
Commit-Based Continuous Integration of
Performance Models

Master’s Thesis of

Martin Armbruster

at the Department of Informatics
Institute for Program Structures and Data Organization (IPD)

Reviewer: Prof. Dr.-Ing. Anne Koziolek
Second reviewer: Prof. Dr. Ralf H. Reussner
Advisor: M.Sc. Manar Mazkatli
Second advisor: M.Sc. Timur Sağlam

01. April 2021 – 14. September 2021

Karlsruher Institut für Technologie
Fakultät für Informatik
Postfach 6980
76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

Karlsruhe, 14.09.2021

. .
(Martin Armbruster)

Abstract

Architecture-level performance models such as the Palladio Component Model (PCM) can
be used for, e. g., performance predictions to explore design alternatives. It combines the
aspects of architecture and performance models. Having an up-to-date architecture model
can support the software maintenance by reducing the architectural degradation while
performance models allow the investigation of the software performance without the need
to implement or change the system. However, keeping them up-to-date requires manual
e�ort which hinders their adoption. Especially in the agile software development which is
characterized by incremental and iterative development cycles, no or short design phases
prevent manual modeling activities.

Addressing the aforementioned issues with automatized activities, the Continuous Inte-
gration of Performance Models (CIPM) approach proposes a pipeline for the Continuous
Integration to keep performance models up-to-date. A commit-based integration strategy
extracts changes from a commit and incrementally updates a performance model. To
estimate the performance model parameters, the source code is adaptively instrumented
and monitored. The taken measurements are used to calibrate the performance model.
The CIPM approach’s realization is based on Vitruvius, Java, and the PCM. Parts of
the pipeline were prototypically implemented and evaluated in previous work without
forming a complete pipeline.

This thesis presents an approach to solve open issues. In the approach, a Java model for
a commit is created and compared to the model of the previous commit to obtain a change
sequence. Afterwards, the changes are propagated within Vitruvius to update the PCM,
and the source code is adaptively instrumented. Additionally, the approach is evaluated
with the TeaStore which is a web-based store for tea and related products. The evaluation
results indicate the correct operation of the approach, but reveals several limitations as a
base for future work. As a consequence, the approach leads to an improved usability of
the CIPM approach and a reduced e�ort through automatization.

i

Zusammenfassung

Leistungsmodelle auf architektonischer Ebene wie das Palladio Component Model (PCM)
können für z. B. Leistungsvorhersagen genutzt werden, um Designalternativen zu er-
kunden. Dabei kombiniert es die Aspekte von Architektur- und Leistungsmodellen. Ein
aktuelles Architekturmodell kann die Softwarep�ege unterstützen, indem es den Architek-
turzerfall reduziert, während Leistungsmodelle es erlauben, die Softwareleistung ohne die
Implementierung oder Änderung eines Systems zu untersuchen. Allerdings benötigt die
Aktualisierung der Modelle manuellen Aufwand, der eine Nutzung verhindert. Besonders
in der agilen Softwareentwicklung, die durch inkrementelle und iterative Entwicklungszy-
klen gekennzeichnet ist, wird dies durch keine oder kurze Designphasen verstärkt.

Der Ansatz der kontinuierlichen Integration von Leistungsmodellen (engl. Continuous
Integration of Performance Models, CIPM) adressiert die vorherigen Probleme mit automa-
tisierten Aktivitäten, die in einer Verarbeitungs-Pipeline für die Continuous Integration
ausgeführt werden, mit der Leistungsmodelle aktuell bleiben. Eine commit-basierte Integra-
tionsstrategie extrahiert Änderungen aus einem Commit und aktualisiert damit das Leis-
tungsmodell inkrementell. Um die Parameter des Leistungsmodells abzuschätzen, wird der
Quellcode adaptiv instrumentiert und überwacht. Die entstandenen Messungen werden ge-
nutzt, um das Leistungsmodell zu kalibrieren. Die Realisierung des CIPM-Ansatzes basiert
auf Vitruvius, Java und dem PCM. Teile der Verarbeitungs-Pipeline wurden in früheren
Arbeiten prototypisch implementiert und evaluiert, ohne eine komplette Verarbeitungs-
Pipeline zu bilden.

Diese Thesis präsentiert einen Ansatz, um die o�enen Probleme zu lösen. Im Rahmen
des Ansatzes wird ein Java-Modell für einen Commit erzeugt und mit dem Modell des
vorherigen Commits verglichen, um eine Änderungssequenz zu erhalten. Anschließend
werden die Änderungen in Vitruvius propagiert, um das PCM zu aktualisieren, und der
Quellcode wird adaptiv instrumentiert. Zusätzlich wird der Ansatz mit dem TeaStore, einem
web-basierten Geschäft für Tee und dazugehörige Produkte, evaluiert. Die Ergebnisse
deuten auf die korrekte Funktionsweise des Ansatzes hin, aber o�enbaren auch einige
Limitierungen, die eine Basis für zukünftige Arbeiten bilden. Damit führt der Ansatz zu
einer verbesserten Nutzbarkeit des CIPM-Ansatzes und einem reduzierten Aufwand durch
Automatisierung.

iii

Contents

Abstract i

Zusammenfassung iii

1. Introduction 1

2. Foundations 3
2.1. Model-Driven Software Development . 3
2.2. Agile Software Development . 4
2.3. Java Model Parser and Printer . 5
2.4. The Palladio Component Model . 5
2.5. State-Based Model Comparison . 7
2.6. VIew-cenTRic engineering Using a VIrtual Underlying Single model . . . 8
2.7. The Co-Evolution Approach . 10
2.8. Service E�ect Speci�cations . 14

2.8.1. Structure of SEFFs . 14
2.8.2. Change-Driven Incremental SEFF Reconstruction 14
2.8.3. Incremental Fine-Grained SEFF Reconstruction 16

2.9. Continuous Integration of Performance Models 16
2.9.1. Introduction to the CIPM Approach 16
2.9.2. Change Analysis and Propagation 18
2.9.3. Instrumentation Meta-Model . 18
2.9.4. Adaptive Instrumentation . 18
2.9.5. Monitoring, Calibration, and Self-Validation 20

2.10. Integration of Existing Source Code into Vitruvius 20

3. Approach 21
3.1. Problem . 21
3.2. Research Questions . 22
3.3. Idea . 23
3.4. Contributions . 23
3.5. Bene�ts . 23

4. The Commit-Based CIPM Approach 25
4.1. Development of JaMoPP . 25
4.2. Updating the Java Model . 25
4.3. Discovering Components . 27
4.4. The CPRs for the PCM . 29

v

Contents

4.5. The CPRs for the Extended IM . 32
4.6. Adaptively Instrumenting the Source Code 33

5. Evaluation 37
5.1. Metrics . 37

5.1.1. Jaccard Coe�cient . 37
5.1.2. Instrumentation Point Matching Score 38
5.1.3. Lower and Upper Bound of Expected Number of Added Statements

During the Instrumentation . 38
5.1.4. Accuracy Metrics . 39

5.2. GQM Plan . 39
5.3. Case Study . 49
5.4. Experiments . 57

5.4.1. Experiment E1 . 57
5.4.2. Experiment E1.1 . 58
5.4.3. Experiment E1.2 . 58
5.4.4. Experiment E2 . 59
5.4.5. Experiment E3 . 59
5.4.6. Experiment E4 . 59
5.4.7. Experiment E5 . 59
5.4.8. Experiment E5.1 . 59
5.4.9. Experiment 6 . 59
5.4.10. Final Evaluations . 60

5.5. Results and their Analysis . 60
5.5.1. Results of E1, E2, E3, and E4 . 60
5.5.2. Results of E1.1 . 71
5.5.3. Results of E1.2 . 74
5.5.4. Results of E5 . 84
5.5.5. Results of E5.1 . 86
5.5.6. Results of E6 . 89
5.5.7. Summary . 90

5.6. Threats to Validity . 91
5.6.1. Threats to Internal Validity . 91
5.6.2. Threats to External Validity . 92

6. Related Work 93
6.1. Repository Analysis . 93

6.1.1. Screpo . 93
6.1.2. The Approach of Stringfellow et al. 94

6.2. State-Based Model Comparison . 94
6.2.1. Semantic Lifting . 94
6.2.2. The Approach of Kehrer et al. 95
6.2.3. CoWolf . 96

6.3. Reverse Engineering . 96
6.3.1. The MiSAR Approach . 96

vi

Contents

6.3.2. The Approach of Rademacher et al. 97
6.3.3. The MicroART Approach . 97
6.3.4. The Approach of Mayer et al. 98
6.3.5. The ArchiRev Method . 98
6.3.6. The Approach of Hassan et al. 99

6.4. Integration of existing source code . 99
6.5. Adaptive Instrumentation . 100

7. Conclusion 101

Bibliography 103

A. Appendix 113
A.1. Acronyms . 113
A.2. Mapping: Commit Numeration to Hash Values 114

vii

List of Figures

2.1. Parts, roles, and outputs associated with the PCM [7]. 6
2.2. Excerpt from the Repository meta-model based on [7]. 7
2.3. The relationship between views, view types, and view points including

models and meta-models based on [69, 67, 36]. 8
2.4. Di�erence between a SUM meta-model and a V-SUM meta-model [67]. . 9
2.5. The co-evolution process [71]. 11
2.6. The complete consistency preservation process for source code to PCM

including SEFFs [71]. 13
2.7. Excerpt from the PCM meta-model showing the actions within RDSEFFs

based on [7, 71]. 15
2.8. The model-based DevOps pipeline within the CIPM approach [73]. . . . 17
2.9. The extended IMM [75]. 19

4.1. Comparison of the change propagation with the updated Java monitor and
state-based change propagation. 26

4.2. Detailed and updated change extraction. 26
4.3. Model update with updated and new parts. 28
4.4. Process of the component discovery strategy. 29
4.5. Process of the adaptive instrumentation. 33
4.6. SEFF of the clearAllCaches method. 35

5.1. Microservice-based architecture of the TeaStore [65]. 50
5.2. Comparison of the average response times for all test cases in the default

test plan and for commit 10. 75
5.3. Comparison of the average response times for all test cases in the 20 test

plan and for commit 10. 76
5.4. Comparison of the average response times for all test cases in the default

test plan and for commit 11. 77
5.5. Comparison of the average response times for all test cases in the 20 test

plan and for commit 11. 78
5.6. Comparison of the average response times for all test cases in the default

test plan and for commit 13. 79
5.7. Comparison of the average response times for all test cases in the 20 test

plan and for commit 13. 80
5.8. Comparison of the average response times for all test cases in the default

test plan and for commit 18. 81
5.9. Comparison of the average response times for all test cases in the 20 test

plan and for commit 18. 82

ix

List of Figures

5.10. Comparison of the components in the automatically and manually created
PCM. 87

5.11. Comparison of the interfaces in the automatically and manually created
PCM. 88

5.12. Selected data types in the automatically created PCM. 89

x

List of Tables

2.1. Overview over the Package Mapping CPRs [71]. 12

4.1. Overview over the implemented CPRs for the PCM. 32

5.1. Overview over Repository model elements and their referenced elements
which need to be similar so that the containing elements can be considered
to be equal. 38

5.2. Minimum number of added statements per instrumented element. 39
5.3. Historical information about the commits of interval (I) which ranges from

version 1.1 to version 1.2 [99]. The commits are continuously numbered
beginning with version 1.1 as commit 0 and ending with version 1.2 as
commit 50. In the context of interval (I), the version 1.1 is integrated into
Vitruvius so that it contains the addition of the complete source code
as architectural-relevant change. For the other commits, the contained
architectural-relevant change is explicitly signed. In contrast, - marks no
architectural-relevant changes. 52

5.4. Historical information about the commits of interval (II) which ranges from
version 1.2 to version 1.2.1 [99]. The commits are continuously numbered
beginning with version 1.2 as commit 0 and ending with version 1.2.1 as
commit 20. In the context of interval (II), the version 1.2 is integrated into
Vitruvius so that it contains the addition of the complete source code
as architectural-relevant change. For the other commits, the contained
architectural-relevant change is explicitly signed. In contrast, - marks no
architectural-relevant changes. 53

5.5. Historical information about the commits of interval (III) which ranges
from version 1.2.1 to version 1.3 [99]. The commits are continuously
numbered beginning with version 1.2.1 as commit 0 and ending with
version 1.3 as commit 11. In the context of interval (III), the version 1.2.1 is
integrated into Vitruvius so that it contains the addition of the complete
source code as architectural-relevant change. For the other commits, the
contained architectural-relevant change is explicitly signed. In contrast, -
marks no architectural-relevant changes. 54

xi

List of Tables

5.6. Historical information about the commits of interval (IV) which ranges
from version 1.3 to version 1.3.1 [99]. The commits are continuously
numbered beginning with version 1.3 as commit 0 and ending with version
1.3.1 as commit 100. In the context of interval (IV), the version 1.3 is
integrated into Vitruvius so that it contains the addition of the complete
source code as architectural-relevant change. For the other commits, the
contained architectural-relevant change is explicitly signed. In contrast, -
marks no architectural-relevant changes. 57

5.7. Propagated commits of all intervals and version 1.3.1. 62
5.8. Execution times for the intervals (I), (III), and (IV) and for version 1.3.1 in

minutes. For interval (II), no execution times were measured. 63
5.9. Results of the model evaluation. 65
5.10. Counted statements of the instrumented code in all intervals and version

1.3.1. 65
5.11. Comparison of the non-instrumented and instrumented code and compi-

lation result of the instrumented code in all intervals and version 1.3.1. . 66
5.12. Number of instrumentation points in all intervals and version 1.3.1. . . . 67
5.13. Reduced monitoring overhead in experiment E1 and E2. In E3 and E4, no

adaptive instrumentation was performed. 71
5.14. Reduced monitoring overhead in the temporal dimension in experiment

E1.1. 72
5.15. Reduction in the response times in experiment E1.1. All time values are

given in milliseconds. 74
5.16. Propagated changes as one commit within the intervals. 84
5.17. Execution times for the intervals (I), (III), and (IV) in experiment E5 in

minutes. For interval (II), no execution times were measured. 84
5.18. Results of the model evaluation in experiment E5. 84
5.19. Results of the PCM comparison for propagated and integrated commits in

experiment E5. 85
5.20. Counted statements of the instrumented code in experiment E5. 85
5.21. Comparison of the non-instrumented and instrumented code and compi-

lation result of the instrumented code in experiment E5. 86
5.22. Reduced monitoring overhead in experiment E5. 86
5.23. Propagated commits in experiment E6. 89
5.24. Execution times for the commits in experiment E6 in minutes. 89
5.25. Results of the model evaluation in experiment E6. 90
5.26. Counted statements of the instrumented code in experiment E6. 90
5.27. Comparison of the non-instrumented and instrumented code and compi-

lation result of the instrumented code in experiment E6. 90

A.1. Mapping of the used commit numeration within the thesis to the commit’s
hash values [99]. 119

xii

1. Introduction

Architecture-level performance models, for instance, the Palladio Component Model
(PCM), allow performance predictions to evaluate and compare design alternatives [7, 73]
combining the aspects of architecture and performance models.

In particular, software architectures degrade over time, i. e., the implemented architec-
ture in the source code di�ers from the conceptual architecture [5]. This phenomenon is
also known as architectural drift [84], architectural erosion [84], architectural degeneration
[50], and other terms. In open source software as example, the possible reasons for the
degradation include a lack of architecture documentation, time pressure, and frequent
changes due to new or updated requirements increasing the complexity [5]. As a result,
the time and corresponding costs to implement changes rise [25, 101] while the modularity
declines [25]. This indicates that a system becomes harder to maintain. In certain cases,
the architectural degradation can lead to a big ball of mud, a software system without a
recognizable architecture, [27] which happened to, e. g., the Mozilla web browser [35]
that evolved into Firefox [22]. At a certain point of time, such systems require their
re-development from scratch [27, 101]. A method to hinder the degradation is the explicit
modeling of the currently implemented architecture in order to observe the impact of
changes [5, 22, 51]. However, keeping architecture models up-to-date requires manual
e�ort [51] which can prevent their adoption. Furthermore, in agile software development
processes, e. g., Scrum, characterized by an iterative and incremental development with a
focus on the product [93], no or short design phases reduce modeling activities which can
be addressed by automatically executing them.

Software performance is a non-functional requirement which assesses the temporal
behaviour and resource utilization of a software system [19]. It is expressed in, e. g., the
response time or throughput. The earlier performance issues are identi�ed, the earlier
they can be addressed and solved avoiding costly rework at later points in time. Using
measurement-based techniques such as the monitoring of an application during its runtime
[47] or performance testing [61], the software performance can be evaluated. Nevertheless,
it requires the implementation of the system. In contrast, model-based approaches enable
performance predictions without the need of an implemented system [19]. On the other
hand, as previously mentioned, in the agile software development, short development
cycles limit modeling activities and, thus, the use of performance models. Therefore, the
automatic execution of such activities reduces the e�ort and o�ers performance predictions
during the development.

To close the gap between the development and having up-to-date architecture-level
performance models, the Continuous Integration of Performance Models (CIPM) approach
has been proposed [73]. It incorporates automatically executed activities into a DevOps
pipeline to keep performance models up-to-date. During the development, extracted
changes of a commit are utilized to incrementally update the performance model. In order

1

1. Introduction

to estimate the performance model parameters (PMPs), the CIPM approach adaptively
instruments and monitors the source code. The taken measurements are used to calibrate
the performance model. Realized with Vitruvius which is a view-centric approach for
model-driven software engineering that represents a system in a Virtual Single Underlying
Model (V-SUM) combining di�erent models [67], the V-SUM includes Java models and a
PCM instance [73].

In previous work, several pieces of the development part of the pipeline were proto-
typically implemented [14, 21, 75] and partly evaluated with arti�cial projects [14, 21].
The monitoring and parameter estimation are available as a pipeline and validated with
case studies [75, 74]. A pipeline combining the incremental model updates, adaptive
instrumentation, and the existing pipeline is absent. Additionally, such a complete pipeline
has not been evaluated with a real world application. As a result, this thesis addresses
the aforementioned issues. It presents an approach to solve the problems by adapting
and extending the existing implementations to complete the pipeline. Based on the exten-
sions, the combined prototypical implementations are evaluated with a case study as the
representation of a real world application.

In the following chapter 2, the foundations of this thesis are explained. Afterwards, the
approach is presented in chapter 3 and in detail in chapter 4 and evaluated in chapter 5.
chapter 6 gives an overview over related work. Finally, this thesis is concluded in chapter 7.

2

2. Foundations

This chapter gives an overview over the foundations of this thesis. The basic concepts
are covered in section 2.1 (model-driven software development) and section 2.2 (agile
software development). The state-based model comparison in section 2.5 supplements
the concept of model-driven software development. A modeling environment for Java is
described in section 2.3 and for component-based software architectures in section 2.4 and
in section 2.8 focused on the Service E�ect Speci�cations (SEFFs). The platform Vitruvius
is introduced in section 2.6. Based on Vitruvius, the co-evolution approach is explained
in section 2.7, the CIPM approach in section 2.9, and the integration of existing source
code in section 2.10.

2.1. Model-Driven So�ware Development

Compared to model-based software development in which models are mostly used for
documentation purposes, models are an integral part of the development process in model-
driven software development (MDSD) [96]. Models are as important as the source code and
even the source code can be seen as a model of the application. Moreover, transformations
enable the conversion between di�erent models with varying abstraction levels and allow
automatic source code generation. This leads to the goals of MDSD: it improves software
quality by separation of concerns between abstract models and their transformations and
by a resulting higher maintainability. Additionally, reuseable abstract models reduce the
complexity of an application and contribute to a lower development time.

Three features characterize a model according to Stachowiak [95]. At �rst, models
represent originals (mapping feature) which in turn can also be models. Secondly, only
attributes of the represented original that are relevant for the model creator or user
are contained in a model (reduction feature). At last, models cannot be unambiguously
assigned to their originals and take a replacement function for speci�c subjects, during
speci�c time intervals, and with speci�c operations (pragmatic feature).

In order to create models, meta-models are de�ned that represent a speci�c domain
and describe how models are constructed within the domain [96]. It is said that a model
instantiates its meta-model. To achieve their function, meta-models consist of an abstract
syntax, at least one concrete syntax, static semantics, and dynamic semantics. The abstract
syntax speci�es the structure of models, i. e., the constructs and their relationships, while
a concrete syntax is one realization of the abstract syntax and describes how models are
expressed, for example, in a domain-speci�c language (DSL). The static semantics declare
additional restrictions on models that cannot be expressed with the abstract or concrete
synatx. Finally, the meaning of the constructs and relationships in the abstract syntax are
explained in the dynamic semantics.

3

2. Foundations

The Object Management Group, Inc. (OMG) standardized the Meta Object Facility (MOF)
2 as a self-describing meta-model [77]. It consists of the Complete MOF (CMOF) and
Essential MOF (EMOF) intended for object oriented programming languages and acts as
the meta-model for other meta-models speci�ed by the OMG, for instance, the Uni�ed
Modeling Language (UML) [78] or the Object Constraint Language (OCL) [76]. The OMG’s
XML Metadata Interchange (XMI) Speci�cation provides an XML-based format to store
MOF-based models for exchange [79]. The Eclipse Modeling Framework (EMF) contains
various tools for the MDSD [52]. This includes Ecore which is an implementation of an
adapted EMOF version, a source code generator, and complete support for XMI.

2.2. Agile So�ware Development

Agile software development aims at the �exible development of software compared to
processes which are based on detailed plans [30]. Agile methods address the problem of
constantly changing requirements by employing iterative and incremental development
cycles enabling the possibility to react fast to changes. Examples for agile processes are
Extreme Programming (XP) and Scrum. In XP, several agile practices are provided with
a recommended cycle length between one and two weeks. In contrast, Scrum de�nes
accountabilities, artifacts, and events to build a framework allowing the incorporation of
further methods and setting the iteration length to one month [93].

Continuous Integration (CI) is a methodology originating from XP in which every
developer regularly, usually daily, commits their changes and updates the repository
[28]. Then, the repository is used to automatically build and test the application on a
separate CI server. Only if the build is successful, the changes are integrated. Otherwise,
the build needs to be �xed. A deployment or build pipeline enables the execution of
multiple builds at the same time. Based on CI, the extending Continuous Delivery ensures
that the resulting artifacts can be deployed into the production environment [29]. In
Continuous Deployment, the artifacts are deployed into the production environment.
DevOps combines techniques of the development and operation of applications in order
to create a close cooperation between development and operation teams and to reduce the
time for incorporating feedback from the operation into the development [45]. Applied
methodologies include CI and Continuous Deployment.

According to Fowler and Lewis, Microservices or Microservice architectures are an
architectural pattern to compose an application out of a set of small services where each
service de�nes an API and communicates with other services over their API [31]. Every
service can be developed and deployed independently by a cross-functional team and
using Continuous Delivery. As a result, a Microservice is built for a speci�c business
capability. Additionally, it allows the decomposition of monolithic applications into
interconnected services to reduce the application’s complexity while rising the complexity
for the distributed production environment and for the increased communication [91]. In
this context, Fowler and Lewis view services as components and Microservice architectures
as a technique to componentize an application whereby they de�ne a component as
independently replaceable and upgradeable software unit [31].

4

2.3. Java Model Parser and Printer

A Representational State Transfer (REST) API or RESTful API is an API following the
REST architecture style and built upon HTTP [90]. It allows access to and control of
identi�able resources by exchanging the state of a resource in a speci�c representation in
a HTTP request and response while the general HTTP communication is state-less.

2.3. Java Model Parser and Printer

The Java Model Parser and Printer (JaMoPP) provides in its original version an EMF-
based environment for modeling Java source code [48]. Therefore, JaMoPP contains an
Ecore-based Java meta-model conforming to The Java Language Speci�cation - Third
Edition (JLS 3) specifying the syntax of Java 5 and 6 [41, 55]. JaMoPP also de�nes the Java
syntax in the CS speci�cation language of EMFText [48]. EMFText generates a parser
based on ANTLR to create models from source code �les and a pretty printer to write
source code �les from models out of the CS speci�cation [49, 48]. In order to establish the
connections between di�erent Java models introduced by, e. g., imports, JaMoPP includes
a mechanism to resolve such references [49]. In the remainder of this thesis, the original
JaMoPP version refers to the previously described version.

In previous work of this thesis’ author without a publication, JaMoPP was adapted.
As a result, the meta-model contains all features added from The Java Language Speci-
�cation - Java SE 7 Edition (JLS 7) [38] to The Java Language Speci�cation - Java SE 15
Edition (JLS 15) [37], e. g., lambda expressions [39] or modules [40]. The dependency to
EMFText was removed by replacing the CS speci�cation and generated parser and printer
implementations with manual implementations. The manual printer implementation
generates valid Java syntax and preserves the semantics, but neither the layout nor the
documentation. The manual parser implementation uses the Eclipse Java Development
Tools (JDT) Core to transform source code �les into an abstract syntax tree (AST) [80]
which is converted to the actual model. Here, the following underlying assumption is
made: an application is available with its complete source code and dependent libraries,
and the application is parsed at once. Based on this assumption, the ASTParser of the JDT
Core resolves the references between source code �les to bindings [17] which are used to
establish the references between the models and are also converted to models if there is
no corresponding source �le for the binding. As a consequence, the reference resolution
mechanism of the original JaMoPP version was removed. In the remainder of this thesis,
the previously described adapted JaMoPP version is referred to as the adapted JaMoPP
version.

2.4. The Palladio Component Model

The PCM o�ers developers a meta-model for describing component-based software archi-
tectures [7]. Figure 2.1 shows parts, roles, and outputs within the creation and usage of a
PCM instance. It can be used for the analysis of quality features, e. g., for performance
predictions. In the context of the PCM, components employ characteristics as de�ned by

5

2. Foundations

Usage Model

Component Specifications

<<User>>

Assembly Model

Allocation Model

<<Component
Developer>>

part of

part of

part of

pa
rt

of

<<System
Architect>>

<<System
Deployer>>

<<Domain
Expert>>

PCM
Instance

M
od

el-
to

-M
od

el

Tra
ns

fo
rm

at
ion

Stochastic Regular Expressions

Queueing Network Model

Performance Prototype

Java Code Skeletons

Model-to-Model

Transformation

Model-to-Code
TransformationM

odel-to-Code

Transform
ation

Figure 2.1.: Parts, roles, and outputs associated with the PCM [7].

Szyperski. According to them, components are units for compositions, are independently
deployable, and have explicit interfaces and dependencies [98].

During the creation of a PCM instance, component developers specify BasicComponents

which are stored in the Repository [7]. Components provide services by implementing
Interfaces declaring the services. Additionally, interfaces can be required by compo-
nents that use their services in their implementation. As interfaces are stored in the
repository and are independent from components, ProvidedRoles and RequiredRoles of
components point to the interfaces representing the provided and required interfaces.
All interfaces contain signatures for their declared services while the abstract behaviour
of services is expressed in SEFFs which are attached to components and described in
detail in subsection 2.8.1. At last, a repository contains DataTypes representing the pa-
rameter and return types of service signatures. The data types are di�erentiated in
CollectionDataTypes, CompositeDataTypes representing complex and composed data
types, and PrimitiveDataTypes. Figure 2.2 shows an excerpt from the repository meta-
model depicting the aforementioned parts and their connections.

Software architects use the components to build the actual software architecture rep-
resented in a System [7]. Because a component can be instantiated multiple times in a
system, component instances are contained within unique AssemblyContexts. Further-
more, AssemblyConnectors of AssemblyContexts connect provided and required roles
of components. At the same time, systems also have provided and required roles ex-
posing the corresponding services. Systems and repositories do not include concrete
resources and reference abstract resource types instead. Therefore, system deployers
specify ResourceEnvironments with concrete resources organized in ResourceContainers

and Allocation models which map AssemblyContexts to ResourceContainers. In order
to complete a PCM instance, domain experts express the user behaviour in usage models.
This includes calls to the system’s services, the calls’ order, and the workload on the
system.

6

2.5. State-Based Model Comparison

RepositoryDataType BasicComponent

ServiceE�ectSpeci�cationInterface

Signature

Parameter

0..*
datatypes

0..*
components

0..* interfaces

0..* signatures

0..* parameters

0..1
returnType

datatype 1
0..*

1
describedService

Figure 2.2.: Excerpt from the Repository meta-model based on [7].

The PCM is implemented as an Ecore-based meta-model and o�ers various tools and
transformations in Eclipse [7]. Some tools simulate the execution of the system according to
the modeled user behaviour. As a result, reponse time distributions are obtained estimating
the system’s performance.

2.5. State-Based Model Comparison

In order to obtain the di�erences between two models to enable, e. g., model versioning,
the state of the models can be compared by executing a matching, di�erencing, and
representing [8].

During the model matching, corresponding elements in the models are identi�ed [8].
Approaches for determining a match are categorized into the following four categories:
identity-based matching in which every element gets an immutable UUID which is used
for the matching, signature-based matching in which a signature is calculated for every
element based on its features and compared to other signatures, similarity-based matching
in which a similarity metric between two elements is calculated, and custom language-
speci�c matching in which the matching rules can be customized to re�ect the semantics
of the underlying domain.

Based on the matched elements, their actual di�erences are calculated [8]. Correspond-
ing elements and their features are compared on a �ne-grained level. If there is a deviation,
a description for the di�erence is created. If an element has no correspondence, it was
added or removed so that the di�erence’s description covers the complete element. All
detected di�erences are atomic operations (add, delete, move, change) represented in a
speci�c style and can form composite operations.

After the di�erences between two model states have been identi�ed, they can be used
to merge both models into one [8].

EMF Compare is a tool for comparing and merging EMF models [105]. Its default
similarity-based matching algorithm tries to look up an identi�er for an element [24].
If such an identi�er cannot be found, EMF Compare computes the distance between
the element and other ones using a proximity algorithm. On the resulting matches, the

7

2. Foundations

Model Meta-model

View View Type

View Point

*

shows
elements of

1..*

*

represents
parts of

1..*

� instance of�

� instance of�

*
de�nes

* view types

Figure 2.3.: The relationship between views, view types, and view points including models
and meta-models based on [69, 67, 36].

di�erences are calculated and represented in a model conforming to EMF Compare’s own
Ecore-based meta-model. All algorithms can be replaced with custom implementations or
extended by post-processors.
SPLevo is an approach to consolidate custom product copies into software product

lines with a prototypical implementation [68]. The �rst step in the process is a di�erence
analysis of the product copies in which they are compared to derive their di�erences before
the di�erences are processed further. In detail, the comparison starts with the matching
of source code elements by using a hierarchical matching algorithm. During the depth-
�rst traversal, the SimilarityCheck compares every element with potential candidates to
�nd similar and thus matching elements. SPLevo’s process is independent of a concrete
programming language while it provides links for language-speci�c extensions. The proto-
typical implementation contains extensions for Java based on the original JaMoPP version.
For example, the SimilarityChecker considers Java-speci�c properties when comparing
JaMoPP elements [94]. Furthermore, all classes in the prototypical implementation of
SPLevo related to the di�erence analysis build upon EMF Compare.

2.6. VIew-cenTRic engineering Using a VIrtual Underlying
Single model

VIew-cenTRic engineering Using a VIrtual Underlying Single model (Vitruvius) is a
view-centric approach for the MDSD [69]. In view-based modeling, developers work in
views that present a speci�c part of a software system with information relevant for the
developer in order to reduce the complexity. As views are also models, a view type denotes
the meta-model of a view. Several view types are grouped into a view point [67] addressing
a certain concern [36]. The relationship of views, view types, and view points is depicted
in Figure 2.3.

Orthographic Software Modeling (OSM) is a view-based modeling approach in which
di�erent dimensions of a system are orthogonal to, i. e., independent of, each other and
views are dynamically generated from a Single Underlying Model (SUM) [4].

8

2.6. VIew-cenTRic engineering Using a VIrtual Underlying Single model

Figure 2.4.: Di�erence between a SUM meta-model and a V-SUM meta-model [67].

"A SUM is a complete de�nition of a system and contains all known information
about it. It contains no redundant or implicitly dependent information and is
thus always free of [...] inconsistencies." [67]

In Vitruvius which is based on OSM, a virtual SUM (V-SUM) meta-model is realized
which externally acts as a SUM meta-model [67]. Internally, the V-SUM meta-model
is modularized and consists of several di�erent EMOF-based meta-models allowing the
reuse of existing meta-models. To ensure consistency between the di�erent models in the
V-SUM, a delta-based consistency preservation process is established using consistency
preservation rules (CPRs) where a CPR is speci�ed between two meta-models. As a
consequence, if a change occurs modifying a model and causing inconsistencies with other
models, CPRs update corresponding models keeping them consistent.

The di�erence between a SUM meta-model and V-SUM meta-model is shown in Fig-
ure 2.4 in the context of object-oriented source code, object-oriented design, and component-
based software architectures [67]. The SUM meta-model combines all three concepts in
one meta-model. In contrast, the V-SUM meta-model contains a Java meta-model, an UML
meta-model, and an Architecture Description Language (ADL) meta-model with CPRs for
each pair of meta-models. +)1, +)2, +)3, and +)4 de�ne view types.

Developers perform their actual changes in views [67]. Therefore, one of two strategies
has to be included for obtaining the deltas that are applied on the underlying models. In the
�rst strategy, a change monitor observes the views and records all modi�cations so that the
deltas are directly available and can be applied on the models in the V-SUM. The second
strategy is a state-based model comparison (see section 2.5). The di�erences between the
models without and with changes are investigated in order to receive a sequence of deltas
that can be applied on the models.

Vitruvius o�ers the Reactions language and the Mappings language to formulate CPRs
[67]. While it is possible to de�ne declarative, bidirectional speci�cations within the
Mappings language which are converted to speci�cations in the Reactions language, the
Reactions language allows imperative and unidirectional speci�cations. A Reaction within
the Reactions language consists of the following three steps: Triggering - Matching - Actions.
A trigger de�nes when a Reaction is going to be executed. Therefore, it declares change
types to which it reacts and an optional check expression testing properties of the change.
The following atomic change types are di�erentiated:

9

2. Foundations

"1. Replacements of a single attribute or reference value
2. List changes which a�ect a single list entry
3. Insertions and removals of root elements
4. Creations and deletions of model elements
[...] the change types 2 and 3 can be combined with change type 4." [67]

At last, a trigger speci�es Reaction routines which are called if a change matches the
trigger [67]. A Reaction routine separates the triggering step from the matching and
actions steps by providing a match and action part. The match part contains match checks
and retrievals for obtaining corresponding elements. A retrieval is either a presence
retrieval or an absence retrieval specifying which elements have to be present or absent.
Vitruvius stores correspondences, i. e., the connection between corresponding model
elements, explicitly in a correspondence model which is queried for the retrievals. The
action part lists statements that are executed to restore the consistency. Within the actions,
model elements can be created, removed, or updated, correspondences can be registered
or deregistered, and other Reaction routines can be called. Additionally, an API in the
Reactions language allows interaction with the developer for cases in which the consistency
cannot be preserved automatically.

Vitruvius is prototypically implemented in EMF supporting Ecore-based meta-models
[67].

2.7. The Co-Evolution Approach

The co-evolution approach presented by Langhammer enables developers to keep source
code and software architecture models consistent during development [71]. It is prototypi-
cally implemented in Vitruvius for Java using the original JaMoPP version and the PCM.
Figure 2.5 depicts the co-evolution process: An architect or developer modi�es their artifact
in the corresponding editor (step 0). The changes are re�ected in the editor’s underlying
representation (also step 0). Monitors observe these underlying representations (step 1)
and trigger Vitruvius upon changes (step 2). How a monitor exactly reports the changes
to Vitruvius depends on the editor. In the case of the PCM, the existing PCM editors are
based on EMF so that they directly operate on the PCM instance. As a result, a generic
EMF model monitor listens on the PCM instance using built-in EMF mechanisms that
report changes. In the case of Java, the default Eclipse Java code editor is reused where the
underlying representation is the JDT Core AST [56]. Therefore, the Java monitor classi�es
changes on the JDT Core AST and transforms them to changes on the JaMoPP model [71].
So, both monitors trigger Vitruvius through the modi�cation of the EMF models in the
V-SUM (step 2). Then, Vitruvius executes the consistency preservation process (step 3).
This includes the retrieval of elements from the correspondence model (step 4) and the
update of the correspondence model and the opposite model of the modi�ed one (step 5).

The co-evolution approach knows three dimensions of CPRs: the technology-speci�c,
the project-speci�c, and the element-speci�c dimension [71]. CPRs are speci�c for the
used technologies, e. g., Plain Old Java Objects (POJOs) and PCM, and can be speci�c for

10

2.7. The Co-Evolution Approach

Figure 2.5.: The co-evolution process [71].

11

2. Foundations

projects. The element-speci�c dimension is further divided into CPRs for a set of elements
and CPRs for one element. The prototypical implementation contains CPRs for the PCM
and POJOs called Package Mapping CPRs, the PCM and Enterprise Java Beans (EJB)-based
source code, and the PCM and source code employing a dependency injection framework.
In the Package Mapping CPRs, for example, a PCM repository is mapped to one package for
all components, one package for all interfaces, and one package for all data types as listed
in Table 2.1. In the component package, every component is represented by a package
with the same name as the component and a class in the package realizing the component
implementation. This class implements all provided interfaces of the component and
contains a �eld for every required interface with the required interface as type. Further
mappings and details can be found in [71]. All CPRs are bidirectionally de�ned in the
Reactions language [67].

PCMmetamodel element Source code language element
Repository Three packages: main, contracts, data types
BasicComponent Package within the main package and a public compo-

nent realisation class within the package
OperationInterface Interface in the contracts package
Signature&Parameters Methods¶meters
CompositeDatatype Class with getter and setter for inner types
CollectionDatatypes Class that inherits from a Java collection type (e.g.

ArrayList)
RequiredRole Field typed with required interface in the component-

class and constructor parameter for the �eld in the
component-class

ProvidedRole Main class of providing component implements the
provided interface

SEFF Method in the component realisation class that over-
rides the corresponding interface method

Table 2.1.: Overview over the Package Mapping CPRs [71].

For the mapping between source code and SEFFs, special CPRs are de�ned [71]. If a
SEFF is modi�ed, it is unclear how code should be generated or changed because a SEFF is
an abstraction of the code. Therefore, the prototypical implementation of the co-evolution
approach generates a task for the developer and displays it in a task list. The developer
can do the task and mark it as done afterwards. Modi�cations of method bodies cause
a change-driven incremental SEFF reconstruction. This process is explained in detail in
subsection 2.8.2. It is incorporated into the consistency preservation process as shown in
Figure 2.6. After code changes (step 1), the noti�ed monitor classi�es the change (step 2).
If it is unambiguous (step 3), the consistency preservation process is triggered resulting
in the update of the component model (step 5). It the change is ambiguous (step 3’), the
developer is asked to clarify its intent (step 4). The intent combined with the change
triggers the consistency preservation process. If a method body has been changed (step
3”), the incremental SEFF creator runs generating an updated SEFF (step 4’).

12

2.7. The Co-Evolution Approach

Figure 2.6.: The complete consistency preservation process for source code to PCM includ-
ing SEFFs [71].

13

2. Foundations

2.8. Service E�ect Specifications

This section introduces the SEFFs. subsection 2.8.1 explains their structure while subsec-
tion 2.8.2 describes the process of incrementally reconstructing SEFFs from source code.
As this process reconstructs complete SEFFs, an approach for the incremental �ne-grained
SEFF reconstruction is presented in subsection 2.8.3.

2.8.1. Structure of SEFFs

SEFFs, more precisely ResourceDemandingServiceEffectSpecifications (RDSEFF) as a
specialization of SEFFs, abstractly model the behaviour of a service in a PCM compo-
nent and act as a grey box view on the implementation [7]. A RDSEFF consists of
AbstractActions which are depicted in an excerpt from the PCM meta-model in Figure 2.7.
Every RDSEFF contains a StartAction and StopAction. Internal algorithms and details are
summarized and represented in an InternalAction [7] or InternalCallAction [71]. An
InternalCallAction is a call from an RDSEFF or ResourceDemandingInternalBehaviour
to a ResourceDemandingInternalBehaviour which de�nes behaviour that is only available
within a component [71]. Besides, calls to services of required interfaces are made explicit
with ExternalCallActions [7]. Control �ow involved with such external calls is modeled
as an abstract control �ow. While ForkActions express the concurrent execution of multi-
ple branches, exactly one of multiple branches is executed in a BranchAction. Loops are rep-
resented by AbstractLoopActions. In addition, every action except ExternalCallActions
can include resource demands [7] which are PMPs [73]. The demands can be expressed
in the form of constants, probability distributions, or functions of random variables [7].
Moreover, resource demands are allowed to be parameterized specifying a dependency
between the input parameters of the RDSEFF and the resource demand. Such parametric
dependencies can also include branch conditions of BranchActions, loop iterations of
LoopActions, and parametric parameter usages between the RDSEFF’s input parameters
and the input parameters of an ExternalCallAction. Throughout this thesis, the term
SEFF refers to RDSEFFs as previously introduced.

2.8.2. Change-Driven Incremental SEFF Reconstruction

The change-driven incremental SEFF reconstruction is able to generate SEFFs from meth-
ods that are integrated within the co-evolution approach and that have changed [71].
Langhammer developed and presented the process in [71] as an extension of the static
control �ow analysis for reverse engineering SEFFs from source code presented by Krog-
mann in [70]. The basic principle remains [71]: At �rst, external calls are identi�ed [70].
Beginning with external calls, relevant control �ow statements are transitively marked.
Finally, the SEFF control �ow structure is created.

Three types of calls are di�erentiated [70, 71]: external calls as calls to methods in
other components, internal calls as calls to methods within the current component, and
infrastructure / library calls as calls to methods which are not contained in any component.
In the �rst step of the SEFF reconstruction, all method calls in the changed method are
classi�ed as one of the three call types [71]. As the classi�cation of external and library calls

14

2.8. Service E�ect Speci�cations

AbstractAction

ExternalCallAction AbstractResource
DemandingAction ParametricResourceDemand

InternalAction

InternalCallAction

StartAction

StopAction

ForkAction

BranchAction

AbstractLoopAction

0..*

Figure 2.7.: Excerpt from the PCM meta-model showing the actions within RDSEFFs based
on [7, 71].

depends on the used CPRs, a mapping-speci�c external call �nder and a mapping-speci�c
library call �nder are used. All calls that are not an external or library call are internal
calls.

The second step starts at external calls [70] or internal calls [71]. All statements from the
call to the method declaration are visited and marked as relevant if the statement is a control
�ow statement [70]. During the third step, all marked control �ow statements are converted
to AbstractActions. Every SEFF gets a StartAction and StopAction. External calls are
mapped to ExternalCallActions, conditional statements are mapped to BranchActions,
loops are mapped to AbstractLoopActions, and remaining statements are mapped to
InternalActions whereby no InternalAction follows another InternalAction. Internal
calls are mapped to InternalCallActions and the called method is represented by a
ResourceDemandingInternalBehaviour if it is a component-private method [71].

In order to �nd the signatures and RequiredRoles of external calls during the SEFF
reconstruction, a mapping-speci�c RequiredRole �nder needs to be de�ned [71].

The prototypical implementation of the co-evolution approach includes mapping-
speci�c external call, library call, and RequiredRole �nder for the implemented CPRs
[71]. The Package Mapping CPRs, for instance, consider external calls as calls to interface
methods with a corresponding signature in the PCM or as calls to methods in classes
residing in a package corresponding to another component. Library calls are calls where
the called method is inside a class whose package does not correspond to a component.
More details on speci�c or further �nders can be found in [71].

15

2. Foundations

Internally, the change-driven incremental SEFF reconstruction establishes correspon-
dences between the SEFF elements and the source code [21]. Dahmane added a further step
after the actual reconstruction which stores the correspondences in the correspondence
model of Vitruvius.

2.8.3. Incremental Fine-Grained SEFF Reconstruction

Dahmane proposes an approach for the incremental �ne-grained SEFF reconstruction [21].
It allows the reuse of SEFFs by changing only the SEFF elements which correspond to
changed code within a method. At �rst, all correspondences of the old SEFF elements are
removed from the correspondence model. Afterwards, the change-driven incremental SEFF
reconstruction is used to get a new SEFF for the changed method. The old and new SEFFs
are compared to �nd matching elements. This includes a di�erentiation between equal and
non-equal elements. Two SEFF elements are equal if their corresponding statements are
equal. Else, the SEFF elements match, but are non-equal because their code has changed.
Based on the matched elements, all elements in the old SEFF without a matching are
identi�ed as deleted. Analogously, all elements in the new SEFF without a matching are
identi�ed as added. Based on the di�erence between the old and new SEFF, the old SEFF
is updated di�erentiating three cases. In the �rst case, all deleted elements are removed
from the old SEFF. The second case considers non-equal matching elements. They are not
changed. Added elements are added to the old SEFF in the third case. If the SEFF element
has no predecessor with a matching element in the old SEFF, the SEFF element is added at
the second position of the old SEFF. Otherwise, the SEFF element has a predecessor with
a matching element in the old SEFF so that the SEFF element is added after the matching
element. After the old SEFF has been updated, correspondences between the changed
method and the updated old SEFF and between the SEFF elements and the statements are
created.

The approach is prototypically implemented and evaluated [21]. LoopActions cannot
be correctly compared as their corresponding statements cannot be correctly compared.

2.9. Continuous Integration of Performance Models

The CIPM approach updates performance models during development to keep them up-to-
date [73]. The approach is introduced in more detail in subsection 2.9.1. subsection 2.9.2
handles the change analysis and propagation performed after every source code commit.
After the Instrumentation Meta-Model (IMM) for the adaptive instrumentation is explained
in subsection 2.9.3, the instrumentation process is described in subsection 2.9.4. Finally,
a short overview over the monitoring of the instrumented source code, calibration, and
self-validation using the monitoring data and simulation results is given in subsection 2.9.5.

2.9.1. Introduction to the CIPM Approach

The CIPM approach incrementally updates performance models on an architectural level
and calibrates the PMPs after every source code commit in order to obtain up-to-date

16

2.9. Continuous Integration of Performance Models

Figure 2.8.: The model-based DevOps pipeline within the CIPM approach [73].

performance models [73]. All activities of the CIPM approach are integrated into a model-
based DevOps pipeline. Figure 2.8 displays the DevOps pipeline. The �rst part which
takes place at development time (Dev-time) starts with the CI (1) in which the source code
changes are incorporated into a code model. The realization of the CIPM approach is based
on Vitruvius extending the co-evolution approach. Therefore, Java code and the PCM
as performance model are used. The changes of the code model trigger the consistency
preservation process updating the performance model (1.1) and an Instrumentation Model
(IM) (1.2). Because the PCM instance contains no or outdated PMPs, for example, resource
demands, after the update, the following activities concentrate on estimating the PMPs
based on the monitoring of the code. In order to measure the required data, the code is
adaptively instrumented with measurement instructions (2). The instrumentation points
from the IM determine where the code is instrumented. It only includes code parts that have
changed. After the instrumentation, the measurements are taken during the performance
testing (3) and are divided into a training and validation set. The training set is used
in the Dev-time calibration to estimate the PMPs (4). The validation set is used for a
self-validation (5). In this activity, the performance model is simulated, and the error
between the simluation result and the validation set is calculated. If the performance
model is not accurate enough, the developer can recon�gure the performance test which
is executed once more to recalibrate the performance model. If the performance model is
accurate, the developer can perform Architecture-based Performance Predictions (AbPPs)
(6).

The second part of the DevOps pipeline executed during the Operations time (Ops-time)
begins with the Continuous Deployment of the code (7) [73]. The code is monitored in
the production environment (8) to retrieve run-time measurements. During the following
Ops-time calibration (9), the usage and allocation models are updated and calibrated
based on the measurements. Afterwards, the performance model is self-validated (10)
similar to the self-validation in the Dev-time part by using the run-time measurements.

17

2. Foundations

If the performance model is not accurate enough, it is adaptively recalibrated (11). If the
performance model is accurate, further model-based analyses can be performed (12) whose
results can be used in the development planning (13).

2.9.2. Change Analysis and Propagation

Chupakhin prototypically implemented parts for the incremental model update [14]. The
implementation extracts changes of a Git commit and applies them on a JDT Core AST.
This JDT Core AST is observed by the Java monitor which updates the corresponding
JaMoPP models in Vitruvius triggering the consistency preservation process for the
PCM. The used CPRs are based on the Package Mapping CPRs from the co-evolution
approach. Except the CPRs for method bodies, the CPRs are adapted for the CIPM approach
including the addition of new CPRs for the removal of classes, interfaces, and packages.
The implementation’s evaluation tests all atomic changes which correctly update the
JaMoPP models except in cases in which a compilation unit is deleted. In several cases,
CPRs for updating the PCM are missing.

2.9.3. Instrumentation Meta-Model

Dahmane introduced the IMM with a prototypical implementation of CPRs between
JaMoPP models and an IM [21]. The CPRs generate instrumentation points which identify
code parts that have changed and will be instrumented during the adaptive instrumentation
so that only the changed code is monitored. SEFFs are re-generated by the change-driven
incremental SEFF reconstruction of the co-evolution approach (see subsection 2.8.2) and
are completely replaced if their code has changed. As a result, all re-generated SEFFs are
monitored independent of the extent of the changes in the corresponding code.

Monschein extended the IMM which is depicted in Figure 2.9 [75]. The Instrumentation-
Model acts as the root element of an extended IM. It contains several ServiceInstrumentation-
Points representing a SEFF for the instrumentation and pointing directly to the SEFF. Ev-
ery ServiceInstrumentationPoints contains further ActionInstrumentationPoints rep-
resenting and pointing to AbstractActionswithin the SEFF. An ActionInstrumentationPoint

allows the monitoring of InternalActions, AbstractLoopActions, and BranchActions.
The actual type of the AbstractAction is attached to the ActionInstrumentationPoint.
All InstrumentationPoints have an active variable controlling if the monitoring of an
instrumentation point is activated or deactivated.

2.9.4. Adaptive Instrumentation

There are two prototypical implementations for the adaptive instrumentation. Dahmane
implemented it based on the original JaMoPP version and the IM [21]. Beside the source
code and IM, the implementation takes the correspondence model of Vitruvius as in-
put. Afterwards, the instrumentation process copies the source code which is parsed
with the original JaMoPP version. Then, the instrumentation points are mapped to their
corresponding statements in the copied source code. The search utilizes the location of
the original statements, the service containing the statements, and the class containing

18

2.9. Continuous Integration of Performance Models

InstrumentationModel
InstrumentationPoint

+active: EBoolean

Action
InstrumentationPoint

Service
InstrumentationPoint

� Enumeration�
InstrumentationType

INTERNAL
BRANCH

LOOP

AbstractAction ResourceDemandingSEFF

* points
*subPoints

1
type

1service
1

action

org.palladiosimulator.pcm.se�

Figure 2.9.: The extended IMM [75].

the service to speed up the statement �nding. All found statements are instrumented
based on the type of instrumentation point. It di�erentiates between �ne-grained and
coarse-grained instrumentation where coarse-grained instrumentation means that a SEFF
as a whole unit is instrumented and �ne-grained instrumentation generates statements for
the monitoring of speci�c AbstractActions. After all instrumentation points have been
instrumented, all non-instrumented SEFFs are instrumented coarse-grained because they
can be called by the changed code parts. Algorithm 1 summarizes the instrumentation
process in pseudo-code.

Algorithm 1 Source Code Instrumentation based on [21] and [12].
Input: IM, Correspondence Model (CM), Source Code (SC)
Output: Instrumented Source Code

1: SCC← copySourceCode(SC)
2: SCCmodel← parse(SCC)
3: statements: (InstrumentationPoint→ Statements)← �ndStatements(IM, CM, SCC-

model)
4: instrumentSourceCode(statements, CM)
5: instrumentCoarseGrained(statements, CM, SCCmodel)

The second implementation by Monschein uses the extended IM and the JavaParser
[75] which o�ers a parser and AST for Java from version 1 to version 15 with a non-
Ecore-based meta-model [60]. The instrumentation process takes the extended IM, the
correspondence model of Vitruvius, and the source code as input [75]. As a result, the
adaptive instrumentation does not copy the source code and modi�es it directly instead.
For every ServiceInstrumentationPoint, the SEFF is instrumented coarse-grained. If
the ServiceInstrumentationPoint includes ActionInstrumentationPoints, these instru-

19

2. Foundations

mentation points are instrumented �ne-grained. The instrumentation process is depicted
in Algorithm 2 in pseudo-code.

Algorithm 2 Source Code Instrumentation from [75].
Input: Extended IM, Correspondence Model (CM), Source Code (SC)
Output: Instrumented Source Code

1: for all SIM ∈ IM.serviceInstrumentationPoints do
2: sourceCodeElements← getSourceCodeElements(SIM.service, CM)
3: instrumentServiceCall(sourceCodeElements)
4: for all AIP ∈ SIM.actionInstrumentationPoints do
5: actionSourceCodeElements← getSourceCodeElements(AIP.action, CM)
6: instrumentAbstractAction(sourceCodeElements, AIP.type)
7: end for
8: end for

2.9.5. Monitoring, Calibration, and Self-Validation

The previous work in [73] and [104] consider the estimation of PMPs. Monschein extended
the calibration and self-validation with a Validation Feedback Loop and Transformation
Pipeline [75]. While the Validation Feedback Loop incorporates the self-validation results
into the next validation run, the Transformation Pipeline is responsible for updating the
PCM instance based on self-validations. Moreover, Monschein’s extensions are combined
with the monitoring, calibration, and self-validation in a pipeline which allows its automatic
execution during Dev-time and Ops-time [74].

2.10. Integration of Existing Source Code into VITRUVIUS

The co-evolution approach and the CIPM approach assume that Vitruvius has been used
since the beginning of the development [71, 73]. However, this assumption does not hold
in the real world. Therefore, several approaches have been proposed to integrate existing
source code into Vitruvius [70, 71]. The approaches have in common that they reverse
engineer a PCM instance from the source code at �rst.

"Reverse engineering is the process of analyzing a subject system to
• identify the system’s components and their interrelationships and
• create representations of the system in another form or at a higher level

of abstraction." [13]

Afterwards, the code model and PCM instance are added to the V-SUM while establishing
correspondences between source code elements and PCM elements in the correspondence
model of Vitruvius [71].

20

3. Approach

This chapter presents an overview over the approach of this thesis following the PRICoBE
principle [86]. The Problems are introduced in section 3.1. section 3.2 describes the arising
Research questions followed by the Idea in section 3.3 to solve the problems and answer the
research questions. The idea’s detailed realization is illustrated in chapter 4. The resulting
Contributions and Bene�ts are explained in section 3.4 and section 3.5, respectively. At
last, the results of the performed Evaluation are shown in chapter 5.

3.1. Problem

The presented approach is embedded in the context of the CIPM approach and Microservice-
based applications. As outlined in section 2.9, parts of the Dev-time part are prototypically
implemented without forming a complete pipeline [14, 21, 75] and partly evaluated with
arti�cial projects [14, 21]. Moreover, the implementations are based on the original JaMoPP
version [14, 21] which only supports Java code conforming to the JLS 3 [48]. This leads to
the following central problem statement.

Central Problem Statement The current prototypical implementations for parts of the
CIPM approach cannot be used for the automatic execution of the Dev-time part at once
and are not evaluated in combination regarding their feasibility for real world applications
(P0). Furthermore, they do not support Java source code conforming to the JLS 7 or a later
version (P1).

Problems Regarding the Commit-Based Integration Strategies As mentioned in section 2.6,
there are two strategies for deriving changes for the consistency preservation process
in Vitruvius [67]. These strategies are the delta-based and state-based approaches. In
the context of the CIPM approach, they are extended to extract changes from a commit
and to propagate them [14]. Hence, both strategies are called commit-based integration
strategies.

The delta-based change propagation realized by the Java monitor is not fully evaluated
[14] and the state-based change propagation is not evaluated (P2).

There are approaches for integrating existing source code into Vitruvius [71, 70].
However, they are not suitable for the CIPM approach (P2.1). As a consequence, the
commit-based integration strategies are adapted for the integration.

Problems Regarding the CPRs The Package Mapping CPRs of the co-evolution approach
were adapted for the CIPM approach, but their evaluation indicates that they require
further adjustments (P3.0) [14]. In addition, they are not designed for Microservice-based
applications [71] so that they need a strategy for discovering components in this context

21

3. Approach

(P3.1). Furthermore, the CPRs for the IM are not compatible with the extended IM (P3.2)
[21]. Therefore, the problem P3 considers the absence of complete CPRs for the CIPM
approach.

Dahmane proposed an approach for the incremental �ne-grained SEFF reconstruction,
prototypically implemented it with respect to the IM, and evaluated it [21]. Concerning
the extended IM and the evaluation results, the prototypical implementation requires an
adaptation and extension (P3.2.1).

Problems Regarding the Adative Instrumentation P3.2 and P3.2.1 show that the extended
IM is only partially adapted in the prototypical implementations [21, 75]. Beside the
CPRs, the prototypical implementation of the adaptive instrumentation by Dahmane is
based on the IM and the original JaMoPP version [21] while Monschein’s prototypical
implementation is based on the extended IM and the JavaParser [75]. This means that
there is no prototypical implementation for the adaptive instrumentation which is based
on the extended IM and JaMoPP (P4).

Aim Considering all problems, the main aim of the approach is the evaluation of the
Dev-time part of the CIPM approach with a case study as the representation of a real world
application.

3.2. Research Questions

The previously described problems lead to the following research questions.

R0 How do the prototypical implementations for the �rst step (incremental model updates
and adaptive instrumentation) of the CIPM approach have to be adjusted to be
applicable in combination to real world applications?

R1 How can newer versions of Java be supported?

R2 Which commit-based integration strategy is suitable for the CIPM approach?
Concerning the commit-based integration strategies, R2 represents the central re-
search question containing and summarizing several further aspects. As a conse-
quence, the following questions arise covering these aspects.

• How do the commit-based integration strategies have to be extended to be able
to update the Java models correctly?

• How can the commit-based integration strategies support arbitrary commits?
• How well do the commit-based integration strategies perform compared to each

other?

R3 How can the CPRs be reused and adapted for updating the PCM and extended IM?

R4 How does the adaptive instrumentation have to be adjusted in the context of the
extended IM and Java models?

22

3.3. Idea

3.3. Idea

The basic idea of the approach is to complete the prototypical implementation of the
Dev-time part of the CIPM approach to support CI and evaluate it with a case study. For
integrating existing source code, the commit-based integration strategies are extended so
that a speci�c commit is integrated as the initial commit. In order to support newer Java
versions within the prototypical implementations, the new features of Java are incorporated
into the code models.

3.4. Contributions

Based on the idea, the following contributions are made.

C0 Evaluation of the Dev-time part of the CIPM approach for real world usage

C1 Support for newer versions of Java

C2 Extension, evaluation, and comparison of the commit-based integration strategies

C2.1 Adaptation and evaluation of commit-based integration strategies for the integration
of existing source code

C3 Adaptation, extension, and evaluation of CPRs for the CIPM approach

C3.0 Adaptation, extension, and evaluation of the CPRs of the co-evolution approach for
the PCM

C3.1 Extension and evaluation of a component discovery strategy for the PCM update
and case study

C3.2 Extension and evaluation of CPRs for the extended IM

C3.2.1 Extension and evaluation of the prototypical implementation of the proposed
approach for the incremental �ne-grained SEFF reconstruction

C4 Extension and evaluation of the prototypical implementation of the adaptive instru-
mentation

3.5. Benefits

Based on the idea, the following bene�ts are achieved.

B0 Automatic updates to keep models up-to-date for, e. g., performance predictions

B1 Improved usability of CIPM by supporting newer Java versions

B2 Integration of CIPM with CI for improved usability

23

3. Approach

B2.1 Existing source code can be used with the CIPM approach

B3 Reduction of the overhead for updating the PCM and extended IM

B3.0 Correct update of the PCM

B3.1 Abstraction from source code

B3.2 Correct instrumentation points are set

B3.2.1 Reduction of the monitoring overhead

B4 Reduction of the overhead for the source code instrumentation by automatizing the
process

24

4. The Commit-Based CIPM Approach

This chapter explains the approach in detail. Based on the further development of JaMoPP
described in section 4.1, the change propagation is introduced in section 4.2. Afterwards,
the CPRs for the PCM and extended IM are presented in section 4.4 and section 4.5,
respectively. At last, the adaptive instrumentation is covered in section 4.6.

Parts of the approach are oriented on the TeaStore which is a web-based store for tea
and related products [65] and the selected case study for the evaluation (see section 5.3).

4.1. Development of JaMoPP

The Java monitor requires the capability of JaMoPP to parse single �les [103]. However,
the adapted JaMoPP version assumes that it parses the complete source code with its
dependencies. Therefore, the adapted JaMoPP version was extended to support single �le
parsing. Instead of setting the references directly, the converter between the JDT Core AST
and JaMoPP model creates proxy objects which are resolved to the actual model elements
on demand [52]. To �nd these elements, the reference resolution mechanism of the original
JaMoPP version was re-introduced and extended to cover the new features of the meta-
model. Furthermore, the parsing process was enhanced with a binding-based resolution in
which proxy objects are directly resolved after the parsing using the generated bindings.
As a result, the implementation of the binding-based resolution o�ers a combination of
the principles of the original and adapted JaMoPP versions. The aforementioned extended
version of JaMoPP is referred to as the updated JaMoPP version in the remainder of this
thesis.

4.2. Updating the Java Model

Since the change extraction and propagation were prototypically implemented by Chu-
pakhin [14], the Java monitor has been developed further replacing the delta-based change
propagation with the state-based change propagation [66]. As a result, the updated proce-
dure including the Java monitor is shown in Figure 4.1 in comparison with the state-based
change propagation. As displayed, the di�erence between both procedures is an additional
step in which the JDT Core AST is modi�ed. Therefore, instead of employing the Java
monitor, the state-based change propagation is directly applied.

In Figure 4.2, the process for extracting a commit’s changes is displayed. In a local copy
of the repository, a speci�c commit, usually the latest one, is checked out if there are
changes in Java �les. Otherwise, the propagation stops because there are no changes to
propagate. After the checkout, the project is build to ensure that the instrumented code can

25

4. The Commit-Based CIPM Approach

State-Based
Model

Comparison

Eclipse JDT
AST

Modification

Change
Extraction

(a) Change extraction and propagation with the updated Java monitor.

State-Based
Model

Comparison

Change
Extraction

(b) Change extraction and propagation by directly applying the state-based change propagation.

Figure 4.1.: Comparison of the change propagation with the updated Java monitor and
state-based change propagation.

[Yes]

[No]

Changes in
Java files?

[Yes]Successful
build?

Checkout
commit Parse code

[No]

Figure 4.2.: Detailed and updated change extraction.

be build and to collect the dependencies. If the build fails, the propagation ends. In contrast,
if the build succeeds, the source code is parsed with JaMoPP to generate a complete Java
model including the dependencies. In the resulting model, every compilation unit, package,
and module element is contained within a separate EMF Resource. Technically, only one
Resource can be propagated to the V-SUM at once [102]. The references between Java
models lead to dependencies between the Resources. Therefore, they need to be propagated
in a order which respects the dependencies and avoids the usage of elements before they
are propagated to the V-SUM. However, some Resources can include dependency cycles so
that they still need to be propagated at once which is not possible. Hence, all root objects
are combined into one Resource representing the Java code model which is propagated to
the V-SUM. Additionally, it includes the models for the source code dependencies to also
propagate their changes if, e. g., a dependency is upgraded.

Without modi�cation, the default state-based change resolution strategy would be used
in Vitruvius to create a �ne-grained change sequence for the code model based on EMF
Compare [102, 103]. It takes two models as input for their comparison [24] which are the
Java model in the V-SUM and the Java model of the newly parsed commit in this case.
Then, EMF Compare performs the matching of the elements to �nd equivalent model

26

4.3. Discovering Components

objects. However, the default matching cannot correctly relate Java model elements to each
other due to a lack of knowledge about Java-speci�c properties of the models. Therefore,
the strategy was adjusted to utilize parts of SPLevo. Instead of the default matching
algorithm, the adjusted strategy uses the hierarchical matching algorithm of SPLevo in
combination with the SimilarityChecker. This class is extended to support the updated
JaMoPP version and modules in particular. After the Java-speci�c matching, the default
di�erencing and merge are performed. While the detected di�erences are merged with the
code model in the V-SUM, the change recorder of Vitruvius records the changes [102].
Because EMF Compare ensures the model integrity during the merge [24], the recorded
changes have the same property. As a result, a model element is always created before
it is set as, e. g., the target of a reference. At last, the created Vitruvius changes are
propagated in the V-SUM [102].

By propagating �ne-grained changes, speci�c coarse-grained changes such as the update
of a method are not generated and propagated. If, for instance, a statement is added in
a try block inside of a method, the creation and addition of the statement are reported,
but not on the level of the method which is required by some CPRs at a later point in
time. Hence, a post-processor for the comparison of EMF Compare is installed in which
changed methods are identi�ed. After the �ne-grained change sequence has been created,
the name of a changed method is set to an empty string and back to its actual name to
generate additional Vitruvius changes that are automatically appended to the existing
change sequence and allow the detection of changed methods in CPRs. By appending the
new changes, it is ensured that these additional changes do not infer with the existing
changes.

In the complete process of updating the Java model, a speci�c target commit is checked
out. It is independent of which commit was propagated before allowing a developer, e. g.,
to skip commits. In the context of the integration of existing source code, the Java model
for the initial commit is compared to an empty model representing an empty repository.
As a result, an arbitrary commit can serve as the initial commit.

4.3. Discovering Components

Within the CPRs for the PCM, the �rst necessary step is the creation of components
requiring a component discovery strategy. In the Package Mapping CPRs of the co-
evolution approach, a clear organization of packages is given and required [71]. However,
in general, package structures vary. Thus, components need to be detected di�erently.

The strategy described in the following focuses on Microservice-based applications. As
a consequence, before the strategy is explained, the characteristics of components in the
PCM are compared with the de�nition of Microservices by Fowler and Lewis to clarify
what a component is in a Microservice architecture. As mentioned in section 2.2, in the
de�nition of Microservices, Fowler and Lewis view Microservices as components [31]
so that the characterizations of components and Microservices by Fowler and Lewis are
compared to the context of the PCM. They have in common that a component is a software
unit [31, 7]. Furthermore, a component can be independently deployed in the context of the
PCM [7] enabling its independent replacement and upgrade conforming to the component

27

4. The Commit-Based CIPM Approach

Git
Repository

Developer

VSUM

CPRs

CPRs
Java Model

Extended
IM

CPRs

PCMParsing with
JaMoPP

State-Based
Model

Comparison

Component /
Module
Detector

New

Updated

Figure 4.3.: Model update with updated and new parts.

de�nition of Fowler and Lewis [31]. Microservices expose an explicit API and have explicit
dependencies as components in the PCM [7]. To summarize, Microservices exhibit the same
characteristics as components in the PCM. Therefore, Microservices are components, and
the main goal of the component discovery strategy is to �nd Microservices. Nevertheless,
regular components can be still included in the source code.

During the change propagation, a CPR reacts to exactly one change. Thus, it cannot
consider the complete source code structure. Moreover, the structure is only partly available
because the change propagation is ongoing. In the CPRs, components cannot be detected
for this reasons, and a new step was added before the changes are propagated. As shown
in Figure 4.3, the Component / Module Detector realizing the component discovery and
allowing the consideration of the complete source code and additional �les in the repository
is located after the parsing and before the state-based model comparison.

The developed component discovery strategy depicted in Figure 4.4 is oriented on
the TeaStore and its organization and structure. In the TeaStore, every Microservice
is contained within its own directory wich corresponds to a module of the employed
Maven build tool [99]. As a consequence, Maven modules and build projects in general
are considered for components by looking at the con�guration �les of build tools, e. g., a
pom.xml for Maven [100] or build.gradle for Gradle [42]. While the Component / Module
Detector checks for every compilation unit in the code model originating from the source
code its relation to a component, the �les in the repository are investigated. If the Java
�le corresponding to the compilation unit model is contained within a directory which
includes only a POM �le, the Maven module is identi�ed as a component candidate because
it can describe a Microservice in development without a deployment con�guration. If the
directory includes a Dockerfile which is a deployment con�guration �le [85] in addition
to a POM �le, the Maven module is assumed to be a Microservice. After a component and
component type has been found, the Component / Module Detector collects the classes of
the considered compilation unit in a set representing the Maven module and component.

28

4.4. The CPRs for the PCM

Identify class sets Assign type to
class sets

Developer decides
on demand

Create Java
module models for

components

Figure 4.4.: Process of the component discovery strategy.

By iterating over all root model elements and because every signi�cant compilation unit
is contained in exactly one Maven module, the Component / Module Detector creates
disjoint sets of classes.

Based on the previous results, for component candidates, the developer is asked to decide
which actual type the Maven module has. Available options are Microservice component,
regular component, part of another component, and no component. Depending on the
decision, the set of classes is di�erently handled. For a Microservice or regular component,
an actual component in the PCM will be created. If the component candidate is part
of another component, the developer has also to decide to which component the set of
classes belongs. In contrast, if the classes correspond to no component, they are ignored.
The decisions of the developer are stored and loaded to reduce the frequency of required
interactions. At last, the options for component candidates can be extended to allow, e. g.,
multiple components so that the set of classes is split into multiple sets. In this case, other
techniques are needed to �nd reasonable partitions.

After all actual components have been selected, a mechanism is still required to identify
the components in the CPRs during the change propagation. With the introduction of
modules in Java 9 [40] and their availability in the updated JaMoPP version, modules
are considered as an appropriate means for representing a component in the code model.
Therefore, a module model object is created for every component and assgined to the
classes of the component. In order to avoid inferences with existing modules, all modules
are removed before components are discovered.

4.4. The CPRs for the PCM

This section introduces the CPRs for the PCM implemented in the Reactions language.
Based on the component discovery strategy, the CPRs for the components were adjusted.

If the CPRs encounter a class within a module and the module for the �rst time, a compo-
nent is created for the module. Afterwards, a correspondence between the module and the
component and between the class and the component is created. In case of a class within
a module for which a component exists, only a correspondence between the class and the
component is added. On the other hand, a component is removed if the corresponding
module is deleted or if the last class corresponding to the component is deleted.

Based on the origin of a module, Microservice and regular components are distinguished
although there is no explicit di�erentiation in the PCM.

Beside the component detection, the interface detection is another important step in the
CPRs. It relies on the type of a component. For regular components, their public classes
are modeled as interfaces. For Microservices, the TeaStore de�nes REST APIs [65] so that
the interface detection concentrates on identifying classes realizing a REST API. In its

29

4. The Commit-Based CIPM Approach

concrete implementation, the TeaStore builds upon the Java Platform, Enterprise Edition
(Java EE) Speci�cation, v7 and especially uses the Java Servlet Speci�cation Version 3.1 and
Java API for RESTful Web Services (JAX-RS) Version 2.0 for implementing the REST APIs
[23, 99].

JAX-RS is designed for REST APIs in which a class can be turned into a REST API with
di�erent annotations [83]. Every class annotated with Path or ApplicationPath is an
API class. Additionally, if a class contains a method annotated with Path or a request
method designator which is an annotation that is annotated with HttpMethod, the class
also realizes a REST API. In the CPRs for the PCM, all cases are checked for a class. If one
case is true, an PCM interface is created for the class. Nonetheless, there is a limitation in
the CPRs. They do not consider the dynamic addition or removal of annotations so that
they discover interfaces only for already annotated classes and delete the interface when
the class is removed.

In the Servlet speci�cation, a HttpServlet as a specialization of a Servlet provides
protected methods for the default HTTP methods, e. g., doGet, to implement the handling
of HTTP requests with the corresponding methods [11, 54]. Overriding the methods,
a REST API can be implemented in the subclass of a HttpServlet. As a result, every
class which inherits from HttpServlet is coverted to a PCM interface. Additionally, the
superclass GenericServlet of the HttpServlet [54] and the interface Servlet which is
implemented by the GenericServlet [53] are also represented as interfaces in the PCM to
recreate the class hierarchy of servlets as an interface hierarchy.

Both previously presented speci�cations evolved into the Java Servlet Speci�cation
Version 4.0 [10] and JAX-RS Version 2.1 [9] and were renamed to Jakarta Servlet 4.0 and
Jakarta RESTful Web Services 2.1 [58]. Furthermore, the renamed speci�cations developed
further to the Jakarta Servlet Speci�cation 5.0 [59] and Jakarta RESTful Web Servcies 3.0 [18].
In the course of this speci�cation releases, no major changes occurred to the underlying
principles [10, 59, 9, 18, 58] on which the CPRs are based. Therefore, the CPRs can be used
in the context of all aforementioned versions of the speci�cations.

After the PCM interfaces have been detected, provided and required interfaces can be
identi�ed. An interface is provided by a component if the PCM interface corresponds
to a class or is implemented by a class. In the case of required interfaces, similar to the
co-evolution approach, an interface from a component is required by another component
if there is a �eld in this component with a type corresponding to the interface or if the
type corresponding to the interface is imported by a type in this component.

Within classes which are modeled as PCM interfaces, all public methods are converted
to OperationSignatures. For all OrdinaryParameters which are added in such methods, a
PCM parameter is created. The type of the OrdinaryParameter determines the PCM data
type for the parameter by searching a corresponding data type at �rst. If none can be
found, a new data type is created based on the strategy of the co-evolution approach. As a
consequence, array types and subtypes of the Map or Collection interface with explicit
type arguments are modeled as CollectionDataTypes where the array’s element type or
the explicit type argument is utilized as the collected data type so that the data type creation
is recursively applied on the type. Primitive types are represented as PrimitiveDataTypes.
In other cases, a CompositeDataType is generated. For all �elds of an source code type, an
InnerDeclaration is created and added to the CompositeDataType. The data type for the

30

4.4. The CPRs for the PCM

InnerDeclaration is also recursively created with the �eld type. However, the recursive
application of the data type creation on InnerDeclarations can lead to a large number
of data types including a modeling of private �elds within classes of the Java standard
library or dependencies. Therefore, InnerDeclarations are only created for the parsed
source code. It limits the number of data types and hides implementation details of classes
outside of the observed source code while the details of the source code are covered.

A special case for methods corresponding to OperationSignatures is the reduction of
their visibility. If, e. g., a public method is changed to a private method, the Operation-

Signature is removed because the method is considered to be non-architectural-relevant
after the change.

If a concrete class method corresponds to an OperationSignature or is the implementa-
tion of a method corresponding to an OperatonSignature, a SEFF is created for the method.
As outlined in section 4.2, the propagated change sequence contains name changes for all
changed methods. Therefore, if the name of a method is set to a valid string, i. e., not null
and not an empty string, and the method has a corresponding SEFF, the SEFF reconstruction
is executed. Moreover, in case that ResourceDemandingInternalBehaviours are generated
during the incremental SEFF reconstruction, they are added to the SEFF. For the incremen-
tal �ne-grained SEFF reconstruction, ResourceDemandingInternalBehaviours are handled
di�erently. After the old and new SEFFs have been merged, the ResourceDemandingInternal-
Behaviours in the old SEFF are replaced by the ResourceDemandingInternalBehaviours of
the new SEFF. Additionally, it is checked that every InternalCallAction points to one of
the newly created ResourceDemandingInternalBehaviours. If there is an InternalCall-

Action which references an removed ResourceDemandingInternalBehaviour, the refer-
ence is updated to the corresponding new ResourceDemandingInternalBehaviour.

The CPRs for the PCM are summarized in Table 4.1. It is assumed that there is only
one Repository corresponding to the code model so that it is created once and has no
corresponding Java element.

PCMmeta-model element Java element
Repository -
BasicComponent At least one class in a module
OperationInterface Class annotated with Path or ApplicationPath, class

containing a method annotated with Path or a re-
quest method designator, subclass of HttpServlet,
HttpServlet, GenericServlet, Servlet, public class

OperationSignature & Parame-
ters

Public methods & OrdinaryParameters

CompositeDataType Type of a parameter which is not a PrimitiveDataType
or CollectionDataType

CollectionDataType Subtype of Map or Collection interface with explicit
type argument, array

RequiredRole Field typed with an OperationInterface from another
component, import of OperationInterface from an-
other component

31

4. The Commit-Based CIPM Approach

PCMmeta-model element Java element
ProvidedRole Class implementing an OperationInterface, class cor-

responding to an OperationInterface

SEFF Method with a corresponding OperationSignature

Table 4.1.: Overview over the implemented CPRs for the PCM.

4.5. The CPRs for the Extended IM

The CPRs between the Java model and the IM were updated to support the updated JaMoPP
version and the extended IM. If the simple transformation is noti�ed about a changed
method, it looks up the corresponding SEFF and service instrumentation point. If there is
no service instrumentation point, a new one is created and added to the extended IM. In
case of an existing service instrumentation point, all action instrumentation points are
removed. After an empty service instrumentation point has been obtained, a new action
instrumentation point is created for every action in the SEFF.

A temporal constraint for these CPRs was identi�ed: the instrumentation points can
only be created after the SEFF has been created and reconstructed. Otherwise, there are
no SEFF or SEFF actions during the execution of the CPRs, and the extended IM contains
no instrumentation points after the change propagation. To ensure that this temporal
constraint is met, the CPRs between Java and the extended IM extend the incremental
SEFF reconstruction so that they are always directly executed after the incremental SEFF
reconstruction.

An alternative to mitigate the cohesion between the CPRs introduced by the tempo-
ral constraint is the usage of CPRs between the PCM and extended IM which were also
de�ned. The CPRs are implemented in the Reactions language and create or delete an
instrumentation point if a SEFF or SEFF action is created or deleted. As a consequence,
if the SEFF reconstruction leads to changes in the PCM, they are transitively propagated
to the extended IM. Internally, correpsondences between the SEFF or SEFF action and
its instrumentation point are established to �nd, e. g., the corresponding service instru-
mentation point to a SEFF and to add an action instrumentation point to this service
instrumentation point. However, the CPRs for the removal of instrumentation points
consider two cases. At �rst, they check for corresponding instrumentation points and
delete them. Secondly, they delete all instrumentation points without a set SEFF or SEFF
action or with a set proxy oject because the SEFF or SEFF action can be deleted in certain
cases before the changes are transitively propagated and the instrumentation point is
deleted.

To support further SEFF actions in the extended IM, the extended IMM has been ex-
tended. It includes the additional options EXTERNAL_CALL (for ExternalCallActions) and
INTERNAL_CALL (for InternalCallActions) in the InstrumentationType.

32

4.6. Adaptively Instrumenting the Source Code

Copy Java model Add statements for
monitoring

Print instrumented
Java model

Figure 4.5.: Process of the adaptive instrumentation.

4.6. Adaptively Instrumenting the Source Code

Algorithm The adaptive instrumentation presented in this thesis is a combination of the
existing prototypical implementations. The resulting algorithm is listed in 3 and visualized
in Figure 4.5.

Algorithm 3 The newly implemented Source Code Instrumentation as the combination
of the existing Source Code Instrumentations (see Algorithm Algorithm 1 and Algorithm
Algorithm 2).
Input: Extended IM, Correspondence Model (CM), Source Code Model (SCM), Perform

Full Instrumentation Flag (PFI)
Output: Instrumented Source Code

1: SCMC← copySourceCodeModel(SCM)
2: for all SIM ∈ Extended IM.serviceInstrumentationPoints do
3: sourceCodeElements← getSourceCodeElements(SIM, CM)
4: copiedElements← �ndCopiedStatements(sourceCodeElements, SCMC)
5: instrumentService(SIM.service, copiedElements)
6: for all AIP ∈ SIM.actionInstrumentationPoints do
7: if AIP.active or PFI then
8: instrumentAbstractAction(AIP.type, AIP.action, copiedElements)
9: end if

10: end for
11: end for
12: printModel(SCMC)

At �rst, the adaptive instrumentation copies the code model in the V-SUM. Afterwards,
every service instrumentation point is handled separately. For each service instrumentation
point, the corresponding method and source code statements of its action instrumentation
points are obtained. Based on the position of the code elements in the original model,
their equivalent elements within the copied code model are looked up. Then, the SEFF
and selected actions are instrumented. An action is only instrumented if the action in-
strumentation point is active or a full instrumentation shall be performed in which all
instrumentation points are instrumented. During the actual instrumentation, model ele-
ments for instrumentation statements are created and added to the copied code model. The
instrumentation statements contain method calls to a monitoring library which generates
and transmits monitoring probes to the calibration pipeline [15]. At last, the copied and
instrumented code model is printed. To generate a compilable instrumented version of the
source code, the local clone of the repository is copied. Every root model object originating

33

4. The Commit-Based CIPM Approach

from a source �le is related to the equivalent source �le in the copied repository. Next, the
root model object is printed into the found source �le. The instrumentation statements
require the monitoring library during the compilation so that the references can be re-
solved by the compiler. To simplify the injection of the monitoring library and because the
model objects of the instrumentation statements also require a model of the monitoring
library in the copied code model, a minimal model of the monitoring library is generated.
It consists of the called methods without an implementation and further elements which
are not referenced. In addition, the model of the monitoring library is printed into every
build project for the compilation and removed afterwards for the deployment.

In case that a method corresponding to a SEFF is instrumented, several statements for
the method are generated. At the beginning of the method, one statement reports the
entering of the method while other statements transfer the method arguments. After the
original statements, the last instrumented exit statement signals the end of the method. If
a BranchAction is instrumented, only an enter statement within the corresponding state-
ment is added. For ExternalCallActions, a statement before the method call signals the
external call. The number of iterations of AbstractLoopActions is counted. As a result, a
statement before a loop initializes a counter which is incremented within the loop. After the
loop has ended, an exit statement �nishes the instrumentation of an AbstractLoopAction.
InternalCallActions are instrumented in the same way as InternalActions. Correspond-
ing statements will be surrounded by an enter and exit statement. All instrumentation
statements deliver the id of the SEFF or SEFF action.

For InternalActions and InternalCallActions, two edge cases are considered. If the
last statement is a return statement, the addition of the exit statement after the return
would result in code which is not compilable. Therefore, the return value is stored in a
new local variable within a separate statement. After this statement, the exit statement for
the InternalAction is added followed by the return statement with the new local variable
as return value. Additionally, if the corresponding statement of an InternalAction is the
statement of an if statement, it is swapped with a block. Then, the original statement is
added to the block and instrumented.

Example To illustrate the approach, a small example is given. It considers the CacheManager-
Endpoint in version 1.3.1 of the TeaStore. As indicated by the package declaration
shown in the class’ excerpt in Listing 4.1, the class is contained in the Maven mod-
ule tools.descartes. teastore.persistence [99]. Furthermore, the Maven module
includes a Docker�le so that a module is created for this Persistence service.

1 package tools.descartes.teastore.persistence.rest;

2 [...]

3
4 @Path("cache")

5 [...]

6 public final class CacheManagerEndpoint {

7 [...]

8
9 @DELETE

10 @Path("/cache")

34

4.6. Adaptively Instrumenting the Source Code

SEFF clearAllCaches

Start

Stop

InternalCallAction 1

InternalAction 1

Figure 4.6.: SEFF of the clearAllCaches method.

11 public Response clearAllCaches() {

12 [...]

13 }

14 }

Listing 4.1: Excerpt of the CacheManagerEndpoint [99]).

When the CPRs for the PCM encounter the CacheManagerEndpoint, the associated
module is detected, and a component is generated for it. Then, the CacheManagerEndpoint

is annotated with Path [99]. As a result, the CPRs create a PCM interface for the class
which is provided by the Persistence component at the same time. The public method
clearAllCaches is also annotated with Path and the request method designator DELETE
[99, 83]. If the class had not been annotated with Path, the class would have still been
modeled as an interface because of the annotated method. For clearAllCaches, a SEFF
is generated and reconstructed. It includes an InternalCallAction and InternalAction

as depicted in Figure 4.6. In the CPRs for the extended IM, a new action instrumentation
point is created for every action.

During the adaptive instrumentation, the corresponding statement of the InternalAction
is enhanced by an enter and exit statement as listed in Listing 4.2. However, the code
would not be compilable because the exit statement is located after the return statement.
Therefore, as described in section 4.6, the return value is stored in a local variable which is
returned after the exit statement. The improved instrumented code is shown in Listing 4.3.

35

4. The Commit-Based CIPM Approach

1 monitoringController.enterInternalAction("_YHXHhwzdEeyhr8BpjCJSUQ");

2 return Response.ok("cleared").build();

3 monitoringController.exitInternalAction("_YHXHhwzdEeyhr8BpjCJSUQ");

Listing 4.2: Direct instrumentation of the InternalAction in the clearAllCaches method
(partly from [99]).

1 monitoringController.enterInternalAction("_YHXHhwzdEeyhr8BpjCJSUQ");

2 Response resp1 = Response.ok("cleared").build();

3 monitoringController.exitInternalAction("_YHXHhwzdEeyhr8BpjCJSUQ");

4 return resp1;

Listing 4.3: Improved instrumentation of the InternalAction in the clearAllCaches

method (partly from [99]).

36

5. Evaluation

This chapter covers the evaluation of the previously presented approach. Before section 5.2
introduces the evaluation plan, the used metrics are de�ned in section 5.1. Based on the
plan, the case study is described in section 5.3, and the planned experiments with the case
study are explained in section 5.4. Their results are investigated in section 5.5 followed by
an assessment of the threats to validity in section 5.6.

5.1. Metrics

This section de�nes metrics which are used throughout the evaluation.

5.1.1. Jaccard Coe�icient

Originally de�ned by Jaccard [57], the Jaccard similarity coe�cient (JC) is de�ned as

�� (�, �) = |� ∩ � ||� ∪ � |
and measures the similarity of two sets � and � [44]. In the case of a JC of 1.0, both sets

are equal whereas lower values towards zero indicate more dissimilar sets. Analogous to
Monschein [75], in the context of models, every model element is seen as a part of a set to
enable the calculation of the JC for models.

In this thesis, the JC is utilized to compare Java and PCM Repository models using a
generalized approach based on the comparison result of EMF Compare. Here, matched
elements are part of the intersection and union of two models while unmatched elements
are only part of the union. As a result, the number of matched elements is counted and
divided by the number of matched and unmatched elements.

For Java models, the matching of the state-based model comparison from section 4.2
is reused. For PCM Repository models, a matching algorithm for structural equality and
with a focus on the relevant elements was implemented. Therefore, ids are ignored, and
named elements must have the same name to be equal. Furthermore, the positions of SEFF
actions are compared, and certain referenced elements need to be similar, e. g., the parent
interfaces of an interface. A complete list is given in Table 5.1.

Model element Required similar referenced elements
OperationInterface Parent interfaces
OperationSignature Parameters and return type

Parameter Data type
CollectionDataType Inner type

37

5. Evaluation

Model element Required similar referenced elements
CompositeDataType Parent type
InnerDeclaration Data type

OperationProvidedRole Provided interface
OperationRequiredRole Required interface

SEFF Described service
CollectionIteratorAction Collection parameter

ExternalCallAction Called service

Table 5.1.: Overview over Repository model elements and their referenced elements which
need to be similar so that the containing elements can be considered to be equal.

5.1.2. Instrumentation Point Matching Score

To evaluate the correct update of the extended IM, the Instrumentation Point Matching
Score (IPMS) is de�ned. Every SEFF and SEFF action has a corresponding instrumentation
point and, reversely, every instrumentation point has a SEFF or SEFF action if the models
are correctly updated. Thus, a matching between the SEFF, SEFF actions, and instrumen-
tation points is performed. If there is an unmatched object, the extended IM is not correct.
As a result, the IPMS is the sum of all unmatched SEFF, SEFF actions, and instrumentation
points.

5.1.3. Lower and Upper Bound of Expected Number of Added Statements
During the Instrumentation

An indicator for the correct instrumentation is the number of added statements during
the instrumentation. As outlined in section 4.6, in certain situations, additional statements
are generated to avoid non-compiling code so that the exact expected number of added
statements cannot be calculated. Instead, a lower and upper bound are determined. For
every service and action instrumentation point, the minimum number of added statements
is known and listed in Table 5.2. In addition, the minimal monitoring library model
generates 10 statements. The combination of the previous values with one counted
statement per service parameter results in the lower bound of expected statements. For the
upper bound, the lower bound is extended by two statements for every return statement
corresponding to an InternalAction or contained within a statement corresponding to an
InternalAction. However, if a new block is set as the statement of an if statement caused
by a return statement as the old statement of the if statement, the instrumentation creates
three instead of two additional statements for the InternalAction. So, the upper bound
can underestimate the actual number of added statements which can be above the upper
bound in turn.

Instrumented element Minimum number of added statements
SEFF 7

ExternalCallAction 1
BranchAction 1

38

5.2. GQM Plan

Instrumented element Minimum number of added statements
LoopAction 3

InternalAction 2

Table 5.2.: Minimum number of added statements per instrumented element.

One remark needs to be given: after the evaluation has been performed, it was discovered
that the lower and upper bound can underestimate the number of added statements in
another situation. As previously mentioned, for every service parameter, one statement is
counted for the bounds. In this case, the service parameters are related to the parameters
of the service corresponding to the instrumented service instrumentation point which
are only created for OrdinaryParameters leaving other parameter types, e. g., variable
length parameters, out. However, every parameter of an instrumented method is registered
within its own statement so that the number of added statements can be higher if non-
OrdinaryParameters are involved.

5.1.4. Accuracy Metrics

Based on the previous work of Monschein, the accuracy of a PCM instance is assessed by
comparing the simulation results with monitoring data [75]. During the comparison, the
following metrics are calculated:

• the di�erences of convential statistical measures (average, minimum, maximum,
standard deviation, variance, and all quartiles),

• the Kolmogorov–Smirnov test (KS test), and

• the Wasserstein distance.

Additionally, the accuracies of two PCM instances are compared by calculating the
metric

"�><?0A4"4CA82B ("1, "2) = ∑|"1|
8=1 F8 ∗ B86=(2><?0A4 ("18, "28))" [75]

where"1, "2 are the sets of accuracy metrics for both PCM instances with |"1| = |"2|,
F8 is the priority for a speci�c metric, and 2><?0A4 calculates the di�erence between two
metrics [75]. Conceptually, for every metric comparison, the more accurate model gains
one point. The resulting score can be used, for example, to recognize an increasing or
decreasing accuracy.

5.2. GQM Plan

In the following, the Goal Question Metric (GQM) plan for the evaluation is presented
[6]. It starts with the declaration of the goals that shall be achieved. Every goal contains
questions to assess if the goal has been achieved. To answer the questions, metrics are
de�ned which are measured in the evaluation.

39

5. Evaluation

The GQM plan makes one assumption about the case study which is a requirement
for the case study at the same time: the case study has a history with several commits
available.

G0 The combined prototypical implementations for the �rst step of the CIPM approach
are applicable to real world applications.

G0 de�nes the main goal of this thesis which is the execution of the Dev-time part of
the CIPM approach with a case study as the representation of a real world application.

Q0.1 Can the combined prototypical implementations for the �rst step of the CIPM
approach be automatically executed at once?

The automatic execution is one aspect of the CIPM approach. Therefore, Q0.1
is used to assess if the combined prototypical implementations can be automati-
cally executed.

M0.1.1 Satisfaction of G2, G3, and G4 (Yes/No):

G2, G3, and G4 regard the di�erent prototypical implementations. As
a consequence, their successful achievement is a requirement for their
combination and G0 so that the expected answer is yes.

M0.1.2 Execution time of the combined prototypical implementations (Time)

If the combined prototypical implementations can be automatically exe-
cuted at once, their execution time is measurable and measured.

Q0.2 Are the combined prototypical implementations for the �rst step of the CIPM
approach applicable to a case study?

While Q0.1 checks that the combined prototypical implementations can be
automatically executed, Q0.2 checks their applicability on a case study.

M0.2.1 Comparison of the accuracies of the calibrated PCMs after executing
the Dev-time part of the CIPM approach for a series of the case study’s
commits containing architectural-relevant changes (CompareMetrics)

The outcome of the Dev-time part of the CIPM approach is a calibrated PCM
instance. Hence, for a series of the case study’s commits with architectural-
relevant changes, a series of calibrated PCM instances is generated. In
addition, the successful execution of the CIPM approach results in accu-
rate PCM instances. As a consequence, consecutive PCM instances in the
obtained series are compared with the CompareMetrics function. If all
PCM instances in the series are accurate, the result of the CompareMetrics
function shall be in the interval [−1, 1] indicating a successful execution.

G1 Vitruvius supports newer versions of Java.

To enable the usage of newer Java versions in Vitruvius and for the other goals, G1
is de�ned.

40

5.2. GQM Plan

Q1.1 Is Java source code containing features of Java 7-15 correctly propagated to
the V-SUM?
The introduction of the support for newer Java versions allows the usage of
features of Java 7-15. Therefore, Q1.1 checks the correctness of the propagation
of Java models containing these features.

M1.1.1 Equality between the Java code models in the VSUM and Java code
models created by parsing the propagated source code (JC)
After the propagation of a Java code model with features of Java 7-15, the
model in the V-SUM shall be equal to a model of the directly parsed source
code. As a result, the JC for both models is calculated and is expected to be
one.

G2 The state-based change propagation is capable of automatically applying changes from
Git commits to Java code models.
The CIPM approach starts with the propagation of a commit’s changes whose evalu-
ation is covered by G2.

Q2.1 Does using the state-based change propagation correctly update the Java code
models with changes from a Git commit?
Q2.1 covers the correctness of the state-based change propagation.

M2.1.1 Equality between the Java code models updated by using the state-based
change propagation and Java code models created by parsing the complete
state with the Git commit (JC)
Similar to M1.1.1, the Java code models in the V-SUM after the change
propagation shall be in the same state as if the complete model of the source
code with the commit’s changes would be integrated into the V-SUM. Thus,
the source code is parsed again, and its model is compared to the the code
model in the V-SUM to calculate their JC. It is expected to be one.

G2.1 The commit-based integration strategy integrates existing source code into Vitruvius
for the CIPM approach.
A special case of the state-based change propagation is its usage for the integration
of existing source code into Vitruvius leading to G2.1.

Q2.1.1 Are the changes between an empty repository and the initial commit correctly
propagated to the V-SUM?
In the �rst step, Q2.1.1 is responsible for the correct propagation of the initial
commit’s changes into the V-SUM.

M2.1.1.1 Satisfaction of G2 (Yes/No)
As the changes are propagated using the state-based change propagation,
its correct operation is required which is covered by G2. Therefore, a yes
as answer is expected.

41

5. Evaluation

M2.1.1.2 Equals M2.1.1 (JC)
Analogous to M2.1.1, the JC for the code model in the V-SUM and the
model of the propagated and repeatedly parsed source code is calculated
which shall be one.

Q2.1.2 Do the CPRs correctly update the PCM and extended IM after changes in the
Java code models?
In the second step, Q2.1.2 checks that there are CPRs correctly updating the
PCM and extended IM.
M2.1.2.1 Satisfaction of G3 (Yes/No)

Achieving G3 regarding the CPRs for the PCM and extended IM ful�lls
Q2.1.2. Therefore, the expected answer is yes.

Q2.1.3 Is existing source code integrated after using the commit-based integration
strategy?
In addition to Q2.1.2, Q2.1.3 ensures that the PCM and extended IM are cor-
rectly generated and integrated beside the Java model.
M2.1.3.1 Similiarity between the PCM after the integration and a reference

model (JC, manual inspection)
For the PCM, the generated instance is compared to an independently and
manually created reference model by calculating their JC. It is expected
that they are not equal, but similar. As a consequence, the similarities and
di�erences are investigated.

M2.1.3.2 Instrumentation points in the extended IM after the integration com-
pared to all SEFFs and SEFF elements (IPMS)
For every SEFF and SEFF action, there has to be an instrumentation point in
the extended IM so that the value zero is expected for the calculated IPMS.

Q2.1.4 Is there a di�erence between the integration of a commit and the propagation
of multiple commits towards the integrated commit?
With the adaptation of the CPRs for the PCM, there is no di�erentiation between
the integration and propagation of a commit. Therefore, Q2.1.4 checks that
there is no di�erence.
M2.1.4.1 PCM after the integration of a commit compared to the PCM after the

propagation of multiple commits up to the integrated commit (JC, manual
inspection)
The PCM after the integration of a commit is expected to be equal to a PCM
which is generated by propagating multiple commits up to the integrated
commit. Hence, the JC for both PCMs is calculated which shall be one.

G3 There are CPRs for the PCM and the extended IM.
G3 covers the update of the PCM and extended IM based on changes in the Java
code models by summarizing the subgoals G3.0, G3.1, and G3.2.

42

5.2. GQM Plan

Q3.1 Are there CPRs for the PCM?
Q3.1 aims at the CPRs for the PCM.
M3.1.1 Satisfaction of G3.0 and G3.1 (Yes/No)

The successful achievement, i. e., the expected answer yes, of G3.0 and
G3.1 regarding the CPRs for the PCM result in their availability.

Q3.2 Are there CPRs for the extended IM?
In contrast to Q3.1, Q3.2 regards the CPRs for the extended IM.
M3.2.1 Satisfaction of G3.2 (Yes/No)

Analogous to M3.1.1, M3.2.1 checks that G3.2 is reached leading to the
expected answer yes.

G3.0 The CPRs between Java code and the PCM from the co-evolution approach are
adapted for the PCM update triggered by changes in the code models.
G3.0 de�nes the general goal for the CPRs between Java code and the PCM.

Q3.0.1 Is the PCM correctly updated after architectural-relevant changes in the
source code models?
Q3.0.1 is concerned with the correctness of the CPRs and the updated PCM
after architectural-relevant changes.
M3.0.1.1 PCM after architectural-relevant changes compared to a manually

updated PCM (JC, manual inspection)
In M3.0.1.1, the architectural-relevant changes of a commit are analyzed to
manually update the PCM in the state before the changes are applied. Then,
the JC for this manually and the automatically updated PCM is calculated
which shall be one. If there is a derivation, the di�erences are inspected to
assess whether the di�erences are acceptable.

Q3.0.2 Does the PCM remain unchanged after non-architectural-relevant changes
in the source code models?
In contrast to Q3.0.1, non-architectural-relevant changes are not allowed to
change the PCM. Thus, Q3.0.2 checks this condition.
M3.0.2.1 Equality of the PCM before and after non-architectural-relevant changes

(JC)
The JC for the updated PCM and the PCM before the non-architectural-
relevant changes are applied is calculated. It is expected to be one.

Q3.0.3 Is there a di�erence between the propagation of multiple commits and the
propagation of these commits as one commit?
There is no di�erentiation in the the number of propagated commits because the
CPRs depend only on the propagated changes. Therefore, Q3.0.3 investigates if
there is a di�erence in the propagation of multiple commits and these commits
as one commit.

43

5. Evaluation

M3.0.3.1 PCM after the propagation of multiple commits as one commit com-
pared to the PCM after the propagation of the mutliple commits (JC, manual
inspection)
The PCM after the propagation of multiple commits shall be equal to a PCM
obtained after the propagation of these commits as one commit. Thus, the
JC for both PCMs is calculated which shall be one.

G3.1 Components of the case study are discovered during the PCM update in the �rst
step of the CIPM approach.
The more specialized goal G3.1 regards the component discovery for the PCM.

Q3.1.1 Does the addition of components in the Java code models result in the addition
of components in the PCM?
The most important part of G3.1 is the component discovery so that Q3.1.1
checks that added components in the code are also added in the PCM.

M3.1.1.1 Di�erence between the number of added components in the PCM and
the number of added components in the Java code models (Number)
Every added component in the code shall be added in the PCM. Therefore,
the di�erence in the number of added components in the code and PCM is
calculated which shall be zero.

M3.1.1.2 Added components in the PCM compared to the added components
in the Java code models by comparing the updated PCM to a manually
updated PCM (JC, manual inspection)
While M3.1.1.1 checks that the number of added components in the code
equals the number of added components in the PCM, M3.1.1.2 investigates
if the added components are created in the PCM and correspond to the
added components in the code. As a consequence and similar to M3.0.1.1,
the PCM before the addition of the components is manually updated with
the added components only. The JC for the manually and automatically
updated PCM is calculated. It is expected to be not one so that an additional
manual inspection is performed.

Q3.1.2 Does the removal of components in the Java code models result in the removal
of the corresponding components in the PCM?
Another part of the component discovery is the detection of removed compo-
nents which is covered by Q3.1.2.

M3.1.2.1 Di�erence between the number of removed components in PCM and
the number of removed components in the Java code models (Number)
Analogous to M3.1.1.1, every removed component in the code shall result
in the deletion of the corresponding component in the PCM. Thus, the
di�erence in the number of removed components in the code and PCM is
calculated which shall be zero.

44

5.2. GQM Plan

M3.1.2.2 Removed components in the PCM compared to the removed compo-
nents in the Java code models by comparing the updated PCM to a manually
updated PCM (JC, manual inspection)

Analogous to M3.1.1.2, the PCM before the removal of components is man-
ually updated by deleting the components. Then, the JC for the manually
and automatically updated PCM is calculated. There is no expectation on
the value of the calculated JC. As a result, the di�erences of both PCMs are
inspected if the PCM is not one.

Q3.1.3 Do generated components abstract from the corresponding parts in the source
code models?

By the de�nition of the component discovery strategy, generated components
shall abstract from the source code. Q3.1.3 is used to check if the execution of
the prototypical implementation leads to the expected abstraction.

M3.1.3.1 Generated components compared to the corresponding parts in the
source code models (Manual inspection)

In a manual comparison of the code structure and the generated PCM, the
level of abstraction is investigated.

G3.2 The prototypical implementation that updates the IM based on the changes in Java
code models is updated to use the extended IM.

G3.2 regards the CPRs for the extended IM.

Q3.2.1 Is the extended IM correctly updated after changes in the Java code models?

Q3.2.1 checks the correctness of the CPRs for the extended IM.

M3.2.1.1 Instrumentation points in the extended IM after changes compared
to all SEFFs and SEFF elements (IPMS)

Similar to M2.1.3.2, changes of SEFFs result in the update of the extended
IM so that the IPMS is calculated which shall be zero.

G3.2.1 The proposed approach for the incremental �ne-grained SEFF reconstruction
further reduces the monitoring overhead compared to not using the approach.

G3.2.1 de�nes the goal for the incremental �ne-grained SEFF reconstruction as an
approach for an additional reduction of the monitoring overhead.

Q3.2.1.1 Can the monitoring overhead be reduced compared to not using the incre-
mental �ne-grained SEFF reconstruction?

Q3.2.1.1 assesses if the incremental �ne-grained SEFF reconstruction can fur-
ther reduce the monitoring overhead compared to not using this reconstruction
approach.

M3.2.1.1.1 Ratio of deactivated to all instrumentation points (Percentage)

45

5. Evaluation

With M3.2.1.1.1, the reduction of the monitoring overhead in the context
of the instrumentation points for the incremental �ne-grained SEFF recon-
struction is calculated as the ratio of deactivated to all instrumentation
points.

M3.2.1.1.2 Ratio of deactivated action to all action instrumentation points
(Percentage)
In addition to M3.2.1.1.1, M3.2.1.1.2 measures the reduced monitoring
overhead in the context of the action instrumentation points as the ratio of
deactivated action to all action instrumentation points.

M3.2.1.1.3 Comparison of the ratios M3.2.1.1.1 and M4.3.1 (Di�erence)
The potential improvement in the monitoring overhead reduction in the
context of the instrumentation points is expressed in the calculated dif-
ference between the ratios M3.2.1.1.1 and M4.3.1. It is expected that the
di�erence indicates an increased monitoring overhead reduction with the
incremental �ne-grained SEFF reconstruction.

M3.2.1.1.4 Comparison of the ratios M3.2.1.1.2 and M4.3.2 (Di�erence)
Analogous to M3.2.1.1.3, M3.2.1.1.4 calculates the di�erence between the
ratios M3.2.1.1.2 and M4.3.2 in the context of the action instrumentation
points. An indication for an improved monitoring overhead reduction with
the incremental �ne-grained SEFF reconstruction is expected.

M3.2.1.1.5 Di�erence between the monitoring overhead with and without
incremental �ne-grained SEFF reconstruction (Time di�erence)
In contrast to M3.2.1.1.3 and M3.2.1.1.4, M3.2.1.1.5 measures the dif-
ference between the reduced monitoring overhead with and without the
incremental �ne-grained SEFF reconstruction in the temporal dimension.

M3.2.1.1.6 Percentage by which the monitoring overhead in M3.2.1.1.5 is re-
duced (Percentage)
M3.2.1.1.6 calculates the relative value for the time di�erence inM3.2.1.1.5.

Q3.2.1.2 How large is the reduction of the monitoring overhead in general?
After Q3.2.1.1 checked that the monitoring overhead can be reduced with the
incremental �ne-grained SEFF reconstruction, Q3.2.1.2 quanti�es the extent of
the reduced monitoring overhead.

M3.2.1.2.1 Equals M3.2.1.1.1 (Percentage)
M3.2.1.1.1 calculates the reduction in the monitoring overhead in the con-
text of the instrumentation points so that its value is reused for M3.2.1.2.1.

M3.2.1.2.2 Equals M3.2.1.1.2 (Percentage)
Similar to M3.2.1.2.1, the value of M3.2.1.1.2 which represents the reduced
monitoring overhead in the context of the action instrumentation points is
reused.

46

5.2. GQM Plan

M3.2.1.2.3 Di�erence between the monitoring overhead with full instrumen-
tation and with the incremental �ne-grained SEFF reconstruction (Time
di�erence)
In addition to M3.2.1.2.1 and M3.2.1.2.2, M3.2.1.2.3 compares the moni-
toring overhead with the incremental �ne-grained SEFF reconstruction to
the monitoring overhead with the full instrumentation by calculating their
di�erence in the temporal dimension.

Q3.2.1.3 Is there an improvement in the estimated PMPs?
Q3.2.1.3 extends on the reduced monitoring overhead to assess if the reduction
results in an improvement of the estimated PMPs.
M3.2.1.3.1 Accuracy of the PCM with estimated PMPs without the incremental

�ne-grained SEFF reconstruction compared to the accuracy of the SEFF
with estimated PMPs with the incremental �ne-grained SEFF reconstruction
(CompareMetrics)
For the accuracy of validated PCMs with and without the incremental �ne-
grained SEFF reconstruction, the CompareMetrics function is calculated.
It is expected that the validated PCM with the incremental �ne-grained
SEFF reconstruction is more accurate because of the reduced monitoring
overhead.

G4 A prototypical implementation adaptively instruments the source code based on the
extended IM and the Java code models and reduces the monitoring overhead.
G4 covers the adaptive instrumentation.

Q4.1 Are all and only the activated instrumentation points of the extended IM
correctly instrumented in the instrumented source code?
Q4.1 checks that the activated instrumentation points are correctly instru-
mented.
M4.1.1 Changed methods in the instrumented source code compared to meth-

ods corresponding to a SEFF (Di�erence)
The instrumented source code is parsed to generate a Java model which is
compared to the code model in the V-SUM to detect all changed methods. All
of these found methods shall correspond to methods with a corresponding
SEFF because only such methods are instrumented. A successful match for
the methods provides an indication for a correct instrumentation.

M4.1.2 Number of added statements in the instrumented source code compared
to the expected number of added statements (Di�erence)
In addition to M4.1.1, the statements added by the instrumentation are
counted, and the resulting number is compared to the expected number
of added statements. By knowing the number of added statements per
instrumentation point, a lower and upper bound for the expected number
of added statements can be approximated so that the actual number of added

47

5. Evaluation

statements has to lie within the bounds. In this case, M4.1.2 indicates a
correct instrumentation.

M4.1.3 Comparison of instrumented statements with the instrumentation points
in the extended IM (Manual inspection)
While M4.1.1 and M4.1.2 are indications for a correct instrumentation,
they do not guarantee the correctness. As a result, a manual inspection of
randomly chosen instrumentation points ensures that they are correctly
instrumented.

Q4.2 Can the instrumented source code be executed to generate monitoring probes?
Q4.2 expands on Q4.1 to assess if the instrumented source code can be used
for the monitoring.

M4.2.1 Successful compilation of the instrumented source code (Yes/No)
The �rst step for the monitoring is the compilation of the instrumented
source code which shall result in the expected answer yes.

M4.2.2 Successful execution of the instrumented source code (Yes/No)
The second step is the actual execution of the instrumented source code for
the monitoring. Thus, yes is expected as answer.

M4.2.3 Accuracy of the validated PCM (Accuracy Metrics)
At last, the accuracy for the PCM validated by the monitoring of the instru-
mented source code is determined using the accuracy metrics.

Q4.3 How large is the reduction of the monitoring overhead?
Q4.3 complements Q4.1 and Q4.2 by investigating the reduction of the moni-
toring overhead.

M4.3.1 Equals M3.2.1.1.1 (Percentage)
Analogous to M3.2.1.1.1, the reduction of the monitoring overhead in the
context of the instrumentation points is given as the ratio of deactivated to
all instrumentation points.

M4.3.2 Equals M3.2.1.1.2 (Percentage)
Analogous to M3.2.1.1.2 and similar to M4.3.1, the reduced monitoring
overhead is also calculated in the context of action instrumentation points
as the ratio of deactivated action to all action instrumentation points.

M4.3.3 Di�erence between the monitoring overhead with the full and adaptive
instrumentation (Time di�erence)
In addition to M4.3.1 and M4.3.2, the reduction of the monitoring overhead
is also determined in the temporal dimension as the di�erence between the
monitoring overhead with the adaptive instrumentation and the monitoring
overhead with the full instrumentation.

48

5.3. Case Study

M4.3.4 Percentage by which the monitoring overhead is reduced (Percentage
based on M4.3.3)
M4.3.4 expands on M4.3.3 by calculating the relative value for the reduced
monitoring overhead in M4.3.3.

5.3. Case Study

Based on the GQM plan, the following requirements for the case study are identi�ed.

REQ1 The case study is a Java- and Microservice-based application.
As the prototypical implementation supports only Java code, and the CPRs are de�ned
for Microservice-based applications, the case study needs to be a Microservice-based
application written in Java.

REQ2 The case study has a Git repository with a history consisting of several commits.
To propagate Git commits and their changes to simulate the development of the case
study, a history in a Git repository is required.

REQ3 The case study is an open source project and its repository is publicly accesible.
Using an open source project, the corresponding license simpli�es the use of the
case study for the evaluation. Besides, the publicly accesible repository allows the
independent repetition of the evaluation.

REQ4 The commits contain architectural-relevant changes.
Architectural-relevant changes in the commits lead to an update of the PCM. Thus,
they can be used to evaluate the CPRs.

REQ5 For a speci�c commit, there is a manually created PCM instance.
To evaluate the integration of existing code, the automatically generated PCM shall
be compared to a reference instance. Therefore, a reference PCM needs to be available
which models the case study’s architecture at a particular point in time represented
by a speci�c commit.

Based on the requirements, the TeaStore was selected as case study.
The TeaStore provides a Web-based store for tea and related products [65]. It is designed

as a test and benchmarking framework for the evaluation of, e. g., performance modeling
approaches, run-time auto-scalers, or energy e�ciency and power prediction methods.
The architecture implemented in Java consists of the six Microservices WebUI, Auth,
Image-Provider, Recommender, Persistence, and Registry depicted in Figure 5.1 with their
relations. The relations represent the communication paths between the Microservices
realized by REST calls. In detail, the Registry service is responsible for the registration and
discovery of the other Microservices. While the WebUI provides the user interface, the Auth
service enables the authentication of users, the Image-Provider delivers images displayed
in the store, and the Recommender service suggests products to the user. All services

49

5. Evaluation

Figure 5.1.: Microservice-based architecture of the TeaStore [65].

except the Registry rely on the Persistence service for the retrieval and storage of data.
In addition to the aforementioned Microservices, there is a supporting TraceRepository
service for the built-in monitoring with Kieker which collects monitoring information if
the monitoring is enabled. Beside the Microservices, the TeaStore also contains the Entities
and RegistryClient libraries which include common data structures and functionality for
all Microservices [99].

The source code and history of the TeaStore is available on GitHub1 under the open
source license Apache License 2.0 [99]. On 27th August 2021, the 1612 commits include
the versions 1.0.0, 1.0.1, 1.0.2, 1.1.0, 1.2.0, 1.2.1, 1.3.0, 1.3.1, 1.3.2, 1.3.3, 1.3.4, 1.3.5, 1.3.6,
1.3.7, 1.3.8, 1.3.9, and 1.4.0. For the evaluation, the commits from version 1.1 to version
1.3.1 are used and split into the intervals [1.1, 1.2] (I), [1.2, 1.2.1] (II), [1.2.1, 1.3] (III), and
[1.3, 1.3.1] (IV). Furthermore, there is a manually and independently created PCM [75, 16]
for version 1.3.x [99, 16].

Considering the interval (I), between version 1.1 and 1.2, the mandatory use of Check-
style was introduced leading to a large number of changes: 27 of 50 commits a�ect 144
Java �les with overall 9553 added and 7908 removed lines [99]. Four commits contain
�ve architectural-relevant changes. The �rst change (I.A) is the removal of an servlet
in the Auth service which identi�ed the Auth service. Then, two classes in the Auth
service were renamed (I.B). However, the complete �le content was adjusted to comply
with the Checkstyle con�guration so that the changes were recognized as the removal of
the old classes and addition of the newly named classes instead of a �le renaming. In the
context of methods corresponding to SEFFs, the statement of an if clause was embedded
into a block for this if clause (I.C), in another method, a statement and loop were deleted
while a password check for an if condition was introduced (I.D), and the visibility of two
methods was reduced from public to private (I.E). There are no dependency changes. In

1https://github.com/DescartesResearch/TeaStore

50

https://github.com/DescartesResearch/TeaStore

5.3. Case Study

Table 5.3, the commits of interval (I) with historical information and the occurrence of the
architectural-relevant changes are shown.

Commit Architectural-
relevant
change

Number
changed Java
�les

Number added
lines

Number
removed lines

0 (-) 236 26636 0
1 - 0 0 0
2 - 0 0 0
3 (I.A), (I.B) 23 1022 1022
4 - 1 2 1
5 - 0 0 0
6 - 7 969 755
7 - 8 839 716
8 - 62 4385 4138
9 - 4 20 10
10 (I.C) 3 58 53
11 (I.D) 2 21 6
12 - 17 496 429
13 - 21 568 154
14 - 10 335 26
15 - 4 75 58
16 - 4 58 75
17 - 4 75 58
18 - 1 1 1
19 - 1 2 2
20 - 2 196 145
21 - 3 432 389
22 - 1 49 42
23 - 1 3 0
24 - 0 0 0
25 - 2 142 115
26 - 0 0 0
27 - 1 1 1
28 (I.E) 7 174 96
29 - 24 124 110
30 - 1 1 1
31 - 0 0 0
32 - 0 0 0
33 - 0 0 0
34 - 25 111 125
35 - 25 125 111
36 - 0 0 0
37 - 0 0 0

51

5. Evaluation

Commit Architectural-
relevant
change

Number
changed Java
�les

Number added
lines

Number
removed lines

38 - 0 0 0
39 - 0 0 0
40 - 0 0 0
41 - 0 0 0
42 - 0 0 0
43 - 0 0 0
44 - 0 0 0
45 - 0 0 0
46 - 0 0 0
47 - 0 0 0
48 - 0 0 0
49 - 0 0 0
50 - 0 0 0

Table 5.3.: Historical information about the commits of interval (I) which ranges from ver-
sion 1.1 to version 1.2 [99]. The commits are continuously numbered beginning
with version 1.1 as commit 0 and ending with version 1.2 as commit 50. In
the context of interval (I), the version 1.1 is integrated into Vitruvius so that
it contains the addition of the complete source code as architectural-relevant
change. For the other commits, the contained architectural-relevant change is
explicitly signed. In contrast, - marks no architectural-relevant changes.

The history of interval (II) consists of 20 commits of which 12 commits a�ect �ve Java
�les with overall 141 added lines and one removed line [99]. Three Java �les (123 lines
in total) were added. The changes include three architectural-relevant changes: (II.A) in
the Auth service (II.A1) and WebUI service (II.A2), a new REST endpoint for obtaining the
readiness has been added whereby both implementations are identical, (II.B) a method
corresponding to a SEFF was extended by one statement, and (II.C), in the TraceRepository
service, a servlet has been added which provides functions to control and access log �les.
The remaining changes are not architectural-relevant, and there are no changes in the
dependencies. Table 5.4 displays all commits with historical information including the
occurrence of the architectural-relevant changes.

Commit Architectural-
relevant
change

Number
changed Java
�les

Number added
lines

Number
removed lines

0 (-) 1088 28281 0
1 - 0 0 0
2 - 0 0 0
3 - 0 0 0
4 - 1 5 0
5 - 1 5 1

52

5.3. Case Study

Commit Architectural-
relevant
change

Number
changed Java
�les

Number added
lines

Number
removed lines

6 - 1 2 1
7 - 1 6 0
8 - 1 1 1
9 - 0 0 0
10 (II.B) 1 1 0
11 Reverts (II.B) 2 1 18
12 - 0 0 0
13 (II.B), (II.C) 3 55 1
14 - 1 0 2
15 - 1 5 3
16 - 1 1 1
17 (II.A1) 1 57 0
18 (II.A2) 2 43 14
19 - 0 0 0
20 - 0 0 0

Table 5.4.: Historical information about the commits of interval (II) which ranges from
version 1.2 to version 1.2.1 [99]. The commits are continuously numbered
beginning with version 1.2 as commit 0 and ending with version 1.2.1 as commit
20. In the context of interval (II), the version 1.2 is integrated into Vitruvius so
that it contains the addition of the complete source code as architectural-relevant
change. For the other commits, the contained architectural-relevant change is
explicitly signed. In contrast, - marks no architectural-relevant changes.

In interval (III), seven of 11 commits a�ect four Java �les with overall 121 added and
134 removed lines while nine Java �les with overall 215 added and 227 removed lines are
a�ected by 12 of 100 commits in interval (IV) [99]. Both intervals contain no architectural-
relevant changes and no changes in the dependencies. The historical information of
interval (III) and (IV) are summarized in Table 5.5 and Table 5.6, respectively.

Commit Architectural-
relevant
change

Number
changed Java
�les

Number added
lines

Number
removed lines

0 (-) 238 28421 0
1 - 0 0 0
2 - 0 0 0
3 - 2 2 2
4 - 1 2 1
5 - 1 1 0
6 - 1 1 1
7 - 1 113 131
8 - 2 4 2

53

5. Evaluation

Commit Architectural-
relevant
change

Number
changed Java
�les

Number added
lines

Number
removed lines

9 - 0 0 0
10 - 1 2 1
11 - 0 0 0

Table 5.5.: Historical information about the commits of interval (III) which ranges from
version 1.2.1 to version 1.3 [99]. The commits are continuously numbered begin-
ning with version 1.2.1 as commit 0 and ending with version 1.3 as commit 11. In
the context of interval (III), the version 1.2.1 is integrated into Vitruvius so that
it contains the addition of the complete source code as architectural-relevant
change. For the other commits, the contained architectural-relevant change is
explicitly signed. In contrast, - marks no architectural-relevant changes.

Commit Architectural-
relevant
change

Number
changed Java
�les

Number added
lines

Number
removed lines

0 (-) 238 28408 0
1 - 0 0 0
2 - 0 0 0
3 - 1 1 1
4 - 1 1 1
5 - 1 1 1
6 - 0 0 0
7 - 0 0 0
8 - 0 0 0
9 - 2 59 33
10 - 0 0 0
11 - 0 0 0
12 - 0 0 0
13 - 0 0 0
14 - 0 0 0
15 - 0 0 0
16 - 0 0 0
17 - 0 0 0
18 - 0 0 0
19 - 0 0 0
20 - 0 0 0
21 - 0 0 0
22 - 0 0 0
23 - 0 0 0
24 - 0 0 0
25 - 0 0 0

54

5.3. Case Study

Commit Architectural-
relevant
change

Number
changed Java
�les

Number added
lines

Number
removed lines

26 - 0 0 0
27 - 0 0 0
28 - 0 0 0
29 - 0 0 0
30 - 0 0 0
31 - 0 0 0
32 - 0 0 0
33 - 0 0 0
34 - 0 0 0
35 - 0 0 0
36 - 0 0 0
37 - 0 0 0
38 - 0 0 0
39 - 0 0 0
40 - 0 0 0
41 - 0 0 0
42 - 0 0 0
43 - 0 0 0
44 - 0 0 0
45 - 1 1 1
46 - 0 0 0
47 - 0 0 0
48 - 1 1 1
49 - 0 0 0
50 - 1 1 1
51 - 6 153 193
52 - 1 7 6
53 - 0 0 0
54 - 0 0 0
55 - 0 0 0
56 - 0 0 0
57 - 0 0 0
58 - 0 0 0
59 - 0 0 0
60 - 0 0 0
61 - 0 0 0
62 - 0 0 0
63 - 1 1 0
64 - 0 0 0
65 - 0 0 0

55

5. Evaluation

Commit Architectural-
relevant
change

Number
changed Java
�les

Number added
lines

Number
removed lines

66 - 9 227 215
67 - 9 215 227
68 - 0 0 0
69 - 0 0 0
70 - 0 0 0
71 - 0 0 0
72 - 0 0 0
73 - 0 0 0
74 - 0 0 0
75 - 0 0 0
76 - 0 0 0
77 - 0 0 0
78 - 0 0 0
79 - 0 0 0
80 - 0 0 0
81 - 0 0 0
82 - 0 0 0
83 - 0 0 0
84 - 0 0 0
85 - 0 0 0
86 - 0 0 0
87 - 0 0 0
88 - 0 0 0
89 - 0 0 0
90 - 0 0 0
91 - 0 0 0
92 - 0 0 0
93 - 0 0 0
94 - 0 0 0
95 - 0 0 0
96 - 0 0 0
97 - 0 0 0
98 - 0 0 0
99 - 0 0 0
100 - 0 0 0

56

5.4. Experiments

Commit Architectural-
relevant
change

Number
changed Java
�les

Number added
lines

Number
removed lines

Table 5.6.: Historical information about the commits of interval (IV) which ranges from
version 1.3 to version 1.3.1 [99]. The commits are continuously numbered
beginning with version 1.3 as commit 0 and ending with version 1.3.1 as commit
100. In the context of interval (IV), the version 1.3 is integrated into Vitruvius so
that it contains the addition of the complete source code as architectural-relevant
change. For the other commits, the contained architectural-relevant change is
explicitly signed. In contrast, - marks no architectural-relevant changes.

The commits are given by the Git log command in linear, chronological order [34]. In
addition, a mapping of the commit numeration to the commit’s hash values is provided in
Table A.1.

5.4. Experiments

Based on the GQM plan and case study, the following experiments were executed.

5.4.1. Experiment E1

Experiment E1 aims at the evaluation of the goals G1, G2, G3.0, G3.2, and G4 by execut-
ing the combined prototypical implementations for the �rst step of the CIPM approach
with interval (II). Thus, version 1.2 of the TeaStore is integrated into Vitruvius at �rst.
Afterwards, the changes of all commits between version 1.2 and 1.2.1 are propagated to the
V-SUM to simulate their development. Here, the V-SUM includes the CPRs between Java
and the extended IM and the incremental SEFF reconstruction. In addition, the source code
is adaptively instrumented, and the execution times for the change propagation, adaptive
instrumentation, and the overall process are measured (M0.1.2). At last, the resulting
artefacts are evaluated.

For all commits which are successfully propagated, the JC for the Java model in the
V-SUM and a newly generated model of the source code is calculated (M1.1.1 and M2.1.1.2
for the integrated commit / M2.1.1 for propagated commits). Furthermore, the PCMs are
manually updated with the propagated changes to calculate the JC for the manually and
automatically updated PCM (M3.0.1.1 / M3.0.2.1). Regarding the extended IM, the IPMS
is calculated (M2.1.3.2 for the integrated commit / M3.2.1.1 for propagated commits).

If the instrumentation is performed, the added statements in the instrumented source
code are counted beside the determination of the expected number of added statements
(M4.1.2). Moreover, the instrumented code is parsed into a Java model to compare it
to the model in the V-SUM to �nd all changed methods and to relate them to methods
corresponding to a SEFF (M4.1.1). If both of the previous indicators signal a possible
correct instrumentation, the correct instrumentation of radomly selected instrumentation
points is checked (M4.1.3). In the context of action and all instrumentation points, the
reduced monitoring overhead is calculated (M4.3.1, M4.3.2).

57

5. Evaluation

5.4.2. Experiment E1.1

Experiment E1.1 is a continuation of E1 in which the fully and adaptively instrumented
code is compiled and packaged with Java 8 (M4.2.1). From the resulting artefacts, the
classes representing the minimal monitoring library are removed. Afterwards, the artefacts
are deployed according to the TeaStore documentation [33], i. e., the war �les run inside
of an Apache Tomcat 8.5.69 server which uses Java 8 and includes the fully implemented
monitoring library while a con�gured MySQL Community Server 8.0.26 runs externally
providing the database.

The TeaStore contains an Apache JMeter test plan (here, called default) for load tests [99]
which is adjusted to simulate one user and executed with Apache JMeter 4.0 to perform
the requests on the instrumented code and to generate monitoring probes (M4.2.2). At
the same time, the existing pipeline of Monschein runs in order to receive the monitoring
probes, to calibrate the PCM, and to determine the monitoring overhead in the temporal
dimension from within the pipeline. As Apache JMeter reports the response times for
successful requests [2], the monitoring overhead can also be assessed from an external
point of view. As a consequence, by executing the fully and adaptively instrumented
code, their di�erence in the monitoring overhead in the temporal dimension is calculated
(M4.3.3, M4.3.4). Additionally, the resulting validated PCM is simulated and compared to
monitoring data obtained without executing the validation by calculating the accuracy
metrics (M4.2.3).

In the calibration pipeline, additional Apache JMeter test plans are provided for the
TeaStore [15]. The 20user_cart_big2 (here, called 20) was selected and adjusted to one
user for a second monitoring and calibration, i. e., the previously described procedure is
repeated with the 20 test plan.

5.4.3. Experiment E1.2

Experiment E1.2 complements E1 and E1.1 by repeating both experiments to evaluate
G3.2.1. In contrast to E1 and E1.1, the CPRs between the PCM and extended IM and
the incremental �ne-grained SEFF reconstruction are used. As a result, the reduced
monitoring overhead for the incremental �ne-grained SEFF reconstruction (M3.2.1.1.1,
M3.2.1.1.2, M3.2.1.2.1, M3.2.1.2.2, M3.2.1.2.3) and the di�erence in the monitoring
overhead with and without the incremental �ne-grained SEFF reconstruction (3.2.1.1.3,
M3.2.1.1.4, M3.2.1.1.5, M3.2.1.1.6) are calculated. Furthermore, the accuracy of the
validated PCM with the incremental �ne-grained SEFF reconstruction is investigated so
that the CompareMetrics function for the accuracy metrics of the validated PCMs with and
without the incremental �ne-grained SEFF reconstruction is calculated (M3.2.1.3.1).

2https://github.com/CIPM-tools/CIPM-Pipeline/blob/documentation/cipm.consistency.root/cipm.
consistency.tools.evaluation.docker/teastore/cipm-teastore-load/load/20user_cart_big.jmx

58

https://github.com/CIPM-tools/CIPM-Pipeline/blob/documentation/cipm.consistency.root/cipm.consistency.tools.evaluation.docker/teastore/cipm-teastore-load/load/20user_cart_big.jmx
https://github.com/CIPM-tools/CIPM-Pipeline/blob/documentation/cipm.consistency.root/cipm.consistency.tools.evaluation.docker/teastore/cipm-teastore-load/load/20user_cart_big.jmx

5.4. Experiments

5.4.4. Experiment E2

To increase the con�dence in the results of E1, it is repeated with the other intervals and
the CPRs between the PCM and extended IM. Thus, experiment E2 covers the repetition
of E1 with interval (I).

5.4.5. Experiment E3

Analogous to E2, experiment E3 repeats E1 with interval (III).

5.4.6. Experiment E4

Complementing E1, E2, and E3, experiment E4 is the last repetition of E1 with interval
(IV).

5.4.7. Experiment E5

Experiment E5 focuses on comparing the propagation of multiple commits with their
propagation as one commit. Therefore, for each commit interval, the changes between
the �rst and last commit are propagated as one commit on the integrated �rst commit.
The resulting PCM is compared to the manually and automatically updated PCMs of the
propagation of multiple commits within one of the previous experiments (M3.0.3.1). In
addition, the PCM is compared to the integrated PCM of the next interval (M2.1.4.1). An
exception for this comparison regards interval (IV) because version 1.3.1 was not integrated
before. As a result, version 1.3.1 is integrated to enable the comparison for interval (IV).

5.4.8. Experiment E5.1

Experiment E5.1 �nishes E5 by comparing the PCM of the integrated version 1.3.1 to the
manually and independently created PCM (M2.1.3.1, 3.1.3.1).

5.4.9. Experiment 6

The last experiment E6 regards G3.1. In the considered intervals (I), (II), (III), and (IV),
no component is added or removed. Thus, the removal and addition of one existing
component is arti�cially performed. As no other service has a dependency on the WebUI,
the WebUI Maven module is completely removed in one commit after version 1.3.1 to
simulate its accidental deletion. With the following commit, the removal of the WebUI is
reverted leading to its addition as a new component. Both commits are publicly available3

and propagated on the integrated version 1.3.1. Afterwards, the resulting artefacts are
evaluated as in E1 (including M3.1.1.2 and M3.1.2.2). In E6’s context, the PCM for the
removal commit is manually updated while the PCM of version 1.3.1 is reused for the
second commit. Additionally, the number of removed or added components in the source
code and PCMs are counted to calculate their di�erence (M3.1.1.1, M3.1.2.1).

3https://github.com/HansMartinA/TeaStore/tree/add-rem-com

59

https://github.com/HansMartinA/TeaStore/tree/add-rem-com

5. Evaluation

5.4.10. Final Evaluations

After all experiments have been conducted and analyzed, the results are used to assess
which goals have been reached so that the dependent metrics M0.1.1, M2.1.1.1, M2.1.2.1,
M3.1.1, and M3.2.1 can be evaluated leading to conclusions for G0.

5.5. Results and their Analysis

This section contains the results of the experiments. At �rst, the combined results of
E1, E2, E3, and E4 are presented in subsection 5.5.1 followed by their extensions E1.1 in
subsection 5.5.2 and E1.2 in subsection 5.5.3. Afterwards, the results of E5 and E5.1 are
assessed in subsection 5.5.4 and subsection 5.5.5, respectively. After the results of E6 in
subsection 5.5.6, the section is concluded with a summary in subsection 5.5.7.

In contrast to the presented CPRs between Java and the PCM, between E1 and E5,
all Java types corresponding to CompositeDataTypes are recursively visited to create
InnerDeclarations without di�erentiating the type’s origin. The di�erentiation was
introduced after these experiments have been conducted. E5.1 and E6 were carried out
with the implemented di�erentiation.

5.5.1. Results of E1, E2, E3, and E4

In this section, the results for E1, E2, E3, and E4 are presented.

5.5.1.1. Overview over Propagated Commits

Table 5.7 shows the propagated commits for all intervals in the experiments E1, E2, E3,
and E4. In preparation for E5, it includes the integration of version 1.3.1. In interval (I), 15
of 27 possible commits (55.6%) were propagated while all 12 commits (100%) with changes
in Java �les in interval (II) were propagated. Five of seven (71.4%) and 11 of 12 (91.7%)
possible commits could be propagated in interval (III) and (IV), respectively.

Commit Architectural-
relevant
change

Number
changed Java
�les

Number
added lines

Number
removed
lines

Number
Vitruvius
changes

Interval (I)
0 (-) 236 26636 0 2052656
3 (I.A), (I.B) 23 995 995 5678
4 - 1 2 1 219
14 (I.C), (I.D) 100 7415 6011 2744
19 - 4 84 67 1307
20 - 2 180 129 0
21 - 3 396 353 1267
22 - 1 49 42 1348
23 - 1 3 0 0
25 - 2 136 109 0

60

5.5. Results and their Analysis

Commit Architectural-
relevant
change

Number
changed Java
�les

Number
added lines

Number
removed
lines

Number
Vitruvius
changes

27 - 1 1 1 0
28 (I.E) 7 170 92 49
29 - 24 124 110 2000
30 - 1 1 1 4
34 - 25 111 125 1995
35 - 25 125 111 2004

Interval (II)
0 (-) 1088 28281 0 2053067
4 - 1 5 0 64
5 - 1 5 1 68
6 - 1 2 1 21
7 - 1 6 0 43
8 - 1 1 1 0
10 (II.B) 1 1 0 25
11 Reverts (II.B) 2 1 18 175
13 (II.B), (II.C) 3 55 1 369
14 - 1 0 2 3
15 - 1 5 3 87
16 - 1 1 1 23
18 (II.A) 2 86 0 214

Interval (III)
0 (-) 238 28421 0 2053646
4 - 2 3 2 98
5 - 1 1 0 22
6 - 1 1 1 49
7 - 1 114 132 463
10 - 2 5 2 73

Interval (IV)
0 (-) 238 28408 0 2053403
3 - 1 1 1 14
4 - 1 1 1 7
5 - 1 1 1 6
9 - 2 61 35 1179
45 - 1 1 1 2128
48 - 1 1 1 5
50 - 1 1 1 5
52 - 6 156 195 3998
63 - 1 1 0 4
66 - 9 229 217 6255
67 - 9 219 231 7308

61

5. Evaluation

Commit Architectural-
relevant
change

Number
changed Java
�les

Number
added lines

Number
removed
lines

Number
Vitruvius
changes

Version 1.3.1
0 (-) 236 28396 0 2059715

Table 5.7.: Propagated commits of all intervals and version 1.3.1.

During the execution of the combined prototypical implementations, the time for the
model update, i. e., the change extraction and propagation, adaptive instrumentation,
and complete process was measured. The values are depicted in Table 5.8. On average,
an integration lasted 27.1 minutes while a propagation lasted 3.9 minutes. Considering
the number of generated Vitruvius changes for an integration and propagation, the
variation in the execution times can be explained. At the same time, the instrumentation
has a minimal in�uence on the execution time. For an integration and propagation, the
instrumentation lasted between 0.6 and 0.7 minutes on average.

Commit Execution time of
model update

Execution time
of adaptive
instrumentation

Overall execution
time

Interval (I)
0 36.1 0.5 36.6
3 6.3 0.7 6.9
4 3.8 - 3.9
14 3.3 0.6 4.0
19 2.7 - 2.7
20 3.8 - 3.8
21 3.1 - 3.1
22 3.5 - 3.5
23 7.2 - 7.2
25 2.8 - 2.8
27 8.2 - 8.2
28 4.0 - 4.1
29 3.4 - 3.4
30 3.3 - 3.3
34 3.4 - 3.4
35 3.3 - 3.3

Interval (III)
0 23.3 0.6 23.9
4 3.9 - 3.9
5 3.6 - 3.6
6 4.3 - 4.3
7 3.6 - 3.6
10 3.6 - 3.6

Interval (IV)

62

5.5. Results and their Analysis

Commit Execution time of
model update

Execution time
of adaptive
instrumentation

Overall execution
time

0 23.9 0.5 24.4
3 3.2 - 3.2
4 3.1 - 3.1
5 3.2 - 3.2
9 3.1 - 3.1
45 3.5 - 3.5
48 3.0 - 3.0
50 3.0 - 3.0
52 4.0 - 4.0
63 3.1 - 3.1
66 4.2 - 4.2
67 4.5 - 4.5

Version 1.3.1
0 22.7 0.9 23.5

Average for integration
- 26.5 0.6 27.1

Average for propagation
- 3.8 0.7 3.9

Table 5.8.: Execution times for the intervals (I), (III), and (IV) and for version 1.3.1 in
minutes. For interval (II), no execution times were measured.

5.5.1.2. Assessing the Correctness of the Model Update

As shown in Table 5.9, the JC for the compared Java and PCM models is 1.0 in all cases except
for the integrated Java models. These cases have the same cause: the SimilarityChecker

does not compare the array dimensions of parameter types in method declarations. The
class model java.security.MessageDigest contains two methods with the name update

and the base parameter type byte for the only parameter. The di�erence between both
methods is the di�erence between the array dimensions of the parameter type. While
one parameter type is byte and the other one is byte[], the dimensions are not checked
and both methods are mismatched with the other one in the code model of the V-SUM so
that the addition and removal of an array dimension is reported by EMF Compare. As a
consequence, these di�erences are propagated with the �rst commit. Although this leads
to a minor incorrection in the Java models, it has no in�uence on the results. The mismatch
occurred only in the described situation. If there had been another case, EMF Compare
would have found it. Combining the results of the comparisons of the Java and PCM
models with the IPMS of zero, it follows that the models were nearly correctly updated.

Commit JC Java models JC PCM IPMS
Interval (I)

0 0.999997 - 0

63

5. Evaluation

Commit JC Java models JC PCM IPMS
3 1.0 1.0 0
4 1.0 1.0 0
14 1.0 1.0 0
19 1.0 1.0 0
20 1.0 1.0 0
21 1.0 1.0 0
22 1.0 1.0 0
23 1.0 1.0 0
25 1.0 1.0 0
27 1.0 1.0 0
28 1.0 1.0 0
29 1.0 1.0 0
30 1.0 1.0 0
34 1.0 1.0 0
35 1.0 1.0 0

Interval (II)
0 0.999997 - 0
4 1.0 1.0 0
5 1.0 1.0 0
6 1.0 1.0 0
7 1.0 1.0 0
8 1.0 1.0 0
10 1.0 1.0 0
11 1.0 1.0 0
13 1.0 1.0 0
14 1.0 1.0 0
15 1.0 1.0 0
16 1.0 1.0 0
18 1.0 1.0 0

Interval (III)
0 0.999997 - 0
4 1.0 1.0 0
5 1.0 1.0 0
6 1.0 1.0 0
7 1.0 1.0 0
10 1.0 1.0 0

Interval (IV)
0 0.999997 - 0
3 1.0 1.0 0
4 1.0 1.0 0
5 1.0 1.0 0
9 1.0 1.0 0

64

5.5. Results and their Analysis

Commit JC Java models JC PCM IPMS
45 1.0 1.0 0
48 1.0 1.0 0
50 1.0 1.0 0
52 1.0 1.0 0
63 1.0 1.0 0
66 1.0 1.0 0
67 1.0 1.0 0

Version 1.3.1
0 0.999997 - 0

Table 5.9.: Results of the model evaluation.

5.5.1.3. Assessing the Correctness of the Instrumentation

For assessing the correct instrumentation, the number of added statements was counted at
�rst. The values including the lower and upper bounds are shown in Table 5.10. In every
case, the values lie within the bounds so that the number of statements suggest the correct
instrumentation.

Commit Lower bound
of expected
statements

Number of actual
statements

Approximated up-
per bound of ex-
pected statements

Interval (I)
0 491 539 625
3 343 356 387
14 325 330 339

Interval (II)
0 462 510 596
10 306 309 314
11 306 309 314
13 306 309 314
18 318 322 322

Interval (III)
0 480 530 618

Interval (IV)
0 480 530 618

Version 1.3.1
0 480 530 618

Table 5.10.: Counted statements of the instrumented code in all intervals and version 1.3.1.

Next, the changed methods in the instrumented code were compared to methods with
corresponding SEFFs. In Table 5.11, the numbers of unmatched changed methods and
unmatched service instrumentation points are displayed. All values are zero so that only
methods with corresponding SEFFs have changed. The last indicator which is also exposed

65

5. Evaluation

in Table 5.11 is the compilation of the instrumented code. The results suggest that the
instrumented code is compilable. In combination with the changed methods and actual
number of added statements, the successful compilation is a further indicator for the
correct instrumentation.

Commit Number of un-
matched changed
methods

Number of un-
matched service
instrumentation
points

Successfully com-
piled?

Interval (I)
0 0 0 Yes
3 0 0 Yes
14 0 0 Yes

Interval (II)
0 0 0 Yes
10 0 0 Yes
11 0 0 Yes
13 0 0 Yes
18 0 0 Yes

Interval (III)
0 0 0 Yes

Interval (IV)
0 0 0 Yes

Version 1.3.1
0 0 0 Yes

Table 5.11.: Comparison of the non-instrumented and instrumented code and compilation
result of the instrumented code in all intervals and version 1.3.1.

Although the previous indicators support a potential correct instrumentation, they
are not su�cient to con�rm the correctness. Therefore, the manual inspection was per-
formed in which it was ensured that the added statements for instrumentation points are
correct and contain the right ids from the PCM. In the inspection, the activated action
instrumentation points for all propagated commits were checked because of their low
number as depicted in Table 5.12. During the inspection of these instrumentation points,
the instrumentation of the a�ected classes which include instrumented service instrumen-
tation points was also checked. For the integrated commits, di�erent instrumentation
points were selected. In interval (I), the Reset class of the TraceRepository service was
checked because it is the only SEFF which contains further actions beside InternalActions
or InternalCallActions. For all intervals, the UserEndpoint in the Persistence service
was inspected as a baseline. In addition, further investigated classes varied between the
Recommender for interval (II), the Registry for interval (III), and the Image-Provider for
interval (IV). All manual inspections revealed a correct instrumentation and potential for
improving the instrumentation and SEFF reconstruction.

66

5.5. Results and their Analysis

Commit Number of activated
action instrumenta-
tion points

Number of instrumen-
tation points

Interval (I)
0 88 124
3 12 124
14 4 124

Interval (II)
0 81 115
10 3 115
11 3 115
13 3 115
18 2 119

Interval (III)
0 83 119

Interval (IV)
0 83 119

Version 1.3.1
0 83 119

Table 5.12.: Number of instrumentation points in all intervals and version 1.3.1.

The �rst potential improvement is found within the Reset class and its deleteFolder
method. The original implementation consists of three statements (expression, if, and ex-
pression statement) of which the �rst and last statement are modeled as one InternalAction
while the second statement contains an ExternalCallAction so that it converts the second
statement to a BranchAction. This circumstance leads to a correct instrumentation as
shown in Listing 5.1. However, the exit statement for the InternalAction is placed after
the last statement. As a consequence, the monitoring of the InternalAction covers the
whole method instead of only the �rst and last statement. Therefore, both the �rst and
last statement should be one InternalAction each so that an exit statement is generated
after the �rst statement and an enter statement is added before the last statement.

1 package tools.descartes.teastore.kieker.rabbitmq;

2 [...]

3
4 @WebServlet("/reset")

5 public class Reset extends HttpServlet {

6 [...]

7 public void deleteFolder(File folder, String prefix) {

8 [...]

9 }

10
11 public void deleteFolder(File folder) {

12 [...]

13 monitoringController.enterInternalAction("_86j04Ad_Eeyp7eds7yI7tA");

67

5. Evaluation

14 File[] files = folder.listFiles();

15
16 if (files != null) {

17 monitoringController.enterBranch("_86qikAd_Eeyp7eds7yI7tA");

18 [...]

19 }

20
21 folder.delete();

22 monitoringController.exitInternalAction("_86j04Ad_Eeyp7eds7yI7tA");

23 [...]

24 }

25 }

Listing 5.1: Excerpt of the instrumented Reset class (partially from [99]).

The second potential improvement is concerned with the handling of return state-
ments. As outlined in section 4.6, some cases are considered to avoid non-compiling
code, but not all cases are covered. Listing 5.2 is an excerpt from the instrumented
AuthUserActionsRest class for commit three in interval (I). In the method login which
consists of one InternalAction including all statements, the instrumentation is correct
because the enter and exit statement of the InternalAction are located before and after
the actual method implementation, respectively. Nevertheless, one if statement as example
contains a return statement without an exit statement although there should be one.

A similar situation to the login method occurred in the UserEndpoint in the Persistence
service listed in Listing 5.3. The �rst statement, an if statement, of the findById method is
reconstructed as an InternalAction. The exit statement is placed within the if statement
because of the contained return statement. After the if statement, an InternalCallAction

is instrumented leading to a new enter statement without an additional exit statement for
the previous InternalAction. Thus, such additional exit statements should be generated
while it has to be ensured that further statements follow nested return statements.

Considering the AuthUserActionsRest class a second time, its isLoggedIn method con-
tains two assignments of the �nal result to new local variables with a preceding enter
and succeeding exit statement before the result is returned. The assignments are a conse-
quence of nested method calls in the return value which are identi�ed as InternalActions
and InternalCallActions. Combined with the mechanism to split return statements, the
repeated execution of the mechanism leads to the generation of the assignments. To avoid
such situations, the method calls can be separated, or the enter and exit statements can be
combined. An example for the combined statements is given in Listing 5.4 for the register
method of the RegistryREST.

1 package tools.descartes.teastore.auth.rest;

2 [...]

3
4 @Path("useractions")

5 @Produces({"application/json"})

6 @Consumes({"application/json"})

68

5.5. Results and their Analysis

7 public class AuthUserActionsRest {

8 [...]

9 @POST

10 @Path("login")

11 public Response login(SessionBlob blob, @QueryParam("name") String name,

@QueryParam("password") String password) {

12 [...]

13 monitoringController.enterInternalAction("_MtzgAApFEeyde98rBgRSjw");

14 User user;

15 [...]

16 if (user != null) {

17 [...]

18 return Response.status(Response.Status.OK).entity(blob).build();

19 }

20 Response resp = Response.status(Response.Status.OK).entity(blob).build

();

21 monitoringController.exitInternalAction("_MtzgAApFEeyde98rBgRSjw");

22 return resp;

23 [...]

24 }

25 [...]

26 @POST

27 @Path("isloggedin")

28 public Response isLoggedIn(SessionBlob blob) {

29 [...]

30 monitoringController.enterInternalAction("_MuxJUApFEeyde98rBgRSjw");

31 Response resp1 = Response.status(Response.Status.OK).entity(new

ShaSecurityProvider().validate(blob)).build();

32 monitoringController.exitInternalAction("_MuxJUApFEeyde98rBgRSjw");

33 monitoringController.enterInternalAction("_MuxwZApFEeyde98rBgRSjw");

34 Response resp2 = resp1;

35 monitoringController.exitInternalAction("_MuxwZApFEeyde98rBgRSjw");

36 monitoringController.enterInternalAction("_MuyXcApFEeyde98rBgRSjw");

37 Response resp3 = resp2;

38 monitoringController.exitInternalAction("_MuyXcApFEeyde98rBgRSjw");

39 return resp3;

40 [...]

41 }

42 }

Listing 5.2: Excerpt of the instrumented AuthUserActionsRest class (partially from [99]).

1 package tools.descartes.teastore.persistence.rest;

2 [...]

3

69

5. Evaluation

4 @Path("users")

5 public class UserEndpoint extends AbstractCRUDEndpoint<User> {

6 [...]

7 @GET

8 @Path("name/{name}")

9 public Response findById(@PathParam("name") final String name) {

10 [...]

11 monitoringController.enterInternalAction("_0o6tMApQEeycOb9KY39UQw");

12 if (name == null || name.isEmpty()) {

13 Response resp = Response.status(Status.NOT_FOUND).build();

14 monitoringController.exitInternalAction("_0o6tMApQEeycOb9KY39UQw");

15 return resp;

16 }

17 monitoringController.enterInternalAction("_0pAz5gpQEeycOb9KY39UQw");

18 [...]

19 }

20 }

Listing 5.3: Excerpt of the instrumented UserEndpoint class (partially from [99]).

1 package tools.descartes.teastore.registry.rest;

2 [...]

3
4 @Path("services")

5 @Produces({"application/json"})

6 public class RegistryREST {

7 @PUT

8 @Path("{name}/{location}")

9 public Response register(@PathParam("name") final String name, @PathParam("

location") final String location) {

10 [...]

11 monitoringController.enterInternalAction("_LqueFAskEeyH6q2UaRYLeA");

12 monitoringController.enterInternalAction("_LqvFLAskEeyH6q2UaRYLeA");

13 boolean success = Registry.getRegistryInstance().register(name,

location);

14 monitoringController.exitInternalAction("_LqvFLAskEeyH6q2UaRYLeA");

15 monitoringController.exitInternalAction("_LqueFAskEeyH6q2UaRYLeA");

16 [...]

17 }

18 [...]

19 }

Listing 5.4: Excerpt of the instrumented RegistryREST class (partially from [99]).

70

5.5. Results and their Analysis

5.5.1.4. Reduced Monitoring Overhead

For E1 and E2 in wich the adaptive instrumentation has been performed, the reduced
monitoring overhead in the context of the instrumentation points is listed in Table 5.13.
Considering all instrumentation points, the overhead can be reduced by 2

3 on average. The
reduced �ne-granular monitoring overhead, i. e., the overhead in the context of the action
instrumentation points, ranges between 85.2% and 97.6%. As a result, the monitoring
overhead is reduced. Nevertheless, in general, the reduction depends on the changes and
how they a�ect the SEFFs.

Commit Ratio deactivated to
all instrumentation
points

Ratio deactivated to
all action instrumenta-
tion points

Interval (I)
3 60.5% 85.2%
14 67.7% 95.5%

Interval (II)
10 67.8% 96.3%
11 67.8% 96.3%
13 67.8% 96.3%
18 68.1% 97.6%

Table 5.13.: Reduced monitoring overhead in experiment E1 and E2. In E3 and E4, no
adaptive instrumentation was performed.

5.5.1.5. Summary

In conclusion of the experiments E1, E2, E3, and E4, it follows that the results indicate the
correct update of the models in the V-SUM and the correct instrumentation. In particular,
with the correctly updated Java models and extended IM, the goals G1, G2, and G3.2 are
achieved.

5.5.2. Results of E1.1

During the execution of E1.1, monitoring probes were generated while the monitoring
overhead in the pipeline and the response times were measured. As the authors of the
TeaStore point out in a study they conducted with the TeaStore to assess challenges in
the performance testing of Microservices, performance measurements such as response
times are a�ected by the execution environment and dynamic features of Microservices (e.
g., load balancers) so that the results of repeated measurements vary [26]. Therefore, the
following monitoring overheads are cautiously investigated, and all calculated reductions
are seen as tendencies only.

Table 5.14 displays the monitoring overhead in the temporal dimension within the
pipeline. All values are normalized to one hour in order to rule out e�ects caused by
di�erent lengths of the monitoring. The reduced monitoring overhead ranges between
-3.4% and 86.2% where the upper and lower bound are special cases. In the case of commit

71

5. Evaluation

11, if the absolute di�erence is considered in the context of the extent of the monitoring
overhead, the variance can be neglected and attributed to the in�uence of the execution
environment, i. e., the monitoring overhead depends on the execution. In the case of
commit 18 and its change (II.A), none of the test plans contains direct or indirect calls to the
added methods so that the overhead comes only from the coarse-grained instrumentation
in the adaptively instrumented code while the fully instrumented code adds overhead
for the �ne-grained instrumentation. This results in a reduction of 86.2% for the default
test plan. However, the 20 test plan achieves a reduction of 7.6%. As a consequence, the
monitoring overhead depends on the test plan, the changes, and how the changes a�ect
the PCM. All in all, a tendency for the reduction of the monitoring overhead within the
pipeline is observable.

Commit Normalized mon-
itoring overhead
of full instrumen-
tation in <B

ℎ

Normalized mon-
itoring overhead
of adaptive instru-
mentation in <B

ℎ

Absolute dif-
ference in <B

ℎ

Reduced
monitoring
overhead

10 (default) 36358.6 28588.0 -7770.6 21.4%
10 (20) 1641.6 1260.7 -380.9 23.2%
11 (default) 19588.5 20058.1 469.6 -2.4%
11 (20) 1118.8 1156.8 38 -3.4%
13 (default) 17529.1 16144.2 -1382.9 7.9%
13 (20) 1703.5 1137.3 -566.2 33.2%
18 (default) 11070.3 1528.7 -9541.6 86.2%
18 (20) 1146.7 1059.1 -87.6 7.6%

Table 5.14.: Reduced monitoring overhead in the temporal dimension in experiment E1.1.

In addition to the previously shown monitoring overhead within the pipeline, the
response times and their di�erences are listed in Table 5.15. Here, the reductions of
the response times are mixed. In 50% of the cases, there is a reduction towards the
adaptive instrumentation while the average response time increases towards the adaptive
instrumentation in the other cases. In two of eight cases, no change for the median can be
reported, and the median decreases where the average response time rises in another two
cases. As a result, the response times exhibit no clear tendency.

Type Average
response
time

First quartile
of response
times

Second
quartile of
response
times

Third quar-
tile of
response
times

Commit 10 (default)
Full instrumentation 7.98 5 9 10
Adaptive instrumenta-
tion

7.52 5 8 9

Absolute di�erence -0.46 9 -1 -1
Relative reduction 5.8% 0% 11.1% 10%

72

5.5. Results and their Analysis

Type Average
response
time

First quartile
of response
times

Second
quartile of
response
times

Third quar-
tile of
response
times

Commit 10 (20)
Full instrumentation 59.76 15 23 39
Adaptive instrumenta-
tion

264.71 15 27 55

Absolute di�erence 204.95 0 4 16
Relative reduction -343.0% 0% -17.4% -41.0%

Commit 11 (default)
Full instrumentation 14.88 5 8 27
Adaptive instrumenta-
tion

12.89 5 8 19

Absolute di�erence -1.99 0 0 -8
Relative reduction 13.4% 0% 0% 29.6%

Commit 11 (20)
Full instrumentation 60.92 12 34 44
Adaptive instrumenta-
tion

201.44 13 30 50

Absolute di�erence 140.52 1 -4 6
Relative reduction -230.7% -8.3% 11.8% -13.6%

Commit 13 (default)
Full instrumentation 14.69 5 8 28
Adaptive instrumenta-
tion

15.9 6 9 29

Absolute di�erence 1.21 1 1 1
Relative reduction -8.2% -20% -12.5% -3.6%

Commit 13 (20)
Full instrumentation 75.48 12 35 48
Adaptive instrumenta-
tion

61.23 12 35 44

Absolute di�erence -14.25 0 0 -4
Relative reduction 18.9% 0% 0% 8.3%

Commit 18 (default)
Full instrumentation 27.5 5 9 29
Adaptive instrumenta-
tion

15.19 5 8 29

Absolute di�erence -12.31 0 -1 0
Relative reduction 44.8% 0% 11.1% 0%

Commit 18 (20)
Full instrumentation 173.09 15 41 63

73

5. Evaluation

Type Average
response
time

First quartile
of response
times

Second
quartile of
response
times

Third quar-
tile of
response
times

Adaptive instrumenta-
tion

374.28 14 39 65

Absolute di�erence 201.19 -1 -2 2
Relative reduction -116.2% 6.7% 4.9% -3.2%

Table 5.15.: Reduction in the response times in experiment E1.1. All time values are given
in milliseconds.

Moreover, looking at the progression of the average response times during the monitor-
ing, it indicates that the execution environment and test plan in�uence the response times
as they have an e�ect on the monitoring overhead. For example, the response times for
commit 10 and 11 and the default test plan shown in Figure 5.2 and Figure 5.4 are stable and
could be used for a comparison. In commit 13 (see Figure 5.6), the average response times
for the adaptive instrumentation progress di�erently compared to the full instrumentation
and hinder a comparison for the reduced monitoring overhead. Additionally, the full
instrumentation of commit 18 provided instable response times for approximately half of
the monitoring while the adaptive instrumentation was stable (see Figure 5.8). Considering
the 20 test plan, the average response times are instable for all monitorings as depicted in
Figure 5.3, Figure 5.5, Figure 5.7, and Figure 5.9 whereby the adaptively instrumented code
has a greater variance in the commits 10 and 11.

Although monitoring probes were generated, the PCM could not be calibrated. Due to
technical and temporal issues, the prototypical implementations of the Dev-time part of the
CIPM approach were not combined leaving a gap between the adaptive instrumentation,
monitoring, and calibration pipeline. In detail, the system model generation proposed
by Monschein [75] was not executed, and the PCM was not simulated because the PCM
could not be adapted for the calibration pipeline. Furthermore, a potential con�ict can
arise in the usage of di�erent versions of the PCM. While the prototypical implementation
targets the PCM 5.0 [81], the calibration pipeline depends on version 4.1.0 [15]. However,
by evaluating this thesis’ approach and generating monitoring probes, and based on
the positive evaluation results of the calibration pipeline [75], it is indicated that the
TeaStore can be successfully applied on a combined prototypical implementation yielding
an accurate and calibrated PCM instance. Nevertheless, such an evaluation is open to be
performed including a resolution of the issues.

5.5.3. Results of E1.2

The execution of experiment E1.2 failed for the �rst propagated commit 10 in interval (II).
Although one InternalAction should have changed, no action changed. An exploration of
this circumstance revealed that the incremental �ne-grained SEFF reconstruction underlies
an implicit assumption: when it is executed, there are two states of the changed method:
the old state in the V-SUM which will be updated by the new and currently propagated state.

74

5.5. Results and their Analysis

(a) Average response times for the full instrumentation during the monitoring.

(b) Average response times for the adaptive instrumentation during the monitoring.

Figure 5.2.: Comparison of the average response times for all test cases in the default test
plan and for commit 10.

75

5. Evaluation

(a) Average response times for the full instrumentation during the monitoring.

(b) Average response times for the adaptive instrumentation during the monitoring.

Figure 5.3.: Comparison of the average response times for all test cases in the 20 test plan
and for commit 10.

76

5.5. Results and their Analysis

(a) Average response times for the full instrumentation during the monitoring.

(b) Average response times for the adaptive instrumentation during the monitoring.

Figure 5.4.: Comparison of the average response times for all test cases in the default test
plan and for commit 11.

77

5. Evaluation

(a) Average response times for the full instrumentation during the monitoring.

(b) Average response times for the adaptive instrumentation during the monitoring.

Figure 5.5.: Comparison of the average response times for all test cases in the 20 test plan
and for commit 11.

78

5.5. Results and their Analysis

(a) Average response times for the full instrumentation during the monitoring.

(b) Average response times for the adaptive instrumentation during the monitoring.

Figure 5.6.: Comparison of the average response times for all test cases in the default test
plan and for commit 13.

79

5. Evaluation

(a) Average response times for the full instrumentation during the monitoring.

(b) Average response times for the adaptive instrumentation during the monitoring.

Figure 5.7.: Comparison of the average response times for all test cases in the 20 test plan
and for commit 13.

80

5.5. Results and their Analysis

(a) Average response times for the full instrumentation during the monitoring.

(b) Average response times for the adaptive instrumentation during the monitoring.

Figure 5.8.: Comparison of the average response times for all test cases in the default test
plan and for commit 18.

81

5. Evaluation

(a) Average response times for the full instrumentation during the monitoring.

(b) Average response times for the adaptive instrumentation during the monitoring.

Figure 5.9.: Comparison of the average response times for all test cases in the 20 test plan
and for commit 18.

82

5.5. Results and their Analysis

However, in the current prototypical implementation, due to the �ne-grained changes,
a method in the code model in the V-SUM is in exactly one state. Before changes are
propagated, a method is in the old state. Afterwards, the method is in the new state. During
a change propagation, the state of a method changes while it is not possible to predict
when which change causes which state change. As a result, by executing the incremental
�ne-grained SEFF reconstruction after the actual change propagation triggered by the
arti�cial changes, all changed methods are already in the new state. Additionally, during
the change propagation, it is not possible to perform the incremental �ne-grained SEFF
reconstruction due to unforeseen change sequences. Therefore, an extended approach for
the incremental �ne-grained SEFF reconstruction is proposed.

1. Encode and store the match result for changed methods.
After the state-based model comparison, the matching of the statements of changed
methods is available forming the comparison of their old and new state. Therefore,
the statements are encoded and stored with the matching result because the old and
new state cannot be compared in later stages of the change propagation. Furthermore,
before the �ne-grained change sequence is created, the name of changed methods is
set to an empty string and back to the original name to generate additional changes
before and after the actual change sequence.
The encoding of a statement model element is de�ned as follows: if the parent of
the statement is a method declaration, the encoding is the string 0. Otherwise, the
parent of the statement is another statement so that the encoding of the statement is
the encoding of its parent statement concatenated with the string - and the position
of the statement in its parent statement. If the parent statement contains exactly one
statement, the position of the statement is 0. Else, if the parent statement contains a
list of statements, the position of the statement equals the position in the list. In case
that the parent statement includes multiple statements, the statements are numbered
in the order of their occurrence so that the position of a statement equals its number.

2. Store correspondences between statements and actions of the old state.
By generating and propagating arti�cal changes for changed methods before the
actual change sequence, the corresponding statements for the old SEFF actions can be
obtained. They are encoded and stored with their correspondence to the SEFF action.
Afterwards, the correspondences between the SEFF actions and their statements are
deleted in the correspondence model.

3. Execute the incremental �ne-grained SEFF reconstruction.
After the actual change sequence has been propagated and all changed methods are
in their new state, the incremental �ne-grained SEFF reconstruction is executed. It
reconstructs the new SEFF from the changed method. Then, the new statements
are encoded, and the old and new SEFFs are compared by comparing their encoded
statements. The econded statements for the old SEFF are available due to step 1
and 2. As the encoding of statements result in strings, two statements are equal if
their encoding strings are equal. Based on the comparison of the SEFF actions, the
remaining procedure can be executed as it is already implemented.

83

5. Evaluation

As a consequence of the failure of E1.2, goal G3.2.1 is not reached.

5.5.4. Results of E5

This section addresses the results of experiment E5. Analogous to subsubsection 5.5.1.1,
Table 5.16 shows an overview over the propagated changes in experimentE5, and Table 5.17
displays the execution times. By propagating all commits of the considered intervals as
one commit, the number of Vitruvius changes is greater than the numbers in the previous
experiments although this is not necessarily the case for every set of commits.

Interval Number
changed Java
�les

Number
added lines

Number
removed
lines

Number
Vitruvius
changes

(I) 144 9358 7713 12770
(II) 19 141 1 607
(III) 4 122 135 606
(IV) 9 219 231 7316

Table 5.16.: Propagated changes as one commit within the intervals.

Interval Execution time of
model update

Execution time
of adaptive
instrumentation

Overall execution
time

(I) 6.2 0.5 6.9
(III) 5.2 - 5.2
(IV) 5.0 - 5.0

Table 5.17.: Execution times for the intervals (I), (III), and (IV) in experiment E5 in minutes.
For interval (II), no execution times were measured.

The evaluation of the updated models in the V-SUM resulted in an IPMS of zero and JC
of 1.0 for all Java and PCM models as shown in Table 5.18. The PCMs were only compared
to the automatically updated PCMs because there is no di�erence to the manually updated
PCMs as illustrated in subsubsection 5.5.1.2. As a consequence, the models were also
correctly updated, and it indicates that there is no di�erence in the number of propagated
commits.

Interval JC Java models JC PCM IPMS
(I) 1.0 1.0 0
(II) 1.0 1.0 0
(III) 1.0 1.0 0
(IV) 1.0 1.0 0

Table 5.18.: Results of the model evaluation in experiment E5.

84

5.5. Results and their Analysis

In addition to the aforementioned PCM comparisons, the PCMs were related to inte-
grated PCMs in only one comparison due to the equality between all propagated PCMs.
The results are listed in Table 5.19. For all versions except version 1.2, the JC is 1.0 so
that these models are equal. In the case of version 1.2, the JC is 0.975. The matching
reveals that the propagated PCM contains more data types and InnerDeclarations than
the integrated model. It is caused by the removal of parameters between version 1.1 and
1.2. The corresponding data types of the parameters are not removed and remain in the
PCM whereas they are not used by other parameters. As a result, the data types are not
created during the integration of version 1.2 resulting in the observed derivation. While
this shows that there can be a di�erence in the propagation and integration, it is limited
to data types in this case which is seen as acceptable.

Version Propagated inter-
val

Integrated inter-
val

JC PCM

1.2 (I) (II) 0.975
1.2.1 (II) (III) 1.0
1.3 (III) (IV) 1.0
1.3.1 (IV) - 1.0

Table 5.19.: Results of the PCM comparison for propagated and integrated commits in
experiment E5.

The adaptive instrumentation is checked as in subsubsection 5.5.1.3. In Table 5.20, the
numbers of added statements as the �rst indicator in context of the lower and upper
bounds are listed. For both intervals (I) and (II), the statement count is within the bounds.
Table 5.21 contains the results for the second and third indicator. All changed methods
in the instrumented code match with methods corresponding to SEFFs. Furthermore, the
instrumented code compiles successfully. At last, in the manual inspection, all action
instrumenation points and their corresponding a�ected classes for service instrumenta-
tion points were checked. No derivation from the expected instrumentation was found
indicating the correct instrumentation.

Interval Lower bound
of expected
statements

Number of actual
statements

Approximated up-
per bound of ex-
pected statements

(I) 332 347 382
(II) 324 329 336

Table 5.20.: Counted statements of the instrumented code in experiment E5.

Interval Number of un-
matched changed
methods

Number of un-
matched service
instrumentation
points

Successfully com-
piled?

(I) 0 0 Yes

85

5. Evaluation

Interval Number of un-
matched changed
methods

Number of un-
matched service
instrumentation
points

Successfully com-
piled?

(II) 0 0 Yes
(III) 0 0 Yes
(IV) 0 0 Yes

Table 5.21.: Comparison of the non-instrumented and instrumented code and compilation
result of the instrumented code in experiment E5.

The reduced monitoring overhead in experiment E5 is listed in Table 5.22. For interval
(II), the reduction is similar to the reduced overhead in the experiments E1, E2, E3, and
E4. In contrast, interval (I) reduces the monitoring overhead by 56.5% for all and by 80.2%
for the action instrumentation points. The values are lower because interval (I) contains
more changes compared to interval (II) and single commits.

Interval Ratio deactivated to
all instrumentation
points

Ratio deactivated to
all action instrumenta-
tion points

(I) 56.5% 80.2%
(II) 65.5% 94.0%

Table 5.22.: Reduced monitoring overhead in experiment E5.

All in all, the accepted di�erence between the propagation and integration in combina-
tion with the correct update of the PCMs during the change propagation results in the
achievement of G3.0.

5.5.5. Results of E5.1

In E5.1 and its comparison of the integrated version 1.3.1 or the automatically created PCM
with the manually created PCM, the calculated JC is 1

1234 because only the Repository

model objects match. The comparison of the remaining objects include checks for name
equality which is not given resulting in the low JC. For the following comparison, the
source of the manually created PCM is [16].

Looking at the components in Figure 5.10, both PCMs contain the same components
for every Microservice. In addition, the automatically created PCM contains a component
for the TraceRepository service while the manually created PCM contains multiple com-
ponents for di�erent implementations of the Recommender service. The automatically
created PCM does not include the di�erent Recommenders because all implementations
are located in the Recommender Maven module [99] so that only one component is created
for the Recommender in the automatically created PCM.

Continuing with the interfaces in Figure 5.11, the manually created PCM models the
abstract operations required by the TeaStore in the interfaces. In contrast, the automatically
created PCM contains the operations enriched with technical details of the source code.

86

5.5. Results and their Analysis

tools.descartes.teastore.auth
tools.descartes.teastore.image
tools.descartes.teastore.persistence
tools.descartes.teastore.recommender
tools.descartes.teastore.registry
tools.descartes.teastore.webui
tools.descartes.teastore.kieker.rabbitmq

(a) Components of the automatically created PCM.
WebUI
ImageProvider
Registry
Persistence
Recommender
Auth
SlopeOneRecommender
OrderBasedRecommender
DummyRecommender
PopularityBasedRecommender
ImageProvider
PreprocessedSlopeOneRecommender

(b) Components of the manually created PCM [16].

Figure 5.10.: Comparison of the components in the automatically and manually created
PCM.

87

5. Evaluation

tools.descartes.teastore.auth
tools.descartes.teastore.image
tools.descartes.teastore.persistence
tools.descartes.teastore.recommender
tools.descartes.teastore.registry
tools.descartes.teastore.webui
tools.descartes.teastore.kieker.rabbitmq

(a) Selected interfaces of the automatically created PCM.
WebUI
ImageProvider
Registry
Persistence
Recommender
Auth
SlopeOneRecommender
OrderBasedRecommender
DummyRecommender
PopularityBasedRecommender
ImageProvider
PreprocessedSlopeOneRecommender

(b) Interfaces of the manually created PCM [16].

Figure 5.11.: Comparison of the interfaces in the automatically and manually created PCM.

As example, all servlets delivering the user interface are represented in interfaces, and
the DatabaseGenerationEndpoint is responsible for the database creation which is not
modeled in the manually created PCM. In the context of interfaces, the provided and
required roles and SEFFs are compared. Both PCMs provide their interfaces with the
components which implement the interface. The manually created PCM contains required
roles and models high-level abstract behaviours within the SEFFs with external calls.
The automatically PCM misses required roles and external calls. In the source code, the
Microservices communicate over REST APIs by sending HTTP requests without direct
or explicit method invocations. Thus, the CPRs cannot identify the invoked method and
external calls. As a result, required roles are also not detected.

At last, the manually created PCM does not model data types while the automatically
created PCM creates them. As example in Figure 5.12, the entities of the TeaStore such as
Orders or OrderItems are modeled. In addition, a list of OrderItems is also included.

To summarize, the automatically created PCM creates components which abstract from
the source code. Considering the interfaces, the abstraction levels di�er. In case of the
automatically created PCM, the extent of the interfaces depends on the use case and goal.
In this thesis, the CPRs for the PCM focuses on modeling REST APIs. As Krogmann and
Langhammer pointed out in previous comparisons between manually and automatically

88

5.5. Results and their Analysis

SessionBlob
Order
OrderItem
List_of_OrderItem

Figure 5.12.: Selected data types in the automatically created PCM.

created PCMs [70, 71], while manually created PCMs abstractly model the code on a high
level, automatically created PCMs contain more details and technical information from
which a manually created PCM can abstract. At the same time, an automatically created
PCM is closer to and aligned with source code. All in all, it follows that the automatically
created PCM for version 1.3.1 models the TeaStore except for external calls and required
roles.

5.5.6. Results of E6

In Table 5.23, the propagated commits in experiment E6 are shown. The higher number of
Vitruvius changes led to an increased execution time (see Table 5.24).

Commit Number
changed Java
�les

Number
added lines

Number
removed
lines

Number
Vitruvius
changes

0 236 28396 0 2059715
1 27 0 2651 14196
2 27 2651 0 17229

Table 5.23.: Propagated commits in experiment E6.

Commit Execution time of
model update

Execution time
of adaptive
instrumentation

Overall execution
time

0 21.9 0.8 22.7
1 10.0 - 10.1
2 13.9 0.6 14.5

Table 5.24.: Execution times for the commits in experiment E6 in minutes.

The results for the model comparisons in Table 5.25 reveal a JC of 0.999997 for the
integrated Java model and 1.0 for every other Java model and PCM and an IPMS of zero so
that the models were correctly updated. As a consequence, the di�erence in the number
of added or removed components in the source code and PCM equals zero.

89

5. Evaluation

Commit JC Java models JC PCM IPMS
0 0.999997 - 0
1 1.0 1.0 0
2 1.0 1.0 0

Table 5.25.: Results of the model evaluation in experiment E6.

Checking the correct instrumentation, the number of added statements for the integrated
commit lies within the expected bounds. In case of the second commit, the number of
added statements is one statement above the approximated upper bound as depicted in
Table 5.26. This circumstance is caused by the underestimation of the expected bounds
so that the di�erence is acceptable. Considering the matching of changed methods and
the compilation of the instrumented code in Table 5.27 and the manual inspection, no
derivations could be found indicating the correct instrumentation.

Commit Lower bound
of expected
statements

Number of actual
statements

Approximated up-
per bound of ex-
pected statements

0 480 530 618
2 316 319 318

Table 5.26.: Counted statements of the instrumented code in experiment E6.

Commit Number of un-
matched changed
methods

Number of un-
matched service
instrumentation
points

Successfully com-
piled?

0 0 0 Yes
2 0 0 Yes

Table 5.27.: Comparison of the non-instrumented and instrumented code and compilation
result of the instrumented code in experiment E6.

At last, the reduced monitoring overhead for the second commit is 68.9% in the context
of all and 98.8% in the context of action instrumentation points.

To summarize E6, the removal and addition of the WebUI service resulted in the correct
update of the models and instrumentation. Therefore, goal G3.1 is achieved.

5.5.7. Summary

As already mentioned, the goals G1, G2, and G3.2 are achieved in the successful execution
of the experiments E1, E2, E3, and E4. Analoguously, G3.0 is reached in E5, and G3.1 in
E6. As a result, the requirements for G3 are ful�lled. However, G3.2.1 is not achieved.
Regarding G4, the experiments does not include the assessment of the accuracy of a cali-
brated PCM instance because the calibration was not possible. Nevertheless, as discussed,

90

5.6. Threats to Validity

the results indicate that a resulting calibrated PCM instance shall be accurate so that the
check can be neglected for the achievement of G4. Therefore, G4 is reached.

At last, G0 is considered. The planned comparison of calibrated PCM instances was not
performed. However, the previously satis�ed goals suggest that G0 in a slightly diverging
meaning is and can be achieved for the case study.

5.6. Threats to Validity

This section covers potential threats to the internal validity in subsection 5.6.1 and to the
external validity in subsection 5.6.2.

5.6.1. Threats to Internal Validity

Internal validity determines how trustworthy the evaluation results are [20].
In this evaluation, a potential threat arises in the check of the updated Java models.

For the comparison of the Java models, a new model is parsed from the source code and
compared to the code model in the V-SUM by using the same parser and matching rules
as in the change propagation. This could lead to the suppression of di�erences. However,
by using the default di�ng algorithm of EMF Compare, di�erences are detected if there is
a derivation. In case of the intregated commits, di�erences were reported. Additionally,
a wide range of commits was selected to cover di�erent changes although they do not
guarantee the coverage of all cases.

Another threat reside in the check of the correct update of PCMs by comparing the
automatically updated PCM to a manually updated PCM because the manual update
and comparison of the PCMs is performed by the author of this thesis. The goal of the
comparison is a check of the correct update of the last commit’s PCM to the current PCM.
Therefore, it is su�cient to manually update the last version of the PCM according to
the applied CPRs which is performed before the comparison to avoid in�uences from the
automatically updated PCM.

In the context of the PCMs, their integrated versions were not checked. An exception
is the comparison of the integrated version 1.3.1 and a manually created PCM. Beside
similarities, it reveals that the integrated PCM abstractly models the TeaStore. Combining
the comparison with the comparisons of integrated and propagated PCMs and checks of the
correct PCM update, all propagated commits and the PCMs can be viewed backwards from
the integrated version 1.3.1 to the �rst integrated version 1.1. Due to the correctly updated
PCMs and the equality between integrated and propagated PCMs, it can be concluded that
every integrated PCM abstractly models its corresponding TeaStore version.

In the evaluation of the adaptive instrumentation, not all instrumentation points were
checked. However, the instrumentation of methods, BranchActions, AbstractLoopActions,
and ExternalCallActions does not include edge cases so that the consideration of a suf-
�cient number of cases rise an appropriate level of con�dence in the instrumentation.
InternalActions and InternalCallActions require an increased attention because they
can change the code in certain cases. Based on the checked instrumentation points,
the number of methods, InternalActions, and InternalCallActions are seen as su�-

91

5. Evaluation

cient. Due to the low number of generated BranchActions, AbstractLoopActions, and
ExternalCallActions, they need more checks. All in all, the checks indicate the correct
instrumentation, but show potential for improvements.

5.6.2. Threats to External Validity

External validity is concernced with the generalization of the evaluation results [20].
The approach is only evaluated with the TeaStore and aims at Microservice-based

applications. Thus, it limits conclusions for other projects and domains and requires
further repetitions with adapted CPRs and di�erent case studies.

Furthermore, the TeaStore is designed as a test and benchmarking framework [65]. As
a consequence, it limits assertions about the applicability of the approach to real world
applications. Therefore, as previously mentioned, the repetitions with di�erent case studies
can use open source applications with other design goals or industrial applications.

92

6. Related Work

This chapter gives an overview over related work split into di�erent subjects. As a result,
section 6.1 handles approaches analyzing repositories and their history. section 6.2 reviews
approaches for the state-based model comparison. Approaches for reverse engineering
software architectures are explained in section 6.3 while section 6.4 contains approaches for
integrating existing source code into Vitruvius. At last, section 6.5 considers approaches
for instrumenting source code.

6.1. Repository Analysis

In this section, di�erent approaches are presented that involve the analysis of repositories.
subsection 6.1.1 presents Screpo, and subsection 6.1.2 presents the approach of Stringfellow
et al.

6.1.1. Screpo

Scheidgen et al. built Screpo as a model-based framework on top of EMF, JGit, and Modisco
for mining software repositories [92]. Thus, Screpo de�nes a meta-model for repositories.
A model instance represents a revision tree where each revision corresponds to a commit.
JGit is used to perform the necessary Git operations. For each changed compilation unit
in a revision, a model of the compilation unit is created by Modisco and attached to the
revision. Only local references within the compilation unit are resolved. The repository
model is stored in a database and allows its analysis. Screpo generates a snapshot model
for visited revisions. A snapshot model contains a representation of the whole code base
with resolved references between compilation units. Screpo assumes that the snapshot
models are sequentially analyzed. As a result, there is only one snapshot model available
which gets incrementally updated by replacing the changed compilation units.

Screpo was evaluated with parts of the Eclipse Foundation’s repositories [92]. Scheidgen
et al. compare the evaluation results with delta-compression. Using a state-based model
comparison between two revisions of a compilation unit, their di�erence is obtained
and stored instead of the complete compilation units. The evaluation indicates a higher
execution time for the repository model creation due to additional compression. Screpo
does not contain compression-based snapshot increments, but it is expected to reduce the
execution time for the analysis.

In the CIPM approach, the code model in the V-SUM represents the state of a speci�c
commit while the complete source code repository is modeled in Screpo for mining the
repository [92]. Both approaches are similar in using EMF. However, Screpo builds upon
Modisco for the Java code model. It explores the possibility to employ a state-based

93

6. Related Work

model comparison for storing the changes between compilation units. The CIPM approach
propagates changes obtained by a state-based model comparison.

6.1.2. The Approach of Stringfellow et al.

Stringfellow et al. propose an approach to �nd potential architectural problems combining
three reverse engineering techniques [97]. The approach considers C and C++ code
versioned with the Revision Control System (RCS) and de�nes a component as the set of
all �les in a directory.

The �rst technique recovers a component architecture [97]. Relationships between
the components are derived from #include statements while the number of #includes
determine a relationship’s strength.

The second technique generates a change architecture [97]. For the generation, the
RCS history data is extracted for every �le to group related changes. It is assumed that
only one developer makes related changes and checks them in within a certain time
interval. Moreover, components with more changed lines of code are considered more
change-prone. Based on these assumptions and the extracted data, change metrics are
calculated re�ecting the assumptions and characterizing the components and relationships.
The change metrics are used to build the change architecture by �ltering the components
and relationships with the highest values.

The third technique recovers a fault architecture [97]. Similar to the change architecture,
defect metrics are calculated based on the extracted data from the RCS history. After the
application of a threshold, the fault architecture is derived consisting of components and
relationships assumed to be the most fault-prone.

At last, the approach of Stringfellow et al. compares all three generated architectures
[97]. Fault- or change-prone relationships are expected to become di�cult to maintain. If
such a relationship has no #include relationship, it is a hint for an increased complexity and
architectural drift. The approach was applied on a commercial �ight simulation system.

The approach of Stringfellow et al. uses historical data from a RCS repository to recover
the change and fault architecture to predict change- and fault-prone components [97]
while the CIPM approach uses historical data from a Git repository to incrementally update
a general component-based architecture which enables performance predictions.

6.2. State-Based Model Comparison

Approaches including a state-based model comparison are introduced in this section.
subsection 6.2.1 contains the approach for semantic lifting, subsection 6.2.2 contains an
approach of Kehrer et al., and subsection 6.2.3 contains CoWolf.

6.2.1. Semantic Li�ing

Kehrer et al. introduce an approach for semantic lifting [62]. They di�erentiate between
low-level or atomic changes such as setting an attribute value and user-level changes or
editing operations. The low-level changes are output by a state-based model comparison.

94

6.2. State-Based Model Comparison

Then, semantic lifting is de�ned as the process of forming editing operations out of the
low-level changes. The resulting editing operations are disjoint subsets of a set of low-level
changes called semantic change sets.

Editing operations are expressed in edit rules which are implemented in Henshin [62].
Henshin is a language and tool environment for transformations within an EMF model
based on graph transformation concepts [3]. Therefore, a Henshin rule has a left and a
right side describing model patterns. If a Henshin rule is applicable to a model, elements
matching the left side are transformed to the pattern of the right side. Furthermore,
application conditions specify when a rule should be applied.

In the approach for semantic lifting, change set recognition rules group low-level
changes according to an edit rule and allow their recognition [62]. The recognition rules
are also Henshin rules and can be automatically generated from the corresponding edit
rule, but need manual post-processing. The �rst step in the recognition process creates
potential change sets by applying all recognition rules on low-level changes. In the
following postprocessing step, heuristics are applied on the possible overlapping potential
change sets to get the semantic change sets representing a minimal number of editing
operations. The approach for semantic lifting was evaluated with synthetical and real test
cases including UML models indicating a reduction of the number of reported di�erences.

Semantic lifting aims at providing a high-level representation of di�erences between
two model states for users [62]. However, the state-based change propagation in the CIPM
approach automatically updates models without user involvement.

6.2.2. The Approach of Kehrer et al.

Kehrer et al. extended their previously described approach for semantic lifting in order
to create executable di�erences between two models [63]. In their extension, the low-
level changes or basic operations are called change actions. It is assumed that every edit
operation has an interface with input and output parameters and an implementation. A
low-level di�erence is a data structure for the correspondences between elements of two
models and for the directed delta which includes all change actions. As a result, a low-level
di�erence contains the semantic change sets. Similar to the semantic lifting, recognition
rules identify potential semantic change sets. Additionally, recognition rules are extended
with checks for pre- and postconditions and trace links between edit rule objects and
recognition rule objects.

After the semantic change sets have been found, the parameter retrieval phase utilizes
the trace links to bind edit operation arguments to the formal parameters of the edit rule
[63]. The edit operations’ sequence is partwise derived from parameter dependencies. To
complete the sequence, the analysis of pairs of edit rules reveals potential dependencies be-
tween edit rules which are checked for actual dependencies during the sequence deviation.
The resulting order of edit operations form an executable edit script.

The approach of Kehrer et al. was evaluated with the evolution of the Eclipse Graphical
Modeling Framework as case study [63]. The results indicate that an increased abstraction
level is achieved. Compared to manual reverse engineered edit scripts, the approach can
sometimes not detect all edit operations.

95

6. Related Work

The approach of Kehrer et al. provides an executable high-level edit script from low-level
changes expressed in Henshin rules [63]. In contrast, �ne-grained or low-level changes
are propagated in the CIPM approach. Furthermore, they are expressed in the change
meta-model of Vitruvius.

6.2.3. CoWolf

Getir et al. describe the CoWolf framework for model evolution and co-evolution [32]. It
includes support for

"state charts, component diagrams and sequence diagrams as architectural
models; and discrete time markov chains (DTMC), continuous time markov
chains (CTMT), fault trees, layered queuing networks (LQN) as QoS models."
[32]

Possible di�erences between coupled models and two versions of a single model are
expressed in Henshin rules. CoWolf starts the co-evolution process with calculating the
di�erence between two versions of one model using semantic lifting. Henshin rules are
the result which can be applied for co-evolving the target model. Beside the model (co-
)evolution, CoWolf allows the transformation of models into the language of an external
solver. Such solvers can analyze attributes of the models, e. g., their performance. CoWolf
was evaluated with a case study indicating reduced execution times compared to full
transformations.

CoWolf utilizes Henshin rules and semantic lifting for the (co-)evolution of architecture
and QoS models [32]. As a result, it does not include source code models and relies on
external solvers. The CIPM approach combines Java models with the PCM acting as an
architecture-level performance model.

6.3. Reverse Engineering

There are several approaches for reverse engineering software architectures and Microservice-
based applications in particular. Therefore, subsection 6.3.1 covers the MiSAR approach,
subsection 6.3.2 covers an approach of Rademacher et al., subsection 6.3.3 covers the
MicroART approach, subsection 6.3.4 covers an approach of Mayer et al., subsection 6.3.5
covers the ArchiRev method, and subsection 6.3.6 covers an approach of Hassan et al.

6.3.1. The MiSAR Approach

Alshuqayran et al. developed the Micro Service Architecture Recovery (MiSAR) approach
[1]. They conducted a study to create a meta-model for Microservice architectures and
mapping rules between a Microservice-based application and the meta-model. Thus, the
mapping rules can be used to recover an architecture. The study consisted of two manually
performed phases: the Recovery Design phase and the Recovery Execution phase. Using
one open source application, the meta-model and the mapping rules were generated
in the Recovery Design phase. In the Recovery Execution phase, the meta-model and

96

6.3. Reverse Engineering

mapping rules were re�ned and validated with additional seven open source applications.
The resulting meta-model contains di�erent specializations for the Microservices and
deployment information.

The MiSAR approach recovers architectures speci�cally for Microservice-based applica-
tions from the complete source code not considering code changes [1]. In contrast, the
CIPM approach extracts code changes from a commit to perform an incremental update
of a component-based architecture model.

6.3.2. The Approach of Rademacher et al.

Rademacher et al. de�ne a reverse engineering process [88] based on their viewpoint-
speci�c modeling languages [89, 87]. Using the modeling languages, it is possible to express
the domain in the Domain Data Modeling Language, Microservices and their interfaces
in the Service Modeling Language, deployment and operation of Microservices in the
Operation Modeling Language [89], and explicit technology aspects in the Technology
Modeling Language [87]. The following reverse engineering process creates models in the
corresponding modeling languages [88]. After a preparation phase including the selection
of input �les, the process creates the domain model, service model, and operations model
in this order. At the same time, information about the technology is put into the technology
model. The last phases in the process are the technical re�nement for �nding further
technology information and the post-processing. The approach of Rademacher et al. was
validated by manually applying the process on a case study.

Similar to the MiSAR approach, the approach of Rademacher et al. statically reconstructs
an architecture speci�c for Microservices [88]. Moreover, it is not implemented while the
presented approach is a prototypical implementation to incrementally update a component-
based architecture model.

6.3.3. The MicroART Approach

Granchelli et al. present the MicroART approach [43]. It consists of an Architecture Re-
covery and Architecture Re�nement phase whereby the Architecture Recovery is further
divided into an Extraction, Abstraction, and Presentation phase. The extraction takes a
source repository as input and performs a static analysis on it in which information about
the services, their depolyment, and developers are obtained. After the static analysis, a dy-
namic analysis extracts container information and communication logs. The gathered data
from the extraction phase is converted to an architecture expressed in the MicroART-DSL
during the abstraction phase. The MicroART-DSL enables the description of Microservice
architectures. It combines the Microservices with deployment and developer information
and allows the clustering of Microservices. The presentation phase displays the architec-
ture obtained from the abstraction phase. The last phase, the Architecture Re�nement,
allows the adjustment of the generated architecture in a semi-automated process with
software architects in order to eliminate, for instance, infrastructure Microservices. The
MicroART approach is prototypically implemented based on the EMF and validated by a
case study.

97

6. Related Work

The MicroART approach recovers architectures speci�c to Microservices and also pro-
poses a process to eliminate infrastructure Microservices [43]. In contrast, the presented
approach aims at detecting components within a Microservice-based application without
removing a component to incrementally update a component-based architecture model.

6.3.4. The Approach of Mayer et al.

Mayer et al. introduce an approach recovering REST-based Microservice architectures
conforming to a speci�c data model [72]. The data model is centered around services, but
di�erentiates between services, infrastructure, and interactions between service instances
and Microservice methods. The actual extraction process consists of a data collection, data
aggregation, and data combination phase. The Microservices are instrumented to collect
architectural information during runtime. This includes a static information extraction,
e. g., to obtain the API, during the deployment of a Microservice, an infrastructure
information extraction based on the con�guration, and a runtime information extraction.
The static and infrastructure information are directly processed in a data management
phase updating the architecture. The runtime information, i. e., the logged requests, are
aggregated in the data aggregation phase and incorporated into the architecture in the
following data management phase. As a result, the approach allows the analysis of the
architecture throughout the application’s runtime. The data model and reverse engineering
process were validated in a study and experiment, respectively.

The approach of Mayer et al. builds a Microservice architecture during an application’s
runtime, i. e., after its deployment, [72] while the CIPM approach proposes a DevOps
pipeline combining information from the runtime and development of an application.

6.3.5. The ArchiRev Method

Pérez-Castillo et al. present the enterprise ARCHItecture REVersed (ArchiRev) method
aiming at recovering an ArchiMate model [82]. ArchiMate is a modeling language for
Enterprise Architectures (EA) proposing di�erent dimensions in which elements are orga-
nized. The ArchiRev method applies several reverse engineering techniques on di�erent
artifacts including source code and con�guration �les to generate models representing
speci�c viewpoints on the EA. The ArchiRev method is implemented in a tool allowing
Java and C# code to be selected in the �rst step (knowledge sources). In the second step
(extraction), extraction tasks are executed generating EA models based on the concrete task
and reverse engineering technique. The tool, for example, creates application structures
and includes static analyzers for the source code with a default set of mappings from
compilation unit annotations to ArchiMate elements. The last step of the tool (EA models)
visualizes the generated models. The ArchiRev tool was applied on an industrial case
study to validate its feasibility.

The ArchiRev method recovers EA expressed in an ArchiMate model [82] while the
presented approach concentrates on Microservice-based applications independent of their
possible embedding in an EA.

98

6.4. Integration of existing source code

6.3.6. The Approach of Hassan et al.

Hassan et al. consider the architecture reconstruction of web applications [46]. They
identify static pages, active pages which are preprocessed before their delivery, web objects,
multimedia objects, and databases as components of a web application. Here, web objects
are de�ned as

"pieces of compiled code which provide a service to the rest of the software
system through a de�ned interface [...] supported by distributed technologies
such as [...] EJB [...]." [46]

The semi-automated architecture recovery approach uses extractors on the compo-
nents of a web application in order to derive facts about the components, relations, and
attributes [46]. The facts conform to a schema speci�c to a domain, e. g., JavaScript. The
common concepts of di�erent schemas are summarized in new schemas to build layers
of schemas with a rising abstraction level. The approach de�nes Entity-Level Schemas
which describe the relations of program entities and Union Entity Level Schemas which
combine di�erent Entity-Level Schemas. The next layer is modelled by Component Level
Schemas describing the relations between the components. Architecture-Level Schemas
express the relationship between the architectural elements subsystem and component
at the highest level of abstraction. To build subsystems, the components are clustered
according to heuristics. Therefore, developers can re�ne the clustering. The generated
facts are stored in a database and visualized by an automatic layout tool. The created
layout can also be re�ned by a developer.

In the approach of Hassan et al., di�erent objects, e. g., multimedia objects and databases,
are considered as the components of a web application and abstracted over di�erent
layers [46]. In the context of the CIPM approach, multimedia objects as example are not
considered as components and as a part of the architecture. Therefore, they are ignored
during the architecture recovery. Moreover, the source code is abstracted in one layer into
the PCM instead over multiple layers.

6.4. Integration of existing source code

This section covers approaches for integrating source code into Vitruvius. The following
paragraph handles the Reconstructive Integration Strategy.

The Reconstructive Integration Strategy Langhammer proposes the Reconstructive In-
tegration Strategy (RIS) for integrating a source model into Vitruvius [71]. The RIS
simulates the creation of the source model by generating changes serving as the trigger
for the consistency preservation process. Target model elements are created according
to the CPRs. It is assumed that the order of changes has no e�ect on the model or CPRs.
The simulation precedes an invariant resolving phase which resolves potential con�icts.
Syntactical con�icts cause invalid target models and can be avoided by ensuring that
invariants of the target meta-models are not violated during the consistency preservation
process. Semantical con�icts prevent the creation of target models. In the RIS, the invariant

99

6. Related Work

resolving phase is performed independently of the following traversal phase. During the
traversal, all source elements are visited to create the corresponding changes. It starts
with the root element and continues with the directly contained elements not requiring
other model elements to exist. This step is repeated until all elements have been visited.

The RIS cannot make any guarantee that the simulation creates the source model as
a user would have done [71]. This circumstance also applies to the presented approach.
By relying on EMF Compare to generate a change sequence, con�icts are automatically
omitted, and the model integrity is ensured.

6.5. Adaptive Instrumentation

Within this section, AjaxScope is introduced.

AjaxScope Kiciman et al. present AjaxScope as a platform for the instrumentation of
JavaScript code [64]. The approach and its prototypical implementation realize a proxy
between a web application and the user. The instrumentation allows performance analysis,
runtime analysis, and usability evaluation.

An instrumentation point is an element in the JavaScript AST while a policy node is a
basic unit for analysis or instrumentation, i. e., it can, e. g., rewrite an instrumentation
point or �lter an AST node [64]. Several policy nodes are combined in a sequential pipeline
forming an instrumentation policy. Adaptive instrumentation policies are achieved by
the introduction of adaptation nodes as special policy nodes. Adaptation nodes either
instrument an instrumentation point and stop further processing or passes the instru-
mentation point to the next policy node. This decision is made by a test. AjaxScope’s
implementation contains an adaptive drill-down performance pro�ling policy. It begins
with a coarse-grained instrumentation of the whole application to log timestamps. Based
on this data, slower code parts can be identi�ed which are instrumented afterwards. This
step is repeated to drill down into functions to �nd the cause of the slowness.

AjaxScope also provides distribution tests as special adaptation nodes [64]. Distribution
tests spread the instrumentation randomly across the instrumentation points and users.
Instrumented code provides measurements for a test function checking the existence of a
condition. Therefore, for every instrumentation point, a distribution test is in one of the
states pass in which the instrumentation point reaches the next policy node, fail in which
the instrumentation for the point is stopped and the point is not transferred to the next
policy node, or more testing indicating further measurements are needed and enabling the
randomized instrumentation. The prototypical implementation of AjaxScope is evaluated
in di�erent use cases including the drill-down performance pro�ling.

AjaxScope allows the adaptive instrumentation of JavaScript during the runtime distri-
bution of the JavaScript code for various applications [64]. In contrast, the CIPM approach
uses the adaptive instrumentation for Java to measure speci�c attributes of the code
execution during its development.

100

7. Conclusion

The Dev-time part of the CIPM approach extracts changes from a commit to incremen-
tally update a code model in the V-SUM of Vitruvius [73]. It triggers the consistency
preservation process for a PCM instance and the extended IM. Afterwards, the source
code is adaptively instrumented to monitor changed parts of the code. Then, the taken
measurements are used to calibrate the PMPs to receive a valid and accurate PCM instance
which allows, e. g., performance predictions.

Parts of the model update and adaptive instrumentation were prototypically imple-
mented in previous work without forming a complete pipeline [14, 21, 75]. In this thesis,
the implementations were adapted, updated, extended, combined, and evaluated with the
TeaStore. The resulting pipeline checks out a speci�c commit to perform a component
discovery and state-based model comparison with the code model in the V-SUM. The
obtained �ne-grained change sequence is enriched with a mechanism to detect changed
methods and is propagated within the V-SUM. Next, the CPRs update the PCM and transi-
tively propagate the changes on the PCM to the extended IM. Based on the extended IM
and the code model in the V-SUM, the adaptive instrumentation is executed.

The evaluation of the approach indicates its correct operation. Nevertheless, it also re-
vealed limitations and issues which form a base for future work. There is a gap between the
implemented pipeline and the existing calibration pipeline. By combining both pipelines,
the complete Dev-time part of the CIPM approach and the accuracy of such a calibrated
PCM can be evaluated. In addition, it allows the repetition and further evaluation with
di�erent case studies from potentially di�erent domains. The results and the presented
approach increase the usability of the CIPM approach by automating its activities and
providing a CI pipeline. Furthermore, minor issues can be resolved. This includes the
detection of external calls and required roles in the context of REST APIs, the extension
and evaluation of the incremental �ne-grained SEFF reconstruction, and improvements in
the adaptive instrumentation and SEFF reconstruction.

101

Bibliography

[1] N. Alshuqayran, N. Ali, and R. Evans. “Towards Micro Service Architecture Re-
covery: An Empirical Study”. In: 2018 IEEE International Conference on Software
Architecture (ICSA). 2018, pp. 47–4709. doi: 10.1109/ICSA.2018.00014.

[2] Apache Software Foundation. 14. Generating Report Dashboard. Accessed: 13.09.2021.
2021. url: https://jmeter.apache.org/usermanual/generating- dashboard.
html.

[3] Thorsten Arendt et al. “Henshin: Advanced Concepts and Tools for In-Place EMF
Model Transformations”. In: Model Driven Engineering Languages and Systems. Ed.
by Dorina C. Petriu, Nicolas Rouquette, and Øystein Haugen. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 121–135. isbn: 978-3-642-16145-2.

[4] Colin Atkinson, Dietmar Stoll, and Philipp Bostan. “Orthographic Software Model-
ing: A Practical Approach to View-Based Development”. In: Evaluation of Novel
Approaches to Software Engineering. Ed. by Leszek A. Maciaszek, César González-
Pérez, and Stefan Jablonski. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 206–219. isbn: 978-3-642-14819-4.

[5] A. Baabad et al. “Software Architecture Degradation in Open Source Software: A
Systematic Literature Review”. In: IEEE Access 8 (2020), pp. 173681–173709. doi:
10.1109/ACCESS.2020.3024671.

[6] Victor R. Basili. Software Modeling and Measurement: The Goal/Question/Metric
Paradigm. Tech. rep. CS-TR-2956, UMIACS-TR-92-96. University of Maryland, Sept.
1992. url: https://drum.lib.umd.edu/handle/1903/7538.

[7] Ste�en Becker, Heiko Koziolek, and Ralf Reussner. “The Palladio component model
for model-driven performance prediction”. In: Journal of Systems and Software 82
(2009), pp. 3–22. doi: 10.1016/j.jss.2008.03.066.

[8] Petra Brosch et al. “An Introduction to Model Versioning”. In: Formal Methods
for Model-Driven Engineering: 12th International School on Formal Methods for the
Design of Computer, Communication, and Software Systems, SFM 2012, Bertinoro, Italy,
June 18-23, 2012. Advanced Lectures. Ed. by Marco Bernardo, Vittorio Cortellessa,
and Alfonso Pierantonio. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 336–398. isbn: 978-3-642-30982-3. doi: 10.1007/978-3-642-30982-3_10. url:
https://doi.org/10.1007/978-3-642-30982-3_10.

[9] Pavel Bucek and Santiago Pericas-Geertsen. JAX-RS: Java API for RESTful Web
Services - Version 2.1 Final Release. Accessed: 13.09.2021. July 13, 2017. url: https:
//download.oracle.com/otn-pub/jcp/jaxrs-2_1-final-eval-spec/jaxrs-2_1-

final-spec.pdf.

103

https://doi.org/10.1109/ICSA.2018.00014
https://jmeter.apache.org/usermanual/generating-dashboard.html
https://jmeter.apache.org/usermanual/generating-dashboard.html
https://doi.org/10.1109/ACCESS.2020.3024671
https://drum.lib.umd.edu/handle/1903/7538
https://doi.org/10.1016/j.jss.2008.03.066
https://doi.org/10.1007/978-3-642-30982-3_10
https://doi.org/10.1007/978-3-642-30982-3_10
https://download.oracle.com/otn-pub/jcp/jaxrs-2_1-final-eval-spec/jaxrs-2_1-final-spec.pdf
https://download.oracle.com/otn-pub/jcp/jaxrs-2_1-final-eval-spec/jaxrs-2_1-final-spec.pdf
https://download.oracle.com/otn-pub/jcp/jaxrs-2_1-final-eval-spec/jaxrs-2_1-final-spec.pdf

Bibliography

[10] Shing Wai Chan and Ed Burns. Java Servlet Speci�cation - Version 4.0. Accessed:
13.09.2021. July 2017. url: https://download.oracle.com/otn-pub/jcp/servlet-
4-final-eval-spec/servlet-4_0_FINAL.pdf.

[11] Shing Wai Chan and Rajiv Mordani. Java Servlet Speci�cation - Version 3.1. Accessed:
13.09.2021. Apr. 2013. url: https://download.oracle.com/otn-pub/jcp/servlet-
3_1-fr-eval-spec/servlet-3_1-final.pdf.

[12] change-based-adaptive-instrumentation. Apr. 16, 2019. url: https://github.com/
vitruv-tools/change-based-adaptive-instrumentation/tree/4c6d28cfe8d88af039fb3b52851574cfd0d1773a.

[13] E. J. Chikofsky and J. H. Cross. “Reverse engineering and design recovery: a taxon-
omy”. In: IEEE Software 7.1 (1990), pp. 13–17. doi: 10.1109/52.43044.

[14] Ilia Chupakhin. Extrahieren von Code-Änderungen aus einem Commit für kontinuier-
liche Integration von Leistungsmodellen. Bachelor’s Thesis. Karlsruhe, 2020.

[15] CIPM-Pipeline. Accessed: 13.09.2021. Apr. 6, 2021. url: https://github.com/CIPM-
tools/CIPM-Pipeline/tree/0aba63d7ed6764b524af9495380c3a48141220ea.

[16] CIPM-Pipeline / cipm.consistency.root / cipm.consistency.runtime.pipeline.pcm / src /
test / resources / teastore / models /. Accessed: 04.09.2021. Apr. 17, 2021. url: https://
github.com/CIPM-tools/CIPM-Pipeline/tree/aaaf9d9bdaec1c99e8fcd55725a681d02d699ead/

cipm.consistency.root/cipm.consistency.runtime.pipeline.pcm/src/test/

resources/teastore/models.
[17] Class ASTParser. Accessed: 17.01.2021. June 2020. url: https://repo1.maven.org/

maven2/org/eclipse/jdt/org.eclipse.jdt.doc.isv/3.14.800/org.eclipse.

jdt.doc.isv-3.14.800.jar.
[18] Contributors to Jakarta RESTful Web Services. Jakarta RESTful Web Services.

Version 3.0. Accessed: 13.09.2021. Sept. 23, 2020. url: https : / / jakarta . ee /
specifications/restful-ws/3.0/jakarta-restful-ws-spec-3.0.pdf.

[19] Vittorio Cortellessa, Antinisca Di Marco, and Paola Inverardi. Model-Based Software
Performance Analysis. 1st. Springer Publishing Company, Incorporated, 2011. isbn:
3642136206.

[20] Arlin Cuncic. Understanding Internal and External Validity. Accessed: 13.09.2021.
July 31, 2021. url: https://www.verywellmind.com/internal-and-external-
validity-4584479.

[21] Noureddine Dahmane. “Adaptive Monitoring for Continuous Performance Model
Integration”. Master’s Thesis. Karlsruhe: Karlsruhe Institute of Technology (KIT),
2019.

[22] Lakshitha de Silva and Dharini Balasubramaniam. “Controlling software archi-
tecture erosion: A survey”. In: Journal of Systems and Software 85.1 (2012). Dy-
namic Analysis and Testing of Embedded Software, pp. 132–151. issn: 0164-1212.
doi: https : / / doi . org / 10 . 1016 / j . jss . 2011 . 07 . 036. url: https : / / www .
sciencedirect.com/science/article/pii/S0164121211002044.

104

https://download.oracle.com/otn-pub/jcp/servlet-4-final-eval-spec/servlet-4_0_FINAL.pdf
https://download.oracle.com/otn-pub/jcp/servlet-4-final-eval-spec/servlet-4_0_FINAL.pdf
https://download.oracle.com/otn-pub/jcp/servlet-3_1-fr-eval-spec/servlet-3_1-final.pdf
https://download.oracle.com/otn-pub/jcp/servlet-3_1-fr-eval-spec/servlet-3_1-final.pdf
https://github.com/vitruv-tools/change-based-adaptive-instrumentation/tree/4c6d28cfe8d88af039fb3b52851574cfd0d1773a
https://github.com/vitruv-tools/change-based-adaptive-instrumentation/tree/4c6d28cfe8d88af039fb3b52851574cfd0d1773a
https://doi.org/10.1109/52.43044
https://github.com/CIPM-tools/CIPM-Pipeline/tree/0aba63d7ed6764b524af9495380c3a48141220ea
https://github.com/CIPM-tools/CIPM-Pipeline/tree/0aba63d7ed6764b524af9495380c3a48141220ea
https://github.com/CIPM-tools/CIPM-Pipeline/tree/aaaf9d9bdaec1c99e8fcd55725a681d02d699ead/cipm.consistency.root/cipm.consistency.runtime.pipeline.pcm/src/test/resources/teastore/models
https://github.com/CIPM-tools/CIPM-Pipeline/tree/aaaf9d9bdaec1c99e8fcd55725a681d02d699ead/cipm.consistency.root/cipm.consistency.runtime.pipeline.pcm/src/test/resources/teastore/models
https://github.com/CIPM-tools/CIPM-Pipeline/tree/aaaf9d9bdaec1c99e8fcd55725a681d02d699ead/cipm.consistency.root/cipm.consistency.runtime.pipeline.pcm/src/test/resources/teastore/models
https://github.com/CIPM-tools/CIPM-Pipeline/tree/aaaf9d9bdaec1c99e8fcd55725a681d02d699ead/cipm.consistency.root/cipm.consistency.runtime.pipeline.pcm/src/test/resources/teastore/models
https://repo1.maven.org/maven2/org/eclipse/jdt/org.eclipse.jdt.doc.isv/3.14.800/org.eclipse.jdt.doc.isv-3.14.800.jar
https://repo1.maven.org/maven2/org/eclipse/jdt/org.eclipse.jdt.doc.isv/3.14.800/org.eclipse.jdt.doc.isv-3.14.800.jar
https://repo1.maven.org/maven2/org/eclipse/jdt/org.eclipse.jdt.doc.isv/3.14.800/org.eclipse.jdt.doc.isv-3.14.800.jar
https://jakarta.ee/specifications/restful-ws/3.0/jakarta-restful-ws-spec-3.0.pdf
https://jakarta.ee/specifications/restful-ws/3.0/jakarta-restful-ws-spec-3.0.pdf
https://www.verywellmind.com/internal-and-external-validity-4584479
https://www.verywellmind.com/internal-and-external-validity-4584479
https://doi.org/https://doi.org/10.1016/j.jss.2011.07.036
https://www.sciencedirect.com/science/article/pii/S0164121211002044
https://www.sciencedirect.com/science/article/pii/S0164121211002044

[23] Linda DeMichiel and Bill Shannon. Java Platform, Enterprise Edition (Java EE)
Speci�cation, v7. Apr. 5, 2013. url: https://download.oracle.com/otn-pub/jcp/
java_ee-7-fr-eval-spec/JavaEE_Platform_Spec.pdf.

[24] Developer Guide. url: https://www.eclipse.org/emf/compare/documentation/
latest/developer/developer-guide.html.

[25] S. G. Eick et al. “Does code decay? Assessing the evidence from change management
data”. English. In: IEEE Transactions on Software Engineering 27.1 (2001). Cited By
:376, pp. 1–12. url: www.scopus.com.

[26] Simon Eismann et al. “Microservices: A Performance Tester’s Dream or Night-
mare?” In: Proceedings of the ACM/SPEC International Conference on Performance
Engineering. ICPE ’20. Edmonton AB, Canada: Association for Computing Machin-
ery, 2020, pp. 138–149. isbn: 9781450369916. doi: 10.1145/3358960.3379124. url:
https://doi.org/10.1145/3358960.3379124.

[27] Brian Foote and Joseph Yoder. “Big Ball of Mud”. In: (Sept. 2003).
[28] Martin Fowler. Continuous Integration. May 2006. url: https://www.martinfowler.

com/articles/continuousIntegration.html.
[29] Martin Fowler. ContinuousDelivery. Aug. 2014. url: https://www.martinfowler.

com/bliki/ContinuousDelivery.html.
[30] Martin Fowler. The New Methodology. Dec. 2005. url: https://www.martinfowler.

com/articles/newMethodology.html.
[31] Martin Fowler and James Lewis. Microservices - a de�nition of this new architectural

term. Mar. 2014. url: https://www.martinfowler.com/articles/microservices.
html.

[32] Sinem Getir et al. “CoWolf – A Generic Framework for Multi-view Co-evolution
and Evaluation of Models”. In: Theory and Practice of Model Transformations. Ed. by
Dimitris Kolovos and Manuel Wimmer. Cham: Springer International Publishing,
2015, pp. 34–40. isbn: 978-3-319-21155-8.

[33] Getting Started. Accessed: 13.09.2021. Aug. 26, 2019. url: https://github.com/
DescartesResearch/TeaStore/wiki/Getting-Started.

[34] git-log. Version 2.33.0. Accessed: 04.09.2021. Aug. 16, 2021. url: https://git-
scm.com/docs/git-log.

[35] M. Godfrey and Eric H. S. Lee. “Secrets from the Monster: Extracting Mozilla’s
Software Architecture”. In: 2000.

[36] Thomas Goldschmidt, Ste�en Becker, and Erik Burger. “Towards a Tool-Oriented
Taxonomy of View-Based Modelling”. In: Proceedings of the Modellierung 2012.
Ed. by Elmar J. Sinz and Andy Schürr. Vol. P-201. GI-Edition – Lecture Notes in
Informatics (LNI). Bamberg: Gesellschaft für Informatik e.V. (GI), Mar. 2012, pp. 59–
74. isbn: 978-3-88579-295-6.

[37] James Gosling et al. The Java Language Speci�cation, Java SE 15 Edition. Aug. 2020.
url: https://docs.oracle.com/javase/specs/jls/se15/jls15.pdf.

105

https://download.oracle.com/otn-pub/jcp/java_ee-7-fr-eval-spec/JavaEE_Platform_Spec.pdf
https://download.oracle.com/otn-pub/jcp/java_ee-7-fr-eval-spec/JavaEE_Platform_Spec.pdf
https://www.eclipse.org/emf/compare/documentation/latest/developer/developer-guide.html
https://www.eclipse.org/emf/compare/documentation/latest/developer/developer-guide.html
www.scopus.com
https://doi.org/10.1145/3358960.3379124
https://doi.org/10.1145/3358960.3379124
https://www.martinfowler.com/articles/continuousIntegration.html
https://www.martinfowler.com/articles/continuousIntegration.html
https://www.martinfowler.com/bliki/ContinuousDelivery.html
https://www.martinfowler.com/bliki/ContinuousDelivery.html
https://www.martinfowler.com/articles/newMethodology.html
https://www.martinfowler.com/articles/newMethodology.html
https://www.martinfowler.com/articles/microservices.html
https://www.martinfowler.com/articles/microservices.html
https://github.com/DescartesResearch/TeaStore/wiki/Getting-Started
https://github.com/DescartesResearch/TeaStore/wiki/Getting-Started
https://git-scm.com/docs/git-log
https://git-scm.com/docs/git-log
https://docs.oracle.com/javase/specs/jls/se15/jls15.pdf

Bibliography

[38] James Gosling et al. The Java Language Speci�cation, Java SE 7 Edition. Feb. 2013.
url: https://docs.oracle.com/javase/specs/jls/se7/jls7.pdf.

[39] James Gosling et al. The Java Language Speci�cation, Java SE 8 Edition. Feb. 2015.
url: https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf.

[40] James Gosling et al. The Java Language Speci�cation, Java SE 9 Edition. Aug. 2017.
url: https://docs.oracle.com/javase/specs/jls/se9/jls9.pdf.

[41] James Gosling et al. The Java Language Speci�cation, Third Edition. Addison-Wesley,
June 2005, p. 688. url: https://docs.oracle.com/javase/specs/jls/se6/jls3.
pdf.

[42] Gradle Inc. Build Script Basics. Accessed: 13.09.2021. 2021. url: https://docs.
gradle.org/7.0/userguide/tutorial_using_tasks.html.

[43] G. Granchelli et al. “Towards Recovering the Software Architecture of Microservice-
Based Systems”. In: 2017 IEEE International Conference on Software Architecture
Workshops (ICSAW). 2017, pp. 46–53. doi: 10.1109/ICSAW.2017.48.

[44] Artur Grygorian and Ionut E. Iacob. “A Concise Proof of the Triangle Inequality
for the Jaccard Distance”. In: The College Mathematics Journal 49.5 (2018), pp. 363–
365. doi: 10.1080/07468342.2018.1526020. eprint: https://doi.org/10.1080/
07468342 . 2018 . 1526020. url: https : / / doi . org / 10 . 1080 / 07468342 . 2018 .
1526020.

[45] Jürgen Halstenberg, Bernd P�tzinger, and Thomas Jestädt. DevOps - Ein Überblick.
essentials 1. Springer Vieweg, Wiesbaden, 2020. isbn: 9783658314057.

[46] A. E. Hassan and R. C. Holt. “Architecture recovery of Web applications”. In:
Proceedings of the 24th International Conference on Software Engineering. ICSE 2002.
2002, pp. 349–359. doi: 10.1145/581380.581383.

[47] Christoph Heger et al. “Application Performance Management: State of the Art
and Challenges for the Future”. In: Apr. 2017, pp. 429–432. doi: 10.1145/3030207.
3053674.

[48] Florian Heidenreich et al. “Closing the Gap between Modelling and Java”. In:
Software Language Engineering. Ed. by Mark van den Brand, Dragan Gašević, and
Je� Gray. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 374–383. isbn:
978-3-642-12107-4.

[49] Florian Heidenreich et al. “Derivation and Re�nement of Textual Syntax for Models”.
In: Model Driven Architecture - Foundations and Applications. Ed. by Richard F. Paige,
Alan Hartman, and Arend Rensink. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, pp. 114–129. isbn: 978-3-642-02674-4.

[50] Lorin Hochstein and Mikael Lindvall. “Combating architectural degeneration: a
survey”. In: Information and Software Technology 47.10 (2005), pp. 643–656. issn:
0950-5849. doi: https://doi.org/10.1016/j.infsof.2004.11.005. url: https:
//www.sciencedirect.com/science/article/pii/S0950584904001740.

106

https://docs.oracle.com/javase/specs/jls/se7/jls7.pdf
https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
https://docs.oracle.com/javase/specs/jls/se9/jls9.pdf
https://docs.oracle.com/javase/specs/jls/se6/jls3.pdf
https://docs.oracle.com/javase/specs/jls/se6/jls3.pdf
https://docs.gradle.org/7.0/userguide/tutorial_using_tasks.html
https://docs.gradle.org/7.0/userguide/tutorial_using_tasks.html
https://doi.org/10.1109/ICSAW.2017.48
https://doi.org/10.1080/07468342.2018.1526020
https://doi.org/10.1080/07468342.2018.1526020
https://doi.org/10.1080/07468342.2018.1526020
https://doi.org/10.1080/07468342.2018.1526020
https://doi.org/10.1080/07468342.2018.1526020
https://doi.org/10.1145/581380.581383
https://doi.org/10.1145/3030207.3053674
https://doi.org/10.1145/3030207.3053674
https://doi.org/https://doi.org/10.1016/j.infsof.2004.11.005
https://www.sciencedirect.com/science/article/pii/S0950584904001740
https://www.sciencedirect.com/science/article/pii/S0950584904001740

[51] John Hutchinson, Jon Whittle, and Mark Rounce�eld. “Model-driven engineering
practices in industry: Social, organizational and managerial factors that lead to
success or failure”. In: Science of Computer Programming 89 (2014). Special issue
on Success Stories in Model Driven Engineering, pp. 144–161. issn: 0167-6423.
doi: https://doi.org/10.1016/j.scico.2013.03.017. url: https://www.
sciencedirect.com/science/article/pii/S0167642313000786.

[52] IBM. Übersicht zu Eclipse Modeling Framework (EMF). June 2005. url: https://www.
ibm.com/support/knowledgecenter/de/SSQ2R2_9.5.1/org.eclipse.emf.doc/

references/overview/EMF.html.
[53] Oracle Inc. Class GenericServlet. Accessed: 13.09.2021. 2015. url: https://docs.

oracle.com/javaee/7/api/javax/servlet/GenericServlet.html.
[54] Oracle Inc. Class HttpServlet. Accessed: 13.09.2021. 2015. url: https : / / docs .

oracle.com/javaee/7/api/javax/servlet/http/HttpServlet.html.
[55] Oracle Inc. Java Language and Virtual Machine Speci�cations. 2020. url: https:

//docs.oracle.com/javase/specs/.
[56] Interface ICompilationUnit. Accessed: 17.01.2021. June 2020. url: https://repo1.

maven.org/maven2/org/eclipse/jdt/org.eclipse.jdt.doc.isv/3.14.800/org.

eclipse.jdt.doc.isv-3.14.800.jar.
[57] Paul Jaccard. “THE DISTRIBUTION OF THE FLORA IN THE ALPINE ZONE.1”. In:

New Phytologist 11.2 (1912), pp. 37–50. doi: https://doi.org/10.1111/j.1469-
8137.1912.tb05611.x. eprint: https://nph.onlinelibrary.wiley.com/doi/pdf/
10.1111/j.1469-8137.1912.tb05611.x. url: https://nph.onlinelibrary.wiley.
com/doi/abs/10.1111/j.1469-8137.1912.tb05611.x.

[58] Jakarta EE Platform Team. Jakarta EE Platform. Version 8. Accessed: 13.09.2021.
Aug. 26, 2019. url: https://jakarta.ee/specifications/platform/8/platform-
spec-8.pdf.

[59] Jakarta Servlet Team. Jakarta Servlet Speci�cation. Version 5.0. Accessed: 13.09.2021.
Sept. 7, 2020. url: https://jakarta.ee/specifications/servlet/5.0/jakarta-
servlet-spec-5.0.pdf.

[60] JavaParser. Feb. 22, 2021. url: https://github.com/javaparser/javaparser/
tree/c579b8d1a9cb60db3babbe9384f514690fec13b8.

[61] Zhen Jiang and Ahmed E. Hassan. “A Survey on Load Testing of Large-Scale
Software Systems”. In: IEEE Transactions on Software Engineering 41 (Nov. 2015),
pp. 1–1. doi: 10.1109/TSE.2015.2445340.

[62] T. Kehrer, U. Kelter, and G. Taentzer. “A rule-based approach to the semantic
lifting of model di�erences in the context of model versioning”. In: 2011 26th
IEEE/ACM International Conference on Automated Software Engineering (ASE 2011).
2011, pp. 163–172. doi: 10.1109/ASE.2011.6100050.

[63] T. Kehrer, U. Kelter, and G. Taentzer. “Consistency-preserving edit scripts in model
versioning”. In: 2013 28th IEEE/ACM International Conference on Automated Software
Engineering (ASE). 2013, pp. 191–201. doi: 10.1109/ASE.2013.6693079.

107

https://doi.org/https://doi.org/10.1016/j.scico.2013.03.017
https://www.sciencedirect.com/science/article/pii/S0167642313000786
https://www.sciencedirect.com/science/article/pii/S0167642313000786
https://www.ibm.com/support/knowledgecenter/de/SSQ2R2_9.5.1/org.eclipse.emf.doc/references/overview/EMF.html
https://www.ibm.com/support/knowledgecenter/de/SSQ2R2_9.5.1/org.eclipse.emf.doc/references/overview/EMF.html
https://www.ibm.com/support/knowledgecenter/de/SSQ2R2_9.5.1/org.eclipse.emf.doc/references/overview/EMF.html
https://docs.oracle.com/javaee/7/api/javax/servlet/GenericServlet.html
https://docs.oracle.com/javaee/7/api/javax/servlet/GenericServlet.html
https://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpServlet.html
https://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpServlet.html
https://docs.oracle.com/javase/specs/
https://docs.oracle.com/javase/specs/
https://repo1.maven.org/maven2/org/eclipse/jdt/org.eclipse.jdt.doc.isv/3.14.800/org.eclipse.jdt.doc.isv-3.14.800.jar
https://repo1.maven.org/maven2/org/eclipse/jdt/org.eclipse.jdt.doc.isv/3.14.800/org.eclipse.jdt.doc.isv-3.14.800.jar
https://repo1.maven.org/maven2/org/eclipse/jdt/org.eclipse.jdt.doc.isv/3.14.800/org.eclipse.jdt.doc.isv-3.14.800.jar
https://doi.org/https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
https://doi.org/https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
https://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8137.1912.tb05611.x
https://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8137.1912.tb05611.x
https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1912.tb05611.x
https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1912.tb05611.x
https://jakarta.ee/specifications/platform/8/platform-spec-8.pdf
https://jakarta.ee/specifications/platform/8/platform-spec-8.pdf
https://jakarta.ee/specifications/servlet/5.0/jakarta-servlet-spec-5.0.pdf
https://jakarta.ee/specifications/servlet/5.0/jakarta-servlet-spec-5.0.pdf
https://github.com/javaparser/javaparser/tree/c579b8d1a9cb60db3babbe9384f514690fec13b8
https://github.com/javaparser/javaparser/tree/c579b8d1a9cb60db3babbe9384f514690fec13b8
https://doi.org/10.1109/TSE.2015.2445340
https://doi.org/10.1109/ASE.2011.6100050
https://doi.org/10.1109/ASE.2013.6693079

Bibliography

[64] Emre Kiciman and Benjamin Livshits. “AjaxScope: A Platform for Remotely Mon-
itoring the Client-Side Behavior of Web 2.0 Applications”. In: ACM Trans. Web
4.4 (Sept. 2010). issn: 1559-1131. doi: 10.1145/1841909.1841910. url: https:
//doi.org/10.1145/1841909.1841910.

[65] Jóakim von Kistowski et al. “TeaStore: A Micro-Service Reference Application for
Benchmarking, Modeling and Resource Management Research”. In: Proceedings of
the 26th IEEE International Symposium on the Modelling, Analysis, and Simulation
of Computer and Telecommunication Systems. MASCOTS ’18. Milwaukee, WI, USA,
Sept. 2018.

[66] Heiko Klare. State-Based Propagation in Java Domain. Accessed: 13.09.2021. Mar. 22,
2021. url: https://github.com/vitruv-tools/Vitruv-Domains-ComponentBasedSystems/
pull/94.

[67] Heiko Klare et al. “Enabling consistency in view-based system development —
The Vitruvius approach”. In: Journal of Systems and Software 171 (2021), p. 110815.
issn: 0164-1212. doi: https://doi.org/10.1016/j.jss.2020.110815. url:
https://www.sciencedirect.com/science/article/pii/S0164121220302144.

[68] Benjamin Klatt. “Consolidation of Customized Product Copies into Software Prod-
uct Lines”. PhD thesis. Karlsruhe, Germany: Karlsruhe Institute of Technology (KIT),
Oct. 2014. url: http://digbib.ubka.uni-karlsruhe.de/volltexte/1000043687.

[69] Max E. Kramer, Erik Burger, and Michael Langhammer. “View-Centric Engineering
with Synchronized Heterogeneous Models”. In: Proceedings of the 1st Workshop
on View-Based, Aspect-Oriented and Orthographic Software Modelling. VAO ’13.
Montpellier, France: ACM, 2013, 5:1–5:6. isbn: 978-1-4503-2070-2. doi: 10.1145/
2489861 . 2489864. url: http : / / sdqweb . ipd . kit . edu / publications / pdfs /
kramer2013b.pdf.

[70] Klaus Krogmann. “Reconstruction of Software Component Architectures and Be-
haviour Models using Static and Dynamic Analysis”. PhD thesis. 2012. 371 pp. isbn:
978-3-86644-804-9. doi: 10.5445/KSP/1000025617.

[71] Michael Langhammer. “Automated Coevolution of Source Code and Software
Architecture Models”. PhD thesis. Karlsruhe, Germany: Karlsruhe Institute of
Technology (KIT), 2017. 259 pp. doi: 10.5445/IR/1000069366. url: http://nbn-
resolving.org/urn:nbn:de:swb:90-693666.

[72] B. Mayer and R. Weinreich. “An Approach to Extract the Architecture of Microservice-
Based Software Systems”. In: 2018 IEEE Symposium on Service-Oriented System
Engineering (SOSE). 2018, pp. 21–30. doi: 10.1109/SOSE.2018.00012.

[73] Manar Mazkatli et al. “Incremental Calibration of Architectural Performance Mod-
els with Parametric Dependencies”. In: IEEE International Conference on Software
Architecture (ICSA 2020). 2020. doi: 10.1109/ICSA47634.2020.00011.

[74] David Monschein. Enabling Consistency Between Software Artefacts - Usage Docu-
mentation. url: https://dmonsch.github.io/dModel/.

108

https://doi.org/10.1145/1841909.1841910
https://doi.org/10.1145/1841909.1841910
https://doi.org/10.1145/1841909.1841910
https://github.com/vitruv-tools/Vitruv-Domains-ComponentBasedSystems/pull/94
https://github.com/vitruv-tools/Vitruv-Domains-ComponentBasedSystems/pull/94
https://doi.org/https://doi.org/10.1016/j.jss.2020.110815
https://www.sciencedirect.com/science/article/pii/S0164121220302144
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000043687
https://doi.org/10.1145/2489861.2489864
https://doi.org/10.1145/2489861.2489864
http://sdqweb.ipd.kit.edu/publications/pdfs/kramer2013b.pdf
http://sdqweb.ipd.kit.edu/publications/pdfs/kramer2013b.pdf
https://doi.org/10.5445/KSP/1000025617
https://doi.org/10.5445/IR/1000069366
http://nbn-resolving.org/urn:nbn:de:swb:90-693666
http://nbn-resolving.org/urn:nbn:de:swb:90-693666
https://doi.org/10.1109/SOSE.2018.00012
https://doi.org/10.1109/ICSA47634.2020.00011
https://dmonsch.github.io/dModel/

[75] David Monschein. “Enabling Consistency between Software Artefacts for Soft-
ware Adaption and Evolution”. Master’s Thesis. Karlsruhe: Karlsruhe Institute of
Technology (KIT), 2020.

[76] Object Management Group, Inc. Object Constraint Language - Version 2.4. Feb. 2014.
url: https://www.omg.org/spec/OCL/2.4.

[77] Object Management Group, Inc. OMG Meta Object Facility (MOF) Core Speci�cation
- Version 2.5.1. Oct. 2019. url: https://www.omg.org/spec/MOF/2.5.1.

[78] Object Management Group, Inc. OMG Uni�ed Modeling Language (OMG UML) -
Version 2.5.1. Dec. 2017. url: https://www.omg.org/spec/UML/2.5.1.

[79] Object Management Group, Inc. XML Metadata Interchange (XMI) Speci�cation -
Version 2.5.1. June 2015. url: https://www.omg.org/spec/XMI/2.5.1/.

[80] Package org.eclipse.jdt.core.dom. Accessed: 17.01.2021. June 2020. url: https://
repo1.maven.org/maven2/org/eclipse/jdt/org.eclipse.jdt.doc.isv/3.14.

800/org.eclipse.jdt.doc.isv-3.14.800.jar.
[81] PCM 5.0. Accessed: 13.09.2021. Aug. 9, 2021. url: https://sdqweb.ipd.kit.edu/

wiki/PCM_5.0.
[82] Ricardo Pérez-Castillo et al. “ArchiRev—Reverse engineering of information sys-

tems toward ArchiMate models. An industrial case study”. In: Journal of Soft-
ware: Evolution and Process 33.2 (2021). e2314 JSME-19-0273.R2, e2314. doi: https:
//doi.org/10.1002/smr.2314. eprint: https://onlinelibrary.wiley.com/doi/
pdf/10.1002/smr.2314. url: https://onlinelibrary.wiley.com/doi/abs/10.
1002/smr.2314.

[83] Santiago Pericas-Geertsen and Marek Potociar. JAX-RS: Java API for RESTful Web
Services - Version 2.0 Final Release. Accessed: 13.09.2021. May 22, 2013. url: https:
//download.oracle.com/otn-pub/jcp/jaxrs-2_0-fr-eval-spec/jsr339-jaxrs-

2.0-final-spec.pdf.
[84] Dewayne E. Perry and Alexander L. Wolf. “Foundations for the Study of Software

Architecture”. In: SIGSOFT Softw. Eng. Notes 17.4 (Oct. 1992), pp. 40–52. issn: 0163-
5948. doi: 10.1145/141874.141884. url: https://doi.org/10.1145/141874.
141884.

[85] Jerry Preissler and Oliver Tigges. Docker - Perfekte Verpackung von Microservices.
Accessed: 13.09.2021. Nov. 9, 2015. url: https://www.innoq.com/de/articles/
2015/11/docker-perfekte-verpackung-fuer-micro-services/.

[86] PrICoBE. Jan. 2021. url: https://sdqweb.ipd.kit.edu/wiki/PrICoBE.
[87] F. Rademacher, S. Sachweh, and A. Zündorf. “Aspect-Oriented Modeling of Tech-

nology Heterogeneity in Microservice Architecture”. In: 2019 IEEE International
Conference on Software Architecture (ICSA). 2019, pp. 21–30. doi: 10.1109/ICSA.
2019.00011.

109

https://www.omg.org/spec/OCL/2.4
https://www.omg.org/spec/MOF/2.5.1
https://www.omg.org/spec/UML/2.5.1
https://www.omg.org/spec/XMI/2.5.1/
https://repo1.maven.org/maven2/org/eclipse/jdt/org.eclipse.jdt.doc.isv/3.14.800/org.eclipse.jdt.doc.isv-3.14.800.jar
https://repo1.maven.org/maven2/org/eclipse/jdt/org.eclipse.jdt.doc.isv/3.14.800/org.eclipse.jdt.doc.isv-3.14.800.jar
https://repo1.maven.org/maven2/org/eclipse/jdt/org.eclipse.jdt.doc.isv/3.14.800/org.eclipse.jdt.doc.isv-3.14.800.jar
https://sdqweb.ipd.kit.edu/wiki/PCM_5.0
https://sdqweb.ipd.kit.edu/wiki/PCM_5.0
https://doi.org/https://doi.org/10.1002/smr.2314
https://doi.org/https://doi.org/10.1002/smr.2314
https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.2314
https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.2314
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2314
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2314
https://download.oracle.com/otn-pub/jcp/jaxrs-2_0-fr-eval-spec/jsr339-jaxrs-2.0-final-spec.pdf
https://download.oracle.com/otn-pub/jcp/jaxrs-2_0-fr-eval-spec/jsr339-jaxrs-2.0-final-spec.pdf
https://download.oracle.com/otn-pub/jcp/jaxrs-2_0-fr-eval-spec/jsr339-jaxrs-2.0-final-spec.pdf
https://doi.org/10.1145/141874.141884
https://doi.org/10.1145/141874.141884
https://doi.org/10.1145/141874.141884
https://www.innoq.com/de/articles/2015/11/docker-perfekte-verpackung-fuer-micro-services/
https://www.innoq.com/de/articles/2015/11/docker-perfekte-verpackung-fuer-micro-services/
https://sdqweb.ipd.kit.edu/wiki/PrICoBE
https://doi.org/10.1109/ICSA.2019.00011
https://doi.org/10.1109/ICSA.2019.00011

Bibliography

[88] Florian Rademacher, Sabine Sachweh, and Albert Zündorf. “A Modeling Method for
Systematic Architecture Reconstruction of Microservice-Based Software Systems”.
In: Enterprise, Business-Process and Information Systems Modeling. Ed. by Selmin
Nurcan et al. Cham: Springer International Publishing, 2020, pp. 311–326. isbn:
978-3-030-49418-6.

[89] Florian Rademacher et al. “Graphical and Textual Model-Driven Microservice De-
velopment”. In: Microservices: Science and Engineering. Ed. by Antonio Bucchiarone
et al. Cham: Springer International Publishing, 2020, pp. 147–179. isbn: 978-3-030-
31646-4. doi: 10.1007/978-3-030-31646-4_7. url: https://doi.org/10.1007/
978-3-030-31646-4_7.

[90] Red Hat, Inc. Was ist eine REST-API und was ist REST (Representational State Trans-
fer)? Accessed: 13.09.2021. url: https://www.redhat.com/de/topics/api/what-
is-a-rest-api.

[91] Chris Richardson. Introduction to Microservices. May 2015. url: https://www.nginx.
com/blog/introduction-to-microservices/.

[92] Markus Scheidgen, Martin Smidt, and Joachim Fischer. “Creating and Analyzing
Source Code Repository Models”. In: Proceedings of the 5th International Conference
on Model-Driven Engineering and Software Development. MODELSWARD 2017.
Porto, Portugal: SCITEPRESS - Science and Technology Publications, Lda, 2017,
pp. 329–336. isbn: 9789897582103. doi: 10.5220/0006127303290336. url: https:
//doi.org/10.5220/0006127303290336.

[93] Ken Schwaber and Je� Sutherland. The Scrum Guide - The De�nitive Guide to
Scrum: The Rules of the Game. Nov. 2020. url: https://scrumguides.org/docs/
scrumguide/v2020/2020-Scrum-Guide-US.pdf.

[94] SPLevo. Accessed: 13.09.2021. June 10, 2016. url: https://github.com/kopl/
SPLevo/tree/761370b8c3f29a6c2379395bef86777cf30b2232.

[95] H. Stachowiak. Allgemeine Modelltheorie. Springer, 1973. isbn: 9783211811061.
[96] Thomas Stahl and Markus Völter. Modellgetriebene Softwareentwicklung : Techniken,

Engineering, Management. Ed. by Jorn Bettin. 1st ed. Heidelberg: dpunkt-Verl.,
2005. isbn: 9783898643108 ; 3898643107. url: http://www.gbv.de/dms/hbz/
toc/ht014305211.pdf;http://d- nb.info/972281509/04;http://zbmath.

org/?q=an:1092.68027;http://digitale-objekte.hbz-nrw.de/webclient/

DeliveryManager?pid=1862230&custom_att_2=simple_viewer;https://www.

voelter.de/books.html.
[97] C. Stringfellow et al. “Comparison of software architecture reverse engineering

methods”. In: Information and Software Technology 48.7 (2006), pp. 484–497. issn:
0950-5849. doi: https://doi.org/10.1016/j.infsof.2005.05.007. url: https:
//www.sciencedirect.com/science/article/pii/S0950584905000844.

[98] Clemens Szyperski. Component Software: Beyond Object-Oriented Programming.
2nd. USA: Addison-Wesley Longman Publishing Co., Inc., 2002. isbn: 0201745720.

110

https://doi.org/10.1007/978-3-030-31646-4_7
https://doi.org/10.1007/978-3-030-31646-4_7
https://doi.org/10.1007/978-3-030-31646-4_7
https://www.redhat.com/de/topics/api/what-is-a-rest-api
https://www.redhat.com/de/topics/api/what-is-a-rest-api
https://www.nginx.com/blog/introduction-to-microservices/
https://www.nginx.com/blog/introduction-to-microservices/
https://doi.org/10.5220/0006127303290336
https://doi.org/10.5220/0006127303290336
https://doi.org/10.5220/0006127303290336
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf
https://github.com/kopl/SPLevo/tree/761370b8c3f29a6c2379395bef86777cf30b2232
https://github.com/kopl/SPLevo/tree/761370b8c3f29a6c2379395bef86777cf30b2232
http://www.gbv.de/dms/hbz/toc/ht014305211.pdf;http://d-nb.info/972281509/04;http://zbmath.org/?q=an:1092.68027;http://digitale-objekte.hbz-nrw.de/webclient/DeliveryManager?pid=1862230&custom_att_2=simple_viewer;https://www.voelter.de/books.html
http://www.gbv.de/dms/hbz/toc/ht014305211.pdf;http://d-nb.info/972281509/04;http://zbmath.org/?q=an:1092.68027;http://digitale-objekte.hbz-nrw.de/webclient/DeliveryManager?pid=1862230&custom_att_2=simple_viewer;https://www.voelter.de/books.html
http://www.gbv.de/dms/hbz/toc/ht014305211.pdf;http://d-nb.info/972281509/04;http://zbmath.org/?q=an:1092.68027;http://digitale-objekte.hbz-nrw.de/webclient/DeliveryManager?pid=1862230&custom_att_2=simple_viewer;https://www.voelter.de/books.html
http://www.gbv.de/dms/hbz/toc/ht014305211.pdf;http://d-nb.info/972281509/04;http://zbmath.org/?q=an:1092.68027;http://digitale-objekte.hbz-nrw.de/webclient/DeliveryManager?pid=1862230&custom_att_2=simple_viewer;https://www.voelter.de/books.html
http://www.gbv.de/dms/hbz/toc/ht014305211.pdf;http://d-nb.info/972281509/04;http://zbmath.org/?q=an:1092.68027;http://digitale-objekte.hbz-nrw.de/webclient/DeliveryManager?pid=1862230&custom_att_2=simple_viewer;https://www.voelter.de/books.html
https://doi.org/https://doi.org/10.1016/j.infsof.2005.05.007
https://www.sciencedirect.com/science/article/pii/S0950584905000844
https://www.sciencedirect.com/science/article/pii/S0950584905000844

[99] TeaStore. Accessed: 04.09.2021. Aug. 26, 2021. url: https://github.com/DescartesResearch/
TeaStore/tree/8c36e8616db4a3173cdfe3537b39d71d830c2840.

[100] The Apache Software Foundation. Introduction to the POM. Accessed: 13.09.2021.
Sept. 11, 2021. url: https://maven.apache.org/guides/introduction/introduction-
to-the-pom.html.

[101] Jilles van Gurp and Jan Bosch. “Design erosion: problems and causes”. In: Journal
of Systems and Software 61.2 (2002), pp. 105–119. issn: 0164-1212. doi: https:
//doi.org/10.1016/S0164-1212(01)00152-2. url: https://www.sciencedirect.
com/science/article/pii/S0164121201001522.

[102] Vitruv. Accessed: 13.09.2021. July 14, 2021. url: https://github.com/vitruv-
tools/Vitruv/tree/e717464171040eda6da7ed704a04e6096fa4e17d.

[103] Vitruv-Domains-ComponentBasedSystems. Accessed: 13.09.2021. July 14, 2021. url:
https://github.com/vitruv-tools/Vitruv-Domains-ComponentBasedSystems/

tree/80e6225904ec42772cfb5657137b9fd258062b41.
[104] Sonya Voneva et al. “Optimizing Parametric Dependencies for Incremental Per-

formance Model Extraction”. In: Software Architecture - 14th European Conference,
ECSA 2020 Tracks and Workshops- The 6th International Workshop on Quality-Aware
DevOps (QUDOS 2020) co-located with ECSA 2020. 2020.

[105] What is EMF Compare? 2019. url: https://www.eclipse.org/emf/compare/
overview.html.

111

https://github.com/DescartesResearch/TeaStore/tree/8c36e8616db4a3173cdfe3537b39d71d830c2840
https://github.com/DescartesResearch/TeaStore/tree/8c36e8616db4a3173cdfe3537b39d71d830c2840
https://maven.apache.org/guides/introduction/introduction-to-the-pom.html
https://maven.apache.org/guides/introduction/introduction-to-the-pom.html
https://doi.org/https://doi.org/10.1016/S0164-1212(01)00152-2
https://doi.org/https://doi.org/10.1016/S0164-1212(01)00152-2
https://www.sciencedirect.com/science/article/pii/S0164121201001522
https://www.sciencedirect.com/science/article/pii/S0164121201001522
https://github.com/vitruv-tools/Vitruv/tree/e717464171040eda6da7ed704a04e6096fa4e17d
https://github.com/vitruv-tools/Vitruv/tree/e717464171040eda6da7ed704a04e6096fa4e17d
https://github.com/vitruv-tools/Vitruv-Domains-ComponentBasedSystems/tree/80e6225904ec42772cfb5657137b9fd258062b41
https://github.com/vitruv-tools/Vitruv-Domains-ComponentBasedSystems/tree/80e6225904ec42772cfb5657137b9fd258062b41
https://www.eclipse.org/emf/compare/overview.html
https://www.eclipse.org/emf/compare/overview.html

A. Appendix

A.1. Acronyms

AST abstract syntax tree

AbPP Architecture-based Performance Prediction

ADL Architecture Description Language

CMOF Complete MOF

CPR consistency preservation rule

CI Continuous Integration

CIPM Continuous Integration of Performance Models

DSL domain-speci�c language

EMF Eclipse Modeling Framework

EJB Enterprise Java Beans

EMOF Essential MOF

XP Extreme Programming

GQM Goal Question Metric

IMM Instrumentation Meta-Model

IM Instrumentation Model

IPMS Instrumentation Point Matching Score

JC Jaccard similarity coe�cient

JDT Java Development Tools

JaMoPP Java Model Parser and Printer

MOF Meta Object Facility

MDSD model-driven software development

113

A. Appendix

OCL Object Constraint Language

OMG Object Management Group, Inc.

OSM Orthographic Software Modeling

PCM Palladio Component Model

PMP performance model parameter

POJO Plain Old Java Object

RDSEFF ResourceDemandingServiceEffectSpecifications

REST Representational State Transfer

SEFF Service E�ect Speci�cation

SUM Single Underlying Model

JLS 3 The Java Language Speci�cation - Third Edition

JLS 7 The Java Language Speci�cation - Java SE 7 Edition

JLS 15 The Java Language Speci�cation - Java SE 15 Edition

UML Uni�ed Modeling Language

VITRUVIUS VIew-cenTRic engineering Using a VIrtual Underlying Single model

V-SUM Virtual Single Underlying Model

XMI XML Metadata Interchange

A.2. Mapping: Commit Numeration to Hash Values

Commit Hash Value
Interval (I)

0 77733d9c6ab6680c6cc460c631cd408a588a595c
1 9c5e7aa3bfdec546740f0dc0d1a3befc36195e8e
2 585e7e9c501506580cfda0c97e5f645ac849b46e
3 38c81c974a06a2781b19395c02905ba5f604b6c0
4 115b89c518d1f281c3132�c8d6c3e1f6293a3f5
5 362ca4028d7407156d04e8f347e90ebd1fe26004
6 439caf08f087a2093324f7f03fa8eda3eda4e25a
7 3aaa59b5b8449b214884eb24efb7e54276563c76
8 6ecfd88ecd86f4634bc95541a9fa5e5cdaf742a4
9 3291291cc07ca420b4c6792b1d134f08b3b0c947

114

A.2. Mapping: Commit Numeration to Hash Values

Commit Hash Value
10 18ef9411e4d54db780b3d47a5fee306fb4ccd8a6
11 bd9062b294545290c265acc81ba7e6f329a6a5b1
12 907c�311827f51035788544ec6bbb27abe3b9a0
13 f8752ca8b2b3c4ebc94c7e7cb4d6cfcd34d395a3
14 c834417fbd78230dc0354c22a696bbfcd3423a7b
15 492100017f535341ed047cc8e2306654ab2becc2
16 ec94531e55463c41b6a069b24205f22c42948261
17 2fe02ea07a6f702946ca66f023d35ab6fafba91a
18 baf77779976d6265745894c31a303ace226694f4
19 1cd2c8c4bac100519b5cabafc1c83a7cd7737f49
20 79e2e244ddd014fbb9df86310b7e1e97427da196
21 ec88ca71c11bcd3699�2e965af6cea75d0ef735
22 da98b2d0056e782448f2e0022ceb0ce54228fd67
23 554ae7f76cadf85b6dd743e97d706987226fc4f0
24 447db7f7708721fcbe8b15d93a4b166d717861d6
25 ae97a5e149b7dd4bd56bbc4e0eb71ec12ac655d3
26 c7304932eef264eadbc6ef64cf7a5b46c1f8bf7a
27 9b0dbc68e0a20d4264f0d3d7b7dccc3c17d7d76c
28 16a26135a9a756ccb066e6b963808dbba1d898e9
29 2f97af33dea1e223e346c0e6995a71cd0cdb6d33
30 26c5a920ba08f980eb9f85b156a1accacb8a4fd8
31 22c3cc238c2ce06967dce9b83fa6e2dc7a72f3be
32 413db162b63d0d55f213439ef33553c935784726
33 039df89be3fdd63ba65578355616101203035fee
34 f59c83cefaaf4185b3b6cce28c3a1f8260fa8265
35 0b7e58a62f3592ba8dcb0a7b981a35cacb87a38d
36 86b977d579d0bbc46826c17cbdb8251da2bcc816
37 46c8a8155df2977caebd695a5b70ae8f7eced731
38 5da47577aee96e56ea6c3349eda1f1e63e7498d9
39 b639e0d6c6aaf23d845bbd16970fb1aeac1ee99c
40 b8779e32e91534556c23a8d1f8aecae4040fddea
41 c5d937a356f5c6a0695dd9a1956d4a4137f54ec0
42 2b96fddc1edc319bac947162e8d16e710cd2bd3e
43 af1e452c86aabd33a3e4e1a70b003931eb5850ad
44 845a610cc2dc662f4fe205e61c5e5d5cb68c29b6
45 0704e1a80882dc6f161dec85f81b656bd80f73a0
46 1b49c068aa280d74095a15d�24eb3a32bb61a26
47 0d6ba6828abf3821e1d67a45e3d12cbf33fe0c31
48 a5b3f297f6c8b936aa49025599ed61f49b8ed79c
49 504aba04279ea7f6bc4f4e62a969d8f427059a03
50 53c6efa1dca64a87e536d8c5a3dcc3c12ad933b5

Interval (II)

115

A. Appendix

Commit Hash Value
0 53c6efa1dca64a87e536d8c5a3dcc3c12ad933b5
1 a8381b6a338e2a60db6dc5b2cd71f20444f47e0d
2 4a74699f22885d8c69d579de412d5d36c2129eca
3 3ea814eeeebc90f9408d74e8c8080b0f5ce5b538
4 4289b157b3fbf02fd4cc20d4d56c5becd844883c
5 1b63f2f9ce8a5bd9c69be3fba745281d61cd3c95
6 56a53�7d4ab5da7ab7525bd2520234d630a94b4
7 5b3921260ed32009b3dcb5�af1cb95d6ef2dc03
8 787a23be2345d4b3bb18fa07bde8af84e70f10ee
9 64105610d36abe100951e6225e6788e0b89d9fa0
10 7d5b672094b48d3efe8d4c2d442a41dd0ae6b1bb
11 d10092e7899a2c6b614702d1b35db859f2d7195b
12 1514911c45a3cf28dcccd9a3db671593911badb3
13 6fd7c262a1cc9745b62a89c51d8e8ef3b30185be
14 62c292941ccbcc85267889e9�c629b5f8072159
15 f695f5ae05a1f660c17680d525ec64f7579dc9f9
16 6dc58b7cd95f8606a6bac1f1�75a0120a9a88a5
17 6462ae1fd676f6ad21c8c603b6c5a87b3363d89d
18 d159c35d09d69e9cf364f7ec861b6d8ce9a7fa67
19 0b8fca9398f69ec929e3eacb6569b4a5f8eb058d
20 f8f13f4390f80d3dc8adb0a6167938a688ddb45e

Interval (III)
0 f8f13f4390f80d3dc8adb0a6167938a688ddb45e
1 cf59ce3c99561fb1b83a4785305c119c720d1e73
2 624982650875d0dca231e1f8c2d76a559�ed571
3 df9eef824f74533c351036fc24b9321024d78fe0
4 d5a4464fb9eec467750b48321be89367df5263b0
5 bc322fd25c3ea2ab23c7ee45140702febb32a1f9
6 583050817139e82eb6ef99b649b2c2f09d504128
7 2e0264cedbefda1529a206e68a101764c79326ce
8 315fe19fbdd14ab96686840431035c6ba3d6d472
9 afa32739012ad86e13b4e6d76c12bc6e341d0120
10 77103bdd7d3c8c239943e24b79424315c2924f59
11 745469e55fad8a801a92b0be96dc009acbe7e3fb

Interval (VI)
0 745469e55fad8a801a92b0be96dc009acbe7e3fb
1 900cb91e895a801ba518939b6a472d9bfc0adf49
2 13256fb5ac64f6d5a7346817d5d2b38bb963baef
3 23b0a843735dd5d6b9174266e309624ceb861ec5
4 816b98c9c5a210d41f5cd70724fd06c0d2d48833
5 1bbab532eed113d31803150bf29ef0c8b26ea556
6 e0996dcf7fa9fe7aa1a34752�73a2300691eabe

116

A.2. Mapping: Commit Numeration to Hash Values

Commit Hash Value
7 49cb2dd58e109d6402bd8f4c3fd2bc2c352cb4f1
8 cd67bbd5497222ecdde45acd8d6e3baa9feddcc6
9 bfd2b36394e9453e7020c7906de07e667776ccac
10 ad6c8557c81f0dc0601508c49�7e0af6fe9e0fa
11 0d32426425692444ef33e26fe9a99364e88780ab
12 6843c00be99c0666195ac577177fbf956e7e332c
13 23e5f18ef1f27ed0ab36915a11d46c4945dbd03b
14 b42d44b84e49fd1039db68d391fc28d03de�2af
15 d9e1cdca5adbde0cbe28c5d15bf298fbb4815319
16 882c0481929c7f628042c9f5103165bedbe76b6f
17 7d5449f27518baaaa77f37401c82e3376efcb810
18 834d84d033a81aa6e5934a7a46f65c2a8a2f7e57
19 e1d134bd4f27754a94e5a3e96831d5bd50709a80
20 3dc265add6d18f5a2080e8b1def919d87877bfe5
21 d6f80444b18a49a75b805edd80ac8ef128d0a560
22 b0ecb45238772f06db1e11e8e7baaa72f48cdd96
23 b59562c3ea236fbd59d8361397fc7676bda256a1
24 bb6a24e0082436660055f1fd9ea11f4bafdbcf1f
25 8e182111dce10d0f84fa8b775b5a5f72c1c00b14
26 8b9c3c4b61135bbe7a2fa340913aa95472200396
27 d2b50bf17c9ea4f6d48f2511f351820c63c0053a
28 40fc2388eadd1a0194c765abc450�10f6156dae
29 f46215c1ee9a2839e644dd69c8ca099626a2861f
30 1973d02a7a15565b368a50f865588f2e67751e75
31 00f9142a19103f063fa7da48c29d8978d5a4352d
32 3d040638f35d890808b23a846b1cc61426f96249
33 a96dd569448292fd5dd83e28eb0b303e3a0c5562
34 e9dadd5e84753e4ac832d12eaf376ef51507c903
35 2cca63aad1db3e92af334fca79d786386d5ea3d5
36 b0d62482cbd113ad1d61c374baf37031c4c5d867
37 85372b809d883c1efba4288f484e093fe49d5f61
38 815f4f64�3d73d1211e44b6d099be4248266136
39 �cbe96c8a2a307f96db1da4fde1d1a2ad80999c
40 0f19bc5dea0b73b623e378104abf7d73de453481
41 1da27c65d47b38d6ea3cc10bb247�7e3c69c17f
42 d278bb55ea23f40325edfa6244a6abd6ce7a9e4e
43 014712685ae4033aa125bce7fcadc4c39ccb7c24
44 4c48631b69b9597c7cc83e16b596a4fa72bb58f2
45 57df9652d55643b0af5d4a097aabf4138b8ac1cb
46 1cbc324e1640a207032922858a9e56ea92aba779
47 bdcbb8ce1e28c8f9b708c79fe97f1d1bee4ced59
48 0bf9aa78024adc2631950ea0004b5c561d2bf5e5

117

A. Appendix

Commit Hash Value
49 ea62e166bc38c1ddbf76c155072aac1c5ee56c89
50 2d422b9abdd27f810eee48aa25d30b21233ef06c
51 653528e387a4fb764e48c9422ab218c65f87082f
52 0ce0cababe2590e�6d03c15f9eb3c977fdf4914
53 df597ccdd0e16f651f0113e04d014320573fee76
54 03c1f1c3a179dde5c3cc33bcf0edf60a0b49ea52
55 032167ddc872887fa1eb4c1fe2df8209a0bd7b76
56 19662c0afc9e8005917e8eba42d9b59592d0feeb
57 4cd9e06869ab671bee1d11b7abc3eebf9b582f35
58 a7727800a9879c96596e56d320420dc4f1bd8a2c
59 3e17bfbb8b39a1eba260abb9085969fb30fdb9d1
60 e0�a6a1d477c1e1cc65f8eeb1c3bcabb6f6f5da
61 cf75936549548faa52e37c098aa16c24dde8a067
62 6d334d025b2133a92fee8d645b078f109e65f5cf
63 806e5cc946f7995256d0da40492a2050c74e5ada
64 12efccf95b372d0df94075e7797ea4b96c9b5c88
65 79330c1f9c9efc2118b018805f4c629d6096b9b9
66 9f0ec365de1cb438904530f2b90e65d9d296d6ef
67 05ade1575d5fb2276ed4e2ac0f272dbd0533b141
68 c4860ee3392cfb00e83a824b1e9c7b991e10c318
69 6d222bf82dab2e192ab7820f3d5619875b80bd31
70 8f9a8eeb2ed6f1486b5286e8dfed61ab279566ca
71 b58219ac535670f3e63700289abe8a6ce0d7dcf0
72 790452f95a9d51803afd26b36788957a0cca2c4d
73 3c674e12622a585faa39334eeca3da�98fddc80
74 637ec65a89eef33aabee8ca031d283f0e2db02b9
75 0344db1d3621df6bb5a6787973f4d9db599b480b
76 b7c4e9df95668509f7058d2fa32157229c795fc9
77 c43f0cc67b88a1f5b982c380cc6dc5b52686f471
78 87c32b70�19df2f32f899cd659741ae60e9ac6b
79 07106148f2cedb12c01525b1586127eadefef986
80 0�df356e82b2e26f93a828ed4f378c505bd68f2
81 bdde10b80d195d08ed7e3617107de006210d753a
82 10f049d663e523873f27e6a794635572a975e2a5
83 a349ddeb32c58d49376cf8d165908312b5a3405b
84 e29360bd1698a6cd2f1f28a9aa6282276f582e58
85 02877a14aeaaaa9cc1365dafafeb85d8f3387e9b
86 045b1a917ac70fec559a2548e14977acc09dd76a
87 98570ca8ac398dc4d1f6e944b895bccb39726867
88 df33017194634db70c4e786b64cc1d6b386fe676
89 a543c026e9563f50�6371912d470ec30f261ae3
90 65971f539d55�f3444a02bc31f6d3d9b4f26813

118

A.2. Mapping: Commit Numeration to Hash Values

Commit Hash Value
91 9a7ba550cd47ba4b7d9a652814d337f2f1f6d79b
92 6f70c3feb0640bf9d8691acdcf2dccae1710cbf0
93 febeaa537041ef7b23e479ec958586c2154e9ab4
94 d16000d2a74a299d9722c840434bedf109c04198
95 30675d11c9267eb2aee3d04e73b28a13a4eab8df
96 1a11ca0e48d59f665d30a6303ed49d14cafa13c5
97 a5f12f3bbb8a1c58c257ec0b49667cac9fca94a3
98 2c25727b02222308b21399bcd8266f732bbbe41d
99 49e2437abf782b3a618fe5ed155a2c8469557e47
100 de69e957597d20d4be17fc7db2a0aa2fb3a414f7

Experiment E6
0 de69e957597d20d4be17fc7db2a0aa2fb3a414f7
1 8c3945ea1c83fc5cb31515818eaa48df03f694d9
2 015be98b282a047f1d905a26a5437446f13041ce

Table A.1.: Mapping of the used commit numeration within the thesis to the commit’s
hash values [99].

119

	Abstract
	Zusammenfassung
	Introduction
	Foundations
	Model-Driven Software Development
	Agile Software Development
	Java Model Parser and Printer
	The Palladio Component Model
	State-Based Model Comparison
	VIew-cenTRic engineering Using a VIrtual Underlying Single model
	The Co-Evolution Approach
	Service Effect Specifications
	Structure of SEFFs
	Change-Driven Incremental SEFF Reconstruction
	Incremental Fine-Grained SEFF Reconstruction

	Continuous Integration of Performance Models
	Introduction to the CIPM Approach
	Change Analysis and Propagation
	Instrumentation Meta-Model
	Adaptive Instrumentation
	Monitoring, Calibration, and Self-Validation

	Integration of Existing Source Code into Vitruvius

	Approach
	Problem
	Research Questions
	Idea
	Contributions
	Benefits

	The Commit-Based CIPM Approach
	Development of JaMoPP
	Updating the Java Model
	Discovering Components
	The CPRs for the PCM
	The CPRs for the Extended IM
	Adaptively Instrumenting the Source Code

	Evaluation
	Metrics
	Jaccard Coefficient
	Instrumentation Point Matching Score
	Lower and Upper Bound of Expected Number of Added Statements During the Instrumentation
	Accuracy Metrics

	GQM Plan
	Case Study
	Experiments
	Experiment E1
	Experiment E1.1
	Experiment E1.2
	Experiment E2
	Experiment E3
	Experiment E4
	Experiment E5
	Experiment E5.1
	Experiment 6
	Final Evaluations

	Results and their Analysis
	Results of E1, E2, E3, and E4
	Results of E1.1
	Results of E1.2
	Results of E5
	Results of E5.1
	Results of E6
	Summary

	Threats to Validity
	Threats to Internal Validity
	Threats to External Validity

	Related Work
	Repository Analysis
	Screpo
	The Approach of Stringfellow et al.

	State-Based Model Comparison
	Semantic Lifting
	The Approach of Kehrer et al.
	CoWolf

	Reverse Engineering
	The MiSAR Approach
	The Approach of Rademacher et al.
	The MicroART Approach
	The Approach of Mayer et al.
	The ArchiRev Method
	The Approach of Hassan et al.

	Integration of existing source code
	Adaptive Instrumentation

	Conclusion
	Bibliography
	Appendix
	Acronyms
	Mapping: Commit Numeration to Hash Values

