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Abstract Sensor-based sorting provides state-of-the-art solu-
tions for sorting of granular materials. Current systems use
line-scanning sensors, which yields a single observation of each
object only and no information about their movement. Recent
works show that using an area-scan camera bears the potential
to decrease both the error in characterization and separation. Us-
ing a multiobject tracking system, this enables an estimate of
the followed paths as well as the parametrization of an indi-
vidual motion model per object. While previous works focus
on physically-motivated motion models, it has been shown that
state-of-the-art machine learning methods achieve an increased
prediction accuracy. In this paper, we present the development
of a neural network-based multiobject tracking system and its
integration into a laboratory-scale sorting system. Preliminary
results show that the novel system achieves results comparable
to a highly optimized Kalman filter-based one. A benefit lies in
avoiding tiresome manual tuning of parameters of the motion
model, as the novel approach allows learning its parameters by
provided examples due to its data-driven nature.
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1 Introduction

Sensor-based sorting provides state-of-the-art solutions for sorting of
granular materials. This umbrella term describes a family of systems
that enable the physical separation of individual objects from a material
stream on the basis of information acquired by one or multiple sensors.
Among other fields of application, it is considered a key technology
for achieving a circular economy. In distinction to mechanical sorting
processes such as screening, wind sifting, or float/sink processes, the
technology is sometimes also referred to as indirect sorting [1], since
particle classification and separation are performed in separate steps.
In theory, any number of classes can be recognized for sorting, and
separation into multiple fractions is also possible in principle. In in-
dustrial applications, however, the task is preferably implemented as
a binary sorting task, i. e., sorting into “product” and “residue”, since
multi-way sorting requires complex mechanical handling.

The functional principle can be summarized as follows. First, the ma-
terial is fed into the system by means of a conveyor mechanism. Subse-
quently, the material is transported further via a transport medium. In
the course of the transport, sensor-based data acquisition takes place.
The data collected is evaluated with the goal to detect and classify
individual particles in the material stream. The result of the classifica-
tion is the basis for the sorting decision, which is executed by means
of an actuator. A particular strength of the sorting technology lies in
the variety of industrially available sensors that are suitable for use in
sensor-based sorting systems. This results in great flexibility with re-
gard to the detectable material properties and thus the sorting criteria
to be applied. Due to their suitability for systems with high material
throughputs, imaging sensors dominate at this point.

1.1 Motivation

Current systems use line-scanning sensors, which is convenient as the
material is perceived during transportation. In case sorting criteria
based on color, shape or texture suffice, line-scan cameras in the visible
spectrum are used. However, this yields a single observation of each
object only and no information about their movement. Due to a delay
between localization and separation, assumptions regarding the veloc-
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ity need to be made in order to calculate the location and point in time
for separation [2,3]. Hence, it is necessary to ensure that all objects are
transported at uniform velocities. This is often a complex task.

Recent works show that using an area-scan camera instead of a line-
scanning one bears the potential to decrease both the error in charac-
terization [4] and separation [5] in sensor-based sorting. Using a suf-
ficiently high frame-rate, individual objects are observed at multiple
time points. By employing a multiobject tracking system, this enables
an estimate of the followed paths as well as the parametrization of an
individual motion model per object. The latter allows for accurate pre-
dictions regarding which actuators need to be activated at what point
in time such that an object is deflected and hence removed from the ma-
terial stream. Therefore, the approach is also referred to as predictive
tracking. Eventually, this results in an increased sorting quality.

While previous works focus on physically-motivated motion mod-
els, it is shown in [6] that state-of-the-art machine learning methods
provide a powerful tool for achieving an increased prediction accuracy,
particularly in complex sorting scenarios. However, the approach has
not been evaluated in real sorting experiments yet, but rather using
pre-recorded image data and a simulated separation.

1.2 Contribution

In this paper, we present the development of a neural network-based
multiobject tracking system and its integration into a laboratory-scale
sorting system with an area-scan camera. This is the first time that the
complete development cycle required to make such machine learning-
based methods applicable in an industrial sorting setting is considered.
With respect to the data processing model itself, we consider the multi-
layer perceptron from [6]. This model takes observation coordinates of
individual objects, which in our case are determined by means of real-
time image processing, as an input and generates the predictions for
future time points, in our case for the separation stage, as an output.
Eventually, actual sorting experiments using the neural network-based
multiobject tracking system are conducted.
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2 Materials and Methods

In the following, we provide details on the experimental setup, e. g.,
the exemplary sorting scenario and the considered sorting system, the
different prediction models that are compared experimentally as well
as the implementation of the real-time inference engine.

2.1 Experimental Setup

We choose an exemplary sorting scenario from the field of construc-
tion waste recycling. By generating pure fractions from construction
and demolition waste, the material is prepared for the production of
recycled construction materials [7]. In our scenario, we consider an in-
put stream consisting of sand-lime brick and brick, see Figure 1. The
task is to remove brick from the waste stream. The material is crushed
to a grain size of 4 to 6 mm prior to sorting.

(a) Sand-lime brick (b) Brick (c) Mixed material

Figure 1: Photos of the materials used for the exemplary sorting task.

Both for the acquisition of training data as well as the experimental
validation, we use the lab-scale sorting system shown in Figure 2. A
detailed description of the system is provided in [5]. A vibrating feeder
is used to feed the material in the system. For transportation, a con-
veyor belt with a width of 140 mm is used. At the end of the belt, right
before discharge, the material stream is recorded using an area-scan
camera in combination with a ring light. After discharge and during
a flight phase, separation is performed using fast switching pneumatic
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valves.

Figure 2: Photo of the lab-scale sorting system used in this study.

The acquired image data is processed with the aim of localizing and
classifying individual particles. Based on the classification, a sorting
decision is calculated. In case a particle is to be removed from the ma-
terial stream, a control signal is calculated and transmitted describing
the time as well as the valves to be activated in the array. Exactly this
calculation, referred to as the prediction model in the following, is the
subject of the present study.

2.2 Prediction Models

We validate the proposed approach comparatively. Hence, we also con-
sider two established prediction models for the calculation of the con-
trol signals for separation.

First, as a base-line, we consider the system to be equipped with a
line-scan camera instead of an area-scanning one. This corresponds to
a setup as used in the industry at the time of writing. In this case,
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no information regarding particles’ motion is known. Consequently, a
uniform transport velocity has to be assumed. A fixed, typically exper-
imentally determined delay is added to the point in time of observation
of a particle in order to calculate the temporal component of the pre-
diction. Furthermore, it is assumed that no velocity perpendicular to
transport direction exists. Hence, the valves to be activated correspond
to the lateral position of the particle as seen by the camera.

Second, we consider the approach originally proposed in [8] and
experimentally validated in [5]. By using a high-speed area-scan cam-
era, particles contained in the material stream are observed at multiple
points in time and tracked via a multiobject tracking system. This way,
motion parameters, e. g., the velocity in and perpendicular to transport
direction, can be determined individually for each particle. In com-
bination with a motion model, these parameters are used to precisely
estimate the control signal for separation. The approach focuses on
applying Kalman filters on the centroid of the particles for predictive
tracking. In this course, linear, physically motivated models, such as
constant velocity (CV), are used.

The novel data-driven approach experimentally validated in this pa-
per takes the last five captured position measurements of each particle
as input and directly outputs the control signal for separation, i. e., the
estimated arrival time and location of the particle at the separation bar.
This is opposed to the original predictive tracking algorithm, which for
this purpose uses the estimated positions and velocities from the un-
derlying Kalman filter. The input measurements are provided by the
exact same multiobject tracking system employed in the original pre-
dictive tracking setup. The approach uses a multilayer perceptron with
four hidden layers as a predictor, where each hidden layer consists of
16 neurons. Further details on the architecture and training procedure
are given in [6].

While numerous tools and software frameworks are now established
for model development, the use of neural networks in production sys-
tems and, in the present case, under real-time conditions still repre-
sents a very current research topic. In the course of this study, various
frameworks for integration into the sorting system were investigated
in a first step. A technical constraint was the use of the programming
language C++. After a first research, the frameworks TensorRT from
NVIDIA and OpenVino from Intel were chosen. These frameworks dif-
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fer fundamentally in the target hardware on which the inference is
executed. TensorRT allows the execution of the inference on dedicated
NVIDIA graphics cards, OpenVino on Intel CPUs as well as integrated
Intel GPUs. In both cases, conversion of the model was necessary prior
to any potential application. Onnx was identified as the current sup-
posedly universal format for this purpose.

In addition to training the developed model on the basis of the gen-
erated image sequences, it was also necessary to take knowledge about
the system structure into account in the implementation, see Figure 3.
Here, parameters relating to the separation, such as the distance be-
tween the camera observation area and the separation bar, were pri-
marily decisive. To compensate for errors potentially arising due to
measurement inaccuracies, parameters for manual configuration of an
offset, e. g., with regard to the distance, were implemented.

Acquisition of image sequences 
on the sorting system

Image processing to generate 
the data basis

Knowledge about system design

Model development, 
training and validation

Figure 3: Schematic illustration of the development process of the machine-learning
based multiobject tracking.

3 Experimental Validation

We conduct sorting experiments using the methods and materials de-
scribed in Section 2. One experiment corresponds to sorting 200 g of
the material in a batch manner. Additionally to the three prediction
models described in Section 2.2, three different mixing ratios are in-
vestigated. More precisely, we consider ratios of residue, i. e., brick, of
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10 %, 25 % and 50 %. Furthermore, we conduct experiments with a
mass flow of 10 g/s and 20 g/s.

3.1 Model Training

The multilayer perceptron was trained on a data set of particle tracks
recorded on the lab-scale sorting system described in Section 2, with
tracks obtained by a preceding offline run of the multiobject tracking
algorithm. Although we test the novel approach on several mass flows
and mixing ratios in this paper, the multilayer perceptron was trained
on only one specification, a mass flow of 20 g/s with a ratio of brick
of 25 %, where we used the tracks of both brick and sand-lime brick
for training. Images were captured at a frame rate of 100 Hz. The belt
velocity was approximately 1 m/s.

The ground truth for the particle’s arrival time and location was gen-
erated using the concept of a virtual separation bar (see [6,8]), since their
exact values are not accessible due to the lack of a camera capturing
the scene at the separation bar and the limited temporal resolution of
most cameras. For this reason, only the images of the area-scan camera
are used for training. Therefore, the prediction is performed with re-
spect to a specific pixel row in the camera image corresponding to the
virtual separation bar and the tracking phase is shortened accordingly.
In addition, the coordinate system for the measurements is shifted so
that the virtual separation bar coincides with the real one. The ground
truth is then obtained by linear interpolation between the last measure-
ment before and the first measurement after the virtual separation bar.
For deployment, the trained network is applied to the original configu-
ration and fed with non-shifted measurements. Although this concept
introduces some inaccuracies due to interpolation errors and the as-
sumption of similar particle motion on the belt and in the flight phase,
it offers the benefit of not requiring additional sensors and allowing the
network to be trained in an unsupervised fashion without additional
costs for manually labeling the ground truth.

3.2 Experimental Results

The true negative rate (TNR) and true positive rate (TPR) were determined
as performance indicators for the sorting quality. The TNR refers to the
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proportion of residue material that has been successfully removed, and
the TPR to the proportion of product material that has successfully been
accepted, i. e., not been removed. A selection of the results obtained is
shown in Figure 4. The individual markers represent the result of an
individual experiment.

As can be seen from Figure 4, the preliminary results show that
the novel system achieves results comparable to a highly optimized
Kalman filter-based one, although it does not outperform it. However,
considering the early stage of development and the opportunities for
increasing performance, e. g., by means of training data, we consider it
a promising future research direction. An already gained benefit lies in
avoiding tiresome manual tuning of parameters of the motion model,
as the novel approach allows learning its parameters by provided ex-
amples due to its data-driven nature.

4 Conclusion

In this paper, we presented the experimental validation of a novel neu-
ral network-based multiobject tracking system. For this paper, we im-
plemented and integrated the system for use with a laboratory-scale
sorting system that was equipped with an area-scan camera. We com-
pared the performance to ones achieved using a line-scan-based system
as well as a multiobject tracking system with physically-motivated mo-
tion models. Preliminary results show that the novel system achieves
results comparable to a highly optimized Kalman filter-based one, al-
though it does not outperform it yet. However, an advantage of the
novel system lies in avoiding tiresome manual tuning of parameters of
the motion model.

Considering the early stage of development of the system, we be-
lieve there exist various interesting research directions to boost its per-
formance. Great potential is believed to lie in the expansion and sys-
tematic selection of training data. Furthermore, a system combining
physically-motivated as well as machine learning-based models as de-
scribed in [6] is of great interest.
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(a) Mass flow 10 g/s.
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(b) Mass flow 20 g/s.

Figure 4: Results of the sorting experiments using the three different prediction models
in terms of TNR and TPR. The individual markers represent the result of an
individual experiment.
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