as a monolithic application
making it difficult to be maintained and further developed. Moreover, ModelDB do not
provide the ability to handle problems in the context of Big Data.

Vartak et al. [165] introduced another system to analyze ML models built with scikit-learn
and Tensorflow called Mistique (Model Intermediate STore and QUery Engine). It captures,
stores, and provides the ability to query model intermediates like the input data. Mistique
is implemented in Python and consists of three main elements, being a PipelineExecutor,
a DataStore, and a ChunkReader. It utilizes a column-based schema for its DataStore
which consists of an in-memory store and a persistent store. Also, a so-called MetadataDB
exists which is a central repository for the metadata of the pipelines and intermediates.
The authors focused on efficient storage and proposed two optimization strategies for
ML pipelines. First, columns that are found to be similar or identical are compressed.
Secondly, a query cost model and a storage model were implemented to determine if a
model should be rerun or the intermediate read and if an intermediate should be stored.
Finally, the authors assessed the storage gains and speedup for ML pipelines and deep
neural networks. Furthermore, the cost models were evaluated and found to be effective.
Also the overhead of utilizing the framework was estimated by comparing the runtime
performance of different pipelines.

Schelter et al. [137] introduced a system for auditing the ML workflows of more general
model types (e.g. neural networks), including the support for dataset schema management.
The system consists of a back-end running serverless on AWS and offers REST APIs for
communication, but unlike [165] it does not include a web Ul The metadata is stored in a
document database and the system is integrated with scikit-learn, Spark MLlib and MXNet.
For decoupling purposes, the authors chose a declarative approach where artefacts of
the workflow are described by metadata and not via compiled code. Additionally, they
guaranteed consistency by applying the immutability principle meaning that items are
only recorded once.

To manage ML models and their lifecycle, MLflow is introduced in [185]. Expert users
can develop and track ML experiments as well as share and deploy ML models. MLflow is
developed as an open source software system addressing typical problems of ML workflow
management, particularly experimentation, reproducibility and deployment. MLflow
supports programming of models with Python, Java and R, and provides REST APIs
encompassing three main elements. The first one, MLflow Tracking, offers APIs for
logging experiments and supports querying the results through APIs as well as visualizing
them with a web UL The second component, MLfow Projects, can be used to create reusable
software environments for reproducibility and is configured through YAML files. The last
item, MLfow Models, provides the functionality to package ML models in a generic format
and deploy them. Those models incorporate similarly to MLflow Projects a YAML file
which contains the metadata of the model.

To address the issue of model deployment, a variety of frameworks and tools are developed.
Tensorflow serving [106] provides a flexible and powerful system for serving tensorflow

30

3.2. Meta learning for energy time series model selection

models on google’s cloud platform. It allows expert users to achieve an efficient integration
of tensorflow models in production environments. Kubeflow [23] is a cloud platform for
ML built on top of google’s internal ML pipelines. It provides expert users with a lot
of functionalities including notebooks for training and serving tensorflow models. H20
Flow [27] is another efficient framework for creating and managing ML and deep learning
workflows including training and testing models. This framework supports Python, R and
scala on top of Hadoop/Yarn and Apache Spark.

3.2. Meta learning for energy time series model selection

To select ML models following the well-known trial-and-error approach, the relevant
configurations of different learning algorithms are changed and tested until a model with
good performance is found. Consequently and due to the large number of available ML
algorithms and their relevant hyperparameters, this process is becoming more complex and
even difficult for non-expert users. To tackle this challenge, meta learning approaches have
been proposed [164][70][163][171]. The main aim of meta learning is to find indicators that
map datasets to the best suitable algorithm for performing a certain task (e.g. forecasting).
To this end, meta learning uses a set of attributes, referred to as meta features, to capture
the characteristics of the data mining task and searches for the correlation between these
features and the best machine learning algorithm for performing a given task.

While several studies have investigated the use of meta learning to select the most appro-
priate model, the majority of them studied the selection of classification algorithms, e.g.
[70][122][127][128][45][175][132][74][191][85][123], to name a few. With the growing
popularity of regression, the first use of meta learning in the context of time series was by
Ludmir et. al. in [118] who proposed an approach for time series model selection. Two
case studies have been investigated in their work. In the first one, the authors used a single
machine learning algorithm to select models for forecasting stationary time series. In the
second one, the well-known NOEMON approach [63] to select time series models for the
M3-competition has been used. As meta features, a set of 10 meta features including simple,
statistics and time series meta features are extracted to describe time series datasets.

In [98], Wang et. al. proposed a meta learning framework for recommending the most
appropriate forecasting method from 4 different candidates, namely random walk, expo-
nential smoothing, neural networks and ARIMA. As meta features used to characterize
time series datasets, serial correlation, kurtosis, strength of trend, nonlinearity, strength
of seasonality, skewness, periodicity, self-similarity and chaos are extracted. A decision
tree algorithm has been used as a meta learner to recommend one of the aforementioned
candidates for an input time series dataset based on its characteristics.

The same group of meta features has been later used by Widodo in [172]. The difference
is that the author tried to reduce the time series dimensionality by applying Principal
Component Analysis (PCA). Kiick et. al. in [76] used feedforward neural networks as a
meta learner to select the best time series forecasting model for 78 time series from the

31

3. Related Work

NN3 competition. As algorithm candidates, single, seasonal, seasonal-trend and trend
exponential smoothing were used. To characterize time series datasets, error-based features
(landmarkers) and statistical tests were used as time series meta features.

To achieve the main goal of meta learning in finding the mapping between meta features
and the learning algorithm, different algorithms as well as approaches have been proposed
as meta learners in literature. On the one hand, some of them used statistical methods to
induce meta learners [138][93]. On the other hand, neural networks, decision trees and
other computational intelligence methods [118][98][168] are used as meta learners. In
the cited scientific works, different categories of meta features such as simple, statistical,
time series, model-based and landmarking are utilized. A good overview summarizing
the state-of-the-art of meta learning approaches applied for time series forecasting can be
found in [151]. However, it is noticeable that although a large number of scientific papers
address the topic of meta learning, only a few are dedicated to take the advantage of it in
the case of energy forecasting.

Building Energy Model Recommendation System (BEMR), a meta learning based frame-
work to recommend the most appropriate forecasting algorithm for building energy profiles
based on building characteristics, is proposed by Cui et.al. [38]. As meta features, physical
features of the building combined with statistical and time series meta features extracted
from the operational and energy consumption data of the building were used for con-
structing efficient meta examples to be used by the meta learner. While the algorithm
selection is fully automatic, this approach has the disadvantage that the meta feature set
uses some physical construction properties that are often not available in praxis due to
privacy issues.

In the following, some meta learning approaches developed as frameworks with wizard
are discussed. A parallelized, component-based, modular and easily extendable meta
learning system for univariate and multivariate time series load forecasting is described
in [91]. Here, Matijas et. al. built an ensemble of euclidean distance, CART decision
tree, LVQ network, MLP, AutoMLP, e-SVM and Gaussian Process (GP) algorithms to find
the association between the meta features and the forecasting performance. Minimum,
maximum, Standard Deviation (SD), skewness, length, periodicity, highest ACF, traversity,
kurtosis, granularity, exogenous, periodicity, trend and fickleness are considered as meta
features. These features were weighted with the Relief feature ranking method [153]
before being utilized by the ensemble-based meta learner.

Auto-WEKA [158] is a framework for automatically selecting classifiers and hyperparame-
ters implemented in WEKA. In the updated version Auto-WEKA 2.0 [75], the selection
of the best regression algorithm is provided. To solve the Algorithm selection and hy-
perparameter optimization (CASH), bayesian optimization is utilized. Due to the large
number of hyperparameters that can be tested while building ML models, such hyperpa-
rameters are structured as trees or as Directed Acyclic Graph (DAG). In the evaluation,
two Sequential Model-Based Optimization (SMBO) algorithms, namely Sequential Model
Based Algorithm Configuration (SMAC) and Tree-structured Parzen Estimator (TPE) are
used. As a baseline for the evaluation, the authors also used two algorithms which do not
perform hyperparameter optimization but only algorithm selection: exhaustive evaluation

32

3.2. Meta learning for energy time series model selection

and Hoeffding race. WEKA provides 47 classification algorithms grouped into 30 base
classifiers, 14 meta methods and 3 ensemble classifiers. The authors used 10 benchmark
datasets obtained from the UCI repository for evaluation. Each dataset was partitioned
into a 70/30 train/test random split and the hyper-parameter configurations were evaluated
based on standard 10-fold cross validation. As a result, the SMAC algorithm as a Bayesian
optimization method performed best.

The same principles of Auto-WEKA are used in Auto-Sklearn [45] which is a a meta
learning framework based on scikitlearn. To solve the Combined Algorithm Selection
and Hyperparameter optimization (CASH) problem, they built on the research from Auto-
WEKA and used the same Sequential Model based Algorithm Configuration (SMAC)
algorithm as Bayesian optimizer for hyperparameter tuning. To further improve the
results and increase the accuracy and robustness of the framework, Feurer et. al proposed
a meta learning approach to suggest some models which in turn are used as seed for the
optimization process. In an offline phase, they collected meta features and performance
data of 140 datasets from the OpenML repository, which is used to find the candidate
models for new datasets. The implemented 38 meta features include simple, information
theoretic and statistical features, but do not include landmarking meta features as they are
too computationally expensive to calculate. Performance evaluation was done using the
available 15 classification algorithms from scikit-learn.

As a benchmark evaluation, Auto-Sklearn is compared to Auto-WEKA which resulted in a
significantly better performance in some cases and a comparable performance in most of
the other cases. They also performed different experiments to evaluate the meta learning
and ensemble-generating approach which showed that both methods lead to a better
performance than vanilla Auto-Sklearn. The drawback in Auto-WEKA and Auto-Sklearn
is that they are implemented as monolithic applications which limit the scalability and
increase the difficulty of maintenance. Moreover, they did not provide the possibility to
handle model selection for large amounts of data.

Another meta learning framework developed with the R language is SmartML [87]. It is
implemented as a web application with REST APIs. SmartML can recommend a classifica-
tion algorithm including hyperparameter tuning based on a total of 25 meta features. The
limitation here is also that SmartML does not support the usage of Big Data ML frameworks
for large scale processing on computing clusters. In contrast to the aforementioned works,
the meta learning framework presented in Chapter 7 is developed as a microservice archi-
tecture runnable on a cluster computing platform to increase the scalability and facilitate
maintainability. Moreover, it utilizes powerful Big Data ML frameworks to perform model
selection in cluster computing environments.

To the best of our knowledge, all meta features used in meta learning for energy can be
subcategorized into simple, statistical, time series and domain-based meta features. Simple
meta features can be directly derived from time series datasets, e.g. the number of samples
and the number of attributes. Statistical meta features capture the statistical properties of
time series datasets such as cor and skewness, to name a few. Time series meta features
introduce in-depth insight into the characteristics of time series datasets, such as acf_-
features, pacf features, arch_stat, crossing_points, heterogeneity, hurst, max_kl_shift as

33

3. Related Work

explained in [82]. Domain-based meta features, as its name implies, are derived from
the domain, in which the time series readings are collected, for example, the physical
characteristics of the buildings [38].

3.3. Generating new time series datasets

In this section, we cover some of the related work for generating new artificial time series
datasets. Talagala et al. [156] used a model-based time series generation technique to
increase the size of the original time series training dataset. Autoregressive integrated
moving average (ARIMA) and Exponential Smoothing (ETS) models were trained for every
time series and then a number of new time series were generated with each of these
models via simulation. To visualize the characteristics of the time series and compare the
distribution of the generated time series with the distribution of the original ones in the
meta feature space, Principal Components Analysis (PCA) is used. As a result, they found
that the new simulated time series increased the diversity and evenness of the dataset in
the meta feature space.

Another method for generating synthetic time series was proposed in [47]. This method is
based on differently averaging a set of time series from the same predefined class. The
averaged time series are then treated as new synthetic time series. The weights of the time
series for the average can be varied, making it possible to create many new time series
datasets. For calculating the average of a time series dataset, three different methods based
on DTW Barycentric Averaging (DBA) are proposed. The three methods are called average
all, average selected and average selected with distance. Each one of them distributes
the weights differently. Using the average selected with distance method, they doubled
the number of time series in each class for every dataset in the University of California
Riverside (UCR) archive. In an evaluation study on 85 datasets, they showed that the
augmentation increased the accuracy of a 1-NN DTW classifier on 56 datasets on average
of 3.81%, decreased the accuracy on 22 datasets on average of -1.72% and didn’t change the
accuracy on 7 datasets. Using the Wilcoxon signed rank test, they found that the increase
in accuracy was statistically significant at the 0.001 level.

A genetic algorithm for generating new time series based on user-defined meta features
is proposed by Reif et. al in [121]. The generation process involves the minimization of
the cost function f(x) where x is the meta feature vector of the current time series. The
genetic algorithm mutates the time series by shifting data points and recombining them
by swapping fractions of them. Note that this algorithm gives the user more control over
meta feature combinations than the algorithm described in [65], where only time series
with meta feature vectors on a 2-dimensional Principal Component (PC) space can be
targeted.

To learn the probability distribution of a real smart grid dataset and then to generate
synthetic time series, a Generative Adversarial Network (GAN) is used in [188]. The goal
is to make the newly generated time series datasets statistically in-differentiable from the

34

3.3. Generating new time series datasets

original ones. To train GAN, the authors used energy consumption and solar generation
records from 93 different users. To assess the similarity between the newly generated time
series datasets and the original time series, Maximum Mean Discrepancy and Dynamic
Time Warping (DTW) based k-means clustering as well as Short-term Load Forecasting
(STLF) forecasting errors of ARIMA models are used. The proposed approach was able
to learn the conditional probability distribution of input features and new samples are
produced based on the learned distribution.

In [64], Kang et al. proposed GeneRAting Time Series with Diverse and Controllable Char-
acteristics (GRATIS), a new approach to generate time series with diverse characteristics by
using Gaussian Mixture Autoregressive models (MAR). This approach is able to simulate
multi-seasonal time series. They showed this by simulating the half-hourly electricity
demand based on an original time series. In contrast to [65], they used a genetic algorithm
to tune the parameters of a MAR model so that the time series which are generated by
the MAR model gets closer to the target meta feature vector, instead of changing the time
series itself in a space whose dimensionality is equal to the length of the time series.

3.3.1. Summary

In this chapter, we gave a detailed overview of the state-of-the-art research projects related
to our work. We started in Section 3.1 by briefly presenting a group of ML software
tools aimed at facilitating and managing performing ML tasks. Many ML libraries (e.g.
scikit-learn [113], R [157], Spark MLIib [94]) provide the ability of training ML models,
but they require the user to have an understanding about the algorithm and are targeted
to expert users. However, making ML more accessible to a broader group has become
an active research topic, which can be explained by the increased interest in ML by non-
than expert users. Table 3.1 summarizes the aforementioned state-of-the-art solutions
presented in Section 3.1 highlighting their properties and differentiating them from the
solution presented in this thesis.

As seen in this table, none of the frameworks and tools presented in Section 3.1 perform
automated model selection of ML models. Some of them support non-expert users (category
2A) presented in Table 1.1, for example OceanTea, WattDepot and ML Flow. However,
the other category of non-expert users, namely 2B, still represents a challenge that needs
to be faced. Some of the frameworks also do not support or hide the high complexity
related to the configurations of big data environments which is another challenge for users
that needs to be faced. Retrieving ML models to be used in production for other tasks
without the need to build a new model for a new task is only supported by a few existing
frameworks, namely Apache Prediction]lO, ModelDB, Mistique and tensorflow serving.
Caching of input data has the advantage of accelerating performing ML tasks, but it is also
not supported in all of the frameworks presented in Table 3.1.

The challenge of processing large amounts of data in terms of execution time and overhead
is tackled by using Big Data tools and a parallel distributed environment. However, such
solutions are also only existing in a few of frameworks and summarized in Section 3.1.

35

3. Related Work

Table 3.1.: Comparison of the data analytic and ML workflow management frameworks in related work to
our framework.

u,
O.’)oala
pe][apo S 1 1 1 1 1 1 1 1 1 1 1 1 1 +
ettIO]II
b
p II.IS'SQ
0, 20 + | + + ' ' + + |+ | |+ + + | + +
9”"]5‘1(]
I‘Ia
QQO + + + ' [+ + + + + + + + +
S,
-I.?oeo 1 1 1 1 1 1 1 1 1 1 1 1 1 +
e,
Z,
]QOQI.QIIQQY
9«?90@ | | | | ' + [I T + o+ +
,apo el[/
]-I'g ﬁ
Dxs. bl gls o IgisIst o o]|
177 N | N N | NN <
N N
%y
g
14
JEQ OO 1 1 1 1 1 1 1 1 1 1 1 1 1 +
5,
QPIQ.Q
473
*gl =+ + + 1] + —+ 1] 1 1 +] +
2 4
Y
9y,
n
9,
901 O:II
£ o [1 1 + + + + 1] 1 1 1 1 =+
4.{9&0130.15’
4
o‘s‘l)\o}q% 1 1 1 + + 1 + + + 1 1 1 1 +
\4‘5‘
‘7
= — |
2 NS N e REE R = — | == g
= = Sl Zleglgle|RlegElals =
[e—) Rl
Yo E sx|<|sl2E2|3 |22 2S5 |5 B
Mor, | S| E|ES|EH|&|EE|S |8 el |EP|E|E|EE
] +— — o— =
v s|S|22 5|2 |<E 5|2 E|5|E5|%|8|° ¢
S 2 o) OB = 4 S| -4 = o = | =)
2| =SB EIE|=[F|F| 7|=|E| ©
< =

36

3.3. Generating new time series datasets

A microservice-based architecture that has the main advantages of high scalability and
easy maintainability of software solutions is found only in OceanTea, WattDepot, Apache
Prediction]O and microsoft azure [36]. The other research projects presented in Table
3.1 are developed as monolithic solutions which make it difficult to scale and require the
redeployment of the whole application when fixing bugs. While some of the discussed
frameworks are developed as data analytics ones, the others are considered more as
ML workflow management and visualization frameworks. None of them combined both
categories in one conceptual framework to introduce more functionalities to the end users
and facilitate performing ML tasks.

In this thesis, we tackle all of these challenges highlighting the novelty of our work by
developing a conceptual microservice-based meta learning framework. The distinguishing
factor of our conceptual framework lies in the fact that our framework combines all the
advantages presented in Table 3.1 in one conceptual solution :

+ Model managements: the framework implemented in this thesis tracks and stores
the ML model and captures relevant metadata automatically for the user.

« It supports distributed processing, performing big data tasks and hides the low level
high complex configurations of big data environments for the users.

« Supporting both categories of non-expert users by introducing highly configurable
easy-to-use Ul in which the user easily can manage and launch ML tasks on the
cluster and by automating the process of selecting ML models.

« Storing and retrieving ML models to be used later for further tasks.

« Caching of input data to increase the efficiency in performing ML tasks in big data
environments.

+ The framework developed in this thesis is developed to be generic and able to handle
a variety of ML tasks. However, energy load and generation forecasting scenarios
are considered in the evaluation as will be seen later in this thesis.

« It combines both categories of software solutions namely, data analytics and ML
workflow management and visualization frameworks in one microservice-based
concept. This concept has the advantage of allowing plugging in several machine
learning and deep learning runtime environments for future enhancements.

In order to support non-expert users category 2B in selecting the most appropriate ML
model for a specific task, meta learning has been proposed to automate the process of
model selection. State-of-the-art research projects in the field of meta learning to solve
ASP are presented in Section 3.2. While some of them are proposed as concepts, the others
are developed as framework solutions to select the best ML model without following the
well-known trial-and-error approach.

Concerning meta learning concepts, a variety of meta features are extracted, namely
simple, statistical, information-theoretic and landmarking as presented in Section 3.2. In
terms of energy, for example, to solve ASP for a building, time series for building profiles
besides the physical properties of the building are used as seen in [38]. The limitation of

37

3. Related Work

this approach is related to privacy that leads to the non-availability of such properties in
many applications situations. However, employing statistical properties as meta features is
not new. Rossi et.al. in [131] used average, variance, minimum, maximum and median as
meta features to develop a meta learning based method for periodic algorithm selection in
time-changing data. The distinguishing factor in our thesis is that we extend the statistical
meta features introduced in [131] to include more fine-grained as well as coarse-grained
statistics in addition to the arithmetic mean as meta features known as Descriptive Statistics
Time-based Meta Features (DSTMF) (see Chapter 5).

Our new set of meta features characterize energy time series datasets without having
security as well as privacy issues. Better predictive performance is acquired by DSTMF
compared to the cases existing in the literature. Another advantage and distinguishing
factor of DSTMF lies in the complexity of extracting such meta features, whereby DSTMF
introduces a smaller extraction time as well as overhead compared to the other meta
features when they are extracted for a large amount of energy time series datasets.

To the best of our knowledge and as seen in all of the research projects presented in Section
3.2, there is no application of deep learning in the context of meta learning related to
energy scenarios. It is clearly seen that only the original representation of meta features is
utilized to describe time series datasets. In this thesis, we use unsupervised deep learning
to encode the extracted meta features which can be seen as another novelty factor of our
solution distinguishing it from the ones existing in the literature. To achieve that, we
leverage the advantage of autoencoders to gain a deeper insight into the characteristics of
time series datasets by encoding meta features into another more efficient representation
form.

Concerning meta learning frameworks, such as Auto-WEKA, Auto-Sklearn, SmartML,
most of them are developed as monolithic applications to select the best model in the
context of classification. None of them is dedicated to perform automated model selection
in the context of regression, for example, for energy load as well as generation forecasting.
Moreover, they do not support ASP in big data environments. These challenges are tackled
in our solution by presenting a microservice-based meta learning framework in Chapter 8.
The distinguishing factor of our framework lies in the fact that it is built on top of a big
data stack allowing it to perform automated model selection for large amounts of energy
time series datasets. Another advantage of our solution over the existing ones presented in
Section 3.1 lies in the utilization of a microservice architecture to achieve better scalability
and maintainability.

Driven by the main definition of meta learning in which a meta learning problem is
considered as a multi-class classification one, the size of the training sample on which the
meta learner is trained, highly affects the predictive performance of the meta learning
model. To enhance the predictive performance of multi-class classification problems by
increasing the size of training examples, many solutions are proposed in the literature as
seen in Section 3.3. While some of them generated new time series datasets by following
model-based approaches in which new time series datasets are simulated, the others used
genetic approaches to generate new training examples that are efficient and statistically
in-differentiable from the original ones. The limitations of such approaches lies in the

38

3.3. Generating new time series datasets

complexity of building the models required to generate the new time series datasets. Also,
such approaches often don’t widen the diversity of the datasets because e.g. a model based
approach follows a certain model which limits the diversity of the generated datasets if
the model doesn’t address all possible variations which are possible in real situations.

In this thesis, we propose two new approaches to generate new energy time series datasets.
The aggregation of energy time series datasets has the advantages not only in DSTMF, but
also it is proposed as a new approach to generate new energy time series datasets. Weather
datasets are also used in our approach to generate new time series datasets based on the
conditions of weather in the area in which time series datasets are collected. Beside the
simplicity in calculation, our new approaches outperform model-based ones existing in
the literature whereby the meta learning classification model introduced better predictive
performance compared to the case of model-based approach as will be seen in Chapter
6.

39

4. Enhancing the Applicability of the
Trial-and-Error Approach in Big Data
Environments

Over the last decade, a variety of powerful algorithms and approaches for modeling and
decision making from data are provided in Machine Learning (ML). Implementing a ML
model is a complex, long lasting and error prone process whereby a large number of
hyperparameter configurations need to be tried to find the best ML model. With the
revolution of Big Data, where a large amount of data is generated and gathered each
day, various software solutions are proposed to perform ML tasks, such as Apache Spark
and Hadoop. Such solutions have the disadvantages of high complexity regarding the
configurations of the underlying backends. Driven by that, the ML tasks are even harder
to be performed by non-expert users.

In this chapter, we present our solution for supporting non-expert users with ML knowledge
but without programming skills (category 2A, see Chapter 1) in performing ML tasks in Big
Data environments. We start in Section 4.1 by clarifying the problem statement including
motivations, challenges we aim to face and the scientific question we need to answer in this
chapter. In this section, we precisely define the target group of non-expert users that are
supported in our solution. In Section 4.2.1, we present our conceptual microservice-based
architecture proposed to support non-expert users in performing ML tasks in Big Data
environments. After that, the main execution workflow required to understand the main
functionalities of our framework is explained.

We evaluate our work in Section 4.3 from four points of view. In the first one, the effect of
chaching on the execution performance of our big data engine, namely Apache Spark is

Parts of this chapter are reproduced from:

« S. Shahoud, S. Gunnarsdottir, H. Khalloof, C. Duepmeier, and V. Hagenmeyer (2019). “Facilitating
and Managing Machine Learning and Data Analysis Tasks in Big Data Environments Using Web and
Microservice Technologies”. In: Proceedings of the 11th International Conference on Management
of Digital EcoSystems, pp. 80-87. doi: 10.1145/3297662.3365807.

« S. Shahoud, S. Gunnarsdottir, H. Khalloof, C. Duepmeier, and V. Hagenmeyer (2020). “Facilitating
and Managing Machine Learning and Data Analysis Tasks in Big Data Environments Using Web
and Microservice Technologies”. In: Transactions on Large-Scale Data- and Knowledge-Centered
Systems XLV: Special Issue on Data Management and Knowledge Extraction in Digital Ecosystems,
pp- 132-171. doi: 10.1007/978-3-662-62308-4_6.

41

4. Enhancing the Applicability of the Trial-and-Error Approach in Big Data Environments

investigated. The major advantage of our framework in storing the pre-trained ML model
to be used later for new tasks is evaluated in terms of time. Thereafter, the efficiency of
our microservice-based framework in terms of overhead is also evaluated for different
sizes of energy time series datasets. To precisely define the best practice in using our
framework, we define and evaluate the required thresholds and conditions, at which it
is highly recommended to use big data environments in favor of single computers for
performing a given ML task. The research contributions presented in this chapter were
the main topics of our papers in [141][142].

4.1. Problem Statement

Besides the advantage of ML in solving many complex business problems, there are also
some downsides. It is a time-consuming process for the user to apply ML according to
the well-known trial-and-error approach whereby a lot of model hyperparameters need
to be configured to achieve the best performance. Such an approach is based on the idea
that all possible combinations of learning algorithms with their relevant parameters are
tried for each task until a good solution is found. Consequently, it wastes the resources
for constructing multiple models which can take a long time especially in the context of
Big Data.

In order to build an ML model, several steps including data preprocessing, splitting the
data into training and test data, model training and model testing are required. Such
process is more difficult in the context of Big Data where a large amount of data need to
be processed. With the increasing amount of available data, various libraries and systems
have been introduced to enable large-scale distributed/parallel processing. One of the
best known open-source frameworks is Apache Spark [187], Hadoop Distributed File
System (HDFS) [149] and Yet Another Resource Negotiator (YARN) [167], to name a few.
Apache Spark supports Big Data processing and storage in a distributed environment. It
encompasses various components including a distributed file system, the data processing
tool MapReduce and a cluster resource manager. HDFS enables the reliable storage of
extensive files in a cluster. It provides fault tolerance by splitting the files into blocks
and replicating these blocks multiple times over the cluster. YARN is a technology that
decouples the application and the required computational resources (e.g. CPUs, RAM, etc.)
for processing from the resource management infrastructure of the cluster. Besides the
advantages of such technologies, they do have some drawbacks for non-expert users. It will
be difficult or even impossible for them to execute ML tasks in Big Data environments. This
is due to the lack of experience needed to set up such tasks, and the required configurations
to successfully submit and execute jobs in Big Data environments.

In this chapter, we answer the research question RQ1 presented in Section 1.2. We sup-
ported non-expert users category 2A presented in Table 1.1 in performing ML tasks in
Big Data environments. We developed a new microservice-based solution helping the
aforementioned non-expert users to solve ML problems in Big Data environments without
caring too much about technical issues of the underlying Big Data and cluster computing

42

4.2. Proposed Solution

environment as a runtime platform. Our solution facilitates training, testing, managing,
storing and retrieving ML models. It is provided with an easy-to-use highly configurable
Ul in which the model and the required hyperparameter can be set.

To evaluate our concept, the short-term (hourly) power generation forecasting scenario
is taken into consideration. In the following sections, the conceptual architecture of the
proposed framework, the execution workflow, evaluation and the experimental results are
explained in detail.

4.2. Proposed Solution

In this section, we present our conceptual microservice-based architecture proposed to
answer the aforementioned research question RQ1. To this end, we clarify in detail the
layers, the microservices and the communication between them to achieve the main
goal of our framework. For better understanding of the functionalities of the different
layers involved in our microservice-based framework, the general execution workflow is
presented and explained in detail in Section 4.2.2.

4.2.1. Conceptual Microservice-Based Architecture

Figure 4.1 illustrates the conceptual architecture of the presented framework. As seen in
this figure, the architecture consists of three main layers, namely the Ul layer, service layer
and persistence and processing layer. The Ul is split into separate sub-parts (e.g. separate
web applications) providing dedicated functionalities for data and model management,
model training and cluster management which are wrapped into one logical web applica-
tion forming the Ul of the application. Two microservices are incorporated together to
perform the service layer. Each service is a small and self-contained application that can
be deployed independently e.g. on the runtime cluster with a single responsibility. While
one service is responsible for data and model management, where models can be seen as
special data objects, the other service focuses on the management of running ML jobs e.g.
for training and testing.

To allow web applications in the UI layer to interact with the runtime environment,
the services provide RESTful APIs. The persistence and processing layer provides the
basic model and data storage capabilities according to the underlying runtime computer
infrastructure. Moreover it provides generic interfaces for running and managing ML jobs
on this infrastructure independent of the used low level ML framework.

4.2.1.1. User Interface (Ul) Layer

As seen in the architecture presented in Figure 4.1, the User Interface (UI) layer consists
of separate web applications providing the dedicated functionalities of the framework.

43

4. Enhancing the Applicability of the Trial-and-Error Approach in Big Data Environments

Ul Layer

Jobs Model Data Cluster
Execution Management Management Configuration

Ul Ul Ul Ul

Service
Job Management

Service

Data Management
Service

Big Data Environment

Deep Learning Engine

rfiowd [31 1

Figure 4.1.: Basic architecture of the proposed microservice-based framework [141][142].

These applications interact with the service layer via RESTful APIs and are wrapped into a
container application which provides navigation between the views to form the complete
UL To make the user experience of the UI as pleasant as possible, the famous 10 Usability
Heuristics for Ul Design by Nielsen [102][103][57] are applied while conceptualizing and
implementing the UL Multiple technologies including HTML5, CSS and React are utilized
to implement the UL React [152], the JavaScript (JS) library from facebook, is chosen
because it simplifies the development of complex user interfaces. Its good performance
can be attributed to its use of a virtual Document Object Model(DOM) which is a copy
of the HTML DOM and enables efficient rendering updates of the otherwise slow HTML
DOM. React is based on declarative programming and the concept of encapsulating and
reusing of components. Such components are implemented through a specific syntax
called JavaScript Syntax Extension (JSX) which is a combination of HTML and JS code.

In this UL, Node Package Manager (NPM) is used to simplify the configuration of the build
tools and the setup of React application. For better data management and to organize the
side effects related to asynchronous RESTful API calls, Redux and redux-saga are used
[21]. To distinguish different functions and to provide good navigability on the website,
React Router is utilized. For implementing a responsive and nice web design, the popular
framework React Bootstrap [154] which provides easy to use pre-styled components is
utilized.

A recent trend in web development has been to develop web Uls as Single Page Applications
(SPAs) [96]. Essentially, SPAs are front-end applications that consist of a single HTML
document that can be dynamically updated through JavaScript (JS). This makes it possible
to refresh only particular regions of the screen instead of reloading the whole page when
changes take place. This is especially convenient in interactive web pages, since these
applications can respond much faster to user input and therefore provide better user

44

4.2. Proposed Solution

experience. Additionally, the number of requests between the SPAs and services is often
dramatically decreased, since much of the logic can be implemented in the front-end. For
these reasons, the web Ul is implemented as an SPA communicating with the service tier
through HTTP requests using the RESTful APIs. In the current version of the concept,
the UI contains separate web applications for “data management”, “model management”,
“execution of jobs” (e.g. for training and testing) and “cluster management”. Figures 4.2
and 4.3 show some web page views related to these applications. In following, the main
Uls in the Ul layer are presented in more detail.

Data Management UI: It is responsible for uploading, managing and configuring data
sources which provide data to ML jobs. To understand the different characteristics and
properties of input datasets, an interactive visualization and statistical analysis can be
performed in this UL For example, in the case of time series datasets, the user has the ability
to zoom in/out and select a part of the chart for more detailed view. This allows the user
to discover trends and outliers in the selected part of the time series dataset. Additionally,
when the user hovers over a specific point in the chart, the related information will appear
in a small box, for example the value of the power generation at this point. The interactive
visualization of statistics and performance data in our framework is implemented using
the HighChart Java-script library [42].

Job Execution UI: As mentioned before, the main goal of our microservice-based frame-
work is to support non-expert users in performing ML tasks in Big Data environments.
To this end, this UI provides functionalities for executing a job for training and testing
a ML model. An example for ML job can be the building of a model for load forecasting.
To ease the usage for non-experts category 2A presented in Table 1.1, the Ul provides
a wizard interface which guides the user through the process of choosing a dataset, a
type of analysis to be performed on the dataset, an adequate ML model (e.g. model, either
pre-trained or untrained) for performing the wanted type of analysis and afterwards for
tuning the execution parameters of the model based on an already existing parameter
set.

One of the main advantages of the proposed framework is to be very generic. Le., in the
step of selecting a given type of analysis to be performed on a dataset, the user should be
able to select many different types of ML based analysis. But what kind of ML analysis
methods and algorithms will be available is directly dependent on what kind of low level
ML frameworks will be integrated on the persistence and processing layer. Because in the
present work only Apache Spark is integrated as a low level ML framework and Apache
Sparks standard ML library mainly provides algorithms for classification, clustering and
regression, our framework currently only provides these three categories for choosing an
analysis category as shown in Figure 4.2a.

After choosing one of these categories, the user is navigated to the datasets tab view
in order to select an already uploaded dataset or data source, or directly upload one
to perform the ML task. Thereafter, the wizard navigates to the next wizard screen
shown in Figure 4.2b. This figure shows that a ML framework can provide a variety of
ML algorithms for performing a certain analysis category to cover a wide range of ML
application scenarios. Le., it can be seen in Figure 4.2b that Apache Spark provides several

45

4. Enhancing the Applicability of the Trial-and-Error Approach in Big Data Environments

Job Execution Data Management Models Management Cluster Configuration

Which machine learning category do you want to use? o

Classification

Clustering

° Regression

Start ML job

(a) Job Execution UI - Choosing ML Category

Job Execution Data Management Models Management Cluster Configuration

Which machine learning algorithm do you want to use?
Linear Regression Which action do you want to perform?

Decision Tree Regression ¢ Build, train and evaluate new machine learning model

Gradient Boosted Tree Regression Make predictions with pre-trained machine learning model

+ Random Forests Tree Regression

New Random Forests Tree Regression Model

Model Name* Model Description* Resampling Method*
rf_regression_model_2 RF model for time series data forecasting TrainValidationSplit ¥
Training Percentage* Min Information Gain Max Bins
0.8 0 32
Max Depth Subsampling Rate Min Instances Per Node
10 1 1
Nr. Trees

(b) Job Execution UI - Building ML Model

Figure 4.2.: User Interface (UI).

algorithms for “regression analysis”, e.g. “linear regression”, “decision tree regression” and

46

4.2. Proposed Solution

Job Execution Data Management Models Management Cluster Configuration

Created Name Description Test Performance Summary Actions
1 16.04.201908:52 linear_regression_model_1 LR model fortime ~ MeanAbsoluteError: 43.48 Q i
series data MeanSquaredError: 3078.24
: Extract HP,
forecasting. R2: 0.40
RootMeanSquaredError: 55.48
2 16.04.2019 08:53 decision_tree_regression_model_1 DT model for time MeanAbsoluteError: 11.45 Q ﬁ
series data MeanSquaredErr St
forecasting. R2: decision_tree_regression_model_1
RootMeanSquar

Algorithm: Decision Tree Regression
3 16.04.201909:12 random_forest_tree_regression_model_1 RF model for time MeanAbsoluteEr Dataset: Data_2

serles data MeanSquaredEn Hyperparameters: maxBins : 32
forecasting. R2: maxDepth : 7
RootMeanSquan mininfoGain : 0.00

mininstancesPerNode : 1

4 16.04.201909:13 gradient_boosted_tree_regression_model_1 GBT model for time MeanAbsoluteEr Resampling Methad: TrainValidationSpiit ; 0.8

series data MeanSquaredEn Training Duration: 3.182s
forecasting. R2:
RootMeanSquaredError; 22.67
(a) Model Management UI

Job Execution Data Management Models Management Cluster Configuration

3. Execution Start New Machine Learning Job
Selected Data Set: Data_2 Job Summary Model Performance
Modelniame: rf_regrassion madel 2 gl Tiine: /B MeanAbsoluteError: 12.946977108261098
Model description: RF regression model
for timie serids data forecasting, Spark Execution Time: 58.353s MeanSquaredError: 509.6487163991044

Hyperparameters: maxBins : 32 o

MaxBepthE10 Model Training Time: 36.958s 11240 20056 853100522

mininfoGain : 0.00

RootMeanSquaredError: 22.57540069188373

mininstancesPerNode : 1 Model Parameters

nrirees : 200

subsamplingRate : 1.00 NrNodes: 309884

Resampling method: TrainValidationSplit : 0.8 NrTrees: 200
Model Prediction

Ground Truth -o Forecast
240-

16.09'15 18:00

il ‘ \ ” ‘ ‘ “I ”H “.“ \ ll

\
H\ H\‘ ‘I\ M \'u 1] l\ul \I‘ AT M ‘J‘h Il il \H 'll‘Ll “ “" Al |‘ ‘\ w., Il ‘ “U N

| \
20515 09[1615 23.06'15 06.07°15 20.07°15 02.08'15 16.08'15 29.08'15 12 0915 25.09'15 09.10'16 22.10'15 05.11° 15 1511 15 02.12'15 1512 15 31.12'15

180-

Generated Energy (kwH)

ﬂf

(b) Job Execution UI - Summary

Figure 4.3.: User Interface (UI).

so on. If at a later time more than one ML framework is incorporated into the present

47

4. Enhancing the Applicability of the Trial-and-Error Approach in Big Data Environments

framework, different algorithms implementing another analysis category can even be
provided.

Another advantage of our framework is the storage and re-usability of pre-trained ML
models on new datasets. This reduces the time needed by the user to solve his problem for
a new dataset. It can be seen from Figure 4.2b, that the user has the possibility to use an
already existing pre-trained model or alternatively create and train a new ML model. Here,
the user can adapt a given collection of algorithm hyper-parameters for tuning the model
performance. After appropriate options are chosen in Figure 4.2b, the ML task including
learning and testing can be executed on the runtime platform. The wizard will then show
a screen which allows to monitor the execution state. When the execution is done, the
model and the other results of execution are saved in the persistence and processing layer
and a comprehensive visualization of results as well as an execution summary are shown
as depicted in Figure 4.3b.

Model Management UI: As its name implies, the model management Ul is responsible
for managing ML models which are pre-trained in the framework. Figure 4.3a shows
a view of this UI which lists the available models. Each model is described with some
associated metadata (e.g. id, creation date, model name, a textual description of what the
model does, etc.) which are shown in the tabular view. Each row (e.g. a pre-trained model)
represents a ML pipeline corresponding to a specific ML task. For each task, the related
general information resulting from performing this task such as ML algorithm, dataset
used for training and testing, hyperparameters and performance results, to name a few,
are shown if the user hovers over the model entry in the model list. To this end, the user
can compare models and select the best one for executing it on a new dataset. Moreover,
the user can perform actions on a selected model, namely delete a pipeline, extract the
best hyperparameters, extract cluster configurations or extract the whole parameters and
use them to build a new ML model.

Cluster Configuration UI: As mentioned in the introduction, a Big Data infrastructure
as a runtime environment for ML tasks can introduce great challenges for configuring
and running the framework on the cluster with best performance for a given task. To
tackle this challenge, the cluster configuration UI implemented in this framework gives
the possibility to tune the low level execution framework configurations in relation to the
usage of CPU cores, RAM usage and executors instances, to name a few.

4.2.1.2. Service layer

In this layer, the generic interfaces to the runtime environment are provided via currently
two microservices, namely the Job Management Service (J.M.-Service) and the Data Man-
agement Service (D.M.-Service) as shown in Figure 4.1. These interfaces are accessed by
Ul applications to setup and execute ML jobs in Big Data environments. Each microservice
has dedicated responsibilities and contains a layered architecture based on the Separation
of Concerns (SoC) design principle. Keeping the code in distinct layers enforces a logical
encapsulation of functionalities and dependencies leading to better code maintainability

48

4.2. Proposed Solution

and loose coupling. Figure 4.4 depicts this architecture, where only upper layers are
allowed to access lower layers.

To handle HTTP requests and form the entry point of the microservices, the presentation
layer is provided. It contains controllers which map HTTP URLs and provide Create, Read,
Update and Delete (CRUD) functionality to the outside through RESTful APIs. For simple
read requests, the layer accesses the persistence layer to acquire the relevant data from
the database. However, for complex logic, it communicates with the service layer which
contains the business logic. This has the advantage that common operations required by
multiple controllers can be abstracted to the service layer. The persistence (i.e. data access)
layer consists of repositories and entities. The repositories interact with the underlying
data source i.e. database and manage the entities which encapsulate the domain objects.

Microservices

Controllers

Presentation
Layer

vy \ AN

Repositories Entities

I

A\ 4

Figure 4.4.: Layered architecture microservice.

A comprehensive description of both microservices, which are called as services for a
simplicity’s sake is provided in the following two sections. The established RESTful pattern
is chosen as the communication tool instead of the event-driven pattern, because the
microservices are just two in total and the RESTful communication is easier to implement.
In addition, the JSON format is selected for requesting and sending data via the RESTful
APIs because of its popularity, ease of use and interpretability.

J-M.-Service: To create and submit ML jobs to be executed by an available low level
ML execution framework (e.g. Apache Spark) on the available runtime environment
(e.g. a cluster or single computer), this service is developed. This job includes data
preprocessing and building forecasting models, to name a few. It interfaces with the
persistence and processing layer below which encapsulates the specification of a certain
runtime environment. For better execution and managing of ML tasks, the J.M.-Service is

49

4. Enhancing the Applicability of the Trial-and-Error Approach in Big Data Environments

Table 4.1.: List of the URL patterns of the J.M.-Service.

‘ URL Pattern ‘ Description ‘
‘ /jobs ‘ A GET request on this URL is used a list of spark jobs ‘
. A POST request on this URL is used to create of a spark job and its
/jobs
corresponding processing directory in HDFS
‘ /jobs/id ‘ A GET request on this URL is used to retrieve a spark job for a specific id ‘
Jiobs/id A DELETE request on this URL is used to delete a spark job for
Jobsit a specific id with its corresponding processing directory in HDFS
‘ /jobConfigurations ‘ A GET request on this URL is used to show a list of spark configurations ‘
‘ /jobConfigurations ‘ A POST request on this URL is used to create spark configuration ‘
. . . A DELETE request on this URL is used to delete
/jobConfigurations/id a specific spark configurations for specific id
JiobSet A POST request on this URL is used to copy the packaged jars
) up and pre-trained saved machine learning models into HDFS
‘ /submitJob/id ‘ A POST request on this URL is used to submit a spark job ‘

not only responsible for executing ML tasks but also tracking and monitoring the status of
the running tasks.

Moreover, it reads the execution results stored by the executing framework somewhere in
the runtime environment (e.g. in an execution directory of the task on e.g. a file system)
and sends them to the D.M.-Service for storage in a database, so that the execution statistics
and results can later be visualized in the Ul The J.M.-Service provides an abstract job
execution and monitoring interface to the web application UI through its RESTful APIs.
This completely decouples the Ul from the specification of the runtime environment.
The main functionalities of J.M.-Service REST-APIs are summarized by the URL patterns
presented in Table 4.1.

D.M.-Service: To perform ML tasks, the required input datasets and ML algorithms as well
as scripts need to be available and prepared. This service is responsible for the storage and
preparation of required inputs to execute a job on the runtime environment, namely storing
and providing datasets, models containing (pre-trained) algorithms and hyperparameters,
to name a few. To store the required data and the results produced from performing
ML tasks, the D.M.-Service uses its own database. On the one hand, the UI applications
interact with this service to upload, manage and retrieve data, model information as well
as configurations. On the other hand, the J.M.-Service interacts with the D.M.-Service to
retrieve information about datasets, models and configurations. J.M.-Service service is also
responsible for copying models from the database to the execution environment of a task
and pushing results back to the D.M.-Service. The D.M-Service then stores all information
about the execution of a task and the results in its own database, so that these information
can be later used for the visualization of the results and the overall performance of the ML
jobs as already shown in Figure 4.3b.

50

4.2. Proposed Solution

Table 4.2.: List of the URL patterns of the D.M.-Service.
URL Pattern ‘ Description

A GET request on this URL is used to retrieve a list of the

falgorithms available machine learning algorithms

A GET request on this URL is used to retrieve a specific

falgorithms/id machine learning algorithm

A GET request on this URL is used to retrieve a list of the
/categories available machine learning categories, for example classification, regression,
clustering, to name a few

/dataSets ‘ A GET request on this URL is used to show available datasets
A POST request on this URL is used to create meta data of a
/dataSets
dataset
. A GET request on this URL is used to retrieve the metadata
/dataSets/id .
of a specific dataset
/dataSets/id/data A POST request on this URL is used to upload a local

data file into HDFS and upload the dataset’s reference

A POST request on this URL is used
to prepare model for calculating the descriptive statistics for a specific dataset

/dataSets/id/descriptiveStatistics

A GET request on this URL is used to retrieve a list of pre-

/miModels trained machine learning models
/miModels/id A GET request onlthls URL.15 used tf) retrieve metadata
of a specific machine learning model
mIModels/id A DELETE request on this URL is used to delete a specific

pre-trained machine learning model

A GET request on this URL is used to retrieve

fmiModelPredictions/id the predictionfile for a specific machine learning model

A GET request on this URL is used to retrieve a list of

/mlPipelines . . . L
machine learning execution pipelines

A GET request on this URL is used to get the meta data

/miPipelines/id for a specific machine learning pipeline

The main functionalities of the D.M.-Service REST-APIs are summarized by the URL
patterns presented in Table 4.2.

4.2.1.3. Persistence and Processing Layer

Hiding the low level details of the runtime environment from the implementation of the
services is one of the major advantages of this layer. Both J.M.-Service and D.M.-Service
uses generic functions implemented in this layer to interface with the job runtime directory
in HDFS and the database infrastructure installed on the runtime as well as performing
dedicated tasks on the runtime environment for instrumenting installed ML frameworks
to e.g. perform job execution. For each ML runtime environment, the persistence and
processing layer will contain an adapter which maps model and execution details to
the specific framework (see Section 4.2.2 for further discussion on issues related to the
prototype and interfacing to the Apache Spark runtime environment).

51

4. Enhancing the Applicability of the Trial-and-Error Approach in Big Data Environments

Typically, a job runtime directory is created in the file system of the runtime platform
to store all information related to the execution of a certain job. To achieve that, the
persistence and processing layer contains functionalities for creating such directories
depending on the execution framework. More generally, all data items managed by the
D.M.-Service are stored in a database infrastructure which is defined by an abstract object-
like interface. This interface can be implemented in the runtime infrastructure by using
different database technologies as shown in the next section.

4.2.2. Execution Workflow

The previous sections elaborated on the architecture and the design of the framework. The
focus now is shifted to how the main components communicate with each other to achieve
the main goals of the framework, that is, assisting non-expert users in training, testing
and managing ML tasks in Big Data environments. To this end, we introduce the basic
execution workflow necessary to understand the main functionalities of our framework.

Apache Spark as one of the state-of-the-art Big Data processing environment is installed
on a Big Data computing cluster using an Apache Hadoop software stack as runtime
engine for executing ML jobs. ML execution environments typically use a job runtime
directory in a file system for storing all information needed for job execution (e.g. for
storing models to be executed, algorithm configurations and results). On a Big Data cluster
based on Apache Hadoop, HDEFS is typically used as a distributed file system and the
runtime directory for a job can be accessed by all computing nodes of the cluster using the
HDFS interfaces. Therefore, for implementing the persistence and processing layer on the
cluster, HDFS and a postgreSQL [105] database are utilized to store the required input and
the output produced from performing ML tasks. The postgreSQL database system is used
as an object-relational database to store all information managed by the D.M.-Service, e.g.
ML categories, ML algorithms, hyperparameters, pre-trained models, jar files, references
of datasets stored in HDFS, pre-trained model pipelines and untrained model pipelines.
The main difference between pre-trained and untrained model pipelines is explained in
detail in Section 4.3.

To store datasets and the output of successful jobs executed in Apache Spark before being
read by the J.M.-Service, HDFS is also utilized. The dataset storage on HDFS allows it to
have “Big Data” as input, i.e., datasets which are extremely large. To achieve the goal of
storing pre-trained ML models in the form of binary objects, the Large Object feature of
PostgreSQL is used. This feature uses the Large Object Manager Interface which stores
only a reference named oid in the database table pointing to the actual object stored in the
system table pg_largeobject. This method breaks the binary data into chunks and allows
storing objects of up to 2GB within the database. However, another format such as the
Predictive Model Markup Language (PMML) will be considered in the future.

Figure 4.5 shows the basic methodological workflow for task execution as it is implemented
in the prototype for submitting jobs to the Apache Spark runtime. For each new job, the
persistence and processing layer generates on behalf of the J.M-Service a Universally

52

4.2. Proposed Solution

~

% . Job

W 1. Start new job 8. Job submit gy

| Management g %

Service SpQI'K
*)
@\”FIHN i
2. Create job directory -
9. Result P ’nadaﬂ

@FIDFS P

Data

Management Data

12. Result Service 11.Result Command
gy

EAZLEN
& AVRO |

Postgre SQL

Figure 4.5.: Execution workflow.

Unique Identifier (UUID) as jobID which is sent back to the D.M.-Service. The usage of
a UUID guarantees the uniqueness of the id, making it suitable to use in a distributed
environment, such as a Big Data environment.

A temporary job runtime directory with the UUID as a name is created in HDFS by
the J.M.-Service for each jobID. To this end, the J.M.-Service uses the File System (FS)
shell instruction of HDFS . After that, the J.M-Service calls the D.M.-Service to fetch the
necessary artifacts (e.g. model, runtime configurations) from the database and pass it to
the J.M-Service as an Apache Spark AVRO file. After that, the J.M-Service places the AVRO
file in the persistence and processing layer in the job runtime directory.

The decision for utilizing AVRO was made, because AVRO uses a schema that decouples the
solution from the implementation including error prevention. An AVRO file contains the
received jobID and the chosen cluster configurations. However, if no cluster configurations
are chosen in the UL the default one are fetched from the database and used in this task.
Besides cluster configurations, algorithm hyperparameters and metadata related to the
execution of algorithms, namely the name of the application main class are included in
the AVRO file for execution. The name of the application main class is required by Apache
Spark to find the main code entry point for executing the task. While all datasets are
stored in the HDEFS, path references pointing to the files are stored in the database of the
D.M.-Service.

Once the user chooses a dataset, the path reference of the dataset in HDFS is fetched
from the database and included in the AVRO file. After that, the D.M.-Service fetches the
corresponding jar file from the database and sends it to the J.M.-Service. At this point,
all required information to perform the task is passed to the J.M.-Service which creates a
spark-submit job and sends it for execution to Apache Spark.

https://hadoop.apache.org/docs/stable/

53

4. Enhancing the Applicability of the Trial-and-Error Approach in Big Data Environments

As a result of executing e.g. a task performing forecasting on a time series dataset, the
forecasting results, forecasting performance and the forecasting model in the form of
a binary object are located in the temporary job runtime directory of the task. After
executing the job, all of these results are stored in the temporary job runtime directory
and read afterwards by the J.M.-Service to be passed to the D.M.-Service. The D.M.-Service
receives the results and stores them in the form of a pipeline in the database to be retrieved
later. Simultaneously, the D.M.-Service sends the results to the Ul to be rendered and
visualized for the user.

4.3. Evaluation

In this section, four aspects related to the evaluation of our microservice-based framework
are investigated. We start by analysing and discovering the effect of caching in Apache
Spark. In this context, we compare the execution time of training and testing the benchmark
evaluation models in case of memory caching and without memory caching of the input
time series datasets. Moreover, the execution time and framework overhead for evaluating
the efficiency of the framework are measured, highlighting the advantage of storing and
retrieving ML models and discovering the threshold, at which the use of the proposed
framework is recommended for better performing machine learning tasks in Big Data
environments. In these experiments, datasets presented in 2.4.2 and 2.4.3 are used. Before
presenting the obtained results, the experimental setup and the related configurations are
presented.

4.3.1. Experimental Setup and Configurations

We implemented the aforementioned microservice architecture using Java on a local
workstation which is a MacBook with a 2.7 GHz Intel Core i5 processor and 8GB of
RAM. Both microservices are implemented as standalone Spring Boot applications which
are configured to run on different HTTP ports, namely 8090 and 8080. To run our web
application, the embedded Apache Tomcat server from Spring Boot is utilized.

To precisely investigate the effectiveness of the framework, a local execution context and
cluster execution context have been configured and used in our experiments. In the local
context, Spark (v. 2.3.0) on top of Hadoop (v. 2.7.6) as state-of-the-art technologies to
perform ML tasks is installed on the aforementioned workstation, where the executors
and drivers run in a single JVM. In the cluster context, we utilize a powerful Big Data
stack, in which Apache Spark is fit on top of Yet Another Resource Negotiator (YARN) as
a resource manager and Hadoop Distributed File System (HDFS) as a primary data storage.
The Big Data stack is deployed on a cluster of 3 logical machine nodes. Each of them has
32 cores and 80.52 GB RAM. The nodes are connected to each other by a LAN with 10
GBit/s bandwidth.

54

4.3. Evaluation

Table 4.3.: Default and custom cluster configurations used in cluster context.

‘ Default ‘ Custom ‘
Drivers.cores = 1 ‘ Drivers.cores = 1
Driver.memory = 1 GB ‘ Driver.memory = 1 GB

Executors.memory = 1 GB ‘ Executors.memory = 70 GB

‘ Executors.cores = 2 ‘ Executors.cores = 2 ‘

Executors.instances = 1 ‘ Executors.instances = 3

To tune an application’s performance, Spark provides an abundance of configuration
parameters. A focus of this evaluation is on adjusting the cluster’s main resources, the
CPUs and amount of RAM, used by the applications, since they can greatly impact the
computational performance. In the cluster context, we distinguish two configuration
setups, namely default and custom including driver cores, driver memory, executor cores,
executors memory and executors instances as presented in Table 4.3.

Random Forest (RF) [140], Multiple Linear Regression(MLR) [100], Gradient Boosted Trees
(GBTs) [115] and Decision Tree (DT) [161] are used as base classifiers to build the data-
driven forecasting models. The focus is on forecasting the hourly generated power of the
solar PV systems using the weather condition and time features. MLIib, which is a Spark
scalable ML library, is employed to build the models. To train and test the forecasting
models, Ausgrid solar home electricity data presented in Section 2.4.2 is used. MLR is a
widely used supervised algorithm which assumes a linear relationship between one or
multiple independent input variables and a dependent output variable. Table 4.4 presents
the default values of the MLR hyperparameters.

Table 4.4.: Default hyperparameters of MLR algorithm in MLIib.

‘ Hyperparameter ‘ Description ‘ Default ‘
‘ MaxIter ‘ Maximum number of iterations ‘ 100 ‘
‘ RegParam ‘ Regularization/Shrinkage parameter ‘ 0.0 ‘

The DT algorithm is a supervised ML algorithm that has the ability to capture the non-
linear structures in data. It is based on the idea of building a binary tree which recursively
partitions the input space and consists of internal nodes and leaves (i.e. terminal nodes).
It is constructed starting from the root and its nodes are split down based on the largest
decrease in impurity. For classification trees, the impurity is often measured with the Gini
impurity or entropy. However, for regression trees, where the target is continuous, the
impurity is based on variance reduction. Table 4.5 presents the default values of the DT
hyperparameters.

https://spark.apache.org/docs/latest/ml-guide.html

55

4. Enhancing the Applicability of the Trial-and-Error Approach in Big Data Environments

Table 4.5.: Default hyperparameters of DT algorithm in MLIib.

‘ Hyperparameter ‘ Description ‘ Default ‘
. Maximum number of bins for split decision and
MaxBins 32
discretization of continuous features
‘ MaxDepth ‘ Number of trees in the forest ‘ 5 ‘
) Minimum number of trees (training instances
MinInstancesPerNode 'u ‘u ¢ ees (tr g . es) 1
in children must have by splitting

A forest of multiple DTs is built in RF algorithm. Each DT is trained independently. While
single DTs are often said to overfit, the RF algorithm does not overfit because of the law of
large numbers [53]. Also, randomness is applied to the training process of RF by utilizing
random feature subsets for node splitting. Since, each DT is trained separately, multiple
trees can be trained in parallel. For the final prediction, the individual votes of all trees are
combined. Table 4.6 presents the default values of the RF hyperparameters.

Table 4.6.: Default hyperparameters of RF algorithm in MLIib.

‘ Hyperparameter ‘ Description ‘ Default ‘
‘ MaxDepth ‘ Maximum depth of individual trees in the forest ‘ 5 ‘
‘ NumTree ‘ Number of trees in the forest ‘ 20 ‘

In contrast to RF which trains the trees independently, GBTs algorithm employs the
Boosting technique training one tree at a time. Successively, to correct the errors made
by previous trees, a DT is fitted on the residuals of the previous tree, instead of a fraction
of the original data. The final prediction is based on a weighted majority vote. Table 4.7
presents the default values of the GBTs hyperparameters.

Table 4.7.: Default hyperparameters of GBTs algorithm in MLIib.

‘ Hyperparameter ‘ Description ‘ Default ‘
‘ MaxDepth ‘ Maximum depth of individual trees in the forest ‘ 5 ‘
‘ MaxlIter ‘ Maximum number of iterations ‘ 20 ‘
‘ StepSize ‘ Controls the contribution/weight of each tree ‘ 0.1 ‘
‘ SubsamplingRate ‘ Training data proportion used for learning each tree ‘ 1.0 ‘

Typically, tuning hyperparameters is an important step of the Machine Learning Pipeline
(MLP), since they can not only significantly influence the forecasting performance of a
model, which is not our focus in the present work, but also t