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Kurzfassung

Für einen optimalen Betrieb erfordern moderne Produktionssysteme
eine sorgfältige Einstellung der eingesetzten Fertigungsprozesse. Physik-
basierte Simulationen können die Prozessoptimierung wirksam unter-
stützen, jedoch sind deren Rechenzeiten oft eine erhebliche Hürde. Eine
Möglichkeit, Rechenzeit einzusparen sind surrogate-gestützte Optimie-
rungsverfahren (SBO1). Surrogates sind recheneffiziente, datengetrie-
bene Ersatzmodelle, die den Optimierer im Suchraum leiten. Sie ver-
bessern in der Regel die Konvergenz, erweisen sich aber bei veränder-
lichen Optimierungsaufgaben, etwa häufigen Bauteilanpassungen nach
Kundenwunsch, als unhandlich.

Um auch solche variablen Optimierungsaufgaben effizient zu lösen, un-
tersucht die vorliegende Arbeit, wie jüngste Fortschritte im Maschinen-
lernen (ML) – im Speziellen bei neuronalen Netzen – bestehende SBO-
Techniken ergänzen können. Dabei werden drei Hauptaspekte betra-
chtet: erstens, ihr Potential als klassisches Surrogate für SBO, zwei-
tens, ihre Eignung zur effiziente Bewertung der Herstellbarkeit neuer
Bauteilentwürfe und drittens, ihre Möglichkeiten zur effizienten Prozess-
optimierung für variable Bauteilgeometrien. Diese Fragestellungen sind
grundsätzlich technologieübergreifend anwendbar und werden in dieser
Arbeit am Beispiel der Textilumformung untersucht.

Der erste Teil dieser Arbeit (Kapitel 3) diskutiert die Eignung tiefer neu-
ronaler Netze als Surrogates für SBO. Hierzu werden verschiedene Netz-
architekturen untersucht und mehrere Möglichkeiten verglichen, sie in

1Surrogate-based Optimisation, engl. surrogate-gestützte Optimierung
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ein SBO-Framework einzubinden. Die Ergebnisse weisen ihre Eignung
für SBO nach: Für eine feste Beispielgeometrie minimieren alle Varianten
erfolgreich und schneller als ein Referenzalgorithmus (genetischer Algo-
rithmus) die Zielfunktion.

Um die Herstellbarkeit variabler Bauteilgeometrien zu bewerten, un-
tersucht Kapitel 4 anschließend, wie Geometrieinformationen in ein
Prozess-Surrogate eingebracht werden können. Hierzu werden zwei ML-
Ansätze verglichen, ein merkmals- und ein rasterbasierter Ansatz. Der
merkmalsbasierte Ansatz scannt ein Bauteil nach einzelnen, prozessrele-
vanten Geometriemerkmalen, der rasterbasierte Ansatz hingegen inter-
pretiert die Geometrie als Ganzes. Beide Ansätze können das Prozessver-
halten grundsätzlich erlernen, allerdings erweist sich der rasterbasierte
Ansatz als einfacher übertragbar auf neue Geometrievarianten. Die
Ergebnisse zeigen zudem, dass hauptsächlich die Vielfalt und weniger
die Menge der Trainingsdaten diese Übertragbarkeit bestimmt.

Abschließend verbindet Kapitel 5 die Surrogate-Techniken für flexible
Geometrien mit variablen Prozessparametern, um eine effiziente Prozess-
optimierung für variable Bauteile zu erreichen. Hierzu interagiert ein
ML-Algorithmus in einer Simulationsumgebung mit generischen Ge-
ometriebeispielen und lernt, welche Geometrie, welche Umformpara-
meter erfordert. Nach dem Training ist der Algorithmus in der Lage,
auch für nicht-generische Bauteilgeometrien brauchbare Empfehlungen
auszugeben. Weiter zeigt sich, dass die Empfehlungen mit ähnlicher
Geschwindigkeit wie die klassische SBO zum tatsächlichen Prozessop-
timum konvergieren, jedoch kein bauteilspezifisches A-priori-Sampling
nötig ist. Einmal trainiert, ist der entwickelte Ansatz damit effizienter.

Insgesamt zeigt diese Arbeit, wie ML-Techniken gegenwärtige SBO-
Methoden erweitern und so die Prozess- und Produktoptimierung zu
frühen Entwicklungszeitpunkten effizient unterstützen können. Die
Ergebnisse der Untersuchungen münden in Folgefragen zur Weiter-
entwicklung der Methoden, etwa die Integration physikalischer Bi-
lanzgleichungen, um die Modellprognosen physikalisch konsistenter zu
machen.
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Abstract

For optimum operation, modern production systems require a careful
adjustment of the employed manufacturing processes. Physics-based
process simulations can effectively support process optimisation, how-
ever, their considerable computation times are often a significant barrier.
One option to reduce the computational load is surrogate-based opti-
misation (SBO). Surrogates are time-efficient, data-driven models which
guide the optimisation procedure. They generally help improve conver-
gence, but prove unwieldy when the optimisation task varies, e.g. due to
frequent component adaptations for customisation.

In order to also solve such variable optimisation tasks, this work studies
how recent advances in machine learning (ML) – especially in neural net-
works – can enhance and extend current surrogate capabilities. To this
end, three main aspects are considered: first, their potential for classical
SBO, second, their suitability for efficient manufacturability assessment
of new component designs and, third, their options for efficient process
optimisation for variable geometries. These aspects apply principally to
any manufacturing process and are exemplarily studied at the example
of textile forming.

The first part of this work (Chapter 3) examines the use of deep neural
networks as surrogate models for SBO. Different network architectures
are studied and options for integration into an SBO-framework are com-
pared. Overall, the results show that deep neural networks are a viable
option for SBO: For a fix component geometry, all variants successfully
minimise the objective function faster than a reference algorithm (genetic
algorithm).
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In order to assess the manufacturability of variable geometries, Chapter 4
investigates how geometry information can be integrated into a process
surrogate. To this end, two ML-approaches are compared: a feature-
based and a grid-based approach. The feature-based approach scans
a geometry for individual, process-relevant geometry features, whereas
the grid-based approach interprets the geometry as a whole. The results
show that both approaches can learn the process behaviour, however,
the grid-based approach proves more transferable to new geometries.
The results further underline that the variety rather than the amount of
training data determines this transferability.

Eventually, Chapter 5 combines the surrogate techniques for flexible ge-
ometries with variable process parameters to enable an efficient process
optimisation for variable geometries. To this end, an ML-algorithm in-
teracts with generic geometry samples in a simulation environment and
learns, which geometry requires which forming parameters. After train-
ing, it is able to give useful recommendations even for non-generic cases.
The results further show that its recommendations converges to the pro-
cess optimum at comparable speed as classical SBO, yet it does not need
an a-priori sampling. Thus, once (pre-)trained, it is more efficient.

Overall, this work shows how ML-techniques can enhance current SBO-
methods as the presented methods efficiently support process and prod-
uct optimisation, especially at early development stages. The work con-
cludes with follow-up questions for further method development, e.g.
the integration of physics-based balance equations for improved physi-
cal consistency.
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1 Introduction

Everywhere an early foreboding
precedes the eventual knowledge.1

Alexander von Humboldt [1, p 493]

Most modern production systems are complex systems and require a
careful optimisation during production ramp-up. In current practice,
this often involves resource-intensive trial-error campaigns combined
with expert-judgment and experience from prior parts. However, such
empirical approaches often entail significant rework for error correction.
This holds in particular for complex processes with intricate behaviour
like composite materials for lightweight applications.

At the same time, the continuing trend to smaller lot sizes and increasing
product diversity (‘mass customisation’) calls for ever shorter develop-
ment cycles and flexible manufacturing technologies. Accordingly, adap-
tive and customisable production principles have emerged, e.g. additive
manufacturing. However, besides their sheer availability, such flexible
technologies also require efficient approaches for process optimisation
to minimise production downtime.

1Original in German: Überall geht ein frühes Ahnen dem späteren Wissen voraus.
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1 Introduction

For instance, Shamsaei et al. state that recurring optimisation tasks for
ever-changing geometries or materials, respectively, are a significant eco-
nomical barrier [2]. They call for a comprehensive framework to ‘lever-
age information from prior similar studies and . . . systematically charac-
terize the relation between process parameters and part features so that
the . . . process can be optimized in a more efficient manner.’

This holds all the more when processing delicate materials, such as tex-
tiles used for continuous-fibre reinforced plastics (CoFRP). They are usu-
ally processed in elaborate, multi-step processes and most often com-
prise a forming process of a textile. The wide range of adjustable pro-
cess parameters and the complex, non-linear material behaviour require
place high demands on a suitable process configuration and pose a chal-
lenging development task.

To reduce the cost of an experimental process development, numeri-
cal simulations have gained attention over the last decades. They al-
low for detailed analyses of complex processes and help concentrate
costly experiments on the most promising variants. Also, their inher-
ently digital nature allows a combination with optimisation algorithms
which principally enables an automatic identification of process optima.
However, they usually involve significant computational efforts and es-
pecially repetitive simulations, e.g. iterative optimisation, quickly ren-
ders them impracticable in practice.

One option to reduce the numerical effort in such cases is surrogate-
based optimisation (SBO). Surrogates are numerically efficient, data-
driven approximations of expensive simulations based on input-output-
observations. Once sufficiently trained, optimisation can be done on the
surrogate in short time. Overall, SBO results in significant optimisation
speed-ups. However, current SBO-approaches are mostly application-
specific and fall short on reusability in new scenarios. Even subtle prob-
lem variations, e.g. geometry variations in manufacturing, instantly in-
validate the surrogate and require resampling of data and reconstructing
the surrogate. Thus, demand for generalised models arose.

2



1 Introduction

At the same time, developments in Machine Learning (ML) have achieved
remarkable results in complex tasks and may open up new avenues for
advanced surrogates. This work aims to study how ML-techniques can
be harnessed to enhance the capabilities of classical SBO-strategies in
order to solve flexible optimisation tasks more efficiently. Or, loosely
speaking, how to equip surrogate models with an early foreboding,
where the process optimum for a new component may hide.

The overarching concept is to sample process observations for a range of
generic geometries and analyse it with ML-techniques. Recurring pat-
terns in the data may then guide a process optimisation of a new com-
ponent. If possible, such a model could provide an early estimation of
process optima for new components. Owing to their reconfigurability
and ease of evaluation, physics-based numerical process simulations are
used for data sampling.

Specifically, this work studies two main hypotheses:

Hypothesis 1. It is possible with ML-methods to extract process knowl-
edge from generic part-process-samples and apply it to a new geometry.

Hypothesis 2. Once trained, such an ML-model speeds up the optimi-
sation similar to a classical surrogate.

While these hypotheses are principally applicable to any manufacturing
process, they are exemplarily studied at the example of textile forming.

Thesis outline

This work is organised as follows: At first Chapter 2 presents the state
of the art in two main areas: It reviews technological aspects regarding
lightweight engineering and especially textile forming (Sections 2.1–2.2)
and then Section 2.3 presents relevant methodological aspects on optimi-
sation, surrogate modeling and ML in engineering.

3



1 Introduction

The subsequent chapters then present and discuss the methods of this
work. Specifically, Chapter 3 outlines a state-of-the-art SBO-method for
process optimisation. It is meant to serve as a benchmark for the new,
ML-based optimisation method and discusses the optimisation results.
Then, Chapters 4–5 present approaches to a more flexible ML-based sur-
rogate. Specifically, Chapter 4 presents and compares two approaches
for an ML-assisted formability assessment of variable component geome-
tries. In Chapter 5, one approach is further developed towards efficient
process optimisation of variable geometries. The results are presented,
discussed and compared to the state-of-the-art method from Chapter 3.
The thesis concludes with a summary and an outlook on possible next
steps in Chapter 6.

4



2 State of the art

Based on the Introduction in Chapter 1, this work sees engineering de-
sign as an optimal match of three technological areas: Material, process
and geometry. Achieving this match requires background information
on technical and methodological aspects.

To this end, Section 2.1 at first outlines technical characteristics of relevant
engineering areas and motivates the studied use-case of textile forming.
Then, Section 2.2 provides an overview over textile forming processes,
i.e. forming mechanisms and defect formation, technologies for defect
control and numerical models for efficient (virtual) process development.

As the process shall be optimised, Section 2.3 reviews existing methods for
(process) optimisation with particular focus on surrogate-based strate-
gies. Shortcomings of current approaches are identified and discussed.
The section concludes with concepts, how machine learning techniques
can enhance current surrogates. They are the basis of this work. Eventu-
ally, Section 2.4 summarises the literature review and distils the research
gaps.

2.1 Lightweight engineering

Within mechanical engineering, lightweight design is a special design
philosophy. It goes beyond a mere, retroactive parameter tuning of a
given structure but embodies a holistic design strategy right from the
beginning: It means the materialisation of technical functions at minimal
mass utilisation while fulfilling a set of constraints. These constraints
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can be of various nature in general but often originate from technical,
economic, environmental and societal requirements. [3]

In general, five overarching areas govern the lightweight potential of
structures [4, p 62-63], namely its 1) specifications and requirements, 2)
concept, 3) material, 4) shape and 5) manufacturing process technology.
In many cases, area 1 and 2 cannot be further exploited as requirements
have already been reduced to the minimum and the component must
conform to a certain higher-order concept. This leaves material, shape and
process as the remaining options.

ISO/TR 581 finds the same areas to govern manufacturability [5]. Fig-
ure 2.1 visualises their interrelations by a triangle: The farther a struc-
ture lies from one of the corners, the less the associated factor is satis-
fied. Consequently, a well-manufacturable and lightweight structure lies
in the centre where the three fields match in mutual regard.

Material

Process Geometry

Manu-
facturability &

Lightweight potential

Figure 2.1: Component geometry, material and manufacturing process technology govern
part quality (manufacturability) and lightweight potential [5, 4].

Bringing a structure to the centre is a challenging engineering task,
though, and requires an understanding of material, shape and process.
Thus, their core aspects are briefly outlined in the following subsections.
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2.1.1 Materials

In many modern applications materials must satisfy an ever more de-
manding requirement spectrum and often conventional monolithic ma-
terials cannot meet each demand to a satisfactory degree. Thus, materi-
als have been deliberately combined to fuse their properties and improve
them as a whole – the core concept of composite materials.

Composite materials consist of at least two mutually insoluble, solid
phases, the constituents. Their individual properties, shape, volumet-
ric proportions and interface characteristics determine new, quasi-homo-
geneous properties on macroscopic scale: the composite properties [4,
p 341]. Structural composites often have a load-transferring reinforce-
ment phase, which is embedded in a surrounding matrix phase. De-
pending on the reinforcement geometry, they can be grouped into three
categories: Particle-, fibre- and layer-reinforcements [6, p 303].

For high-performance applications, fibre-reinforcements have drawn most
attention as they offer excellent weight-specific mechanical properties.
Also, their properties can be adjusted to a wide extent, for instance by
choice of fibre and matrix material. Generally, different materials for fi-
bre and matrix are at disposal, however, carbon, glass and aramid fibres
combined with polymer-based matrices have established in practice, i.e.
‘fibre-reinforced plastics’ (FRP). [4, p 342]

FRPs can use continuous and discontinuous fibres. While discontinuous
fibres are shorter than the component dimensions and show random or
mild orientation only, continuous fibres are generally highly oriented
and extend over the whole component. Thus, continuous-fibre rein-
forced plastics (CoFRP) show the highest mechanical performance and
are also the scope of this work.

Continuous fibres are not handled individually but typically come in the
form of textiles. Textiles consist of interlaced ‘rovings’, i.e. bundles of in-
dividual fibres, and form highly-compliant, macroscopically continuous
and homogeneous entities. This work concentrates on one of the most
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common engineering textiles, woven fabrics. See [7] for a comprehensive
review of technical textiles for lightweight engineering.

While different sub-variants exist (cf. [7, p 201-213]), conventional woven
fabrics consist of at least two yarn systems that interlace at right angles:
Warp yarns run in the direction of production, weft yarns orthogonal.
Depending on the interlace-sequence, three main types of weaves are
distinguished: plain weave, twill weave and satin weave. Figure 2.2 visu-
alises them. They mainly differ in their handleability during manufac-
ture and their resulting mechanical and visual properties. As it is most
widespread [7, p 175], the plain weave is studied in this work.

Figure 2.2: Common fabric weave patterns used in CoFRP-components [8]. The weave
pattern affects the handling and the mechanical properties of the fabric.

2.1.2 Geometry

Most structural CoFRP-components are 2.5D shell structures. They are
the best-suited for distributed loads, e.g. static or dynamic fluid pres-
sures, or when functional or aesthetic requirements call for a closed
component [9, p 35-36]. According to Potter [10], shell structures can
be divided into closed and open shells as Figure 2.3 illustrates.
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Figure 2.3: Visualisation of a) closed and b) open shell structures as used in this work.

Closed CoFRP-shells dominate in tanks, vessels and pipes for fluid trans-
portation or storage and machine elements like shafts. Most of the closed
surface areas are rather simple and well understood geometries, e.g.
cylinders. They are manufactured by dedicated processes like winding
or pultrusion and as such they are often of limited design variability [9,
p 68-70].

Open shell structures, however, are often of tray-like nature and typically
manufactured in press-processes. Compared to closed shells, they are
generally more complex and variable in shape as they must often satisfy
challenging functional, structural and aesthetic requirements [10]. Thus,
even components with comparable specifications come in a wide range
of designs and are additionally often subject of change during product
revisions, e.g. for aesthetic reasons (‘face-lift’). Figure 2.4 visualises this
at example of the Volkswagen Golf front mudguard (Mk4 to Mk6).

The designs clearly vary in details, e.g. position and width of attachment
points, but the overall L-shaped characteristic stays the same across all
design revisions. Since they would have been discarded otherwise, they
must bear features with useful properties, e.g. good trade-off between
structural behaviour and manufacturability.

Harnessing such favourable part-process-properties should provide use-
ful information for efficient design and optimisation of new components
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Figure 2.4: Recurring component characteristics during design revisions at the example of
the Volkswagen Golf’s front mudguard (Mk4-6). While the mudguard retains
its overall engineering design it varies slightly in shape. Images from [11, 12].

[2]. Unfortunately, such information is currently at best implicitly re-
spected in form of human-subjective ‘engineering experience’, but cur-
rently not integrated in formal optimisation routines. Consequently, al-
gorithmic optimisation requires many iterations until a satisfactory de-
sign is reached – a substantial bottleneck during development.

2.1.3 Manufacturing

This work studies open-shell structures of variable shapes and aims to
extract knowledge from prior part-process examples so that a new part
can be optimised more efficiently. This requires not just information on
typical geometries but also on process specificities. They will be pre-
sented in the following.

Process chain. Unlike metals, composite manufacturing processes
typically comprise a sequence of process steps, the ‘process chain’, with
different dominating physics. Figure 2.5 visualises this at the example
of resin transfer moulding (RTM), an automatised and widely applied
process across many industries.

10



2.1 Lightweight engineering

Figure 2.5: Schematic illustration of the Resin Transfer Moulding (RTM) process chain [3].

Initially, individual 2D-plies are cut and stacked, which determines the
later layup and fibre orientations. Then, the stack is transferred to a press
tool. During tool closure the whole stack is formed to a 3D preform.
Typically, an adhesive binder material activates to stabilise the preform
for subsequent demoulding and handling to an infiltration tool. Then, a
mix of resin, hardener and release agent is injected into the preform and
the curing reaction starts typically at elevated temperatures. Reaction
kinetics, injection location and conditions (pressure or flow rate) as well
as temperature of resin and tool must be engineered so as to ensure both
a complete mould filling before gelling and sufficient degree of cure for
demoulding. Eventually, the part is demoulded for possible finishing
operations. [3]

Due to the chain characteristic, results from upstream steps affect down-
stream steps. For instance, forming defects may lead to non-infiltratable
regions during mould filling. Besides an adverse visual appearance,
these spots can only partially take up loads and are thus weak points
of the component [3, 13]. An improved forming process may remove
these defects and enable satisfactory filling.

While all steps along the process chain require careful engineering and
optimisation, this work focusses on the forming step for two reasons.
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First, it is the first step after cutting and does thus not depend on
upstream information. Second, the process dynamics depends signifi-
cantly on the component geometry and thus, the forming step is a prime
demonstrator for extraction of knowledge from prior process examples
and application to a new component.

Material forming. Forming processes are typically grouped according
to the dominant process-inherent material loads [14]. Within these, form-
ing under tensile and compressive conditions, most notably deep drawing,
is most widespread for tray-like 2.5D-structures.

Some niche-variants aside [15], deep drawing processes are generally
characterised by an initially flat material sheet, the ‘blank’, two rigid
tools – a male punch and a female die – and in most cases a circumfer-
ential blank holders. Figure 2.6 visualises the process principle.

Figure 2.6: Schematic illustration of the main steps during deep drawing.

At first, the blank holder clamps the blank onto the forming die with a
predefined force (Step 1). As the punch travels into the die (Step 2) ) it at
first tensions the blank between punch and blank holder which evokes
in-plane membrane stresses. They rise until the resulting membrane
forces eventually exceed the clamping forces. At this point the material
starts to flow into the mould from the outer flange and forms the compo-
nent. Unlike stretch drawing, in deep drawing the sheet thickness is not
meant to reduce but stays approximately constant. Depending on the
material and geometry, the process needs to be adjusted by variation of
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the tool speed and the blank holder forces and possibly their local vari-
ation. After the stroke, punch and blank holders retract for demoulding
(Step 3). [16, p 263]

DIN 8580 notes that process descriptions are written for metals but
can be transferred to other materials [17] as long as the main forming-
conditions are comparable. As this work studies deep drawing of dry
woven fabrics, some textile-specific remarks are necessary and will be
outlined in the following.

2.2 Engineering textile forming processes

Section 2.1 shows that engineering of a well-manufacturable component
reconciles material, geometry and process requirements, and outlines
textile forming as the use-case of this work. Since it differs substan-
tially from metal forming, this section presents at first material-process-
interrelations, then briefly reviews technologies for process improvement
and concludes with a short introduction to numerical methods for vir-
tual process analysis as used in this work.

2.2.1 Material-process relation

On a microscopic scale, textiles and metals have different forming mech-
anisms which lead to a disparate forming behaviour. In general, metals
consist of grains with a crystal lattice of constant orientation. Under suf-
ficient shear stress, the atoms glide from one lattice location to the next
resulting in a permanent, plastic deformation. As this occurs almost ex-
clusively in distinct planes and orientations, so-called ‘gliding systems’,
each grain on its own is highly anisotropic. On a macroscopic scale

13



2 State of the art

however, their sheer number provides such a large multitude of gliding
systems that they become virtually isotropic1. [18, p 401-412]

Textile forming behaviour. Compared to metals, engineering textiles
show a substantially more complex macroscopic behaviour which largely
depends on the textile architecture. Engineering textiles for structural
applications typically employ fibres of high stiffness. As a result, their
deformation mechanisms are governed by relative movement of quasi-
inextensible fibres constrained by the textile architecture [19, p 20]. Ow-
ing to the heterogeneous, multi-scale nature of textiles, deformation can
take place on three different scales, namely micro-, meso- and macro-scale
[20]. Figure 2.7 illustrates the scales schematically.

Figure 2.7: Schematic illustration of micro-, meso- and macro-scale for textiles. Image c) from
[21] (modified).

Micro-scale deformations typically refer to individual fibre filaments
within one roving. Except for (mostly academic) characterisation pur-
poses, e.g. fibre-fibre-interactions [22, 23], micro-scale deformations are
not explicitly considered when designing forming processes. In contrast,
meso-scale deformations abstract from individual fibres but consider tex-
tile rovings as continuous entities which deform and move relative to
each other. This scale can be of practical relevance and addresses ef-
fects like yarn gapping, slippage, loop formation, yarn pull-out [24].
Although the deformation is meso-scale, it affects also the macro-scale

1Upstream rolling may orient grains and introduces some anisotropy, though [16, p 66].
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properties: Adverse visual appearance aside, these effects may lead to
locally inhomogeneous composite properties in the final part [25, 26].
For instance, a local absence of fibres from gapping may lead to resin-
rich spots and reduced stiffness and strength. Similarly, a misalignment
of reinforcing fibres reduces composite strength and stiffness and has
thus been studied early on [27].

Ultimately, macro-scale deformations abstract even from individual rov-
ings and assume the whole textile as a homogenous 2D-continuum. They
are usually categorised as intra-ply and inter-ply mechanisms [28, 29] as
Figure 2.8 visualises.

Figure 2.8: Schematic illustration of the main macroscopic deformation modes of engineer-
ing textiles: Intra-ply and inter-ply deformation [28, 29].

The intra-ply mechanisms comprise all compatible in-plane (tensile and
shear deformation) and out-of-plane deformation modes (bending). Tex-
tiles also show some compressibility in thickness direction (‘compaction’).
Apart from special cases like spacer fabrics [7, p 215-217], this deforma-
tion role is negligible for achieving a component shape and thus ex-
cluded from Figure 2.8. However, it substantially affects secondary pro-
cess aspects, e.g. tightness in tool sealing in wet compression moulding
through circumferential fibre clamping [30]. The inter-ply mechanisms
comprise the tangential and normal contact behaviour between tool and
ply as well as between two plies, respectively [29].

The yarns and the textile architecture govern the admissible deformation
modes. A comprehensive review goes beyond the scope of this work
but can be found in e.g. [7]. Thus, only the macro-scale deformation
mechanisms of woven fabrics are outlined in the following.
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Forming mechanisms of woven fabrics. The dominant deformation
mechanisms of woven fabrics are out-of-plane bending and in-plane shear.

Components with single curvature can be achieved by pure bending,
while a combination of bending and shear is required for double curva-
ture components [19, p 20]. Since forming defects from pure bending,
e.g. fibre breakage, requires extremely small bending radii [31], it typ-
ically does not limit the forming process in practical applications. Yet,
unlike pure bending, shear deformation does introduce a limit to textile
formability and thus requires deeper introduction.

Shear deformation of woven fabrics is characterised by a relative rota-
tion of warp and weft yarn (pure shear) and is typically quantified by
the shear angle γ12, cf. Figure 2.9 a) and b). Since warp and weft yarn
interlace, they cannot pass each other but increasingly press against each
other. This leads to progressive in-plane yarn compaction and an accu-
mulation of compressive stresses.

Figure 2.9: a) Photograph of a woven fabric undergoing shear deformation, b) definition
of the pure shear kinematic and c) qualitative plot of the non-linear shear force
Fpf against the shear angle γ12 for a woven fabric along in a picture frame test.

These stresses oppose further shear deformation and result in a non-
linear increase of the shear modulus G12 – often referred to as ‘shear
locking’. The shear angle γlock

12 at which locking occurs depends on
multiple textile parameters such as the roving size and the weave. It
is usually measured in mechanical characterisation tests, e.g. a picture
frame test [32], and manifests as a non-linear rise of the shear force, cf.
Figure 2.9 c). Shear near γlock

12 in combination with low bending stiffness
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increases the likelihood of defects like wrinkling and textile folding [33].
However, the more γ12 exceeds the locking angle γlock

12 , the more it loses
expressiveness, since forming defects such as wrinkling may continue to
grow although γmax

12 remains practically constant. Hence, a direct mea-
sure for the extent of wrinkling is desirable.

While the shear angle is a well-defined quantity in continuum mechan-
ics, different approaches to quantify wrinkling exist in literature. For in-
stance, Shen et al. [34] propose to evaluate the ‘wrinkling amplitude’, i.e.
out-of-plane deviations of the textile with respect to an ideally formed
reference surface. Later Viisainen [35, p 47] suggests to also consider the
‘wrinkle spread’, i.e. the ratio of area where these deviations exceed a
threshold-amplitude to the total textile area. As it does not require defin-
ing a reference surface, this work applies the modified mean Gaussian
curvature κ proposed by Haanappel [28] besides the shear angle.

In the present work shear and wrinkling serve to quantify the part qual-
ity and thus additional details on the underlying defect mechanisms are
presented in the subsequent sections.

Defect formation in fabric forming. Irrespective of the material, wrin-
kling is a well-known phenomenon in sheet forming, yet still difficult to
predict. It refers to sudden and unintended out-of-plane deformations
of the sheet during forming. Figure 2.10 shows severe wavy wrinkling-
effects around a tetrahedral pyramid. Such instabilities (buckling) can
occur under compressive stresses in combination with low bending resis-
tance. Owing to their low thickness, sheets offer little bending resistance
and are thus prone to such buckling effects.

Textiles are especially at risk of buckling because they have a dwindling
bending stiffness compared to metal sheets of the same thickness [37].
This is because the textile consists of numerous individual filaments
which slip relative to each other and cannot take up transverse shear
strain. Consequently, the Kirchhoff-Love-hypothesis – plane and nor-
mal cross sections remain straight and normal during deformation – no
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Figure 2.10: Photograph of large scale textile wrinkling after forming [36]

longer holds. For instance, the bending stiffness reported in [38] is only
≈ 4 % compared to a shear-stiff Kirchhoff-Love beam of the same ten-
sile stiffness.

The onset and growth of wrinkles in fabrics is caused by a complex
interaction of in-plane stresses, in-plane stiffness, out-of-plane bending
stiffness [39, 40] and other process conditions, e.g. stacking sequence
[41]. Unfortunately, many of these factors are unknown at early stages
of process design and may even change during component development.

Thus, design engineers pragmatically simplify the onset of defects to
criteria which are easy to evaluate and straightforward to interpret. Al-
though strictly speaking many times debunked as insufficient [36], one
such criterion is comparing the present shear angle γ12 in the compo-
nent to the locking angle γlock

12 . If γ12 exceeds γlock
12 , in-plane compressive

stresses increase drastically which is assumed to provoke wrinkles and
needs to be avoided.

Besides, excessive shear also impedes the resin permeability during in-
filtration. For instance, Endruweit et al. [42] report a permeability re-
duction of up to 60 % solely from shear deformation. Such a reduction
at best only prolongs infiltration time, at worst prevents infiltration at
all and results in dry spots. In any case, the formation of according de-
fects during the process needs to be analysed and ideally controlled by
engineering measures.
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Process engineering for defect control. Despite being one of the
most prominent forming defects in both metal and textile forming [16,
p 292], wrinkling still proves difficult to control. According to its loca-
tion, two types of wrinkling are distinguished, type I and II [16, p 292],
as Figure 2.11 illustrates.

Figure 2.11: Location of wrinkles in deep drawing [16, p 291]. Type I wrinkling occurs at
the outer flange (blue halo), type II in the free forming zone (green).

Type I wrinkles form at the blank flange due to tangential compressive
stresses. If adjusted properly, the blank holder prevents type I wrinkling.
In contrast, type II forms in the free forming zones between the bottom
of the punch and the die edge. These zones are ‘free’ since the sheet is
(temporarily) not in contact with tool surfaces during the punch stroke.
Thus, it is not supported by the tool walls and can deform freely in the
drawing gap. Wrinkling type II is particularly difficult to control because
the free zone is inaccessible during the tool stroke.

Large radii of punch and die [16, p 292] as well as tapered geometries
[43, p 383] promote type II wrinkling since they enlarge the free zone.
Thus, geometry adaptions can effectively prevent wrinkling. Yet, in some
cases the geometry follows functional or structural requirements (cf. Sec-
tion 2.1.2) and adaptions are undesirable. In such cases, external process
manipulations are applied to mitigate wrinkling. To this end different
approaches have emerged as outlined in the following.
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2.2.2 Manipulation of textile forming processes

As in any other engineering design problem, design variables in textile
forming processes can be grouped into two types, categorical and con-
tinuous variables [44]. Categorical parameters often refer to choice of
technology or material, while continuous parameters mostly refer to a
scalable, numerical representation of a process configuration, e.g. blank
holder position. During process development, at first categorical param-
eters are selected from domain knowledge, then according continuous
variables are tuned towards maximal quality (‘process optimisation’).

The following passage provides a short survey on different technolog-
ical concepts (categorical variables) to improve the forming behaviour.
In principle, geometry, material or process variations can be considered
(Figure 2.1). However, besides minor adjustments of draft angles and
fillet radii, geometry adaptions are often undesirable and seen as a last
resort (cf. Section 2.2.1). Thus, the presented variations concentrate on
material and technology aspects.

Material. One approach to improve the forming process is to alter the
local formability of the material. The most fundamental option is to se-
lect a textile with better formability, e.g. a knitted instead of a woven
fabric [45]. A less fundamental change is to improve the formability by
cut-ins, splicing or darting of the fabric [46, 47]. Such local cuts enable
the fabric to move freely or glide one above the other to relieve com-
pressive stresses without folding. On the downside such cuts are a local
interruption of the reinforcement [3].

Similarly, additional ‘strain reserves’ have been introduced by stitching
roving slings onto a highly deformable carrier textile [48]. During form-
ing, the slings first unfold before they begin to stretch, which artificially
enhances the strain limits. The opposite mechanism, i.e. locally restrain-
ing the textile formability, can also be used to control forming, e.g. by
stitching [49] or gluing sheets together [50].
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Technology. The second and arguably more versatile approach to con-
trol the forming process aims at the technological concept. Reverse pre-
shearing of the fabric has been used [51] to introduce an additional ‘shear
strain reserve’ before locking. High shear angles can also be mitigated
by variation of the draping origin [52, 53] which is often done in manual
hand layup [54] and has recently also been realised in a mechanised tool
[55]. Leading pins in the tool can also avoid excessive sag of the textile
and reduce uncontrolled forming behaviour in unsupported areas (type
II wrinkling) [56]. Especially for complex geometries, forming the com-
ponent sequentially with a segmented tool [57] or robot-assisted draping
along optimal trajectories [55] can improve the result effectively.

Presumably the largest portion of process variation technologies, how-
ever, concentrate on control of the material flow into the mould, so-called
material guiding systems (MGS). Nezami [19, p 45] divides MGS into di-
rect and indirect principles. Direct principles act directly in the textile
plane, while indirect principles require an intermediate physical effect
to actuate an in-plane deformation mechanism.

Most direct principles involve a mechanism to clamp the textile around
its perimeter. An early example of such an MGS are pivoting, spring-
guided clamps mounted on a rigid frame which surrounds the blank
[58], cf. Figure 2.12 a). The process can be varied by choice of spring
stiffness, spring pre-tensioning, number and position of the clamps and
a mechanical stop to limit the clamp travel. A similar clamping-frame is
presented by Luebbering and Lengsfeld [59]. It does, however, involve
a whole array of clamps in favour of isolated clamps. Liebau et al. [60]
vary the principle and use rope-guided weights instead of springs to
restrain the clamps which ensures a constant restraining force during
forming .

Indirect principles require an intermediate physical effect to manipu-
late the textile deformation mechanism. While the textile is ultimately
actuated by friction, the technological principles to produce the normal
forces vary to a large extent. Most similar to draw beads from sheet metal
forming, clamping frames in diverse variations have been proposed; for
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Figure 2.12: Examples for direct and indirect manipulation approaches for textile forming;
a) discrete clamping [58] (direct), b) segmented blank holders (indirect) [61]

instance, by shape-variation of longitudinal grooves [62] or adjustable
spring-suspensions [63, 64] or segmentation [65]. Recently, segmented
blank holders with adjustable forces have been introduced for precise
process manipulation, cf. Figure 2.12 b).

Chen et al. [66] present a new type of bead (‘risers’) in double di-
aphragm forming . In double diaphragm forming the textile is sand-
wiched between two highly deformable diaphragms and maintains con-
tact to them during forming. Unlike before, the beads do not directly act
on the textile but impose tensile strain on the diaphragm which in turn
strains the textile. Their position around the textile perimeter, length,
height and contour can be adjusted to optimise the forming result.

Besides beads, drapery wings can be applied [67]. Contrasting classical
beads, they not just clamp the textile but actively pretension it. Ulti-
mately, vacuum grippers [68], pneumatic expansion tubes [69] or mag-
nets [70, 71] have been suggested as textile grippers. More recently,
Schöfer [72] proposed a detachable textile joint, a tuft seam, which ex-
erts a defined retention force when detaching .

Overall a large variety of technologies exists to manipulate forming
processes. However, each technology introduces adjustable parameters

22



2.2 Engineering textile forming processes

which need to be optimised for each manufactured geometry and ma-
terial. Experimental optimisation campaigns are resource-intensive and
must be as purposeful as possible. Virtual experiments using simula-
tions can help reduce the number of experimental trials and will thus be
presented in the following.

2.2.3 Simulation of textile forming processes

With the advent of ever more powerful computational resources and ad-
vances in software, virtual tools have established in engineering devel-
opment. The collective abbreviation ‘CAE’ encompasses all computer-
aided engineering technologies that support ideation, conceptualisation
and analysis of engineering systems [73].

CAE-tools become especially handy in lack of suitable design guide-
lines or when only little experience from prior products is available. In
particular the complex, anisotropic and non-linear behaviour of CoFRP-
components often leads to unexpected and counterintuitive effects which
in turn impedes an empirical assessment. Such cases require more rig-
orous computational means, i.e. simulations.

Simulating textile forming poses several challenges to accurately cap-
ture the intra-ply and inter-ply mechanisms. In following, a brief and
schematic introduction to the simulation approaches for woven fabrics is
given. Details on the models, implementation and experimental charac-
terisation can be found in the according literature as recently reviewed
in [20, 74].

According to Lim and Ramakrishna [75], two types of forming simula-
tion exist, kinematic and mechanical approaches . As both are used in this
work, they are shortly introduced in the following.
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Kinematic draping. ‘Kinematic’ draping approaches1 are entirely ge-
ometrically motivated and require only the component shape, the sheet
dimensions, the draping start point, the initial fibre orientation and the
type of fabric (woven or unidirectional) as input. Figure 2.13 illustrates
the concept. The fabric is modelled as a regular grid of rigid trusses con-
nected by ideal spherical joints (crosspoints). From the start point, this
grid (fabric) is mapped onto the tool surface in a step-wise manner.

Figure 2.13: Visualisation of kinematic draping: a) Modelling of a woven fabric as a regular
grid [47] and b) Mapping result onto a doubly-curved surface [7, p 597].

The underlying, fundamental assumption is that the fabric can only de-
form by bending and pure shear [76] with inextensible warp and weft
yarns. In essence, the approach yields the forming result of an idealised
textile. For some shapes even closed-form expressions for the maximum
shear angle can be derived [77, 78, 79]. Further assumptions are: 1) The
fabric crosspoints act as friction-free hinges. 2) No slippage occurs at
crosspoints. 3) The fabric is in full contact with the tool. Also, the dis-
tance between two crosspoints must be chosen shorter than the smallest
curvature radius of the component. Models for unidirectional non-crimp
fabrics (UD-NCF) also exist and assume a simple shear kinematic [75].

1Other denominations are ‘pin-joint’, ‘mapping’ and ‘fishnet’ approach
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As such methods disregard the actual constitutive behaviour of the tex-
tile, they only approximate the actual physics. For instance, wrinkling
can only be indirectly assessed by comparison of the apparent shear de-
formation and the locking angle [80]. Also, the results depend on the
user-defined starting point and the approach can only predict single
plies. Ply-ply interactions cannot be modelled. Nevertheless, they are
computationally extremely efficient and require no material characteri-
sation. Being continuously refined over decades [81, 82], they are since
widely applied in early stages of component design and provide the de-
signer with critical pre-production information.

Mechanical draping. Unlike kinematic approaches, mechanical ap-
proaches seek to formulate and solve constitutive equations for the phys-
ical behaviour during forming. Figure 2.14 gives an illustrative compari-
son of a kinematic and a mechanical simulation along with experimental
validation by Fengler [83, p 38].

Figure 2.14: Comparison of mechanical and kinematic draping of a rectangular patch over
an edge of a box geometry along with a real example from experiments [83,
p 38].

It shows a rectangular patch being draped over the edge of a box-
geometry. The kinematic approach reproduces the results over a wide
area acceptably well but struggles around the corner area. In contrast,
the mechanical simulation captures the results in these critical regions
better. Consequently, kinematic approaches are adequate for initial pro-
cess layout and mechanical simulations for detailed analyses.
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As with the deformation mechanisms (cf. Section 2.2.1) mechanical ap-
proaches can address multiple scales (micro, meso, macro) to account for
the multi-scale nature of textiles.

Figure 2.15: Exemplary visualisation of a) a micro-scale [22], b) a meso-scale [84] and c) a
macro-scale FE-models of fabrics.

Micro-scale models seek to resolve individual fibres and mainly serve to
determine material properties and calibrate material laws in larger scales
[22, 85, 86]. An application on component scale is computation-wise
practically impossible. Meso-scale models homogenise the fibres but still
resolve individual rovings in the textile. This significantly reduces the
computation times to a several hours or a few days on high-performance
clusters and allows forming simulations on component scale [87, 88].
They provide detailed insights into process dynamics and meso-scale
forming effects (cf. Section 2.2.1), but are still so computation-intensive
that they thwart a reasonably efficient process engineering with multiple
design iterations, let alone iterative optimisation.

For a reasonably efficient part and process design, only macro-scale sim-
ulations are eligible. They assume each ply of the fabric as one homoge-
neous continuum with effective mechanical properties and constitutive
models of the related deformation modes. This reduces the computa-
tional load significantly but places higher demands on mechanical mod-
elling and numerical implementation [20].

Unlike sheet metal forming, textile forming poses several additional
challenges, whose most decisive are shortly outlined in the following.
At first, membrane and bending behaviour must be decoupled. Textiles
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show a low bending stiffness compared to their tensile (membrane) stiff-
ness and imposing classical shell theory would gravely overestimate the
bending stiffness, cf. Section 2.2.1. This decoupling can be achieved
by decomposing the virtual work or the internal virtual energy in the
material formulation to allow the usage of single shell elements, see
e.g. [89, 39, 29]. It can also be achieved by superposing conventional
membrane and shell elements [90, 91]. Other advanced approaches are
still subject of research. A key challenge remains the accurate predic-
tion of the bending and compaction behaviour of thick shells, e.g. by
enhanced approaches like generalised continua or solid-shell elements
[92, 93, 94, 95, 96].

A second major issue is anisotropy and the non-orthogonal reorienta-
tion of the anisotropy-axes (fibre orientation) during shear deformation
of fabrics. Fabrics show a low in-plane shear stiffness compared to
their tensile stiffness in fibre direction. Accurately capturing the non-
linear moduli and their current, non-orthogonal orientation during form-
ing is crucial. Next, the material law must be able to cope with non-
linear elastic behaviour at large deformations. To this end typically,
but not exclusively, hypo- or hyperelastic approaches are used. Enhanced
constitutive formulations can also account for time-dependent material
non-linearities like viscoelasticity, e.g. by Voigt-Kelvin or generalised
Maxwell material models. See [97, p 38-44] and [29, p 22-27] for details.

Eventually, the large differences of the directional stiffnesses also re-
quires numerical measures to avoid spurious stiffening or relaxation
effects like numerical ‘locking’ or ‘hourglassing’. They are pure nu-
merical, physically implausible phenomena and as such they have to
be avoided by suitable numerical measures, e.g. choice of element shape
(triangular vs. quadrilateral), integration scheme (reduced vs. full), shape
function and alignment of mesh and material directions [98, 99].

Models in this work. The Finite Element (FE) models used in this work
satisfy the above mentioned issues. They are based on the macroscopic
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models by Poppe et al. [100, 38, 96, 97] and Dörr et al. [101, 102, 29].
They comprise parameterised models for membrane, bending and con-
tact behaviour and have been validated experimentally. Decoupling of
membrane and bending behaviour is achieved by superposition of mem-
brane and shell elements. The membrane behaviour employs a hyper-
viscoelastic constitutive model, bending behaviour is implemented using
a hypo-viscoelastic formulation coupled with a Voigt-Kelvin approach.
The models enable a covariant description of material stiffnesses at large
strains and describe the fabric in a non-orthogonal, fibre-parallel frame.
Kinematic draping is based on an implementation by Fengler [103, 83]
and has partly been advanced by the author.

An in-house developed, Python-based framework [91, 102] has been
adopted and further developed for fully automatic model generation,
solution and result evaluation. It further enables concurrent handling
of multiple jobs to keep the overall computation time within reasonable
bounds [104].

Process simulation chain. In any multi-step process, and in particu-
lar in CoFRP-processes, upstream process steps may affect downstream
process steps (cf. Section 2.1.3). Thus, besides accurately modelling the
physics of individual process steps, any reliable simulation approach
must be able to ingest and pass on information along the chain as il-
lustrated in Figure 2.16. In general, this amounts to transferring scalar-,
vector- and tensor-valued information for e.g. temperatures, material ori-
entations and stresses. Mapping such information is a profound task as
it requires adaptions between different computational setups, e.g. non-
conforming meshes or element types, and calls for appropriate interpo-
lation techniques [105].

A first realisation of such a process chain is presented in [107] for metal
processes. For composite materials, Kärger et al. [106] developed and
validated a virtual process chain. It was later embedded in a process
optimisation environment [13] to improve the structural performance of
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Figure 2.16: Continuous CAE-chain for virtual analysis of manufacturing effects and their
impact on the structural behaviour of CoFRP-components. Image concept
originally from [106] and modified in [97, p 3].

a component by mitigation of process defects. The data interfaces of
the process chain have recently been automated and formalised [105]
and applied to different composite processes [108, 109, 110, 111]. Simi-
lar approaches to consider manufacturing effects have emerged in both
industry [112] and academia [113, 114].

Overall, validated simulation methods with different levels of fidelity
are available to analyse and assess the formability of a component. Such
methods can effectively reduce the need for expensive trials during part-
and process-development. However, besides cost for hard- and software,
they require considerable computational efforts, which even multiplies
for iterative design optimisation.

2.3 Optimisation in process engineering

Section 2.2.2 shows that a large number of technology variants in textile
forming exists. Additionally, each technology introduces a set of process
parameters, which need to be optimised for each component. Simula-
tions help narrow costly experiments to the most promising variants,
but their long computation times still call for efficiency during iterative
optimisation.
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In general, efficient process optimisation employs either 1) available pro-
cess experience in combination with expert judgment or 2) elaborate
mathematical algorithms. This work seeks to combine the advantages
of both and accordingly, their core aspects are introduced in the follow-
ing.

2.3.1 Experience-based optimisation

Some processes appear in a manageably low number of different variants
and show such recurring characteristics that they have been standard-
ised, e.g. welding processes [115, p 623-638]. In such situations, process
optimisation simply amounts to identifying and adhering to the relevant
standards.

When such direct process instructions are not available, sometimes in-
sights can be drawn from experimental trials of application-near refer-
ence structures. For instance, Oehler and Kaiser [116, p 284] present
diagrams of resulting strains during deep drawing for a range of typi-
cal component features. A great advantage of such approaches is that
they stem from experiments and do not bear idealisations from mod-
elling. Although certainly providing valuable information to a process
engineer, they still give only loose guidance and are restricted to the
investigated cases (material, process conditions and geometry).

Consequently, process engineers often initialise their processes based
on knowledge and experience from prior parts. Starting from an ini-
tial parameter set, the process is iteratively refined based on expert-
examination production trials. This can be fast and may yield quick
results but has two key disadvantages: First, it commits significant re-
sources to production ramp-up; most notably for downtime of expensive
infrastructure, cost for production and analysis of non-marketable out-
put as well as rework for error correction [117, p 3-8]. Second, as with
any human-subjective approach, the results vary with experience and
knowledge of the expert and further depends on subjective factors like
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concentration and available time. On top, unforeseen absence of the ex-
pert puts development at risk. Consequently, processes often only arrive
at a feasible rather than an optimal configuration [118].

Trends towards shrinking lot sizes and individualised products further
compound the situation. In the wake of ‘mass customisation’, adap-
tive and flexible manufacturing technologies have emerged, e.g. additive
manufacturing [119], modular production cells [120], adaptive moulds
[121] or mould-free technologies [122]. Although such technologies prin-
cipally allow for efficient manufacture of individualised products, the
recurring need for process optimisation for ever-changing geometries or
materials poses a considerable economic barrier [2].

The presented shortcomings call for a more methodological approach
towards process optimisation in variable situations. Physics-based pro-
cess simulation, e.g. FE-simulations, enable a rigorous, virtual analysis
of complex process dynamics (cf. Section 2.2.3). Thus, they can serve
as a close-to-reality proxy of actual experiments and help ensure man-
ufacturability at comparably low cost. Often termed ‘virtual process
optimisation’ (VPO), their inherently digital nature allows to combine
them with optimisation algorithms, which principally allows for automatic
process optimisation [123]. This work studies methods for VPO and out-
lines its fundamentals in the following sections.

2.3.2 Algorithmic optimisation

Formally, tailoring technical systems to maximum performance amounts
to identifying a set of optimal design variables p∗ ∈ P within a feasible
design space P ∈ Rnd , often formally cast as

p∗ = arg min
p∈P

f (p) s.t. c1,2,...(p) > 0 c̃1,2,...(p) = 0 . (2.1)

Therein, f : P 7→ Q denotes the objective function, while c1,2,... and c̃1,2,...
are (in-)equality constraints, respectively. The objective function yields
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a scalar performance or quality metric Q ∈ R and usually quantifies
unwanted behaviour, e.g. deflection under load or defects in manufac-
turing. Hence, it is sought to be minimised. Note that a maximisation
can be cast as a minimisation by arg max f = arg min − f .

An optimum p∗ is present when no other point p ∈ P in a certain region
Ξ around p∗ can reduce f below f (p∗). If Ξ expands over the whole
domain, then p∗ is a global optimum, otherwise it is a local optimum p∗l
as Figure 2.17 visualises with Ξg and Ξl.

Figure 2.17: Visualisation of a generic, one-dimensional objective function f with a local
and a global optimum p∗l and p∗, respectively.

The constraints ci and c̃j impose conditions on the solutions, e.g. regard-
ing the feasible input design space P due to machine limits. This work
considers (box-)constraints only, which require no special treatment. For
further information on constrained optimisation the reader is referred to
the literature, e.g. [124].

The achievable optimisation efficiency is mainly governed by the objec-
tive function f . More specifically, it is governed by the a-priori available
knowledge on f and the possibility to choose a suitable solution tech-
nique.

Types of objective functions. From a system engineering vantage
point, two characteristics of the objective function f prevail: white-box
and black-box behaviour [125, p 77]. White-box behaviour describes a

32



2.3 Optimisation in process engineering

system whose inner functions are known and can be advantageously
exploited during optimisation. In a black-box situation they are un-
known so that only the phenomenological input-output-behaviour can
be observed.

Both types occur in engineering. A typical example for a white-box
problem is FE-based topology optimisation [126, p 179-201]. Knowledge
about the involved physics can be used to provide additional informa-
tion, e.g. on second-order gradient-information [127], which are prime
conditions for some gradient-based techniques. Another solution strat-
egy are optimality criteria: They use existing engineering knowledge on
the optimal system state, e.g. homogeneous stress, to guide the optimi-
sation [128, 129, 130, 131].

As shown above, white-box problems are solved efficiently by exploiting
known properties of the objective function f . However, f ’s inner struc-
ture can be a-priori unknown, impossible to detect or for other reasons
non-exploitable [132]. Such ‘black-box’ situations impede assumptions
about the problem structure and for generalisability, they are the basis
of this work.

In such situations only purposeful parameter exploration and iterative
parameter variation are eligible. The iterations continue until triggering
of a stopping criterion. The set of instructions how to explore and vary
the parameters is commonly referred to as ‘optimisation algorithm’ or
‘optimiser’. Iterative optimisation algorithms are usually divided into
gradient-based and gradient-free methods [133, p 1-4].

Optimisation algorithms. Gradient-based methods employ first- and/or
second-order derivative-information to generate a sequence of candidate
solutions which eventually accumulates at least at a local minimum [134,
p 47-92]. If f is convex and gradient-information is readily available,
gradient-based methods show unparalleled efficiency and are guaran-
teed to convergence even for high-dimensional problems. They have
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demonstrated their applicability in multiple engineering tasks yet seem
to be mainly used in structural applications, see e.g. [135, 136].

However, black-box objective functions often show unsuitable charac-
teristics for gradient-based methods [137, p 36]. For instance, gradient-
information may be expensive to obtain or the objective may be non-
convex and multi-modal so that the gradient-based optimiser converges
to an inferior local optimum only. This favours gradient-free techniques
as benchmarks in practical engineering settings show [138, 139]. Over-
all, gradient-free methods comprise three broad categories: Model-based,
direct search and heuristic methods [137, p 37-50].

Model-based methods tacitly assume that – despite being a-priori un-
known – the objective function bears some structure, at least in a certain
‘trust region’. They further assume that an analytical model, e.g. a low-
order-polynomial, can locally1 approximate this structure from a collec-
tion of points. This local model can then be used to find an (locally) im-
proved point, e.g. by gradient-based methods, and the procedure starts
anew. Although long studied [140], extended [141] and implemented
in optimisation libraries [142], they seem rarely applied in engineering
scenarios as only few recent applications are reported, e.g. [143, 144].

Direct search methods, most notably the ‘downhill simplex’-algorithm
[145], evaluate a starting point and some pre-defined points in its vicin-
ity. By sensible comparison and a clever, rule-based combination scheme
within this point cloud, a new, potentially improved candidate solution
is determined and evaluated and compared to the initial point cloud.
Depending on the outcome, it replaces a point in the point cloud and
the procedure starts anew. Thereby the point cloud gradually moves
‘downhill’ towards the next optimum. Although requiring no gradient-
information, they are still likely to converge to a local optimum and have
thus been superseded by heuristics over the last decades [146].

1Unlike surrogate models (cf. Section 2.3.3), which strive for a global approximation.
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Heuristic methods also evaluate and combine a collection of points, the
‘population’ but differ in two major regards: First, their point cloud
stretches over a much wider parameter space instead of the narrow vicin-
ity of a starting point. Second, they introduce an element of randomness
into the combination process: The new candidate solutions are not only
combined by deterministic rules but additionally randomly mutated to a
certain degree. The two mechanisms facilitate design space exploration
and discovery of new promising solutions. Thus, these algorithms can
escape local minima and tend to find the global optimum.

The combination and mutation principles are often nature-inspired1.
Owing to the elements of serendipity, heuristics are mathematically not
guaranteed to converge, let alone at a certain speed, but in practice they
prove robust and tend to find optima even under adverse conditions
[147]. Thus, they have become a standard tool in engineering optimisa-
tion over the last decades, see e.g. [148, 149] for composite examples,
and have as such been successfully applied in fabric forming optimisa-
tion [66, 108, 150, 151].

The presented gradient-free approaches can cope with black-box condi-
tions and especially heuristics tend to find a global minimum of the
objective function. However, they generally require many iterations
and evaluations of f for convergence. This renders their direct appli-
cation impracticable for VPO: Since process simulations are generally
computation-intensive and may take up to a few hours, an iterative opti-
misation quickly amounts to days or weeks and often exceeds available
resources [152]. Consequently, measures are required to increase optimi-
sation efficiency.

1Hence their biological names, e.g. ‘genetic’, ‘particle swarm’ or ‘ant colony’.
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2.3.3 Surrogates for efficient optimisation

One option to reduce the computational load when optimising expen-
sive functions is surrogate-based optimisation (SBO) [153, p V1]. The key
idea of SBO is to approximate the expensive objective function f by an
easy-to-evaluate function fsrg – the ‘surrogate’. Figure 2.18 visualises
schematically an approximation based on four samples for a generic,
one-dimensional example.

Figure 2.18: Schematic comparison of the original objective f and the surrogate fsrg (ap-
proximation). Although fsrg does not exactly match f , it still reproduces f ’s
structure and optima from the sampled observations.

Similar to model-based optimisers (cf. Section 2.3.2), SBO assumes that f
has a certain structure which can be reproduced by another model func-
tion. Unlike them however, surrogates usually aim for a global instead of
a local approximation. Once available, optimisation takes place on the
surrogate in short time, which allows to concentrate costly simulations
on the most promising parameter regions.

Besides optimisation, surrogates can also help determine sensitivities
and are useful for repetitive evaluations, e.g. for uncertainty quantifica-
tion [154] and reliability assessment [155]. In the context of composites,
applications range from material scale, e.g. assessment of stiffness and

1Roman numeral
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strength [156, 157], to component scale, e.g. vibrational [158] charac-
teristics. It may be noted however, that surrogate techniques are not the
only approach towards uncertainty and robust design, see [159] for an
example of non-surrogate structural optimisation under uncertain input
parameters.

Surrogate construction. Formally, a surrogate model1 is a numeri-
cally efficient approximation of the relation of input parameters p and
observed responses f (p), i.e.

fsrg(p) ≈ f (p) ∀ p ∈ P (2.2)

In many situation f is a black-box function which can be evaluated but
is otherwise a-priori unknown. This makes classical analytical approxi-
mation techniques, e.g. Taylor Series, basically inapplicable as they typ-
ically require additional information, e.g. higher-order derivatives. Out-
side dedicated niche-frameworks [160, 161], numerically attaining such
information quickly becomes prohibitively computation-intensive – es-
pecially for higher derivatives and multiple dimensions. Consequently,
only data-driven techniques based on input-output-observations remain
eligible.

Obtaining a data-driven model – often termed ‘training’ – can be seen
as tuning a highly-flexible model function fsrg from the model class F
in order to match k sampled observations in a data set D =

(
pi, f (pi)

)
,

i = 1, . . . , k.

The samples are obtained according to dedicated sampling plans [162,
p 153], which can be done efficiently in parallel. For deterministic com-
puter experiments so-called ‘space-filling’ plans are typically used. In
simple terms, they seek to distribute samples uniformly in the design

1Sometimes also called ‘meta-model’ or ‘response surface models’
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space P, with as few and as small gaps as possible. Different ap-
proaches exist to ensure uniform coverage of P [163, 164]. However,
Latin-Hypercube Sampling (LHS) and its sub-variants have established
as the de-facto standard in practice as it proves sampling-efficient [165]
and convenient to use. Figure 2.19 compares random sampling strat-
egy and LHS-sampling. Clearly, LHS-sampling provides a more even
distribution of samples with fewer holes.

Figure 2.19: Comparison of random-uniform sampling and Latin Hypercube Sampling
(LHS). Clearly, LHS yields a more even coverage of the design space.

The model function fsrg offers adjustable parameters θ which are tuned
to match the supplied data. Formally this is often expressed as finding a
set of optimal parameters θ∗ which minimise an error metric ε, the ‘loss’:

θ∗ = arg min
θ

ε( fsrg, D) (2.3)

The loss ε is a distance measure between model predictions fsrg(p) and
ground truth values f (pi) in the database D. In principle, different error
metrics can be used, while for regression tasks the mean absolute error
(MAE) and the mean squared error (MSE) have established in practice
[162].

Surrogate function types. Similar to objective functions (cf. Section 2.3.2),
surrogate models can be of white-box and black-box type. White-box
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surrogates have a well-known structure and allow for certain interpre-
tation. They often involve algebraic expressions whose predictable be-
haviour is used to capture a-priori known system dynamics. In this way,
saturation effects or periodic behaviour can be directly built into the
model equations, see [166, 167, 168] for examples. Non-algebraic white-
box models exist as well, most notably decision trees. They process data
by a sequence of comparably simple conditional statements and allow
for engineering interpretation as exemplarily shown in [169].

White-box surrogates come with several advantages regarding model in-
trospection, engineering interpretation and ease of use without elaborate
software toolboxes. However, they typically show limited modelling ca-
pacity, i.e. fsrg may not fully reproduce f ’s structure in complex cases.

Black-box surrogates seek to overcome this limitation and are often so-
called universal approximators [170, 171, 172]. That is, with appropriate
configuration they can reproduce any continuous function regardless
of its complexity. However, they do so at the expense of human inter-
pretability: They typically consist of complex and often nested functions
with hundreds to millions of model parameters and even when their
structure and parameters are fully known, their sheer number refuses
human comprehension.

Many different black-box model functions have been developed, e.g. sup-
port vector machines, Gaussian Processes or neural networks, and are
readily available in both commercial and academic software packages
[173, 174, 175]. However, despite their diversity, Wolpert [176] has ex-
pounded early on that no technique consistently outperforms all others
in all cases. It has since been confirmed empirically in multiple disci-
plines, e.g. [177, 178], and is sometimes casually referred to as ‘No free
lunch theorem’. Consequently, the choice of the model function is always
case-dependent.
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Surrogate-based optimisation. Once trained, the surrogate model
fsrg provides an easy-to-evaluate approximation of the expensive func-
tion f and thus, even an iteration-intensive black-box optimiser will find
the optimum of the surrogate p∗srg in short time.

Wang et al. [179] call methods, which assume this surrogate-optimum
p∗srg as the true optimum p∗, ‘offline’ methods. However, as fsrg is just
an approximation of f , the surrogate optimum p∗srg most likely deviates
from the true optimum p∗. Thus, ‘online’ methods are recommended
in general, which try to eliminate deviations by iteratively improving
the surrogate with new (simulated) evidence of the candidate optimum
solutions. Thereby, the model gradually concentrates costly simulations
on the most promising regions and refines near potential optima. Fig-
ure 2.20 compares a classical black-box optimiser to SBO and visualises
the speed-up.

Figure 2.20: History of candidate solutions during a) direct optimisation with a genetic
algorithm (GA) and b) SBO. Sub-figure c) shows a faster reduction of the ob-
jective f (convergence) over the iterations for SBO [180, 181].

The comparison of Figure 2.20 a) and b) shows that, unlike direct optimi-
sation, SBO places the candidate solutions always near the optimum. De-
spite the initial sampling offset (blue shade), SBO yields a faster reduc-
tion of the objective f , i.e. higher optimisation efficiency, cf. sub-figure
c).

Different variations of SBO exist: For instance, some SBO-methods
propose space-reduction in promising regions in combination with re-
sampling and re-optimisation only in these reduced regions. Although
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such approaches can give good results, they are prone to premature con-
vergence to local optima [179]. Also ‘space-mapping’ is an alternative
approach, which seeks to localise the optimum of the objective func-
tion through transformation of the surrogate optimum [182, 183]. Some
surrogate models, namely Bayesian models, provide not just a point es-
timation fsrg(p) but a complete probability distribution of the output
quantity. Such additional information can additionally help explore the
design space and purposefully reduce deviations between surrogate and
ground truth. An example is the ‘EGO’1-algorithm [184]. It has proven
efficient and reliable in both academic and real-world problems [185],
although appears to struggle in high-dimensional spaces [186].

In any case, SBO reduces the overall computation time by two princi-
ples: parallelisation of initial data sampling and purposeful guidance of
the optimiser in the parameter space. However, current SBO-strategies
provide mostly application-specific, one-off models and struggle with
unforeseen task variations. This impacts on the re-usability in new sce-
narios: Even a subtle problem variation, e.g. a geometry change, in-
stantly invalidates the surrogate and requires resampling of data and
reconstructing the surrogate. Thus, demand for generalised models has
been identified early on, e.g. in [187], and continues to be prevalent.
Recent advances in Machine Learning (ML) may provide the means to
address this issue.

2.3.4 Machine Learning in Engineering

Classical computer programmes employ sequences of carefully crafted
and well-defined instructions (‘rules’) to solve a problem, e.g. the finite
difference method for a PDE. However, such rule-based concepts strug-
gle when the governing rules are too complex to be cast into explicit
instructions.

1EGO: Efficient Global Optimisation.
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Hamoucheet al. [188] exemplify this by selecting a suitable forming
process (deep drawing, spinning, rolling etc.) for a given geometry:
Although a simple task for a seasoned practitioner, it proves difficult
to define explicit selection-instructions for CAE-software and according
attempts are often error-prone, inflexible or over-specialised [188, 189].
Consequently, such tasks are still manual and at best qualitatively guided
[190, p 14-20].

ML provides an alternative approach to handle such difficult-to-define
tasks, mainly by two means: 1) Learning instead of hand-crafting pro-
gramme rules and 2) using all relevant, possibly high-dimensional data
instead of a manually preprocessed, low-dimensional representation.
Both the learning and data concepts will be presented in the following.

Learning concepts. Mitchell [191, p 1] defines ML as designing
‘computer programs that automatically improve with experience’. That
is, ML techniques, especially deep learning (DL), give up on hand-crafting
programme instructions but seek to identify, reproduce and extract so-
lution strategies solely from observations. And they do so with great
success: In 2012 Krizhevsky et al. [192] used DL for the first time in the
‘ImageNet’-competition, an annual computer vision benchmark. Their
approach outperformed all manually written programmes by a large
margin and thereby proved the practicability of self-improving, learning
algorithms for complex tasks.

ML-algorithms split up into three main groups, 1) unsupervised, 2) su-
pervised and 3) reinforcement learning, as the following paragraphs sum-
marise.

Unsupervised learning aims at detecting similarities in data. For in-
stance, they help understand systems by automatic grouping or cluster-
ing of similar system states or can inform about the significance of input
parameters. Countless applications are reported across disciplines and
also in product manufacturing: For instance, McLeay et al. [193] use it
to live-detect anomalies in machining processes from sensor data and
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Schwarz et al. [194] to tell relevant and irrelevant process parameters
apart in deep drawing.

Supervised learning aims at establishing a phenomenological relation
between input and output of a system. The output values can be discon-
tinuous (‘classification’) or continuous (‘regression’). Once the relation
is available, it can be used for further analysis and optimisation. Classi-
cal surrogate models from Section 2.3.3 fall into this category.

Ultimately, reinforcement learning (RL) aims at estimating optimum ac-
tions in variable situations. Unlike the previous approaches, the algo-
rithm is not presented a self-contained set of data but interacts with
a responsive environment which issues action-dependent feedback sig-
nals. RL originates from control theory [195, p 16-17] but has recently
drawn attention in engineering optimisation: For instance, Dornheim

et al. [196] use it to estimate suitable processing paths to achieve de-
sirable metallographic properties, while Günther et al. [197] apply RL
to online-optimise laser welding processes. Zhou et al. [198] optimise
chemical reactions by RL: Unlike other work, they specifically seek to
reduce the need for experimental data by inclusion of simulations to
pre-train RL-algorithm before deployment.

With respect to manufacturing processes and their recurring need for
component-specific optimisation (mass customisation, cf. Section 2.2.2),
Shamsaei et al. [2] call for a comprehensive framework to ‘leverage in-
formation from prior similar studies and . . . systematically character-
ize the relation between process parameters and part features so that
the . . . process can be optimized in a more efficient manner’. Owing to
the complexity of these relations, such a framework does not exist yet,
although desirable. However, the presented learning concepts, especially
RL, hold substantial promise in that regard.

Data concepts. As outlined above, besides a suitable learning con-
cept, a generalised surrogate model also requires sufficiently informative
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training data. To this end, Lataniotis et al. [199] distinguish unstructured
and structured variables.

Unstructured input variables lack an intrinsic ordering, i.e. are self-
contained and can be arbitrarily rearranged without loss of information.
In engineering modelling they are typically associated with interpretable
quantities such as temperature or loads at a specific location. In contrast,
structured data does have a natural ordering and shows strong corre-
lations along a physically meaningful set of coordinates, often time or
space. Typically, the individual variables have little meaning on their
own and only their well-ordered entirety provides information and a
careless rearrangement leads to information loss.

Figure 2.21 illustrates the difference in a generic thought experiment:
Suppose, the pressure distribution of a central source flow in a quadratic
domain needs to be quantified. Sub-image a) quantifies the situation
by three unstructured variables (pressure sensors p1...3); sub-image b) by
structured variables, namely a full-field image of the pressure distribu-
tion. For completeness, the sensor’s locations are given in sub-image b)
(colour-coded). The sub-images come in two variants: original data (top)
and shuffled columns (bottom).

Although the columns have been rearranged, the unstructured variables
remain interpretable due to their inherent, technical meaning (inlet/out-
let). The structured variables however, have completely lost their mean-
ing. Sub-image c) gives an even more intuitive example of the informa-
tion loss: Clearly, the original image shows the picture of the Mona-Lisa

but it is hard to identify it in the shuffled image.

However, structured variables allow to encode information which is hard
to express through unstructured parameters: For instance they can ex-
cellently represent field quantities. Figure 2.22 compares unstructured
and structured variables to encode thermal field as an initial condition
(IC) for the heat diffusion problem from [200]. Both can efficiently de-
scribe the IC in simple cases (sub-image a) ) but in more complex situa-
tions (sub-image b) ), an unstructured, algebraic representation quickly
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Figure 2.21: Comparison of a) unstructured and b) structured data at the example of a
generic pressure distribution. Structured data show strong internal correla-
tions. Thus, they lose their interpretability during shuffling operation (bot-
tom), while unstructured variables retain it.

becomes convoluted. The structured input however, can efficiently re-
produce both.

Figure 2.22: Comparison of structured and unstructured variables for a) simple and b)
complex boundary conditions for a heat diffusion problem [200]. Structured
variables can encode even complex situations, which unstructured struggle
with.
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However, this higher expressivity comes at the cost of considerably in-
creased dimensionality: While unstructured variables typically range in
the order of O(100...2), for structured data it quickly reaches O(103...6)

[199], clearly exceeding the capabilities of current surrogate techniques.

In some cases, dimensionality reduction techniques can be applied which
seek to reproduce high-dimensional information in a lower-dimensional
space [201]. However, loss of information often limits data compressibil-
ity and the need for high-dimensional surrogates persists. The advent
of artificial neural networks (ANN) over the last decades offers means
for both handling of and learning from large amounts of high-dimensional
structured data, as outlined in the following.

2.3.5 Neural networks

ML is generally not restricted to a certain set of model functions; how-
ever, neural networks have taken centre stage in the field. This is mainly
for four reasons: 1) They are universal approximators (cf. Section 2.3.3)
[172] and show thus a remarkable modelling capacity. 2) A rich corpus
of efficient and tested training algorithms is at disposal. 3) Specialised
sub-types of neural networks exist, which take advantage of structured
data [202, p 326] and 4) comprehensive open-source libraries allow for
convenient and efficient implementation [203].

Artificial Neurons. ANNs are loosely inspired by the neural activity
in vertebrates’ brains which process information by electrical impulses.
More specifically, if incoming impulses exceed a certain threshold, the
neuron’s synapse activates and transmits a signal – it ‘fires’. Otherwise it
remains inactive. Interestingly though, the synapses’ thresholds are not
fix but can adapt upon repeated activation and weigh incoming signals,
which manifests as ‘learning’ in the macro-sense. [204, p 266-268]

McCulloch and Pitts [205] proposed as early as 1943, a mathematical
model of a neuron with a number of input-values x = ( x1, . . . , xnd )

T
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and one output-signal ŷ. It processes data by weighting with the weight
vector θw = ( θw 1, . . . , θw nd )

T and summation of the input signals plus
a bias θb:

z(x) = θw
T x+ θb. (2.4)

The weights θw and the bias θb are adjustable parameters which can
be tuned to match supplied data. At this stage, it is a mere linear-
affine operation which cannot reproduce non-linear relations. Thus, an
activation-function ψ introduces a non-linearity:

ŷ(x) = ŷ
(

ψ(z)
)

= ŷ
(

ψ( θw
T x+ θb )

)
.

(2.5)

Different activation functions are applicable in general, while the sig-
moid function ψ(z) = 1/(1 + e−z) and Rectifying linear unit (ReLU)
ψ(z) = max(0, z) with several sub-variants have proven their practicality
in benchmarks [206] and are widespread in practice [207].

Neural networks. In their classical ‘feedforward’ form, ANNs are or-
ganised in a layer-structure with each layer l ∈ {1, . . . , nL}, carrying nd,l
neurons (cf. Figure 2.23). The neurons collectively yield a layer-wise out-
put vector ŷl = ( ŷl

1, . . . , ŷl
nd,l

)T. The neurons of neighbouring layers are
fully or partially interconnected so that the output of a previous layer is
input to the following layer. See [202] for a comprehensive discussion of
ANN-theory.

Information propagates through the network by neuron (de-)activation
(Equation (2.5)) in subsequent layers. During this so-called ‘forward
pass’, complex activation patterns form within the network. Ultimately,
the last layer l = nL converts them to an output quantity ŷ = ŷnL for
engineering interpretation. The intermediate layers are an internal rep-
resentation of information with next to no interpretability, hence their
common name ‘hidden layers’. The number of layers and neurons is
arbitrary so that neural networks can in principle perform any mapping
Rnd 7→ Rmd .
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Figure 2.23: Schematic illustration of a fully connected feedforward neural network.

The above descriptions hold for unstructured input, e.g. distinct process
parameters (cf. Section 2.3.4), and so far give little novelty compared to
classical surrogates. However, ANN variants exist, which are specifically
designed to cope with high-dimensional structured input, e.g. images.
For instance, pioneered by Fukushima [208], put into practice by LeCun

et al. [209] and substantially streamlined by Krizhevsky et al. [192], con-
volutional neural networks (CNN) have established for analysis of spatially
structured data like images. As they are used in this work, Section 4.1.2
provides background information on their functioning.

Though already introduced in the 1980s, it was not until a few years ago
that CNNs appeared in engineering applications: For instance, Fari-
mani et al. [200] and Guo et al. [210] use them for full-field estimation of
thermodynamic and aerodynamic problems. Unlike classical surrogates,
they encode boundary conditions (BC) and geometries by structured in-
put variables (images) instead of unstructured parameters and report a
considerably enhanced generalisability. Figure 2.24 visualises the geom-
etry encoding scheme along with a CNN-estimation of the velocity field
and an according simulation for comparison.

This idea has been transferred to manufacturing scenarios by the author,
e.g. in [211, 104], and other authors: Hamouche et al. [188], Günther

et al. [197], Attar et al. [212] and Zhou et al. [213] use them in process
engineering for efficient process selection, control and manufacturability
estimation, respectively. While individual tasks differ, all results under-
pin that – given sufficient data – CNNs are capable of learning complex
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Figure 2.24: Schematic illustration of flow field estimation of a convolutional neural net-
work (CNN) based on structured input (geometry) and output variables (flow
velocity) along with an actual simulation for reference [210].

dynamics from structured data and outperform classical surrogates re-
garding generalisability and re-usability in new scenarios.

Neural network training. The network parameters θ are initialised ran-
domly and consequently the initial forward pass will yield a random
result ŷ and a large error ε. In order to match the data, Rumelhart

et al. [214] proposed to improve the network by gradually tuning θ in
direction of decreasing error ε, i.e. solve Equation (2.3)

θ∗ = arg min
θ

ε( fsrg, D) (2.3 revisited)

iteratively by gradient-descent.

More specifically, they suggest to ‘back-propagate’ the error ε by com-
puting ∇θε, i.e. the gradient of ε with respect to θ, and then applying

θi+1 = θi − η∇θε (2.6)

to each observation in the dataset D. The variable η denotes the ‘learn-
ing rate’1, a critical hyperparameter [202, 149-150]. The procedure re-
peats for a pre-defined number of epochs i = 1 . . . nep, while one epoch
denotes passing through all samples in D. See [202, p 200-220] for details.

Owing to their large modelling capacity, neural networks – and espe-
cially deep neural networks – tend to overfit to training data. Figure 2.25

1Literature on gradient-based optimisation typically refers to η as ‘step size’.
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visualises the phenomenon schematically: While an optimally trained
ANN captures the data-inherent dynamics (left), an overfit ANN (right)
only reproduces the training data, but does not generalise to new data.
Such a model is of little predictive use.

Figure 2.25: Schematic illustration of overfitting. An optimally fit surrogate reproduces the
training data and can generalise to new data, while an overfit model repro-
duces training data only.

To avoid overfitting, it is common practice to utilise two separate sets
of data: a training set Dt and a validation set Dv. The network fits to
Dt only, i.e. minimises the training loss εtrn, while constantly monitoring
the validation loss εval on Dv as a measure of generalisation capability.
Figure 2.26 illustrates the typical evolution of εtrn and εval during train-
ing: Initially, both decrease, yet at some point εval grows again. At this
point, training should stop as the model starts to overfit and looses its
predictive accuracy on new, non-training data.

Several measures have established to counter overfitting. First, instead of
applying Equation (2.6) to individual observations, the average gradient
of multiple observations (‘minibatches’) is used. This increases the ro-
bustness of the training process and substantially reduces overfitting as
well as the training time [215]. Other measures include early-stopping of
the training [202, p 241-249], additional regularisation terms in loss func-
tion [202, p 224-226], random dropout of neurons during training [216].
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Figure 2.26: Typical evolution of the training error εtrn and validation error εval during
surrogate training. The training error decreases continuously during training,
while the validation error increases again at some point (begin of overfitting).

Also the number of layers nL and neurons per layer nl impact on the
final network performance. These ‘hyperparameters’ need to be tuned
in an upstream study. To this end, automated approaches have been
proposed, e.g. [217], but with a little knowledge they can be set and
efficiently refined manually [202, p 423-426].
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2.4 Literature summary and research gap

Summary. Many lightweight engineering tasks amount to making ma-
terial, process and geometry requirements match in mutual regard. This
overall goal poses a great challenge, especially for materials with a com-
plex behaviour like textiles used in CoFRP-components.

Manufacturing CoFRP-shells often involves a deep-drawing-like forming
process of a textile. A common manufacturing defect in textile forming
is wrinkling, an instability effect triggered by a complex interaction of
compressive in-plane stresses and a low bending stiffness. Predicting
its occurrence is a profound question and requires extensive experience
from previous parts or elaborate process simulation techniques.

In general, forming processes must be adjusted so as to avoid wrin-
kling. To this end, most technological approaches manipulate the ma-
terial draw-in. Although the principles differ, each brings a set of con-
tinuous variables that must be optimised for the envisaged component
geometry.

Finding this parameter optimum is a challenging and resource-intensive
endeavour, though: In industrial practice, experience-guided trial-error-
experiments are applied but incur significant cost. Process simulations
can reduce experimental work but prove computation-intensive, espe-
cially for iterative optimisations. Ever changing products and shorter
production cycles (‘mass customisation’) further compound the situa-
tion and make optimisation-efficiency a key factor.

Surrogate-based optimisation seeks to reduce according efforts by con-
centrating costly simulations on the most promising regions. Although
significant speed-ups are reported, current surrogate models are mostly
low-dimensional and rather inflexible. As such they struggle with ever-
changing optimisation tasks, e.g. variable geometries. Machine Learning
(ML) techniques, especially deep neural networks, are designed to deal
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with complex, high-dimensional data. The nascent availability of ML-
techniques, especially deep learning, has been shown to open up new
avenues for efficient optimisation in variable situations.

Research Gap. Unlike classical surrogates, ML-techniques have been
shown to learn complex system dynamics from data and cope well with
structured data like images. At the same time physics-based process
simulations provide close-to-reality samples of manufacturing processes.
Owing to their easy re-configurability regarding process conditions or
component geometry, they allow to sample a highly diverse set of pro-
cess observations.

Consequently, automated numerical simulations give access to compre-
hensive part-process-observations while recent ML-algorithms promise
being able to extract inherent patterns from complex and high-dimensional
data. Thus, their combination sounds appealing.

However, at the moment it is unclear, a) whether modern ML-techniques
can indeed extract generalisable information from generic process-sam-
ples in order to efficiently optimise the process of a new, non-generic
geometry and b) if so, whether this speeds up the optimisation similar
to a classical surrogate. This research gap principally applies to any man-
ufacturing process, but will be studied at the example of textile forming.
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High-fidelity process models, e.g. FE-simulations, in combination with
general-purpose optimisation algorithms (‘virtual process optimisation’)
help reduce costly process trials during production ramp-up, see e.g.
[13, 150], but typically require considerable computational resources.

Surrogate-based optimisation (SBO) generally reduces the computational
load when optimising expensive-to-evaluate functions like simulations
[218]. However, the involved surrogates are mostly problem-specific,
one-off models and struggle with problem variations (cf. Section 2.3.4).
This work evaluates the potential of ML-techniques to enhance current
surrogates. In order to benchmark the developed ML-methods (Chap-
ters 4–5), this chapter presents the reference optimisation approach.

More specifically, Section 3.1.1 describes how to form the objective func-
tion from a simulation model. Section 3.1.2 then outlines how objective
function, surrogate and optimiser generally work together along with
a minimal application example (Section 3.1.3) for graphicness. Then,
Section 3.1.4 presents three different surrogate-approaches using neural
networks. For validation of the reference method, Section 3.2.1 presents
at first the considered use case of gripper-assisted fabric forming. Then
Section 3.2 evaluates the surrogate-approaches accuracy-wise, selects one
for SBO and compares the optimisation performance to a state-of-the-art
genetic algorithm. The chapter concludes with an intermediate summary
in Section 3.3.
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3.1 Optimisation approach1

3.1.1 Objective function

From an optimisation perspective, a process simulation can be seen as
a function ϕ : P 7→ A which maps process parameters p ∈ P ∈ Rnd ,
i.e. an nd-dimensional input-vector, to a part quality attribute a ∈ A. In
the context of process optimisation, A usually quantifies the extent of
defects, e.g. wrinkles. Please note that a ∈ Rnel is a field quantity and
thus the overall product quality is also a vector a = ( a1, . . . , anel )

T with
nel being the element count of the field.

For optimisation, this quality field needs to be converted to a scalar per-
formance indicator using a quality metric q : A 7→ Q with Q ∈ R. To this
end, often the vector norm

q(a) = ‖a‖u =

(
nel

∑
i=1
|ai|u

)1/u

(3.1)

is used [179]. It contains the maximum-norm (u = ∞), the sum-norm
(u = 1) and the Euclidean norm (u = 2) as special cases. With such a
performance indicator, the objective function f : P 7→ Q can be expressed
as a composition of the simulation ϕ and the performance metric q:

f (p) = q
(
a(p)

)
= q

(
ϕ(p)

)
. (3.2)

Consequently, optimisation amounts to

p∗ = arg min
p∈P

f (p) = arg min
p∈P

q
(
a(p)

)
= arg min

p∈P
q
(

ϕ(p)
)

. (3.3)

1The presented approaches are based on the prior works [152, 181, 219]
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As Section 2.3.2 outlines in detail, Equation (3.3) could be solved using
black-box optimisation algorithms like heuristics but takes prohibitively
long. In such cases, surrogate-based optimisation suggests to devise an
easy-to-evaluate approximation

fsrg(p) ≈ f (p)
(3.2)
==⇒ qsrg

(
p
)
≈ q

(
ϕ(p)

)
. (3.4)

Optimisation then takes place on qsrg instead of q.

3.1.2 Optimisation on the surrogate

Once qsrg is available, it can be used for SBO. Since different SBO-variants
exist in literature [179], Figure 3.1 on the following page visualises the
concept adopted in this work: After a first sampling to initialise the
database D = {(p1, q(p1)), . . . }, a surrogate is trained, in this work an
ANN. Then, a genetic algorithm (GA) determines a candidate solution
p∗,isrg on the surrogate by solving

p∗,isrg = arg min
p∈P

qi
srg
(
p
)

. (3.5)

However, the surrogate qi
srg is only an approximation of q and similarly

p∗, i
srg is only an approximation of the actual optimum p∗ of q. To assess

the candidate’s validity, a simulation run evaluates q
(

ϕ
(
p∗,isrg

))
. For

brevity, q
(
p∗,isrg

)
= q

(
ϕ
(
p∗,isrg

))
is used in the following. If the error be-

tween simulation and surrogate is sufficiently small, the optimum p∗, i
srg is

accepted and optimisation terminates, else the new observation is used
for surrogate refinement, i.e. qi

srg → qi+1
srg . Consequently, qsrg is not con-

stant but adapts in each iteration i as indicated in the superscript. The
procedure repeats until convergence.
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Figure 3.1: Schematic illustration of the employed workflow for surrogate-based optimi-
sation (SBO) [152, 181]: After an initial sampling (database D) and surrogate
training (neural network), in each iteration i an optimiser identifies the opti-
mum of the surrogate p∗, i

srg, a simulation ϕ evaluates it and the new observation
q(ϕ(p∗,isrg)) is fed back to the database D for surrogate refinement. The proce-
dure iterates until convergence or a stopping criterion.

The SBO-approach shows two key-features which require additional de-
scription: the GA and the feedback loop for sequential surrogate refine-
ment. The section concludes with a minimal example to illustrate the
optimisation procedure.

Genetic Algorithm. Since their introduction in the mid-70s [220], GAs
and their derivates have been continuously improved [221] and have
proven robust and reliable in practice. Overall, GAs mimic evolution
in nature and the according principle ‘survival of the fittest’ [222]. Fig-
ure 3.2 illustrates the underlying idea.

At start, a set of candidate solutions in the parameter space P, the
‘population’, is randomly initiated and each candidate (‘individual’)
is evaluated for its objective function (‘fitness’). From this ‘parent’-
population a reproduction step forms an ‘offspring’-generation of ‘children’.
The exact implementations vary, but generally it comprises the following
steps:

A set of individuals is drawn randomly from the parent-population.
‘Fitter’ individuals have a higher probability of being drawn. In a
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Figure 3.2: Schematic workflow of a genetic algorithm (GA). The algorithm searches the
design space for the most suitable solution by purposeful selection, combination
and mutation of a pool (population) of candidate solutions (individuals).

‘crossover’-step, the selected individuals are randomly paired and com-
bined to ‘children’. Ultimately, a mutation step randomly varies the
children to increase solution diversity. Often crossover and mutation
are done by bitwise logical operations on a binary representation of the
input space [223, p 215-216]. The number and place of these binary
operations control the amount of crossover and mutation. The children-
population is in turn evaluated and compared to the parent-population.
Depending on their relative fitness (‘dominance’) some children replace
their parents. The selection-reproduction-replacement-steps repeat until
convergence or a triggering of a stopping criterion.

GAs offer a range of hyperparameters to control the optimisation pro-
cess: For instance, larger population sizes and stronger mutation tend
to increase solution diversity, i.e. facilitate parameter space exploration.
Conversely, higher crossover rates and more assertive replacement-strategies
promote exploitation of known solutions.

The optimal hyperparameter configuration is problem-specific and de-
pends on a multitude of factors such as search space dimension nd
and problem properties. However, some configurations have empirically
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proven useful [224] and established as default values [173]. For compa-
rability with literature, the default values of the used software-package
Dakota are used as summarised in Table 3.1. The values are assumed to
facilitate convergence to the global optimum, even in higher-dimensional
cases.

Table 3.1: Configuration of the genetic algorithm (GA) from the Dakota-toolkit used for
optimisation of the surrogate.

Hyperparameter Value Hyperparameter Value

Replacement type Elitist Crossover type Multi-point binary

Convergence type Fitness Crossover rate 0.8

Population size 10 · nd Mutation type uniform

Mutation rate 0.08

Feedback loop for surrogate refinement. In each iteration i, the GA
optimises on the data-driven surrogate qi

srg. However, being an approx-

imation only, the according optimum p∗, i
srg most likely deviates from

q’s ‘true’ optimum p∗. For surrogate refinement, an according simu-
lation q

(
p∗,isrg

)
yields the observation-tuple {p∗, i

srg, q(p∗,isrg)} to update the

database Di → Di+1 and refine the surrogate. As this work employs
artificial neural networks (ANN) the following passage concentrates on
ANN-refinement.

During ANN-training, batch gradient-descents iteratively minimise the
prediction error ε (cf. Equation (2.6)). Owing to its repetitive nature, the
training can be easily resumed for a number of refinement-epochs nrfn on
the updated database Di+1 in order to evolve the surrogate qi

srg → qi+1
srg .
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Re-optimisation on qi+1
srg then ought to give a refined optimum p∗, i+1

srg

with reduced prediction error ε(p∗, i+1
srg ). The procedure iterates until the

difference ε(p∗, i
srg) between surrogate estimation qi

srg(p
∗, i
srg) and simulation

q(p∗, i
srg) drops below a predefined threshold. The underlying assumption

of this approach is that iteratively applying

p∗,isrg = arg min
p∈P

qi
srg
(
p
)

(3.5 revisited)

converges qi
srg(p

∗, i
srg)→ q(p∗) for i→ ∞.

The ANNs of this work are configured so as to facilitate this assump-
tion, mainly because of their ReLU activation function ψrelu. The ReLU-
activation is defined by ψrelu(z) = max(0, z). Unlike other common ac-
tivation functions, the ReLU is able to return an exact zero for a whole
range of different input values, namely z < 0. This promotes a sparse
instead of a dense propagation of activations through the network [225].
That is, only few, dedicated neurons activate and information travels
along distinct paths through the network. Among others, sparse ac-
tivations increase robustness to small input changes and foster output
separability [225]. Conversely however, data which differs substantially
from the training data may lead to under- or non-activations.

From a surrogate-perspective, this means that the ANN tends to underes-
timate the ‘true’ output in unknown parameter regions. Thus, |qsrg| . |q|
can hold in these regions and the ANN may predict a deceptive ‘false
minimum’. Note that this ‘false minimum’ does not reflect actual min-
imum of the objective q but stems from network non-activation due to
local absence of observations, i.e. surrogate inaccuracy. Depending on
the problem structure and dimensionality, the ANN can be riddled with
such ‘false’ minima after the initial training. During the first optimisa-
tion iterations on the ANN, the GA can run into these false minima and
large discrepancies to the simulation will be observed. Thus – loosely
speaking – the difference ε(p∗, i

srg) can be thought of as an indirect and
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qualitative indicator of surrogate uncertainty: The larger ε, the larger the
surrogate uncertainty.

ANN-retraining on new observations sequentially eliminates these false
minima and the according deviations reduce. Similar to optimisation
strategies based on an expected improvement, e.g. the EGO-algorithm
[184], the network at first explores unknown parameter spaces, i.e. elimi-
nates the false optima, before closing in on the ‘true’ optimum (exploita-
tion).

3.1.3 Minimal SBO-example

Figure 3.3 exemplifies the adopted SBO-principle for a generic, one-
dimensional example objective function qxmp (blue line). It is defined
at haphazard by two shifted exponential bell-curves

qxmp(p) = qxmp(p) = 1− 1
4

e
(

p+5
3

)2

− 1
2

e
(

p−5
5

)2

. (3.6)

and features a local and a global minimum at p = −5 and p = 5, re-
spectively. For ANN-training, it has been equidistantly sampled (blue
markers) between −20 ≤ p ≤ 20. However, two samples near the global
optimum (p = 0 and p = 5, red markers) are deliberately withheld to
generate a ‘non-sampled’ region.

After first training (i = 1, top left plot), q0
srg (orange line) tends to zero

in the non-sampled region and has a minimum at p∗, i=1
srg ≈ 0 (yellow

marker). The prediction qi=1
srg deviates by ≈ 50 % from qxmp. Thus, it

is a ‘false’ minimum from surrogate uncertainty rather than an actual
optimum.

Retraining qsrg on the updated database shifts the surrogate optimum to
p∗, i=1

srg ≈ 5. Again, it lies in the non-sampled region and the according
evaluation reveals a substantial, yet smaller difference of ≈ 30 %. The
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Figure 3.3: Generic example of the sequential refinement of an ANN with ReLU activation
functions during SBO. At first, optimisations on the ANN yield ‘false minima’
in parameter regions with little data (red markers are withheld observations).
However, according new observations sequentially eliminate them so that the
optimisations finally close in on the true optimum.

following optimisation (i = 2) yields again p∗, i=2
srg ≈ 5. This time it

differs by only ≈ 4 %, which is deemed acceptable for termination.

3.1.4 Scalar and field surrogate

Any optimisation requires a scalar objective function to be minimised or
maximised, respectively, and from a conceptual perspective, it is fully
sufficient to approximate just this scalar objective. Consequently, classi-
cal surrogate techniques concentrate on constructing functions Rnd 7→ R

only (cf. Section 2.3.3).
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Difficulties with scalar surrogates. However, in some cases scalar sur-
rogates can become problematic as Schumacher [226, p 175-177] points
out with an example. He considers a shape optimisation of a doubly-
symmetric rod with a hole under tensile load as shown in Figure 3.4
a).

Figure 3.4: Surrogate-based shape optimisation of a rod with an abrupt stress maximum re-
location from the central hole (iteration i = 1) to the neck in iteration i = 15[226,
p 175-177]. The relocation leads to a sudden change in parameter sensitivity
which scalar surrogates usually struggle to capture (see also Figure 3.5).

The objective is to optimise the contour line parameters x1...4 for minimal
mass without exceeding a maximum admissible Mises-stress σ. A surro-
gate models the according stress response. The initial design (i = 1) on
the left of sub-image b) locates the maximum stress near the hole, yet in
iteration i = 15 the stress maximum abruptly relocates to the neck of the
rod (right).

Schumacher reports difficulties during SBO. For simplicity, suppose the
nominal stress σ|x1 at position of x1 (blue) depended only linearly on x1
and likewise σ|x3 (green) on x3 (Figure 3.5). Consequently, the local stress
sensitivities with respect to x1,3 are constant. However, this does not hold
for the global stress maximum (red): When it relocates (σ|x1 = σ|x3 ), its
(global) sensitivity changes abruptly. Capturing this change with a scalar
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(global) surrogate is difficult and requires many iterations for refinement
and a sufficiently adaptive surrogate.

Figure 3.5: Visualisation of the sudden change of parameter sensitivity during stress rela-
tion for a scalar surrogate (red). A spatial resolution of the problem leads to
constant sensitivities (green and blue) which are easier to learn.

As a remedy, Schumacher suggests to split the part-domain into multi-
ple sub-domains and train a separate surrogate for each sub-domain.
Thereby, the (less complex) local sensitivity-information in each sub-
domain must be captured only.

However, such an approach requires training of multiple surrogates and
– more critical – an a-priori knowledge where the stress relocations occur.
If such knowledge is unavailable, then a very fine partitioning could
be used – ideally, one surrogate per element. However, this comes at
the cost of training numerous separate surrogates and raises the more
fundamental question, whether surrogates can be configured so as to
predict multi-dimensional quantities, ideally a whole field, instead of
just a scalar.

Full-field surrogates. Full-field estimations introduce additional infor-
mation to the surrogate. For example, consider the rod in Figure 3.4.
Clearly, the design variable x1 mainly affects the stress at the hole and
x3 mostly the neck. Such local influence cannot be resolved in a global
scalar metric, which consequently leads to a loss of information in the
database, let alone engineering interpretability. However, training the
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surrogate on field-data retains this information and may thus even in-
crease accuracy and sample efficiency.

Different approaches exist to realise a multi-dimensional surrogate of
the type Rnd 7→ Rmd with md > 1. For instance, Gaussian Process
Regression can be expanded to multiple dimensions (‘Co-Kriging’) [227].
Yet, they quickly become prohibitively computation-intensive even for
only few output dimensions. Model reduction techniques can efficiently
deal with higher dimensions and are often subsumed under the umbrella
term ‘proper orthogonal decomposition’ (POD) [228]. In essence, POD-
techniques decompose a dynamic field into a set of inherent ‘modes’
and seek to reconstruct the dynamic behaviour by superposition of these
modes. The approach allows to give full-field estimations but is bound to
unstructured input data, i.e. scalar input parameters. It cannot deal with
structured input like images. As outlined in Section 2.3.4, this limits
their expressiveness regarding information-encoding and thus, POD is
taken out of consideration for this work.

ANNs allow for arbitrary input and output dimensions nd and md, re-
spectively, and can deal well with structured and unstructured input
data. Surprisingly, ANNs for full-field estimations start only now to
be applied in engineering: For instance, [229, 230] and the prior works
[152, 181] use them to approximate costly FE-simulations.

This work compares both, scalar and full-field ANNs as Figure 3.6 illus-
trates. More precisely, the ANN qsrg is trained as a classical surrogate
and mimics the scalar objective function

qsrg(p) ≈ q
(

ϕ(p)
)

(3.4 revisited)

(cf. Section 3.1.1) and the ANN µsrg is trained to estimate the field quan-
tity

µsrg
(
p
)
= asrg ≈ a = ϕ(p) . (3.7)
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The scalar performance metric q can then directly evaluate the estimated
field the same way it would evaluate an actual simulation:

qsrg = q
(
µsrg(p)

)
. (3.8)

Figure 3.6: Schematic illustration of a) a scalar ANN and b) an ANN for prediction of a
full strain field.

3.2 Validation of reference SBO-method1

In order to validate the applicability of the ANN-based SBO-approach,
two key aspects are considered: After an introduction to the consid-
ered use case (Section 3.2.1), Section 3.2.2 compares the accuracy of two
ANN-based surrogate strategies, namely for scalar and field-estimation.
Section 3.2.3 then evaluates the effect of different update-strategies on
the optimisation performance and compares the method to a classical
GA.

1The presented results are published in the prior works [181, 219, 152]
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3.2.1 Validation use-case:
Gripper-assisted fabric forming

In order to validate the proposed ANN-assisted SBO approach, this work
studies a high-dimensional optimisation forming example. To this end, a
gripper-assisted forming process is considered which is inspired by [151]
and the prior work [13, 231]. Figure 3.7 illustrates the process setup: Sim-
ilar to the concepts presented in Section 2.2.2, membrane forces actuate
the textile. More specifically, spring-guided clamps restrain the material
flow into the mould.

Figure 3.7: Clamping frame (CAD drawing) developed by Albrecht et al. [231] which
inspired the presented forming use-case.

The considered geometry is the double-dome gdd , a common benchmark
geometry in textile forming. As Figure 3.8 shows, it features several
forming-relevant characteristics, e.g. non-, single- and double-curved ar-
eas as well as concave and convex regions. Figure 3.9 visualises the
according process simulation setup along with an exemplary forming
result.

68



3.2 Validation of reference SBO-method

Figure 3.8: Double dome geometry gdd as used in the presented use-case.

The blank measures 560×300 mm; warp and weft are being oriented
along the edges. The blank is discretised into nel = 22080 elements.
In total, 60 clamps of 20 mm width each are evenly distributed along a
surrounding frame. Hence, optimisation input space is 60-dimensional.
The stiffness cs of each spring can be varied between 0.01 N

mm 6 cs 6
1.0 N

mm .

Figure 3.9: Illustration of the forming simulation setup with the clamping frame for vali-
dation of the SBO reference method. 60 circumferential grippers can actuate the
textile during forming. The top left of the figure features an example forming
result (shear distribution) for visualisation.
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One end of the springs is attached to the textile, the other end to the
frame (cf. Figure 3.10). Before the tool stroke, the springs are oriented
perpendicular to the textile perimeter (sub-image a) ). The clamps are
idealised to a universal joint, i.e. only the translational degrees of free-
dom are coupled. This allows the textile to rotate freely about the attach-
ment points (yellow) as Figure 3.10 b) visualises.

Figure 3.10: Detail view on the clamping frame model in a) the initial configuration and
b) after forming. The clamps are idealised as universal joints, i.e. only transla-
tional degrees of freedom are coupled.

The forming simulation uses a macroscopic FE-based approach, which
captures the relevant forming defects of the studied fabric (cf. Sec-
tion 2.2.3). Membrane and bending models have been parametrised
by Poppe et al. [100, 38] for the balanced plain weave carbon fabric
T700SC-12K-50C by Zoltek based on experimental characterisation. The
material models are embedded within the commercially available FE-
solver Abaqus/Explicit using VUMAT and VUGENS user-subroutines
to account for textile-specific characteristics outlined in Section 2.2.3.
Abaqus’ built-in general contact algorithm models the tool-ply inter-
face. The tools are modelled as rigid surfaces and close in 2 s at constant
speed.
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3.2.2 Comparison of scalar and field surrogate

Section 3.1.4 proposes that multi-dimensional surrogates can increase
the accuracy and data-efficiency of surrogate models. This becomes es-
pecially useful, when multiple critical areas in a region of interest affect
the objective function. In such cases a multi-dimensional output helps to
resolve local effects of parameter changes.

Such spatial effects also occur in forming processes. In the considered
validation use-case, the doubly-curved ends of the double dome gdd
evoke four separate, forming-critical shear zones as the example result
in Figure 3.9 qualitatively shows. Grippers in vicinity of these zones and
their opposite counter-parts along the yarn will affect these zones most
[108], while remote grippers have almost no impact. For instance, the
grippers on the top left corner will barely affect the shear zone in the
bottom right corner and vice versa, i.e. each gripper actuates a certain
region only. A scalar surrogate strategy cannot reproduce such local ef-
fects and requires more observations to reproduce the dynamics. Thus,
changing from a scalar to a field surrogate should improve the prediction
accuracy.

In order to validate this hypothesis, three different ANN-architectures
are considered: 1) a shallow ANN with scalar output (SS-type), 2) a deep
ANN with scalar output (DS-type), 3) a deep ANN with field output
(DF-type). Figure 3.11 visualises them schematically. The SS- and DS-
type are used to assess the effect of network depth; the DS- and DF-type
then allow a separate assessment of scalar and full-field data.

The networks are regular feedforward ANNs with fully connected lay-
ers whose neurons use the ReLU-function for sparse activation. Under
supervision of the author, Schindler [232] performed extensive hyper-
parameter studies on these network types in his master thesis on a form
filling problem and a forming problem. Among others, the network ar-
chitectures were varied from 25 to 10 000 neurons per layer and 2 to 5
hidden layers.
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Figure 3.11: Three different ANN-architectures considered as surrogates during this work:
a) A shallow-scalar network (SS-type), b) a deep-scalar network (DS-type) and
c) a deep-field network (DF-type) [181].

The final network architectures are summarised in Table 3.2. Note that
the full-field predictions DF-type amount to predicting all nel = 22080
elements of the textile forming simulation. Since the number of network
parameters is larger than the number of supplied observations, measures
were required to prevent overfitting. To this end, Schindler studied
dropout, regularisation terms, mini-batches and batch normalisation (cf.
Section 2.3.5). However, only the latter two turned out to improve the
performance. See [232] for the comprehensive studies.

Table 3.2: Network architecture of the three ANN-types (SS, DS, DF) used for the reference
SBO-method.

Type Input nl=1 nl=2 nl=3 Output

SS 60 100 - - 1
DS 60 2500 2500 2500 1
DF 60 500 500 500 22080

For evaluation of the networks’ data efficiency, four different-sized train-
ing databases with nk ∈ {100, 250, 500, 1000} samples are used. Each
database has been sampled independently by a separate LHS, i.e. smaller

72



3.2 Validation of reference SBO-method

databases are not a subset of larger ones. The predictive accuracy is as-
sessed on an additional, separate validation set with nk = 100 observa-
tions. The ANN-training continued for 500 epochs, while continuously
measuring validation loss. After the training, the network parameters
with the least validation loss were restored for evaluation. Figure 3.12
shows the results in terms of a) the absolute predictive error and b) its
relative reduction when changing the network types.

Figure 3.12: Comparison of the absolute and relative accuracy of the three different net-
work types SS, DS, DF. Sub-image a) shows the RMSE of γmax

12 and b) relative
error when changing the architecture.

More specifically, Figure 3.12 a) shows the evolution of root mean squared
error (RMSE) of the maximum shear angle γmax

12 for the validation set.
That is, for the scalar ANNs (SS-, DS-type):

εrmse =

√√√√ nk

∑
i=1

(γ̂max
12, i − γmax

12, i )
2 . (3.9)
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Since the DF-type network predicts a full field, the maximum value is
computed before analysis:

εrmse =

√√√√ nk

∑
i=1

(
max(γ̂12, i)− γmax

12, i
)2 (3.10)

Sub-image b) relates the graphs by the relative error reduction of εrel
rmse

when changing the ANN-type. For instance, when changing from SS to
DS, εrel

rmse reads:

εrel
rmse =

|εSS
rmse − εDS

rmse|
εSS

rmse
(3.11)

In accordance with the universal approximation theorem, for all network
types the predictive error εrmse reduces as more observations become
available until a final value of εrmse ≈ 1.4° is reached for nk = 1000
training observations. Interestingly, all networks reach approximately
the same final value. This may indicate (numerical) noise in the vali-
dation set which cannot be learnt due to its aleatoric nature. However,
large discrepancies become apparent when only few observations are
used during training. Even though all networks are trained on the same
data, the SS-type consistently shows a larger error εrmse (Figure 3.12 a)
) compared to DS-type. Consequently, the SS-type cannot extract the
process inherent dynamics as efficiently from supplied data.

Figure 3.12 b) visualises the error reduction. Consider for instance the
change SS → DS: The introduction of additional layers reduces the er-
ror by ≈ 40 % for nk = 100. However, as more data becomes available,
this advantage gradually diminishes – in loose terms: The SS-network
catches up. These findings align with [233] and are often loosely sum-
marised by the notion ‘wide models memorise, deep models generalise’.
In sparse-data situations, the ANN must identify and generalise the
data-inherent patterns for a accurate prediction. When more data be-
comes available, memorising and moderately adapting the most similar
data-point appears to become sufficient. It may be noted that the SS-type
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employs only nl = 100 neurons per layer, i.e. substantially fewer than the
DS- and DF-type. This is because more neurons led to overfitting effects;
presumably, since they mainly enhance the memorising-capacity but less
the generalisation-capacity of shallow networks.

Shear relocations may explain the performance improvement of DF vis-
a-vis DS. Analogous to the aforementioned stress relocations (cf. Fig-
ure 3.4) reported by Schumacher [226, p 175-177], the shear maximum
also jumps between corners depending on the current gripper configu-
ration. Capturing these relocations in a mere scalar is difficult, a spatial
resolution, however, helps to allocate the shear strain to specific corners.

Hence, changing the ANN-type from DS to DF further reduces the error
by ≈ 20 %. Resolving the results spatially (field estimation, DF-type)
allows to attribute local effects to local grippers and indeed improves
the accuracy. The observations corroborate the findings in [232] for RTM
form filling and the prior work [152, 219] for textile forming.

Overall, the results hint that a deep network trained on full-field data
(DF-type) yields the highest accuracy. The following section integrates
the DF-type ANN into an SBO-routine and evaluates its applicability for
optimisation.

3.2.3 Optimisation performance assessment

The DF-type network has proven most data-efficient to construct a surro-
gate. However, besides initial accuracy, for an effective SBO the surrogate
needs to adapt and refine as new observations from the feedback-loops
become available (cf. Figure 3.1). For this feedback loop two main strate-
gies prevail: Samples can be either placed in parameter regions with
sparse evidence in order to foster discovery of new, potentially better
optima (exploration) or in most promising regions for perfection of the
found parameters (exploitation).
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To this end, Schindler [232] has conducted extensive parametric studies
in the context of RTM form filling under supervision of the author. He
identifies two SBO-hyperparameters which dominate the convergence
behaviour: The size of the initial training database nk and the number
of refinement-epochs nrfn. As the previous Section 3.2.2 shows, larger
values of nk, i.e. more observations, yield a more accurate surrogate –
presumably with fewer ‘false minima’ (Section 3.1.2) from non-activation
of neurons. If so, then the optimiser does not have to eliminate them but
can directly start exploiting the ‘true’ optimum, which should speed-up
convergence. However, this allocates more computational effort to the
initial sampling. Which effect dominates, is currently unclear.

The second hyperparameter, the number of refinement-epochs nrfn, de-
cides how fast the ANN adapts to a new observation, i.e. it promotes
exploitation. The higher nrfn, i.e. the more gradient-descents, the more
emphasis lies on new observations and the stronger the attraction of an
optimum. The effect of both parameters, nk and nrfn, is assessed in a full-
factorial comparison on two levels: nrfn ∈ {2, 25} and nrfn ∈ {100, 1000},
respectively.

As introduced in Section 3.1.1, the vector norm Equation (3.1) constitutes
the objective function:

q(a) = ‖a‖u =

(
nel

∑
i=1
|ai|u

)1/u

(3.1 revisited)

and specifically for u = 4 follows:

(3.12)

= ‖a‖4 =

(
nel

∑
i=1
|ai|4

)1/4

The exponent u = 4 is used as it has empirically been found a useful
compromise between penalisation of maximum shear and shear in gen-
eral [152].
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Figure 3.13 visualises the optimisation progress for each of the four com-
binations of nrfn and nk. Each plot features a coloured graph and a
black graph. The coloured graphs quantify the objective function of the
simulations, i.e. q(a), the black graphs according the prediction of the
surrogate qsrg = qsrg(asrg). Owing to their erratic appearance, a moving-
average over 15 iterations (darker curve) smooths each graph. Both the
original (bright) and the smoothed graph (dark) are plotted in diagrams.
The dashed horizontal line is the best solution q∗ across all simulations
during this study. It is deemed the best approximation of the true, yet
unknown optimum.

Abstracting from their volatility, the graphs share three common charac-
teristics: 1) Overall, the objective function q(a) decreases at some point,
i.e. the approach serves its optimisation purpose. 2) The surrogate pre-
dictions qsrg (black curves) eventually approach the simulation results q
(coloured curves). That is, the surrogate indeed refines its accuracy and
learns from new samples. 3) The surrogate qsrg approaches the simula-
tion results q from below, i.e. it constantly underestimates the simulation
results. This corroborates the false-minimum concept. 4) The approach
occurs in a hyperbolic 1/x-manner: At first it quickly improves its ac-
curacy but the rate of improvement gradually reduces and eventually
flattens out in an asymptote.

At the same time, the graphs also bear differences. Consider at first
the plots for nk = 100 (left plots): The graphs q (simulation) show an
initial wavering around q ≈ 246° before it starts to decrease. While the
wavering continues until iteration i ≈ 500 for nrfn = 2 (top left), it only
lasts until i ≈ 130 for nrfn = 25 (bottom left). Approximately at these
iterations, the surrogate estimates the objective function to be ≈ 233°,
i.e. has reached an accuracy of ≈ 5 % deviation to q. From then on, the
simulated results start to decrease, i.e. an actual optimisation progress
can be observed. Both, nk = 2 (top) and nk = 25 (bottom) share the
same shape, however, the graph for nrfn = 25 appears compressed to the
left owing to faster adaption to new observations.
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Figure 3.13: Optimisation progress for each SBO-configuration. Surrogate predictions qsrg
are given in black (moving average) and grey, while the coloured graphs repre-
sent simulation results q. The initial qsrg-values of the left column are omitted
in the plot for readability. Their respective values are directly printed for ref-
erence [181].

The behaviour is analogous to the minimal SBO-example in Section 3.1.3.
At first, the optimiser on the ANN-surrogate runs into false minima and
gradually eliminates them by retraining with according new observa-
tions (simulations). These false minima stem from surrogate inaccuracy
and are generally far from the true optimum. Thus, the initial iterations
may be interpreted as exploration. Once a sufficient accuracy is achieved
(≈ 5 %) the optimiser-results start converging to the true optimum.
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The opposite behaviour can be observed for nk = 1000 (plots on the
right). Unlike before, the objective function q (simulation) declines di-
rectly at the beginning before flattening out in an asymptote. For nrfn =

25 (bottom right), the decline phase is barely discernible so that graph
looks almost horizontal throughout. Again the behaviour can be ex-
plained using false minima: Owing to the larger database, the ANN is
already so accurate (< 5 %) that only few false minima must be elim-
inated, i.e. little exploration required, and the optimiser directly con-
verges to a true optimum. Yet it appears to be a local optimum, since in
both cases (top and bottom right) the best found solution is still inferior
to q∗ (dashed horizontal line).

Figure 3.14 allows to compare the convergence behaviour. It shows the
evolution of the objective functions q of each SBO-configurations and fea-
tures additionally a graph of a non-surrogate, direct coupling of the sim-
ulation with a GA (black). The GA settings are identical to the surrogate-
configurations reported in Table 3.1. The graphs quantify the ‘so-far-
best’ value of objective function, i.e. the lower envelope of the erratic,
coloured graphs in Figure 3.13. Unlike Figure 3.13, the plots account for
the upstream sampling effort by an offset of nk = 100 or nk = 1000,
respectively.

The graphs summarise the results. Although the objective function q
reduces faster for the large database (nk = 1000), their results are inferior.
Not only objective-wise but also regarding efficiency. In total (sampling
plus refinement), they take ≈ 1100 and ≈ 1300 simulations to reach their
final q-value, while ‘nk = 100, nrfn = 25’-configuration takes only ≈ 600
simulations for an even improved result. Its final value even slightly
outperforms the GA-reference. Overall, this hints that online-sampling
(during SBO) provides more informative samples than a-priori offline
sampling.

Please note that ‘nk = 100, nrfn = 2’-configuration could have achieved
a similarly good result but was manually terminated due to excessive
computation time (> 10 weeks). At this time, the objective function was
still descending, albeit at a low rate (Figure 3.13 top left). Also note
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Figure 3.14: Convergence comparison of the studied SBO-configurations and a non-
surrogate, direct optimisation using a genetic algorithm (GA). The GA ter-
minated after 4875 iterations without further improvement (omitted for read-
ability) [181].

that each SBO-variant outperformed the directly coupled GA in terms of
efficiency. The GA took more than 3000 simulations until its final value
and auto-terminated after 4875 simulations.

Ultimately, Figure 3.15 shows the shear angle distribution for engineer-
ing interpretation and clearly a substantial reduction of the maximum
shear angle γmax

12 is achieved. During SBO it dropped by 14.3 % by re-
straining the local material take-in so that shear deformation stretches
over a wider area instead of concentrating locally.

3.3 Intermediate summary

This chapter studies deep neural networks as surrogate models for
high-dimensional, virtual process optimisation. The studied use-case
is gripper-assisted forming. Three different surrogate-approaches are
compared. The best performance was achieved with deep neural net-
work which predicts the full strain field instead of a mere performance
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Figure 3.15: The forming results before and after optimisation show a successful reduction
of the maximum shear angle γmax

12 [181].

scalar. The obtained network is integrated into an SBO-framework and
four hyperparameter settings with different exploration-vs-exploitation
strategies are studied. A state-of-the-art GA serves as an additional
benchmark.

In each case, the SBO-framework outperformed the GA in terms of effi-
ciency. One configuration even determined an improved optimum. The
results also hint that online-samples obtained for surrogate-refinement
are more informative than a-priori determined offline-samples. This
leads to the insight that a smaller database -– and thus an initially less
accurate surrogate (!) – can indeed lead to better optimisation results.
Note however, that the surrogate is only valid for this specific process-
setup only. That is, a process modification, e.g. a geometry variation,
instantly invalidates the surrogate and requires resampling of data and
retraining the surrogate. Approaches for generalisation will be studied
in the following chapters.

Overall, the results presented in this section show, that the available SBO-
framework is able to successfully reduce an objective function, even in
high-dimensional cases. It will be used as a reference for a generalised
surrogate for flexible geometries.
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Section 3.2 shows that SBO helps reduce optimisation efforts compared
to direct optimisation. However, the according surrogate models are
application-specific and fall short on re-usability in new scenarios, e.g.
after a geometry revision. This work proposes recent ML-techniques
to enhance surrogate-capabilities towards variable manufacturing situa-
tions1. More precisely, the overall aim is to train a geometry-informed
model which can efficiently guide process optimisations of variable com-
ponent geometries.

To this end, this chapter studies concepts for ML-assisted formability
assessment for variable geometries. Chapter 5 then presents an ML-
approach for optimisation of according process parameters.

4.1 Approaches for formability assessment

An automatic evaluation of part manufacturability, as aspired in this
work, requires at first a surrogate-readable geometry representation. For
this purpose, two overarching concepts have been developed in the past,
namely local and global descriptions, whose suitability mainly depends
on the manufacturing process.

Local approaches often describe the geometry by a collection of indepen-
dent points with fundamental properties such as position and principal

1For a term-wise distinction, the term ‘surrogate’ refers generally to classical surrogate
models with unstructured input and ‘ML’ to models with structured input
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curvatures. They are thus well-suited for manufacturing processes with
a point-wise characteristic, e.g. metal driving or incremental forming
[234, 235, 236].

However, local approaches remain unaware of interactions of neighbour-
ing geometric features as observed in stamp forming. Thus, global ge-
ometry descriptions are required for this work which can describe the
component as a whole – for instance by parameters like width, length
or diameter. Additional process manipulations by e.g. grippers are ex-
cluded in this chapter (free forming) as only geometry variations are of
interest. The methods split into feature-based and grid-based descriptions.
As both are compared in this work they are outlined in the following
Sections 4.1.1–4.1.2.

4.1.1 Feature-based formability assessment1

Feature-based geometry descriptions seek to retrieve and quantify typi-
cal geometry characteristics (‘features’) in the component such as bends,
cutouts or corners. Once quantified, the features’ formability can be as-
sessed. Owing to the larger community, most of the prior work stems
from sheet metal forming. However, despite long-standing analyses
[239, 240, 241, 242, 243, 244], only general trends have been detected
and overall an efficient predictive tool for a process designer still lacks
[245]. Only recently and partly based on the prior work [238], Attar

et al. [245] have developed a set of fitted empirical equations to predict
forming responses during sheet metal forming of rectangular cups.

Similar holds for textile forming: For simple geometries like cylinders or
spheres analytical formulae have been derived to estimate the maximum
shear angle [77, 78]. Also, geometry analysis tools have been developed,
which compare draping paths to geometry contour lines [246]. Alterna-
tively, inverse methods have emerged which revert the design process:

1The presented approaches are based on the prior works [237, 238]
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Instead of assessing a given geometry, they generate a catalogue of well-
manufacturable shapes, so-called ‘curve-glide’ geometries, which serve
as inspiration during the design process [247].

However, for both sheet metal forming and textile forming, no predictive
tool other than simulations is currently available to efficiently assess the
formability of geometry features. Thus, the following sections present a
surrogate approach to close this gap.

General workflow and assumptions. Figure 4.1 visualises the overar-
ching workflow. It consists of two main phases: training (green shade)
and application (blue).

Figure 4.1: General workflow for geometry assessment [238]. The workflow comprises two
phases: a training phase (green) and an application phase (blue). Training
involves defining, sampling and simulating parametric geometry features gp
for training a surrogate µf,gpr. During application, a new component geometry
is scanned for the predefined features. Identified geometry parameters gp can
then be evaluated by the surrogate µf,gpr.

During training, a set of geometry feature parameters gp is sampled,
their forming quality metrics q determined (simulation) and collected in
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a tuple {gp, q}. A geometry-process-database Dp = {{gp, q}1, . . . } stores
these tuples for surrogate training. During application, the component
is scanned for relevant geometry features and each feature’s parameters
are retrieved. Then, the surrogate µf,gpr evaluates them for the expected
forming result.

The surrogate µf,gpr itself is based on Gaussian Process Regression (GPR)
as it has proven superior performance in a comparative study [237]. GPR
is a non-parametric universal approximator based on Bayesian statistics
theory. In essence, it aims at inferring the most likely distribution, that
the observations in Dp have been sampled from. See [248] for details on
GPR model theory and [238] for model and hyperparameter details.

Data curation. To start with, this work assumes a parametric rectangu-
lar cup geometry with variable corners inspired by [249, 250] and the
Numisheet93-benchmark [251]. Figure 4.2 visualises the corner param-
eterisation scheme gp (quarter geometry).

Figure 4.2: Visualisation of the parametric geometry (corner) considered in this work
[237, 238]. The parameterisation scheme allows for a wide range of corner
geometries, e.g. pyramids, cuboids or spherical corners (cf. Table 4.1).

It aims at a wide coverage of possible corner geometries ranging from
a box-shaped geometry to a pyramid or spherical geometry in variable
sizes as visualised in Table 4.1.
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Table 4.1: Explanation of geometry parameter set gp, the considered parameter range and
corner geometry examples for visualisation [238].

Symbol Meaning Range Examples

r1 Top radius 5 . . . 40 mm

r2 Bottom radius 5 . . . 40 mm

α Draft angle 5 . . . 40 deg

w1,2 Width, length 50 . . . 300 mm

h Height 50 mm

The geometry vector gp = ( r1, r2, α, w1, w2, h )T collects the feature
parameters and serves as surrogate input. Simulations of the resulting
shear angle distribution then quantify the formability and are meant as
output. Figure 4.3 illustrates the procedure.

Figure 4.3: Evaluation principle for the corner geometries [238]. An evaluation region is de-
fined in such a way that it covers the main deformation region of the faric. From
this evaluation region the fabric forming quality (shear angle γ12) is extracted
as a histogram and statistical metrics determined, e.g. maximum or mean.
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Around the corner’s apex an evaluation region is defined by lin,out (high-
lighted in red) for each geometry. Its size is not fix but depends on the
corner parameters gp and grows with h, r1 and r2 [238]. This ensures that
the evaluation region always fully encloses the main deformations inde-
pendent of the current corner geometry setting. Elements inside the pro-
jection are collected in an evaluation set. Their shear angles γ12 are sorted
into a histogram and statistical metrics are computed, most notably the
maximum shear angle γmax

12 . The procedure repeats for all geometries
and all observations are stored in a database Dp = {(gp, γmax

12 )1, . . . } for
surrogate training.

Assumption of independent strain fields. The presented approach
assumes that strain fields of geometric features form independent of
each other. This assumption is inspired by Saint-Venant’s Principle
which essentially states that local stress- or strain-peaks attenuate with
distance. More formally, it states that the order of magnitude ms of a
strain component in a loaded body decays by

ms ∝
S

ds
psv

, (4.1)

wherein S is a conceptual surface enveloping the cause of the strain
(corner) and ds is the distance from a point of interest to the centre of S
[252, p 359-362].

The decay exponent psv is load case dependent, with psv ≥ 0 in general.
Clearly, with increasing distance (ds → ∞) or higher values of psv, ms

decreases and thus, strain fields localise in vicinity of their cause. The
value of psv depends on the resulting loads transferred across S , while
in general, vanishing resultant loads yield higher values of psv. In other
words, the strain state at a point of interest should remain unaffected
of other strain fields in the body given either 1) a sufficient distance or
2) vanishing resultant loads. That is, if two corners lie sufficiently far
apart, they can be assessed individually. Otherwise, a more complex
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surrogate for interacting strain fields is required. A numerical study is
presented in Section 4.2.1 for validation of this assumption.

Feature recognition. Integral part of the algorithm is the ability to
recognise features in a given geometry. To this end, an image-based
approach is selected. From a manufacturing perspective, formed geome-
tries must necessarily be undercut free to allow for collision-free tool
closure. Therefore, without loss of information, a bijective projection
of the geometry into the tool-plane is tractable, which can be encoded
in an image. Besides an advantageous dimensional reduction to a 2D
representation, an image-based representation enables access to numer-
ous analysis-techniques, specifically object recognition, classification and
tracking.

Figure 4.4 illustrates the concept. This work uses a topographic map with
contour lines of constant elevation (isoheights). Beginning from the top,
isoheights divide the geometry in user-specified steps in tool direction.

Figure 4.4: Visualisation of the image-based geometry recognition scheme for feature-
based formability assessment: The geometry of interest is encoded in a target-
image by contour lines of constant elevation (isoheights) [238]. Likewise, fea-
ture templates with known geometry parameter gp mapped to images. These
template-images are convolved across the target until a match is observed and
the parameters of the matches are extracted from a lookup table.
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The geometric features must be detected irrespective of their position in
the component. Consequently, translation invariant feature recognition
is required. Note that rotation invariance is not required in this work
as forming results depend on the relative angle between fabric and ge-
ometry feature due to material anisotropy. Also scale invariance is not
pursued since pixels encode distance information. Thus, images must
not be scaled.

Inspired by image processing in neural networks, convolving templates
ϑ across a target image (investigated geometry) ensures translation in-
variance. The templates ϑ stem from a large geometry repository with
known geometry parameters gp. Figure 4.4 b) visualises the convolution
operation: It can be interpreted as sliding a template ϑ over the target
image T until a match (i.e. high correlation) is observed. If a template
matches, the geometry parameters are extracted from a lookup table and
parsed to the GPR-surrogate µf,gpr for evaluation.

Since pixels are discretised values, a discrete convolution operation is
performed yielding the normalised 2D cross-correlation [253]:

C(u, v) =
∑
x

∑
y
[T(x, y)− Txy][ϑ(x− u, y− v)− ϑ]√

∑
x

∑
y

(
T(x, y)− Txy

)2 ·∑
x

∑
y

(
ϑ(x− u, y− v)− ϑ

)2
(4.2)

wherein T(x, y) is the target image, Txy the average of T(x, y) under the
template ϑ positioned at (u, v). Summation range for x and y is the
region under ϑ. For increased recognition robustness, in this work, the
isoheights are additionally thickened by two pixels to allow for minor
mismatches between template and target.
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4.1 Approaches for formability assessment

4.1.2 Grid-based formability assessment1

The presented feature-based approach conceptually allows to assess the
formability of a component by analysis of individual, feature parameters
(unstructured input). It offers some appealing advantages; most notably,
it employs engineering-interpretable parameters like radii or draft an-
gles. However, the need for predefined parameterisation scheme limits
the scope of geometry variations: Any variation outside this parameter
scheme, however small, cannot be modelled.

Also, in its current form, the approach requires geometry features to be
sufficiently far apart so that they can be analysed individually (Saint-
Venant’s Principle). Otherwise, a more advanced surrogate with addi-
tional parameters to capture interaction effects would be required. Yet,
such an advanced model immediately introduces more complexity to the
geometry parameter space.

Literature reports attempts for such advanced geometry schemes in the
context of sheet metal forming [255, 256]; yet in practice, the implemen-
tations prove unstable and susceptible to modelling errors [188]. Overall,
feature-based geometry-descriptions may be suitable for niche applica-
tions with little and well-defined variability but appear of limited uni-
versal applicability.

As a remedy, structured geometry encoding schemes have been pro-
posed [210, 257], namely grid-based representations. They not just allow
for a more flexible input space but also allow to estimate whole field-
quantities instead of mere scalars. The following paragraphs present
their underlying concept, the general workflow for integration into form-
ing analysis and the according ML-techniques to process them.

Data structure. Structured encoding schemes suggest to give-up on
distinct geometry parameters, i.e. unstructured input (cf. Section 2.3.4),

1The presented approaches are based on the prior works [211, 254]
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in favour of a grid-based, i.e. structured, representations by voxels or
pixels [210, 257]. Figure 4.5 juxtaposes both at the example of a sphere
and a cone to outline their differences.

Figure 4.5: a) Unstructured (feature-based) and b) structured (grid-based) geometry repre-
sentation by voxels at the example of a sphere and a cone [258, p 2].

The feature-based representation (sub-image a) ) requires only few pa-
rameters to define each geometry, namely the diameter (sphere) and
height and opening angle (cone). In contrast, the grid-based repre-
sentation requires nv = 503 = 3 125 000 (binary) voxel-parameters yv,
v = 1 . . . nv at the given discretisation level, i.e. substantially more pa-
rameters. However, the grid-representation can reproduce both geome-
tries, while the feature-based representation needs to redefine the pa-
rameters. Thus, the grid-representation is more versatile but requires
handling of a considerably higher number of parameters.
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4.1 Approaches for formability assessment

Data representation and general workflow. Figure 4.6 visualises the
encoding scheme for geometry (input) and forming result (output) to
enable supervised training of an grid-based ML-algorithm µf.

Figure 4.6: Image-based geometry and forming result encoding for supervised training of a
convolutional neural network (CNN): In textile forming, a close spatial relation
between geometry curvature and forming result is observed, which can be ef-
ficiently encoded in a greyscale-image. A CNN with an autoencoder structure
can learn these relations by supervised training (image-to-image regression)
[238].

In general, the geometry could be encoded using voxels as shown in Fig-
ure 4.5. However, analogous to the feature-recognition step in Figure 4.4,
a convenient reduction to a two-dimensional image-representation is ad-
missible. More specifically, greyscale values quantify the local elevation
z(x, y) above the tool-plane similar to a topographic map. Likewise,
grey-scale values represent the material strain field of a simulation with
each pixel representing an element’s shear angle γ12. To allow for a
representation in a rectangular image, the shear strain is mapped to the
initial configuration, i.e. the undeformed (flat), rectangular fabric.
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In case of textile forming, a close correlation between component cur-
vature and material strain can be observed as shown at the top of Fig-
ure 4.6. Starting from the centre, the mild double-curvature of the hemi-
sphere evokes only moderate shear strains, yet they increase abruptly at
the comparably sharp transition to the plane outer area.

Such spatial relations often govern manufacturing dynamics: Not just
in fabric forming but also in fully unrelated processes like moulding.
For instance, clearly, a strong correlation between flow behaviour and
geometry exists. While these spatial relations could get lost with an
unstructured representation through geometry parameters, structured,
grid-based representations allow to retain them efficiently.

Similar to the feature-based approach, the grid-based workflow com-
prises two steps as Figure 4.7 shows: At first, a set of geometry-process-
observations is sampled (training database D) and the ML-model µf
learns the input-output-dynamics (green shade). After training, the al-
gorithm then assesses a new geometry (blue).

Figure 4.7: General workflow for grid-based formability assessment. The workflow com-
prises two phases: a training phase (green) and an application phase (blue).
Training involves sampling and simulating geometries to build a database
(greyscale-images) for supervised training of the CNN µf. During application,
a new geometry is converted to a greyscale-image and evaluated by µf. Note
that, unlike the feature-based approach, whole geometries instead of isolated
features are considered.
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Note however, that – unlike the feature-based approach – the workflow
thus does not require a recognition step to extract geometry parameters.
The evaluated components use the same grid-based description as the
training samples and can thus be directly analysed.

Overall, the aspired image-based representation offers two promising
properties: It allows 1) for a potentially, universal geometry description
and 2) to resolve local process phenomena instead of a abstract perfor-
mance scalar. Some ML-techniques have specialised in analysing such
high-dimensional, grid-structured data - namely convolutional neural
networks (CNN). CNNs can be configured to provide such image-to-
image mappings, for instance in so-called ‘autoencoders’ [259] or ‘U-
nets’ for image segmentation [260]. The following paragraphs outline
the underlying concept.

Convolutional neural networks. As the name hints, CNNs ‘slide’
(convolve) smaller-sized filter matrices (‘kernels’)K across an input grid
I while continuously measuring the local degree of coincidence between
I and K. The output O is again a grid-structure and typically referred
to as ‘feature map’. According to [202, p 328], a discrete convolution can
be defined for images by

O(i∗p, j∗p) = I ∗K(i∗p, j∗p) = ∑
mp

∑
np

I(ip + mp, jp + np)K(mp, np) . (4.3)

Therein, ip, jp, i∗p, j∗p, denote the pixel indices of input and output image,
respectively, while mp, np denote pixel indices of the kernel. Essen-
tially, Equation (4.3) computes the Frobenius inner product 〈K, I〉F of
the kernel K and the ‘covered’ part of image I at position (i∗p, j∗p). The
summation range for mp and np is the kernel size. Figure 4.8 visualises
the convolution operation with a simple example.

95



4 Formability estimation

Figure 4.8: Schematic visualisation of a convolution operation as an array-ordered se-
quence of Frobenius inner products.

Essentially, the kernel K slides pixel-wise across the input image, com-
putes 〈K, I〉F at each position and inserts the result into the output fea-
ture map O. Higher values of 〈K, I〉F denote higher local correlation.
In the given example, the kernel-position with the highest coincidence is
the top left corner.

The procedure resembles the template-based feature recognition ap-
proach in Section 4.1.1 but differ in two major regards: First, the tem-
plates represent one specific geometry-configuration, while the CNN-
kernels are more abstract greyscale-contours and only their purposeful
combination may uniquely identify a geometric feature. Secondly, the
templates are handcrafted but the CNN-kernels are learnt during CNN-
training.

Each kernel scans the input space for one specific greyscale-characteristic.
Consequently, using many kernels can encode and retrieve many and
more complex greyscale (geometry) characteristics. Thus, convolution
operations only unfold their potential when multiple kernels are used.
Also, the output feature maps themselves can again be used as an in-
put for a subsequent convolution. Thereby ‘higher-order features’ form
and encode more complex features, for instance the relative position of
two different features. Overall, the hierarchical CNN-architecture pro-
vides much more expressiveness compared to the earlier template-based
feature-recognition approach.
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Among others, the number of convolutional layers, the number of ker-
nels per layer, their sizes, types as well as their step size (‘stride’) are
user-defined hyperparameters. Note however that – unlike the example
– the entries of the kernels are not user-defined but tunable model param-
eters. They are randomly initialised and adapt during the CNN-training
to reproduce the training database, similar to the weights and biases in
fully connected networks. See [202, p 326-366] for details on CNNs and
their training.

In practice, inevitable ‘side-activations’ are filtered out by a subsequent
pooling operation, often max-pooling. To this end, a kernel slides across
O. Yet this time, it extracts the maximum value instead of 〈K, I〉F. Ad-
ditionally, the kernel-positions for pooling are usually non-overlapping.
That is, two neighbouring kernel positions are not one pixel but a kernel-
width apart. The distance between two kernel positions is usually re-
ferred to as ‘stride’. Figure 4.9 visualises the operation for a 2×2-kernel
on a 4×4 convolution output O. At each position (colour-coded), the
kernel extracts the maximum (bold numbers) and stores it in the corre-
sponding entry of the output matrix Ô. Thereby, it reduces the output
dimensions and compresses information as only the largest activations
enter the pooled feature map Ô.

Figure 4.9: Schematic illustration of the max-pooling operation.

Setting aside special measures to artificially expand the image bound-
aries (‘padding’), convolutions and pooling operations typically com-
press information and reduce (‘downsample’) the image size as shown
in Figures 4.8–4.9: The output is smaller than the input. Thus, many
CNN-based algorithms require at some point inverse upsampling steps to
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restore the image-size again. This is also the case in this work as it seeks
to estimate whole strain fields.

Two different upsampling-methods dominate: 1) transposed convolu-
tions and 2) nearest-neighbour extrapolation followed by a regular con-
volution. In his master thesis under supervision of the author, Trippe

[261] identified the latter as most promising. As it is used in this work it
is briefly outlined. To this end, each pixel simply divides into a number
of new pixels with the same values to obtain a larger image. Then, a reg-
ular convolution ‘adjusts’ these extrapolated pixels so that the output U
matches better supplied data.

Figure 4.10: Visualisation of upsampling by convolution of a nearest neighbourhood ex-
trapolation.

Network architecture. Formally, the envisaged image-to-image corre-
lation is a function

µf : G 7→ A (4.4)

mapping from a geometry-grid g ∈ G to a part quality field a ∈ A
(shear strain). To this end, a U-net-shaped autoencoder architecture is
chosen for µf. Autoencoders are frequently used to find an information-
equivalent, lower-dimensional representation (latent vector) of high-
dimensional data, i.e. data compression. Unlike rule-based compression
algorithms, they are meant to learn a suitable compression automatically
from data – hence their name. Figure 4.11 a) shows their schematic
structure.
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Figure 4.11: Autoencoder structure and denoising example. Image in b) from [203]

Overall, they have a bottleneck-structure and consist of three main parts:
an encoding part, a decoding part and a ‘latent space’ in between. All
input data is transformed and compressed to the latent space before the
second, decoding part interprets it. The latent space essentially acts as
an information-sieve. During training the algorithm is forced to adjust
the latent space in such a way that it extracts and stores informative-rich
data features only and discards irrelevant noise.

A typical application example for autoencoders is image denoising. Fig-
ure 4.11 b) shows noisy images of hand-written digits [203]. The autoen-
coder is trained to remove the noise, while retaining relevant information
to read the digits. Comparing its result the original images shows that
auto-encoder successfully removes the noise without impairing the read-
ability of the images. That is, it tells relevant and irrelevant data features
apart.

In this work, they are adapted to identify forming-relevant geometry fea-
tures and estimate their forming result as Figure 4.12 shows. Geometry
encoding is done using convolution operations, for decoding nearest-
neighbour extrapolation with a subsequent convolution is used in accor-
dance with the findings by Trippe [261].
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Figure 4.12: Schematic visualisation of the autoencoder structure used for µf within this
work.

During geometry encoding, multiple convolution layers process the
greyscale input image of the geometry to ensure that sufficiently com-
plex geometry features can be encoded. In the second part of the net-
work the encoded geometry information is interpreted and layer-wise
upsampled.

Data curation. The image-based approach analyses the component as
a whole and as such, defining distinct features like corners for algorithm
training is inexpedient. Complete specimen geometries are analysed
instead. As before, a parametric CAD-model is used to auto-generate
training geometries. To this end, the equation(

y
ymax

)ωg

+

(
z

zmax

)ωg

= 1 (4.5)

defines the surface contour line. See Figure 4.13 for example contours.

In Equation (4.5), the variables ymax and zmax control the contour aspect
ratio, i.e. stretches or compacts it in y- and z-direction; the exponent ωg

varies the contour’s curvature. Rotating them about the y- and z-axis,
respectively, then allows to generate two geometry classes (GC). GC 1
primarily varies the out-of-plane curvature, GC 2 the in-plane curvature,
which allows to study the effect of different training geometries on the
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Figure 4.13: Definition of the contour line to generate bodies of revolution during geometry
sampling for supervised training of µf [254].

CNN-performance. Overall, a wide range of different geometries rang-
ing from cones (ωg = 1) to ellipses (ωg = 2) to cylinders (ωg → ∞) can
be generated. Figure 4.14 a) illustrates the axes of rotation, b) provides
geometry samples for visualisation.

Figure 4.14: Illustration of the a) axis of rotation and b) some example geometries obtained
by contour-line-rotation about the y and z-axis, respectively [254]. Rotating
about y primarily varies the in-plane curvature, rotating about z the out-of-
plane curvature.
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In this work, the parameters

50 mm 6 ymax 6 150 mm

0.05 6
zmax

ymax
6 1.0

1.0 6 ωg 6 6.0

are used. The extent of the component in x-direction x results from the
axis of rotation: Rotating about the y-axis results in x = z and about the
z-axis in x = y. Any sharp edges are rounded with a radius of 10 mm.

From these geometries, different numbers of samples are drawn by LHS
and their shear angle distribution is evaluated in textile forming simula-
tions. To save computation time during sampling, a kinematic draping
simulation approach is chosen over an FE-based approach. Both the ge-
ometries and the shear angle distribution are eventually converted to
greyscale images and constitute the database for ML-training. Note that
the geometry parameters ymax, zmax and ωg are used for geometry gen-
eration only. Once all training geometries are available and converted
to a greyscale-images, the parameters are discarded. Only the greyscale
images enter the CNN.

4.2 Results of the formability assessment

In the following sections the two main approaches – feature-based and
grid-based – are discussed for formability assessment. Specifically, Sec-
tion 4.2.1 validates the assumptions and results of the feature-based ap-
proach and Section 4.2.2 for the grid-based approach.

102



4.2 Results of the formability assessment

4.2.1 Results of the feature-based approach1

Validating the feature-based approach amounts to providing a proof
of concept for 1) the inherent assumption of strain field independence
(Saint-Venant’s principle) and 2) an application to a demonstrator part.

SAINT-VENANT’s principle in fabric forming. The feature-based ap-
proach (Section 4.1.1) assumes that the strain fields of geometric features
form independent of each other provided they are sufficiently far apart
or the resultant loads vanish (Saint-Venant’s principle, SVP).

In order to validate this assumption, a parametric study is conducted.
More specifically, a fabric cut is draped onto the parametric box geom-
etry from Figure 4.2. The box is quadratic (w1 = w2) with constant cor-
ners and exemplarily configured to form a pyramid frustum of variable
width w1. Specifically, the parameters gp = ( r1, r2, α, w1, w2, h )T =

( 5 mm, 5 mm, 40°, w1, w1, 50 mm )T generate the pyramid frustum. The
width w1 varies between 35 mm 6 w1 6 850 mm during the study; the
fibre orientation ζ relative to the box-edges between 0° 6 ζ 6 45°. Fig-
ure 4.15 visualises the setup along with three exemplary forming results
for ζ = 22.5°.

Different metrics of the shear angle distribution have been recorded dur-
ing variation of w1. Yet, as it provides most insight, the maximum shear
angle γmax

12 is discussed. Figure 4.16 shows the evolution of γmax
12 with

w1 for each material orientation.

The graphs share three common characteristics. First, starting from a
maximum value, they decline and approach a minimum value in an
asymptotic manner. Second, the difference between maximum and the
minimum value shrinks for ζ → 0°. It is practically zero for ζ = 0°,
i.e. when the material orientations align with the box-edges. Third, each
curve except ζ = 0° shows a more or less pronounced drop highlighted

1The presented results are published in the prior works [237, 238]
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Figure 4.15: Study setup to validate the applicability of Saint-Venant’s principle (SVP)
[238]. The distance between corner geometries gp grows in a stepwise manner
while measuring the forming quality (shear angle maximum γmax

12 ).

by the dashed vertical line. Additional observations have been recorded
around these drops for sufficient resolution. Beyond these drops, the
graphs are approximately constant, which hints strain field indepen-
dence.
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Figure 4.16: Evolution of γmax
12 with the box-width w1 between two pyramid corners.
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The observation can be justified by SVP. To this end, the resulting forces
across a reference surface are evaluated. Figure 4.17 exemplarily visu-
alises the procedure for the case ζ = 45°.

Figure 4.17: Extraction procedure of the internal line-loads across the fabric symmetry line
during forming (normal and tangential forces fn,t and moment mzabout the
z-axis) [238].

As can be seen from the qualitative plots in Figure 4.17, distinct shear
bands form along warp and weft direction. Since shear deformations
inevitably cause shear stresses, reaction forces and moments across the
symmetry line S can be extracted. More specifically, the resulting tan-
gential and normal forces fn,t and the resulting moment mz about the
z-axis are extracted at the symmetry line S for different values of w1.
The loads are normalised (superscript ‘nrm’) to account for the gradual
growth of the symmetry line length with w1.

Figure 4.18 a) quantifies the evolution of the loads transmitted across S .
The forces f nrm

n,t reduce until they reach a minimum at w1 ≈ 150 mm.
Some fluctuations aside, the moment mnrm

z initially stays constant but
drops also at w1 ≈ 150 mm. Beyond this width both the forces and the
moment stay approximately constant; the minor growth of f nrm

n stems
from growing frictional forces due to increased tool-ply-contact area.

The absence of transmitted loads for w1 & 150 mm satisfies the strict
conditions for a so-called astatic equilibrium. That is, the loads are not
just in equilibrium but remain in equilibrium during rotation about an
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Figure 4.18: a) Plot of the evolution of line-loads in the fabric during forming; b) visuali-
sation of the shear band movement from the boundary (red) to the free edge
when w1 grows.

arbitrary angle [252, p 359-362]. As the direction of vanishing loads is
arbitrary, they are always in an astatic equilibrium. In this case the lit-
erature reports a decay exponent of psv ≥ 4 in Equation (4.1). Hence,
SVP predicts a strong localisation effect. Note that the sudden drop of
γmax

12 to a constant value in Figure 4.16 coincides exactly with the drop
of transmitted loads. Both are marked by a dashed vertical line.

The qualitative plots in Figure 4.18 b) also offer a mechanical interpreta-
tion for the drop of the transmitted loads. As w1 grows, the shear bands
gradually move outwards and at some point they leave the symmetry
line S at which the loads are extracted. At this point the associated
shear stresses also leave the symmetry line and cannot evoke reaction
forces and moments, respectively, i.e. they vanish.
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This geometric consideration also allows to deduce an independence cri-
terion for the minimum distance of two corners. Consider again the rect-
angular fabric cut as Figure 4.19 illustrates. Note that the shear strains
are plotted into the initial, i.e. undeformed fabric.

Figure 4.19: Exemplary determination of the minimum required distance smin for indepen-
dence of two doubly-curved regions aligned to the edges of a rectangular fab-
ric cut. The plot shows the limit case of beginning independence (i.e. s = smin).
When w1 increases, the shear bands separate further, when it decreases, the
shear bands move together and shear strains will interact [238].

Let la be the distance of the corner apexes to the fabric edge and s the
distance between two corner apexes. Then the minimum distance smin
can be determined to be

smin = la
(

tan(ζ) + cot(ζ)
)

⇔ =
la

2 sin(2 ζ)
. (4.6)

Figure 4.19 visualises the situation s = smin, i.e. the beginning of strain
field independence. The strain fields will be independent, should s in-
crease; and will interact, should it decrease.

The dashed, vertical lines in both Figures 4.16 and 4.18 support the de-
vised relation. They are in fact determined by Equation (4.6). As they
coincide with the drops in the graphs, they validate it as a sufficient cri-
terion for strain field independence. Note however, that Equation (4.6)
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only holds for rectangular fabric cuts and that other relations may be
required for other cuts.

With this paragraph, a justification for the individual assessment of the
forming results has been established. In the following, the approach is
exemplarily applied to a demonstrator geometry.

Application to a demonstrator geometry. With the above explana-
tion, the feature-based approach shall be used to assess and eventually
improve the manufacturability of a box-demonstrator. The demonstra-
tor is inspired by the Numisheet93-benchmark [251] but features higher
complexity as Figure 4.20 a) shows: While the original is a double-
symmetric square-cup, this demonstrator is non-symmetric and features
four individual corners C1 . . . C4.

Figure 4.20: a) Isometric and b) top-view for the box-demonstrator used to validate the
feature-based formability assessment along with a forming simulation result
(fibre orientation ζ = 0°) for visualisation. The box demonstrator features
features four corners of different forming difficulty [238].

The corners stem from the introduced parameterisation scheme (Fig-
ure 4.2). Table 4.2 summarises their parameter values. The parameters
were set in such a way that they are not part of the training geometries.
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That is, all corner geometries are new to the surrogate and must make
inference on the basis of the training corners.

Table 4.2: Definition of geometry parameters for the box-demonstrator [238].

Corner r1

mm
r2

mm
α

°
w1

mm
w2

mm
C1 40 10 10 35 35
C2 10 10 40 15 15
C3 40 20 35 25 25
C4 15 15 15 30 30

For approach validation, two fibre orientations are considered, namely
ζ = 0° and ζ = 45°. Figure 4.20 b) shows an example FE-forming result
of the demonstrator with ζ = 0°. For both fibre orientations, a separate
surrogate is trained on a database with nk = 71 sample corners each.
This number was found sufficient in an upstream study [237].

Figure 4.21 compares γmax
12 predicted by the GPR1-surrogate µf,gpr to the

FE-simulation for each corner and material orientation. In general, the
surrogate-estimations match the simulation results well. The maximal
deviation amounts to ≈ 5.5° (≈ 9.7 %), while all other differences remain
below 4°.

The plot also features a shear strain limit γlim
12 = 55° (dashed horizon-

tal line). It is taken as a shear limit to tell manufacturable and non-
manufacturable designs apart [238]. Clearly for ζ = 0°, corner C1 and
C4 exceed this limit according to the surrogate estimation. If µf,gpr was
used for component design, it would suggest to redesign C1 and C4. For
ζ = 45° it deems all corners manufacturable, though.

Owing to its low evaluation time, µf,gpr can be used for extensive re-
design studies as Figure 4.22 exemplifies. It shows µf,gpr’s estimation for

1Gaussian Process Regression
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Figure 4.21: Comparison of γmax
12 for each corner of the box-demonstrator as predicted

by the ML-model (dark shade) and an according FE-Simulation (light shade)
[238].

γmax
12 as a function of the wall draft angle α and the radius r2 as they

have been identified as most influential. A red line marks the locus of
‘limit-designs’ with γmax

12 = γlim
12 = 55° and separates manufacturable

from non-manufacturable designs. Additionally, red markers indicate
the critical corner designs C1 and C4. Clearly, they lie in the critical
region.

This corner design map can be conveniently used to improve the form-
ing behaviour: A potential designer can pick any design from the man-
ufacturable zone and can concentrate on other design requirements, e.g.
functional or packaging aspects. The yellow markers represent an exem-
plary corner redesign, denoted by an asterisk. Specifically, C1 changes
according to α : 10° → 15° and r2 : 35 mm → 40 mm; C2 according to
α : 15°→ 20° and r2 : 15 mm→ 20 mm.

Figure 4.23 compares the estimated and the simulated strains before and
after the redesign. Indeed, a successful reduction of γmax

12 below γlim
12 can

be observed. Also for the redesigned corners C1∗ and C4∗ the surrogate
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4.2 Results of the formability assessment

Figure 4.22: Corner design map for manufacturability assessment [238]. The red line marks
the locus of γmax

12 = γlim
12 = 55° and separates manufacturable from non-

manufacturable corner designs. Markers indicate the location of corner C1
and C4 before (red) and after redesign (yellow).

estimation and FE-simulation match well (maximal deviation of ≈ 3°).
For the sake of completeness, the results for ζ = 45° are also given and
show that manufacturability is conserved (γmax

12 < γlim
12 ).

Eventually, Figure 4.24 gives a visual impression of the improved form-
ing behaviour. It shows the shear angle distribution of the initial and the
redesigned corner geometries. While C1 and C1∗ differ only marginally,
a substantial reduction of γmax

12 can be observed when changing C4 →
C4∗. Consequently, the trained surrogate was successfully applied to
efficiently assess the manufacturability and facilitated redesigns of indi-
vidual geometric features.

Overall, the results show that the feature-based approach supports an
efficient formability assessment – provided a set of preconditions is sat-
isfied (strain field independence). If so, further analyses can be per-
formed to quantify and visualise the impact of local design variations.
The usage of geometrical parameters, e.g. radii or angles, facilitates
an understanding of geometry-process-interdependencies and allows

111



4 Formability estimation

C1 C1* C4 C4*
0

20

40

60 γlim
12 = 55°γlim
12 = 55°

56
.7

54
.4

63
.1

52
.7

51
.2

51
.2

61
.7

52
.5

37
.6

32
.1

33
.1

27
.4

36
.2

33
.4 35

.3

29
.9γ

m
ax

12
[°
]

0° µf,gpr 0° FEM 45° µf,gpr 45° FEM

Figure 4.23: Comparison of γmax
12 for the initial and the redesigned corners of the box-

demonstrator as predicted by the ML-model (dark shade) and an according
FE-Simulation (light shade) [238].

to create engineering-interpretable design maps. They can then sup-
port the designer in an intuitive manner without need for laborious and
computation-intensive FE-simulations.

Figure 4.24: Visualisation of the shear angles γ12 after forming for the initial corners C1
and C4 (top) and their redesigned pendants C1* and C4* (bottom, mirrored
view) [238].
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4.2 Results of the formability assessment

Despite these results, the presented approach is bound to predefined
and sufficiently distant geometry features which may or may not exist
in the analysed part design. Features outside the predefined scheme
cannot be analysed. As a remedy, grid-based methods promise higher
generalisation capabilities (Section 4.1.2). Their results will be analysed
in the following section.

4.2.2 Results of the grid-based approach1

While the above feature-based approach assesses the formability of a
component by identification and evaluation of discrete geometry param-
eters, i.e. unstructured input. Structured data representations offer a more
versatile description but have yet not been applied for formability analy-
sis. Formally, the formability assessment sketched in Figure 4.6 amounts
to image-to-image-regression, for which Section 4.1.2 proposes a U-net-
shaped, autoencoder architecture (Figure 4.12).

Assessing the applicability of the grid-based approach with CNNs con-
cerns three key aspects, namely 1) general proof that the CNN µf in-
deed captures the inherent process dynamics, 2) that it can generalise to
unknown geometries and 3) how different training databases affect the
result.

CNN-architecture and hyperparameters. Under supervision of the
author, Trippe [261] performed extensive hyperparameter studies on
three different image-based autoencoder networks from literature [210,
200, 262] in his master thesis. Specifically he studied the effect of
1) different training hyperparameters (learning rate, weight initialisation,
batch size), 2) different network architecture (number and size of layers
and kernels, upsampling strategy, central dense layer) and 3) different

1The presented results are published in the prior works [211, 254]
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4 Formability estimation

data representations (size of input- and output-image, greyscale encod-
ing scheme). He summarised the findings in a best-practice-guideline
and presents an optimised architecture which this work adopts. Fig-
ure 4.25 shows the final architecture.

In accord with Trippe’s recommendations, µf employs few, large kernels
in the first layers to capture larger geometry characteristics and then
reduces the kernel size in small steps while increasing their number.
The inverse holds for the upsampling steps: Starting with many, small
kernels, their size gradually increases while their number reduces. See
[261, p 87-93] for further details. The optimised network of µf reduces
the prediction error by ≈ 30 % compared to the original architecture by
Farimani et al. [200].

The CNN µf consists of 11 layers (6 encoding layers, 5 decoding layers)
with ≈ 19.65 · 106 tunable model parameters. The U-shaped flowchart
style is a typical representation for ‘U-nets’ – hence their name. The
network takes a 128×128 greyscale-image of the geometry as input. Then
convolution and pooling operations follow. Their configuration is set up
so as to yield an output O half the size of the input size, i.e. 64×64 as
annotations flags show. For instance, the 128×128 input image results in
64×64 feature maps.

The convolution nomenclature is as follows: The first number denotes
the number of kernels of this layer, the second denotes the kernel size
and the last number denotes the stride. For instance, the first convo-
lution 64|15×15|1 implies convolving 64 different kernels, each of the
size 15×15 with a stride of 1. Similar holds for the pooling and upsam-
pling operations: The first numbers denote the kernel size, the last the
stride. Analogous to the convolutions, the upsampling parameters are
configured in such a way that they double the output in each layer.

All neurons in the network use ReLU-activation. Some publications, e.g.
[210, 262], suggest an additional, fully-connected layer after the convo-
lutional layers, but Trippe’s studies show no significant benefit for this
work [261].
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4.2 Results of the formability assessment

Figure 4.25: Employed architecture of the CNN µf for the grid-based formability assess-
ment. The architcture follows the hyperparameter study by Trippe [261].
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CNN-training behaviour. Figure 4.26 shows the training progress of µf
for two different-sized training databases DT with nk = {10, 50} geom-
etry samples from GC 1 (cf. Figure 4.14). Additionally, a separate vali-
dation set DV with nV = 20 validation geometries from GC 1 allows to
assess the performance on unseen geometry samples (Figure 4.26 b) ). As
µf’s network parameters θ are initialised randomly, individual training
runs show scatter. Thus, the graphs show the average of ten independent
training runs with 750 epochs using the Adam-algorithm (learning rate
η = 5 · 10−5, batch size of 1).

Figure 4.26: Evolution of the prediction error a) on the training data (εtrn) and b) on the
validation data (εval). Each plot features two graphs, one for a small database
(nk = 10 samples) and one for a large database (nk = 50 samples) [254].

The graphs show the classical behaviour of supervised learning (cf. Fig-
ure 2.26): Some erratic volatility aside, the prediction error on training
data εtrn (sub-image a) ) approaches zero in a monotonous manner for
both database sizes. That is, the network learns to reproduce the training
data.

However, the graphs of εval (validation data) in sub-image b) differ: For
the large database with nk = 50 samples the graph still almost reaches
zero, but not for nk = 10 (small database). Here, an error of ≈ 6 °2

remains. That is, nk = 10 samples do not provide sufficient information
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4.2 Results of the formability assessment

for an accurate generalisation to new geometry samples from GC 1, but
nk = 50 do. Consequently, a threshold ought to exist which introduces
just enough information for generalisation. The following paragraphs
examine this threshold more closely.

CNN-validation inside the class of training geometries. Figure 4.27
shows the evolution of different accuracy metrics for different-sized
databases from GC 1. Analogous to Figure 4.26 a), the prediction er-
ror on the training geometries approaches zero in all cases and is of little
informative value. Thus, only the accuracy on the validation geometries
is discussed here. The graphs show the average over ten independent
training runs; the shaded area denotes the according 95 % percentiles.

Subplot a) visualises three difference metrics, namely 1) the validation loss
εval, the prediction error of the shear maximum ∆γmax

12 and the largest
overall prediction error ∆max(γ12). Subplot b) shows correlation metrics of
the shear angles in the estimated and simulated strain field. Specifically,
cd and rp denote the coefficient of determination and Pearson correla-
tion coefficient, respectively [263, p 585]. They measure how much the
simulated and the estimated shear angle correlate per element. See Ap-
pendix A.1 for the formal definition of all metrics.

The metrics are evaluated and averaged across 20 validation geometries.
Please note that the sense of the accuracy metrics is opposite between the
plots. In subplot a), a perfect estimation implies zero error, in subplot b)
cd = rp = 1 is ideal.

In both plots the metrics improve monotonously as more data becomes
available. Yet from nk ≈ 50 on, the metrics improve only marginally in
an asymptotical manner, which implies the aforementioned threshold.
Interestingly, this threshold appears even earlier in subplot b) at nk ≈ 25.
This hints that the network at first learns the qualitative distribution of
the shear strain field before it eliminates absolute deviations. Similar
results were found for GC 2 but are omitted here to avoid redundancy.
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4 Formability estimation

Figure 4.27: Effect of the number of training geometries on the achievable CNN-model
accuracy on geometries inside the class of training geometries [254]. Similar
results were found for GC 2 but are omitted here to avoid redundancy.

Overall, the CNN shows a classical surrogate behaviour: When evalu-
ating geometries inside the class of training geometries, its accuracy on
new geometries improves with available data.

CNN-validation outside the class of training geometries. Feature-
based surrogates are only capable of assessing geometries from a pre-
defined parameterisation scheme (Section 4.2.1) – a severe limitation
for generalisation. The overarching motivation behind grid-based ap-
proaches is that they should also be capable of analysing geometries
outside their class of training geometries. This capability is analysed in
the following.

The previously trained models of µf are again considered. Unlike before
however, they are evaluated on the double-dome gdd benchmark geom-
etry. For reference, gdd has been added to Figure 4.28 (bottom right).
Please note that – despite some similarity – neither GC 1 nor GC 2 can
exactly reproduce gdd and consequently, µf must make inference on a
new geometry outside the class of training geometries.

118



4.2 Results of the formability assessment

Figure 4.28 visualises the results by difference and correlation metrics. In-
terestingly, in both cases the number of training geometries has only little
effect on the accuracy. The metrics stay approximately constant. Only in
sub-image a) a moderate improvement can be observed when training
on GC 1.

Figure 4.28: Effect of the number of training geometries on the achievable CNN-model
accuracy on geometries outside the class of training geometries [254].

However, a substantial difference prevails between sub-image a) and b).
For instance, after training on GC 1 the loss εval amounts at best to
≈ 68 °2, while only ≈ 20 °2 is observed for GC 2, i.e. a gain of ≈ 70 % in
accuracy. Similar differences occur for the other metrics. This hints that
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GC 2 is more informative to µf than GC 1 when evaluating the double-
dome gdd. For other geometries it might be different. This immediately
raises the question, how different training datasets affect µf’s accuracy
and – in the long term – how to design a suitable sampling for a suffi-
ciently general ML-model.

Influence of the training database. In order to analyse the effect of
different training databases, Figure 4.29 shows plots of the estimated
and the simulated strain fields for three different scenarios: Training of
µf on nk = 100 samples of a) GC 1 (top), b) GC 2 (centre) and c) a
combination of GC 1 and GC 2 (bottom). The strain field difference ∆γ12
allows to assess local under- and overestimations. Each plot also features
its maximum value for ease of interpretation.

The plots can be used to explain the difference of µf’s accuracy between
training on GC 1 and GC 2. Consider at first sub-image a), i.e. after
training on GC 1. The strain field estimations only loosely reproduce the
simulation result. In fact, only the general formation of horizontal and
vertical shear bands with a local maximum at the intersection is repro-
duced. Their position, width and absolute values differ considerably as
the difference plot highlights.

Upon closer inspection, it may be seen that µf erroneously predicts shear
angles in the image centre (black ellipsis in the difference plot), although
this region remains unsheared in the simulation. These false shear bands
stem from inadequate training geometries: The geometries in GC 1 are
rotationally symmetric with respect to the z-axis as such they feature no
straight areas. As a consequence, µf remains uninformed that straight
areas evoke no shear during forming.

Interestingly though, the vertical shear bands are more pronounced than
the horizontal bands in the estimation. This is surprising because all
geometries in GC 1 are rotational-symmetric about z. Thus, all sam-
ples give equal horizontal and vertical shear bands. Although it has
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4.2 Results of the formability assessment

Figure 4.29: Comparison of the simulated and estimated shear strain field along with a
plot of the difference [254].
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never seen unequal shear bands µf still predicts them for the double-
dome. This indicates that it at least ‘tries’ to address the observed non-
rotational-symmetry of the double-dome.

The situation considerably improves in sub-image b) after training on
GC 2. Not just the position of the shear bands but also their absolute
values match better the simulation results. Also the false shear bands in
the centre do not occur since GC 2 does comprises samples with nearly
straight areas, namely for ωg � 2 (cylinders). Exactly these samples
provide the information that straight component features evoke no shear.
Consequently, the geometry characteristics in Figure 4.29 match better
the features of the double-dome.

Ultimately, sub-image c) shows the results after a combined training on
GC 1 and GC 2. However, it is to the widest extent identical to sub-image
b) except for a marginally improved accuracy regarding the maximal
shear. This result is more promising as it may seem at first glance. From
a modelling perspective, this means that combining geometry classes
does not automatically deteriorate the results. This holds even when the
added geometry class contributes little information as GC 1 shows: Al-
though the information-poor samples from GC 1 make up half of the
total sample count, the remaining GC 2 samples provide still enough in-
formation for µf to learn the process dynamics – provided that µf shows
a sufficiently large modelling capacity. This hints that adding geome-
tries at best improves the ML-model and is at worst indifferent, i.e. is
conservative.

Note however, that the prediction quality outside the training geometry
class (εval(nk = 25) ≈ 18 °2, Figure 4.28) is considerably worse than inside
(εval(nk = 25) ≈ 2 °2, Figure 4.27). In other words, a few samples may
be enough to exhaust the informativeness of this geometry class with
respect to a new geometry; however, estimating the forming result of a
component inside the geometry class is still substantially more accurate.
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It may further be noted that none of the estimations reproduces the mi-
nor shear bands on the inside of the main deformation zone (white el-
lipsis in sub-image c) ). The shear bands stem from the concave inden-
tations of the double-dome as Figure 4.30 highlights (green hue). All
(training) geometries in GC 1 and GC 2 are fully convex and thus – sim-
ilar to the straight geometry features of the double-dome – µf remains
unaware that concave also evoke shear deformations. This again em-
phasises the need to cover all forming-relevant geometry-characteristics
during training such as convex and concave surfaces plus their transi-
tions and different types of symmetries or curvature (non-, single- and
double-curvature).

Figure 4.30: Minor shear bands and indentations in the double dome [254].

4.3 Intermediate summary

This chapter presents and compares two data-driven approaches for
rapid formability estimation in textile forming, a feature-based and a grid-
based approach. The feature-based approach (Section 4.1.1) seeks to iden-
tify forming-critical geometry elements in a component and evaluates
them individually. The individual assessment of features is based on
Saint-Venant’s principle and is validated in a numerical study. The
method is applied to a modified benchmark geometry from literature
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(Section 4.2.1). Overall, the method is found to give meaningful estima-
tions of the local part quality of each feature. Additionally, the paramet-
ric nature of the approach is utilised to locally improve the manufactura-
bility of a design.

In order to be analysed, the geometry features must conform to a prede-
fined parameterisation scheme, though. Non-conforming features can-
not be analysed. While this may be acceptable in certain scenarios, it
generally limits the approach versatility. As an alternative, this work
analyses a grid-based approach (Section 4.1.2) based on CNNs. Unlike
the parametric surrogate, the CNN uses non-parametric, structured data.
The CNN is trained on two different classes of training geometries and
after the training it evaluates a geometry outside the training database,
the double-dome.

The results show that the CNN indeed learns to estimate the strain field
of new geometries, even when they are outside the class of training ge-
ometries. The estimation accuracy however depends on the evaluated
geometry and the training database. For geometries inside the class of
training geometries, the accuracy consistently improves with the num-
ber of training geometries. However, this does not hold for geometries
outside the training geometry class. In this case, the prediction accuracy
is nearly independent of the number of training samples but depends on
the geometry class itself – more precisely, their covered geometry char-
acteristics. The results also show, that geometry classes can be combined
without impairing the prediction accuracy, even if the added geometry
class provides little additional information. That is, adding geometries
is conservative.

The findings suggest that carefully engineering and selecting the classes
of generic training geometries is more important than the sheer number
of samples. Loosely speaking, the findings support the notion of ‘smart
data outperforms big data’. For a fully generalised ML-model, geometry
characteristics are most important to be covered during training. This
work already highlights the importance of single and double curvature
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areas as well as convex and concave features. Other characteristics may
be devised in future work.

From an application perspective, both methods hold promise, yet in
different regards: The feature-based approach builds on well-established
(parametric) surrogate-techniques for which convenient software-solutions
are at hand. It also employs engineering-interpretable component pa-
rameters (draft angles, radii etc.) and thus support an intuitive inspec-
tion of part-process-relations, e.g. by design maps. Thus, for parameter-
isable design tasks with limited variability, the feature-based approach
appears a practicable option.

However, design variations beyond the predefined feature-scheme are
inapplicable. In this case, grid-based approaches have proven a viable
remedy. They do not rely on specific geometry parameters but employ a
more versatile grid-structure to represent the geometry. While this con-
siderably improves versatility, it in turn raises follow-up research ques-
tions regarding geometry characterisation and sampling strategies for
non-parametric spaces. Overall however, their versatility seems promis-
ing for the aspired generalisation. Thus, this works selects them for fur-
ther development towards process optimisation of variable geometries.
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geometries

Chapter 3 shows that SBO helps reduce optimisation efforts. However,
according surrogates are typically application-specific and fall short on
re-usability in new scenarios, e.g. after an unforeseen geometry revision
(Section 3.3). Thus, demand for generalised models has been identified
early on [187]. Chapter 4 shows that grid-based ML-techniques, namely
convolutional neural networks (CNNs), can learn process dynamics from
generic data and apply it – to a certain degree – to a new geometries.

In this chapter, these geometry-informed techniques will be coupled
with variable process parameters to allow process optimisation of vari-
able geometries. More precisely, the overall aim is an approach for es-
timation of optimal manufacturing parameters for variable component
geometries.

5.1 Reinforcement learning for process
optimisation

This work proposes the combination of physics-based process simula-
tions with ML-techniques to extend classical SBO towards variable in-
stead of fixed manufacturing scenarios. The overall aim is to train an
ML-model to estimate optimal manufacturing parameters for a new com-
ponent geometry. The previous Chapter 4 has presented a feature-based
surrogate approach and a grid-based CNN-methodology for formability
assessment.
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Theoretically, both could be extended towards process optimisation.
However, the feature-based approach proves unsuitable as the follow-
ing remarks expound, and thus, only the grid-based approach is further
pursued.

Non-suitability of a feature-based approach. The feature-based ap-
proach (Section 4.1.1) scans a given geometry for predefined, potentially
critical forming features, quantifies them by a set of geometry parame-
ters and evaluates an according surrogate. Conceptually, its parametric
nature allows to add additional process parameters in order to form a
combined surrogate µsrg : G, P 7→ Q. For a given geometry, i.e. fix ge-
ometry parameters g ∈ G, an optimiser could then tune the process
parameters p ∈ P for maximal quality q ∈ Q.

Yet, upon closer consideration this approach turns out naïve and hard
to realise in practice for gripper-assisted fabric forming. As outlined in
Section 4.1.1, the feature-based approach relies on the assumption that
features can be analysed individually. This in turn assumes vanishing in-
tersection loads in sufficient distance from the feature (Saint-Venant’s
principle, cf. Section 2.2.2). Blank holder forces, however, inevitably in-
troduce (non-vanishing) membrane loads across the textile, which in-
stantly violates the prerequisites of SVP. This impedes the assessment
of individual features. A hypothetical surrogate µsrg would have to pa-
rameterise all possible geometry features in the component plus process
parameters. For the box-demonstrator in Section 4.2.1, it would amount
to four corners with each five parameters, i.e. 20 parameters, plus blank
holder forces and even more parameters for more complex features. This
appears practically non-realisable.

Algorithm architecture. Owing to the overwhelming complexity, this
work discards casting and optimising a combined surrogate µsrg : G, P 7→
Q in favour of a more generalised, grid-based function

µ : G 7→ P . (5.1)

128



5.1 Reinforcement learning for process optimisation

The function µ accepts a geometry g ∈ G as input and directly estimates
the optimal process parameters p∗srg as output. That is, it infers optimal
actions (process parameters) in varying situations (geometries) – the idea
of reinforcement learning (RL, cf. Section 2.3.4). Like a regular surrogate,
µ will be constructed using observations.

The envisaged function µ consists of two composed sub-functions and
extends the CNN for formability assessment µf from Section 4.1.2. As
Figure 5.1 illustrates, the output of µf is directly input to another CNN
for optimisation µp. That is, µ connects two CNNs in series which is
formally cast as µ = µp

(
µf(g)

)
.

Figure 5.1: Architecture of the algorithm for estimation of optimal process parameters of
variable components. The algorithm consists of two connected CNNs, the above
introduced CNN µf for formability assessment and a second CNN µp for pa-
rameter estimation.

The sub-function µf has already been discussed in Section 4.2.2 so that
this chapter focusses on µp. Again a CNN is used to enable a grid-based
analysis. Figure 5.2 visualises the architecture. The first part resembles
the aforementioned autoencoder structure, however the second half is
different: It features fully connected layers instead of upsampling layers
because it shall map to a process parameters p, i.e. a vector, instead of
an image.

Reinforcement Learning concept. Figure 5.3 illustrates the overall
training concept. Therein, a vertical bar denotes ‘evaluated for’. For
example p∗, i

srg|g implies the estimated parameter optimum in training it-
eration i when evaluating geometry g.
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Figure 5.2: Architecture of the CNN µp for process parameter estimation. The first part
consists of convolutional layers for analysis for the image-input (shear strain
field), the second part consists of fully-connected layers in order to yield a
vector of process parameters.

Figure 5.3: Training and application scheme using reinforcement learning (RL): In each
iteration i, a geometry is drawn (greyscale image) and evaluated by for a process
parameter recommendation. An according simulation determines the resulting
forming quality. If µ’s process recommendations improve the forming quality,
it is encouraged to give similar recommendations for similar geometries, and
penalised otherwise [104].
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In each training iteration i, µi is presented samples g from a predefined
set G of ng generic training geometries. For each sample it returns an
according process recommendation p∗, i

srg|g. An according process sim-
ulation ϕ(p∗, i

srg|g) then evaluates this recommendation and the objective
function q quantifies the resulting scalar part quality q(ϕ(p∗, i

srg|g)). As
before, for brevity q(p∗, i

srg|g) tacitly implies q(ϕ(p∗, i
srg|g)) (ϕ() is dropped

for readability).

If the process recommendation improves the part quality q, then µi is
encouraged to give similar recommendations in similar situations, oth-
erwise it is penalised. The ML-literature usually refers to q as reward.
Over the iterations i = 1 . . . imax, µi seeks to optimise q, so as to make
useful process parameters more likely over time. After the training, µ

is meant to give recommendations even for new geometries which were
not part of the training data. In ML, the overall approach is known as
Reinforcement Learning.

This work assumes constant process parameters p during forming, i.e. p
is set once and kept constant during the tool stroke. Consequently, only
a single decision must be taken per geometry; state transitions do not
occur. For completeness, please note that some process technologies may
require parameter variations over time, though. For instance, consider
in-situ adaptions of the tool closing speed to avoid defects from excessive
or uneven cavity pressures, e.g. in Wet Compression Moulding. In such
cases, the process passes through a whole sequence of states (pressure
distributions) and according actions (increase/decrease speed). RL can
also solve such time-dependent optimisation tasks but are deliberately
excluded in this work in order to concentrate on variable geometries.

Training implementation. Within µ, the function µp shall learn to es-
timate optimal process parameters when given a strain field estimation
µf(g) for geometry g. From an RL-perspective this amounts to finding
a function – a ‘policy’ in ML-terms – which yields the optimal action
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(process parameter p∗) for a given state (strain field estimation µf(g)),
i.e. solving

p∗ = µp (µf(g)) = arg min
p∈P

q(g,p) . (5.2)

Classical, iterative optimisation techniques could solve Equation (5.2).
As this is usually time-consuming, ‘Actor-Critic’-techniques eliminate
the need for optimisation by parametrising µp through a convolutional
neural network with adjustable weights θp. During training, θp is then
gradually tuned in direction of improving part quality q [264].

The training scheme is visualised in Figure 5.4 and involves two net-
works: The desired network µp, the so-called ‘actor’-network, and an
auxiliary ‘critic’-network µaux. In loose terms, the overall idea is that the
actor gives recommendations and the critic then informs the actor, how
to improve. Upon closer inspection, training the actor µp resembles the
principle of classical backpropagation: At first, µp makes a prediction
(forward pass, green hue). Then these predictions are refined by an ad-
justment of model parameters θp (backward pass, blue hue) with aid of
the critic. This ‘prediction-correction’-scheme iterates until convergence
of µp.

More specifically, per geometry g and training iteration i, at first, new
observations for each geometry g ∈ G are generated. To this end, µp

receives a shear-estimation γ12 = µf(g) and infers a parameter rec-
ommendation p∗, i

srg|g. An according forming simulation ϕ(p∗, i
srg)|g de-

termines the resulting quality q(p∗, i
srg)|g. Eventually, the observation

tuple {γ12,p∗, i
srg|g, q(p∗, i

srg)|g} is appended to a process database M, the
‘memory’. The procedure repeats for the remaining geometries in G.

During the backward pass µp’s weights will be adjusted with the aid of
the auxiliary critic µaux. To this end, at first the critic parameters θaux

are updated by a classical batch-gradient descent step, cf. Equation (2.6).
More specifically, the prediction error εM between the actual quality q
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Figure 5.4: Summary of the implemented Actor-Critic Training scheme: For each shear
strain estimation γ12 = µf(g) in each training iteration i, either random process
parameters are drawn (exploration) or the actor µp issues a process recom-
mendation (exploitation). After simulation and result storage in a memory, the
auxiliary critic-network then informs the actor-network by the gradient ∇θp qsrg

how to improve its recommendations for the next iteration i + 1 [104].

stored in the memory M and the critic-estimation qsrg is stepwise re-
duced by

θi+1
aux = θi

aux − η∇θaux εM . (2.6 revisited)

Thereby, the critic gradually learns to estimate the resulting quality for a
given geometry-process-combination.

A gradient-descent also updates the actor recommendations p∗,isrg in di-
rection of improving part quality estimation qsrg according to

θi+1
p = θi

p − η∇θp qsrg . (2.6 revisited)

That is, in the next iteration it should yield an improved quality.
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The gradient ∇θp qsrg is at first unknown, but can be obtained with the
aid of the critic. Following the chain rule of calculus, ∇θp qsrg decom-
poses into

∇θp qsrg = ∇pqsrg · ∇θpp . (5.3)

Therein, the first factor ∇pqsrg is the gradient of the critic-network µaux

with respect to the process parameters p = ( p1, p2, . . . )T, i.e.

∇pqsrg =

(
∂q

∂p1
,

∂q
∂p2

, . . .
)T

=

(
∂µaux

∂p1
,

∂µaux

∂p2
, . . .

)T
. (5.4)

The second factor ∇θpp is the Jacobian of the actor µp. The jl-th entry is
the partial derivative of the j-th process parameter pj with respect to the
l-th actor parameter θp l :

∂pj

∂θp l
=

∂µp j

∂θp l
. (5.5)

Exploration-exploitation dilemma. The parameters of both µp and
µaux are initialised randomly. As a result, parameter recommendations
p∗,isrg and gradient-information ∇θp qsrg are of little significance at train-
ing begin. Directly following the initial gradient-descents (‘greedy’ ex-
ploitation) most likely converges prematurely to a poor local optimum
of the actor policy. Thus, additional iterations are necessary to explore
alternative policies and increase the chance of a global policy optimum.
However, since they add computational effort and prolong training time,
they must be balanced with policy fine-tuning (exploitation).

How to optimally reconcile this exploration-vs-exploitation dilemma is
still subject of ML-research. This work employs a variant of ‘ε-greedy’
exploration. Actor updates are delayed until the critic has reached a
sufficient accuracy. Until then, parameters p are drawn randomly from
a uniform distribution U (P) for policy exploration (cf. Figure 5.4). Once
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the actor training starts (i ≥ isrt), the probability ε ∈ [0, 1] of probing
random parameters decreases exponentially by

ε = (εsrt − εend) εi−isrt
d . (5.6)

Therein, εsrt and εend denote the start and end values of ε and εd is a
decay factor with 0.95 6 εd 6 0.99 in general. Figure 5.5 shows an ex-
ample graph of ε for εsrt = 1.0, εend = 0.03, εd = 0.95 and isrt = 75.
Overall, Equation (5.6) gradually shifts from random parameter explo-
ration (ε ≈ 1) to deterministic exploitation (ε ≈ 0). Note however, that
ε only affects actor recommendations; training of critic network µaux on
the process memory M is independent of ε and takes place in each iter-
ation.

Figure 5.5: Example evolution of the exploration probability ε over the training iterations i
[265].
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5 Process optimisation of variable geometries

5.2 Validation of Reinforcement Learning for
process optimisation1

Validation of the RL-based optimisation approach splits up into four
separate parts: After an introduction to the considered use case (Sec-
tion 5.2.1), a general assessment of the training behaviour is presented
(Section 5.2.2), followed by a study to assess the effects of different hy-
perparameters for optimal training (Section 5.2.3). Once suitable hyper-
parameters have been found, the method is applied to the textile form-
ing use-case (Section 5.2.4). Eventually, Section 5.3 compares RL-based
method to the SBO-method from Chapter 3 and a state-of-the-art GA
and concludes with a intermediate summary (Section 5.4).

5.2.1 Validation use case: Pressure-pad assisted fabric
forming

This section presents the use-case for validation of the RL-based optimi-
sation approach. Specifically, it considers optimisation of pressure pad
positions p = ( p1, p2 )

T during draping of a woven fabric single layer
into corners of variable cuboid geometries g similar to Figure 4.2. For
comprehensibility during algorithm development in this work a simple,
double-symmetric FE-model with symmetry constraints is considered.
Additionally, an analytical substitute model is temporarily employed for
efficient algorithm development and testing. Once this is completed, all
techniques are applied to FE-models.

FE-model. As shown in Figure 5.6 for the double-symmetric variant,
the quadratic pressure pads (25×25 mm) can be positioned along the
component perimeter and show a 25 mm distance to the stamp opening
line. The process aligns with recent studies by Jagpal et al. [71, 266] and

1The presented results are based on the prior works [265, 104]
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allows for highly flexible clamping and convenient reconfigurability. A
Coulomb friction law with a constant, isotropic coefficient of friction of
0.25 and pad downforces of 7 N impose tangential stresses which control
the deformation of the fabric during draping.

Figure 5.6: a) Schematic illustration of an exemplary process simulation setup for pressure-
pad assisted fabric forming with applied symmetry conditions, b) Parameter
definition for the box-geometries along with geometry examples for visualisa-
tion [104].

The fabric is quadratic and measures wf× lf = 600×600 mm in width
and length with a constant thickness of 0.3 mm. Warp and weft direc-
tion align with the x- and y-axis, respectively. To facilitate engineering
interpretation of the results and the RL-algorithm behaviour, this work
focuses on cuboid geometries whose corners are deliberately severe in
order to evoke strong defect tendencies (cf. Figure 5.6 b) ). While the ge-
ometries’ height is fixed (150 mm), their width and length w1,2 are bound
relative to the fabric according to 1

6 6 w1,2
w f

6 1
2 . Within these bounds

LHS (cf. Section 2.3.3) ensures a space-filling sampling of the geometry
parameters.

The forming simulation uses a macroscopic FE-based approach, which
captures the relevant forming defects of the studied fabric. Membrane
and bending models have been implemented and parametrised by Poppe

et al. [100, 38] for the balanced plain weave carbon fabric T700SC-
12K-50C by Zoltek based on experimental characterisation. The ma-
terial models are embedded within the commercially available FE-solver
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Figure 5.7: Sketch of the forming simulation model for utilisation of symmetry conditions
(top view). Two pressure pads per quarter model are used.

Abaqus/explicit using VUMAT and VUGENS user-subroutines to ac-
count for textile-specific characteristics outlined in Section 2.2.3. The
fabric mesh is a structured triangular mesh and aligned with the initial
fibre orientations to prevent numerical locking effects. Abaqus’ built-in
general contact algorithm models the tool-ply interface. The tools are
modelled as rigid surfaces and close in 2 s at constant speed.

Part quality quantification. As outlined in Section 2.2.1 the shear an-
gle γ12 is a frequently used proxy for wrinkling during forming process
optimisation. However, the more γ12 exceeds the locking angle γlock

12 , the
more it loses expressiveness as wrinkling may intensify although γmax

12
remains practically constant. The corners of the considered boxes are set
so severe that this effect occurs. Thus, this work applies a more direct
measure for wrinkling as a part quality attribute a, namely the modi-
fied mean Gaussian curvature κ proposed by Haanappel [28]. Again
κ is a field quantity and requires a mapping to a scalar quality metric
q ∈ Q ∈ R for optimisation (cf. Section 3.1.1)
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To this end, a common approach is the vector norm according to Equa-
tion (3.1)

q(a) = ‖a‖u =

(
nel

∑
i=1
|ai|u

)1/u

(3.1 revisited)

where u = 1 penalises the mean and u → ∞ progressively penalises the
maximum. In prior work [152, 181], u = 4 has been empirically found as
a useful trade-off for shear deformation.

However, applying Equation (3.1) to the curvature κ yields erratic results
in practice and proves susceptible to physically implausible outliers. In
such cases literature recommends characterising the defects by a global
statistical distribution [150] instead of a local criterion. Figure 5.8 shows
a histogram of κ along with an exemplary forming result for visualisa-
tion. While the vast majority of the fabric experiences only mild cur-
vature, few elements show severe curvature. Under such conditions, a
sufficiently high quantile κqnt of a fitted Weibull distribution proves a
robust proxy for the curvature maximum [150]. Specifically, this work
evaluates the curvature distribution κ by the 99.5 %-quantile, i.e.

q = κqnt(κ) = κ99.5 (5.7)

Figure 5.8: Exemplary fabric forming result and histogram of the local fabric curvature.
The histogram also shows a fitted Weibull distribution, whose 99.5 %-quantile
quantifies part quality during optimisation [104].

139



5 Process optimisation of variable geometries

Phenomenological substitute. Developing and testing the outlined
SBO-techniques depends on an appropriate algorithm configuration and
hyperparameter tuning, which in turn requires extensive parameter
studies with numerous simulations. Performing these studies with ac-
tual FE-simulations quickly becomes prohibitively expensive, since each
simulation ϕ and quality evaluation q(ϕ) take in total about 20 . . . 60 min
to solve.

As a remedy, this work utilises the deliberate simplicity of the box-
geometries to formulate an analytical substitute function qsub of the qual-
ity. The substitute function temporarily replaces the actual simulations
during algorithm development and hyperparameter tuning. Once ap-
propriate hyperparameters are determined, the substitute will be dis-
carded.

The underlying reasoning is outlined in the following. Figure 5.9 a)
visualises the process variations schematically and sub-plot b) shows a
contour plot of the according process responses q(ϕ(p)) from FE simu-
lation. The yellow marker illustrates how a specific pad position relates
to the process response. Clearly, the process responses show a minimum
and diagonally above a maximum.

The location of maxima and minima directly correlates to the geometry
width and length as Figure 5.10 shows. It features the process responses
obtained by FE-simulations ϕ for two geometry examples g1 and g2. In
both cases, the process optimum (blue markers) lies below and left of the
corner, while the maxima (worst pad positions) coincide with corners
(grey markers). Consequently, the positions of the maxima and minima
moves as the geometry changes. Closer examination further reveals that
the difference ∆p between minimum and maximum (black arrow) is ap-
proximately constant. These observations can be used to construct the
substitute function qsub.

The bottom plots show the results of the substitute function qsub. It is an
analytical relation defined by
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Figure 5.9: a) Example visualisation of the process variation through repositioning of pres-
sure pads and b) contour plot of the objective function q(ϕ(p)) of an example
geometry g obtained through full-factorial sampling of all possible pad posi-
tions. Depending on the pad position (yellow marker), the process response
can be varied with a distinct clear optimum (minimum) at p ≈ (80, 65)mm
[104].

qsub(p)|g = qsub(p1, p2)|g (5.8)

= qsub1(p1)|g + qsub2(p2)|g (5.9)

wherein

qsub1,2(p1,2)|g =
1
2

[
exp

(
−a1,2

∣∣
g

2
)
− exp

(
−b1,2

∣∣
g

2
) ]

(5.10)
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Figure 5.10: Juxtaposed objective functions q(ϕ(p)) for two different geometries g1 and g2
obtained from FE process simulations (top) and the devised substitute func-
tion qsub(ϕ(p)) (bottom) for temporary replacement of q(ϕ(p)) during hyper-
parameter studies [104].
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with

a1,2
∣∣
g = a(p1,2)

∣∣
g =

p1,2 − p∗1,2

∣∣
g

5 mm
(5.11)

b1,2
∣∣
g = b(p1,2)

∣∣
g =

p1,2 − p̃1,2
∣∣
g

5 mm
. (5.12)

Therein, p̃1,2 = w1,2 denotes the worst and p∗1,2 = w1,2 − ∆p1,2 with
∆p1,2 = 30 mm the best (optimal) position.

Essentially, Equations (5.8)–(5.12) yield a sum of positive and negative
bell-curves. The curves are shifted such that they generate a maximum
at p̃ = ( p̃1, p̃2 )

T = (w1, w2 )
T and an adjacent minimum at p∗ =

( p∗1 , p∗2 )
T = ( p̃1 − ∆p1 , p̃2 − ∆p2 )

T. Note that qsub is dimensionless
and normalised to the interval [−1, 1] for a value-wise distinction from a
actual simulation-based quality metric q(ϕ).

This analytical relation seeks to phenomenologically reproduce the relative
position of minimum and maximum as a function of the geometry width
and length w1,2. Green markers locate the process optimum according
to the substitute. Since they lie in close proximity to the simulation op-
timum (blue markers), the substitute can at least qualitatively reproduce
the objective function. Owing to its negligible evaluation time, this sub-
stitute will be used for hyperparameter studies in this work. Once suit-
able hyperparameters are determined, the substitute will be discarded
in favour of actual simulation.

5.2.2 General training behaviour

For discussion of the general training behaviour, in total 20 box-geometries
(Figure 5.6 b) ) are generated – more specifically, ng = 15 training ge-
ometries and 5 validation geometries. They are converted to greyscale
images (topographic maps) and in turn evaluated by µf for 20 greyscale-
images of shear angle distributions, cf. Figure 5.1. Since length and
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width w1,2 are known for each geometry g, a substitute model qsub(p)|g
is established (Equations (5.8)–(5.12)).

For assessment of the training behaviour on qsub, at first the critic net-
work is considered. To this end, Figure 5.11 shows the evolution of the
critic-error εM. Within the first epochs (i . 10) the error drops precipi-
tously from εM � 30 to εM ≈ 2. Then the error stagnates for about 20
epochs (10 . i . 30) before it reduces again in a roughly monotonous
manner.

Figure 5.11: Evolution of the error of the auxiliary critic-network (µaux) during actor-critic-
training of µp [265]. The loss at first drops substantially, remains constant and
ultimately declines in a roughly monotonous manner towards zero, which
implies that the critic network learned the underlying process dynamics.

This behaviour can be explained as follows: When the first observations
enter the memory M, µaux simply adjusts to qsub’s range of values [−1, 1].
During the intermediate plateau (10 . i . 30) a growing number of
observations with new information on the system dynamics becomes
available which µaux ingests and adapts to. The continuous reduction of
the error hints that from this moment on (i ' 30), incoming observations
are rather recurring and introduce only ever less new information on the
system behaviour to µaux. In loose terms, µaux has sufficient information
of the underlying process dynamics, captures already general trends and
only refines its accuracy.
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In iteration i = isrt = 74, εM falls below 1.0 °2 (green horizontal line)
which has empirically proven a useful start signal for actor training. At
this time also the exploration probability ε starts decaying according to
Equation (5.6). That is, rather than probing random parameters, µp pro-
gressively follows its own policy.

Interestingly, directly with the start of actor training (i = 74), the critic-
error εM doubles and peaks back to the plateau-level for few iterations.
This may happen because the critic is – similar to Section 3.1.3 – riddled
with false minima and erroneously guides the actor to these minima.
When probing them, large differences between qsub and the critic esti-
mation become apparent which are – analogous to the initial deviations
in Figure 3.13 – gradually eliminated in subsequent iterations.

The quality of the process recommendations of µp is quantified by qsub.
Since multiple geometries are evaluated in each epoch, the process re-
sponses qsub are geometry-averaged (q̄sub). Figure 5.12 shows the evolu-
tion of q̄sub during training.

Figure 5.12: Evolution of the average process response q̄sub during actor-critic-training.
After an initial exploration phase, the process responses on training and
validation geometries rapidly improve and approach the optimal response
(q̄sub = −1.0) [265].
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Figure 5.12 features two graphs, the averaged substitute process response
for the training geometries q̄sub T and the validation geometries q̄sub V. A
dashed horizontal line marks the best-possible response q̄∗sub = −1.0, i.e.
when the actor predicts for each geometry the optimal parameters.

During the initial exploration phase with (ε = 1.0, grey shade), pro-
cess parameters are random and consequently, the according process
responses randomly vary around q̄sub T = 0, hence the noisy appearance.
These ‘exploration samples’ serve only to build an initial memory M.
Note that although individual responses qsub vary between [−1, 1], tak-
ing their average q̄sub reverts the graph to zero. Further note that during
the initial exploration, no training of the actor µp takes place and any
evaluation on the validation geometries would be meaningless. Conse-
quently, q̄sub V (blue) is omitted.

Once actor training starts in epoch i = 74, its model parameters θp are
stepwise adjusted in direction of improved (reduced) process response.
Both graphs, q̄sub T and q̄sub V, display a similar shape. Some volatil-
ity aside, at first both curves decline steeply (74 6 i 6 90) and then
they gradually level out in an asymptotic manner. Their final values are
q̄sub T ≈ −0.9 and q̄sub V ≈ −0.8.

The response for the training geometries q̄sub T is nearly constantly lower,
i.e. of higher quality, than for the validation geometries (q̄sub V). This
behaviour agrees with classical surrogate modelling: While the surro-
gate fits to the training data, a transfer to unknown (validation) data
usually introduces some error. Compared to the best-possible value
(q̄sub = −1.0) and the value range [qmin

sub , qmax
sub ] = [−1.0, 1.0] this im-

plies an exhaustion of the optimisation potential of 95 % (training ge-
ometries) and 90 % (validation geometries), respectively. Thus, the actor
network µp has successfully transferred ‘knowledge’ from training ge-
ometries and applied it to new scenarios. It is emphasised that µp can
give recommendations for a whole range of geometries – unlike a classical,
application-specific surrogate.
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5.2.3 Hyperparameter study for efficient training

Analogous to surrogate models, ML-models generally require tuning of
hyperparameters for optimal performance and also applies to this work.
To this end, often extensive parametric studies are performed. Since this
quickly becomes time-consuming with actual simulations, the substitute-
function qsub (Equations (5.8)–(5.12)) is used again.

In upstream studies, three hyperparameters have been identified as most
decisive and will be discussed in the following: 1) the actor learning rate
η, 2) the use of data augmentation techniques and 3) the number of
training geometries ng.

Owing to their random weight-initialisation, individual training runs
show scatter and thus, analogous to Figures 4.27–4.28, ten independent
training runs are performed for each hyperparameter configuration to
allow for statistical performance evaluation. The following graphs visu-
alise their averaged performance q̄sub V on the five validation geometries
and the 95 %-percentile.

Learning rate. According to [267], one of the most decisive hyperpa-
rameters for ANNs is the learning rate η (Equation (2.6)) for which a
typical value range of 10−6 < η < 1 is reported. In general, smaller
values for η stabilise the training process and thus, complex problems
typically require smaller learning rates [268]. Thus, η can serve as a
rough, qualitative assessment of the problem complexity. However, this
comes at the cost of prolonged training, which leads to the notion of ‘as
large as possible, as small as necessary’.

The suggested range stretches over six decades thus will be varied on
a logarithmic scale. Figure 5.13 shows the evolution of q̄sub V for η =

10−3 . . . 10−5. Lower and higher values were also tested but did not
converge at all. Therefore, they are excluded. In all cases, ng = 16
geometries were used for algorithm training.
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Figure 5.13: Effect of different learning rates η during training of µp on ng = 16 geometries
[104].

Overall, the graphs share the same characteristic as in Figure 5.12: After
an initial exploration phase (i ≤ isrt = 75) the graphs decrease and grad-
ually approach a horizontal asymptote. The shape however varies and
reveals performance differences: The graph of η = 10−4 performs best
as it yields the lowest final value (q̄sub V ≈ −0.8), declines most rapidly
and shows least scatter. Conversely, η = 10−3 performs worst. Although
it converges rapidly, the final value (q̄sub V ≈ −0.4) is inferior. Note that
η = 10−5 may have also reached a good final value, but converges much
slower than η = 10−4. Comparing η = 10−4 to the suggested value range
10−6 < η < 1 implies a medium-complex problem. A further fine-tuning
of the learning rate resulted in a final value of η = 1.5 · 10−4 for the rest
of this work.

Data augmentation. Generally, ML-algorithms improve with available
data. However, in many practical applications, datasets are limited and
acquisition of further observations is expensive. A common strategy to
improve the performance of ML-algorithms is to conjure additional data
by careful variation of existing observations – typically referred to as
‘data augmentation’. For instance, in image recognition, transformations
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like translation, rotation, mirroring, scaling, cropping or distortion can
be applied, which alter the image but not its semantic content [269].

Since pixels carry spatial information, they must not be scaled or dis-
torted and the eligible transformations for the considered use-case (fab-
ric forming) reduce to rotating and mirroring. In the considered case,
the applied symmetry conditions (Figure 5.6) additionally preclude rota-
tion and leave mirroring about the x-y-bisector as the remaining option.
The considered fabric (Section 3.2.1) is a balanced, plain weave fabric.
Hence, it shows identical behaviour in warp and weft direction, which
introduces an additional symmetry plane at 45° as Figure 5.14 visualises.
Note that both pad configurations yield the same (mirrored) forming re-
sult and give an identical quality metric.

Figure 5.14: The symmetry line at 45° during pressure pad assisted forming offers to con-
jure one additional observation per simulation by mirroring (data augmenta-
tion) [104].

Figure 5.15 illustrates the effect of data augmentation on the training be-
haviour. Specifically, it shows the training progresses for the learning
rate η = 1.5 · 10−4 and ng = 12 training geometries. It features three
graphs with different data strategies, namely, 1) original data without
any treatment as a ‘reference’, 2) original and mirrored data in the mem-
ory M and 3) doubled-data. The latter (doubled data) implies original
data that is just copied and appended to the memory M. This introduces
no additional information but ensures that the memory M has the same
size as the augmented dataset. Otherwise, the training behaviour would
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be deceptively distorted. A comparison of original data (blue) and the
doubled data (orange) visualises this distortion-effect.

Figure 5.15: Effect of data augmentation by mirroring during training of µp on ng = 12
geometries [104].

Even though they use exactly the same information content, the graph
of the doubled dataset declines faster than the original dataset. How-
ever, it would be premature to conclude that doubling the data improves
the learning behaviour. The number of gradient descents per epoch is
directly proportional to the number of observations in a dataset. Thus,
a larger dataset leads to more gradient-descents, i.e. weight adaptions,
and an seemingly faster training per epoch. Mirroring the data thus in-
herently results in twice as many weight-adaptions per epoch. Thus,
for a valid assessment of the effect of data augmentation, mirrored data
must be compared to doubled data.

Overall, the graphs are of the same characteristic as before. Both graphs,
doubled and mirrored, initially decline at the same rate; however, their
final values differ: While the doubled data approaches q̄sub V ≈ −0.5, the
mirrored graph achieves q̄sub V ≈ −0.85. Consequently, exploitation of
known symmetries by data augmentation does indeed introduce useful
information and improves the learning performance at negligible cost.
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Similar speed-ups were also observed for RTM form filling optimisation
in the master thesis of Geisendörfer

1 [270]. Note that in the presented
forming example only one symmetry plane remains for augmentation.
The augmentation impact presumably grows when more symmetry are
present.

Number of training geometries. The third important hyperparameter
for the training performance is the number ng of training geometries.
Clearly, using only few geometries will not provide a sufficiently com-
prehensive process memory M to enable generalisation to new geome-
tries. Conversely, when already using many geometries, adding even
more geometries probably introduces only little additional information.
Thus, analogous to Figure 4.27, a threshold number of training geometries
must exist, which provides just sufficient information for generalisation.

In order to validate this hypothesis, µp is trained with different numbers
of geometries, namely ng = 8, 10 . . . 20. Figure 5.16 shows four examples
of the training progress. Again, the learning rate η = 1.5 · 10−4 is used
and data augmentation (mirroring) is employed. The graphs’ shapes
show little noteworthy novelty (initial decline and asymptote). However,
the final values and the scatter differ.

In general, the more geometries are used, the better (lower) the final
value. For instance, while ng = 8 only yield a final value of q̄sub V ≈
−0.55, q̄sub V ≈ −0.94 is achieved for ng = 20. And not just the final
value improves with more geometries, also graphs show less scatter, i.e.
a more stable training is observed. However, the improvement is non-
linear. While the final value improves from q̄sub V ≈ −0.5 (ng = 8) to
≈ −0.83 (ng = 12) with only four additional geometries, it takes another
8 geometries to improve it to ≈ 0.94 (ng = 20). This hints a saturation
effect. Figure 5.17 further illustrates this issue in a bar plot.

1Master thesis at Institute for Operations Research of the Karlsruhe Institute of Tech-
nology (KIT-IOR) in cooperation with KIT-FAST; co-mentored by the author.
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Figure 5.16: Effect of different numbers ng of training geometries during training of µp
(data augmentation applied) [104].

Figure 5.17: Bar plot of the best (lowest) value of q̄sub V for different numbers ng of training
geometries. Increasing ng initially improves q̄sub V until it stays practically
constant for ng > 14 [104].
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The bars show the best (lowest) value of q̄sub V for each number of ge-
ometries. Overall, adding geometries constantly improves the training.
However, the first additional geometries contribute most, which sup-
ports above saturation concept and the notion of a ‘marginal utility’ of
additional geometries.

Furthermore, from approximately ng = 14 on, the final values of q̄sub V
stay approximately constant. This hints a threshold of geometry sam-
ples, beyond which additional geometries contribute just little additional
information. In general terms, the results suggest that a finite number
of geometries from G holds sufficient information to analyse any new
sample from G. This threshold will certainly grow when the considered
geometries become more complex but it will presumably remain finite.
This is a necessary precondition and an encouraging finding when striv-
ing for a fully geometry-independent forming-surrogate in the long run.

5.2.4 Application to the fabric forming use-case

The hyperparameter studies of the above Section 5.2.3 yield a promising
configuration to train µp. However, as these studies employ the substi-
tute function qsub, their actual proof of suitability is yet to prove on actual
simulations ϕ. The following sections outline the results of an entirely
FE-based training of µp; the substitute function qsub is discarded from
now on.

In accordance with Section 5.2.3, ng = 14 geometries in combination
with data augmentation (mirroring) is applied. The training process is
monitored by intermittent evaluations during algorithm training. More
specifically, the training progress in three different situations is evalu-
ated, namely on 1) training geometries and 2) validation geometries in-
side the class of box-geometries and additionally also on 3) new geome-
tries outside this box-class of training geometries.
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Learning progress on training geometries. Figure 5.18 exemplarily
visualises the training progress for gt1, i.e. one of the 14 training geome-
tries. Analogous to Figures 5.13–5.16, the line plot on the left quantifies
the part quality q(p)|gt1 over the course of training along with an image
of . To keep the computational load within reasonable bounds, it features
just one training run instead of the average of ten runs.

The contour plot on the right allows to track the recommendations µp

issued during training. According markers locate µp’s parameter recom-
mendations during the course of training; their colour-code represents
the order of appearance. In order to validate the optimality of the rec-
ommendations after 150 training epochs, the objective function q(p)|gt1

of gt1 is separately sampled and plotted, analogous to Figure 5.9. Note
that these samples are by no means involved in algorithm training but
serve only for illustration of the training progress from an ‘omniscient’
perspective.

Figure 5.18: Contour plot of the objective function q(p) (contour plot) for an exemplary
training geometry gt1. Markers visualise µp’s parameter recommendations
during training; the line plot allows for convergence assessment of the pro-
cess response q. After an initial scatter, µp’s recommendations close in on the
process optimum. Accordingly, the objective function decreases and implies
successful optimisation behaviour [104].
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The plots reveal a successful optimisation: The convergence plot (left)
shows some fluctuation around q|gt1 ≈ 5.2×10−2 mm−1 at the beginning
(60 6 i 6 80). Then it decreases by ≈ 13 % within 30 iterations (80 6 i 6
110) to an approximately constant value of q|gt1 ≈ 4.5×10−2 mm−1. In
the contour plot (right), the initial markers (blackish) scatter significantly
throughout the whole domain but begin to close in on the optimum (or-
ange to white hue). Analogous results are obtained for the other training
geometries. That is, during the course of training, µp successfully learns
to give near-optimal recommendations for its training geometries.

Learning progress on validation geometries. Having shown that
µp’s recommendations successfully converge to the optimum for train-
ing geometries (Figure 5.18), its behaviour on ‘unknown’ validation ge-
ometries needs analysis. Figure 5.19 presents analogous convergence
diagrams and contour plots for three exemplary validation geometries
gv1...3. Note that µp is only evaluated for gv1...3 but has never seen them
during training. Simulations on gv1...3 enter at no point the process
memory M. Therefore the geometries are always new to µp during eval-
uation.

The overall behaviour resembles the previous plots (Figure 5.18). The
convergence plot displays an initial wavering before declining. Likewise
the markers appear randomly distributed at the beginning (black hue)
before contracting near the optima. However, two remarkable differences
can be observed: First, though the markers approach the minimum, they
do not exactly pinpoint it. More specifically, the estimated optimum lies
top right of the true optimum in sub-image a) and bottom left in b) and
c). Second, the initial fluctuations take a little longer (60 ≤ i . 100)
compared to the training geometries (60 ≤ i . 80, cf. Figure 5.18). This
indicates that µp takes more epochs to collect observations with sufficient
information for generalisation to the (unknown) validation geometries
than for the (known) training geometries.
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5 Process optimisation of variable geometries

Figure 5.19: Contour plots of the objective function ‘(′p) (contour plot) for three exemplary
validation geometries gv1...3 analogous to Figure 5.18 [104].
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5.2 Validation of RL for process optimisation

Bearing in mind the difference between training and validation geome-
tries, the differences are well explicable: The geometry gt1 is part of the
training geometries and during training µp directly explores the accord-
ing objective function q|gt1 . Consequently, evaluating µp on gt1 amounts
just to ‘recalling’ information from previous process samples.

The opposite holds for the validation geometries gv1...3, though: They
are not part of the training geometries. Consequently, their objective
functions q|gv1...3 are unknown to µp during evaluation and µp must in-
fer optimal parameters on the basis of prior training observations. Such
inference of course introduces certain deviations, yet they appear accept-
able as the process recommendations (markers) lie in close proximity of
the actual optimum.

Overall, the results show that µp is principally capable of extracting
process-geometry-knowledge from the supplied training geometries and
transferring it to unknown (validation) geometries.

Transferability to new geometry classes. The above results show that
µp can extract useful process-geometry-relations from training geome-
tries and apply these relations to new, unknown samples from the same
geometry class – in this work box-geometries. This result leads to the
follow-up question, whether or not µp can also give useful recommen-
dations on geometries outside the class of training geometries.

To this end, a sequence of five different geometries is considered as visu-
alised in the gallery in Figure 5.20. Starting off with a rather compact
geometry g̃1, the geometries gradually stretch in y-direction in steps
of 20 mm while their ends morph from conical to spherical. The first
three geometries also flatten in z-direction from zmax(g̃1) = 80 mm to
zmax(g̃3) = 60 mm in two steps of 10 mm. Eventually, they yield the
double-dome geometry g̃5 = gdd. Figure 5.21 b) sketches their contour
lines for reference.
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5 Process optimisation of variable geometries

Figure 5.20: Visualisation of five test geometries g̃1...5 outside the class of training geome-
tries (boxes). Starting from a rather compact, rotational-symmetric geometry
they gradually morph into the double-dome [104].

The geometries g̃1...3 are rotational-symmetric about the y-axis, while g̃4,5
feature a trapezoidal cross-section in the middle. The trapezoid contracts
from g̃4 to g̃5, which creates the well-known concave indentation of the
double-dome in the centre. Note that – despite some similarity – the box
geometry-scheme (Figure 5.6) can reproduce neither of these geometries.
Also note that g̃1...5 are all near-convex and thus show a qualitatively
similar forming behaviour as the training box-geometries.

Figure 5.21 summarises the results when evaluating µp on g̃1...5. Specifi-
cally, sub-image a) displays the parameter recommendations of µp for
each geometry (yellow markers). For the two limit-cases g̃1,5 a full-
factorial sampling has been performed and allows to compare µp’s rec-
ommendations p̂∗ to the true optimum p∗ (sub-plots c) and d)).

The yellow markers in sub-image a) show that µp’s parameter recom-
mendations follow the sense of the geometry change: Some wavering
aside, the markers relocate in x- and y-direction as the geometries con-
tract in x and stretch in y. These reactions of µp to geometry changes
appear plausible: When the geometry stretches in y-direction, the main
deformation zone relocates and the pads follow this relocation.

On top of this brief sanity check, a more rigorous inspection of the rec-
ommendations is desirable. To this end, sub-images b) and c) show a
contour plot of the objective functions (q|g̃1,5 of g̃1 and g̃5) respectively,
from a full-factorial sampling. For readability and comparability, both
objective functions are normalised according to
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Figure 5.21: a) Visualisation of µp’s parameter recommendations p̂∗ for the five test ge-
ometries g̃1...5, b) g̃1...5’s contour lines for comparison of height and length.
Sub-plot c) and d) show µp’s recommendations for the limit geometries g̃1,5.
A blue marker shows the true optimum p∗, a yellow marker µp’s parameter
recommendation p̂∗ after training on boxes. [104].
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qrel =
q− qmin

qmax − qmin
· 100 %. (5.13)

Consequently, qrel = q∗rel = 0 % implies the process optimum. For com-
pleteness, Table 5.1 summarises the values for qmin,max.

Table 5.1: Minimal and maximual values for qmin,max for g̃1 and g̃5, respectivly.

Geometry
qmin qmax

mm−1 × 100

g̃1 2.81 3.42
g̃5 2.39 2.80

The ochre-shaded areas mark the bounding box of the geometries; the
dashed lines localise their plan view contour. The yellow markers locate
µp’s parameter recommendation; a blue marker the actual optimum of
the objective function observed during the full-factorial sampling.

A perfect recommendation would mean that the blue and the yellow
marker coincide, i.e. the recommendation matches perfectly well the true
optimum. And indeed, an inspection of the contour plots shows that the
markers lie in proximity to the actual optimum. An overestimation of
≈ 18 % (g̃1) and ≈ 13 % (g̃5) relative to the parameter range [25,200] mm
is observed, though. They are still deemed acceptable bearing in mind
that the geometries differ from the training geometries, e.g. regarding
corner curvature. For g̃1 it must also be noted that the minimum and
µp’s recommendation both lie in a plateau-region with approximately
equal quality qrel.

Overall, µp’s recommendations are deemed useful suggestions even for
geometries outside the training geometry-class of boxes. Since it was
only trained on box-geometries, it may be concluded that the employed
RL-based approach has successfully extracted tacit process-knowledge
from process-samples and is able to apply it to new situations. This
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5.2 Validation of RL for process optimisation

applicability across geometries significantly enhances current surrogate
capabilities, which are typically geometry-specific ‘one-off’ models.

Component-specific refinement. Although the parameter estimations
of µp yield an acceptable approximation of the true optimum p∗ (Fig-
ure 5.21), some deviations remain. This resembles classical SBO, where
the initial optimisation on the surrogate p∗srg also deviates from the true
optimum p∗. In SBO, additional refinement iterations sequentially elim-
inate these deviations in order to converge the surrogate optimum to the
actual optimum, i.e. p∗, i

srg → p∗ for i→ ∞.

Likewise, this paragraph studies, whether or not µp’s recommendations
converge to the actual optimum p∗ upon component-specific refinement.
That is, after the above presented, initial training on generic boxes, µp

interacts now only with geometry g̃1 or g̃5, respectively. Thereby µp can
refine on these specific geometries.

Figure 5.22 shows the results in the same manner as before: A contour
plot presents µp’s recommendations by markers. Their hue represents
their order of appearance. The contour plots are complemented by a de-
tail view for closer inspection. Additionally, a blue and a yellow marker
illustrate the actual optimum from full-factorial sampling and µp’s orig-
inal estimation. Again the two example geometries g̃1 (sub-plot a) ) and
g̃5 (sub-plot b) ) from Figure 5.21 are considered. On each of these, µp

refines for thirty iterations in separate training runs.

The plots reveal a disparate refinement behaviour. For geometry g̃1 (sub-
plot a) ), the refined markers appear somewhat incoherently scattered
around the initial recommendation with light tendency to the top left. In
contrast, for g̃5 (double-dome, subplot b) ) the markers do accumulate
and show a coherent evolution: At first, the markers move to the top
left but, as this deteriorates the results, they reverse and gradually move
down before concentrating near the minimum.
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5 Process optimisation of variable geometries

Figure 5.22: Visualisation of µp’s parameter recommendations p̂∗ for the two limit geome-
tries g̃1,5 during component-specific continuation of the training by colour-
coded markers. Additionally, blue markers show the true optimum p∗ and
yellow markers denote µp’s initial parameter recommendation p̂∗ immedi-
ately after training on boxes.
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These observations can be explained when examining the objective func-
tion. Owing to its conical and rotational symmetric shape, the optimum
pad position for g̃1 is not just a point but a plateau of approximately
equal forming response. Thus, identifying a gradient for an improved
pad position is difficult and the recommendations (markers) appear er-
ratic. For g̃5 however, a distinct optimum is observable and – after few
iterations for ‘orientation’ – the markers move in direction of improved
part quality. For some reason however, they only approach but do not
reach the observed optimum (blue marker). This may be due to numeri-
cal noise when evaluating the forming simulation.

Ultimately, Figure 5.23 quantifies the optimisation progress. For both
geometries, it shows qrel over the refinement epochs.

Figure 5.23: Plot of the evolution of the objective function q during component-specific
training continuation on a) g̃1 and b) g̃5 for irfn = 30 refinement iterations.

The diagrams support the above line of thought: Sub-image a) shows
that the forming quality qrel stays practically constant for g̃1 through
all refinement iterations, while it improves (declines) for g̃5 after correc-
tion of an initial peak. Overall, the results indicate that – like a regular
surrogate – µp can indeed refine its initial recommendations with new
evidence.
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5.3 Comparison of optimisation methods

Ultimately, the three optimisation approaches – direct optimisation (GA),
SBO and the RL – can be compared to each other. Each method is applied
to the geometries g̃1 and g̃5 for inspection of the optimisation behaviour.

To this end, Figures 5.24 and 5.26 visualise the optimisation progress
on geometry g̃1 and g̃5 for each optimisation approach. Specifically,
sub-image a) visualises the results for the GA, b) for the SBO-reference
method (Chapter 3) and c) for the RL-based approach. Their layout fol-
lows Figures 5.18–5.19 and shows a contour plot of the objective function
and its evolution during optimisation. Note that the RL-results are iden-
tical to Figures 5.22–5.23. They are just added for ease of comparability.
Also note that each optimisation approach employs different numbers of
optimisation iterations: While the GA is set to terminate after 300 simu-
lations (15 generations with 20 individuals each), SBO and RL employ 30
(refinement) simulations. However, SBO requires a component-specific
sampling (LHS), which accounts for additional 20 a-priori simulations.
Being pre-trained on generic boxes, RL needs no further sampling and
can directly start iterating for refinement. Although this pre-training in-
volves considerable numerical efforts, the direct applicability to multiple
geometries may outweigh pre-training expenses in the long term.

Optimisation performance on g̃1. All plots in Figure 5.24 show a suc-
cessful optimisation behaviour and approach the minimum of the objec-
tive function (qrel = 0 %). However, they do so in different manners: The
GA in sub-image a) approaches it in a step-wise manner, while SBO and
RL appear continuous. These steps of the GA form every 20 simulations
since the GA evaluates generations of individuals. The graph shows the
best found solution in each generation. The 19 remaining, non-dominant
solutions per generation are omitted.

Note that – unlike SBO and RL – the graph of the GA is overall decreas-
ing with some parts of constant qrel, e.g. 100 6 i 6 160. This behaviour
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reflects the ‘elitist’-setting of the algorithm. That is, for prevention of a
potential quality-loss, the best found solution from the previous gener-
ation is (unaltered) carried over to the next generation. If a generation
does not offer an improved solution, the carry-over solution dominates
the population. In this case, qrel stays constant and the convergence plot
shows just a plain horizontal line. Note that – for readability – in the
contour plot only the best solution per generation is plotted, i.e. in total
15 markers for 15 generations. Also note that the carry-over solutions co-
incide and overlay each other in the plot, which makes only seven from
fifteen markers visible.

Although all optimisation approaches keep improving the solution over
the iterations, the gain during additional optimisation iterations is lim-
ited as the first solutions are already near-optimal (qrel ≈ 1...5 %). Thus,
they offer little room for improvement with further iterations. This phe-
nomenon can be explained by inspection of the contour plot and the
markers: Since the optimum is not a sharp point but a comparably large
plateau, the optimisers are likely to find and exploit it at the first attempt.
Only SBO places few samples outside the optimal plateau, presumably
due to false minima (local underestimations from missing samples). In-
terestingly, SBO additionally shows notable scatter around the plateau,
while RL is able to concentrate its recommendations. Although this has
little effect on the value of qrel, this hints a more stable learning progress
of the RL.

For a direct comparison, Figure 5.25 plots the evolution of qrel for each
optimiser in one diagram along with a detail view for closer inspection
(grey shade). Besides the sheer sequence of qrel (thin dashed line), the
plots also show their lower envelope (bold solid line). Essentially, it gives
for each iteration the ‘so-far-best’ solution and visualises, how fast each
method reduces the objective function.

All graphs show a decline of the objective function, albeit with limited
gain. The RL-approach finds its best solution in iteration i = 4, SBO in
iteration i = 42 followed by a marginal improvement in i = 50. The GA
takes 180 simulations to find its best value. It also finds the overall-best
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5.3 Comparison of optimisation methods

Figure 5.25: Juxtaposition of the objective function qrel on g̃5 for the genetic algorithm (GA),
SBO (Chapter 3) and the RL-approach. The plots of GA and SBO are offset and
account for the number of simulations until a first iteration takes place.

value (qrel = 0.2 %), while both RL and SBO (qrel ≈ 0.8 %) remain slightly
inferior (qrel ≈ 0.8 %). It may be noted however, that RL and SBO require
far fewer iterations to reach their final value, i.e. converge faster.

In order to quantify the speed of convergence of optimisers, a measure
is required. This usually involves measuring how many iterations are
needed until a critical point with vanishing gradient is obtained. When
a computation-intensive function and limited numerical resources are
considered, the quality of the ultimate solution becomes less important
and algorithms that early provide acceptable solutions become more rel-
evant [271]. This shifts the focus to the initial behaviour and how long
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an algorithm takes to find an acceptable solution. For this reason, the
convergence metric C is introduced:

C =
imax

∑
i=0

(qreli − q∗rel) =
imax

∑
i=0

(qreli − 0)

=
imax

∑
i=0

qreli . (5.14)

Essentially, it measures the area under the envelope curve like an inte-
gral. Due to the integer-abscissa (iterations), the integral simplifies to
a sum. A smaller value of C implies better convergence. If an algo-
rithm finds a good solution early on, the following summands and thus
C becomes smaller. This reflects the desired behaviour of an optimisa-
tion procedure of an expensive function, namely a rapid minimisation
with as few function evaluations as possible. In order to apply Equa-
tion (5.14), imax needs to be defined. It is set such that all algorithms
must have reached a certain quality qref

rel , i.e.. qrel ≤ qref
rel must hold. For

g̃1, qref
rel = 0.5 % is chosen. Table 5.2 summarises the values. For SBO two

different scenarios are considered, one with consideration of the sam-
pling effort (asterisked) and one without. The sampling effort itself is
quantified by the product of sample size and the best quality observed
during sampling.

For the remaining discussion, please note that all compared optimisa-
tion methods – GA, SBO and RL – are non-deterministic and involve
elements of randomness. Thus, re-running them on the problem may
lead to slightly different results of C. Ideally, each method needs to run
several times to allow for a stochastic analysis which was however com-
putation wise impossible. Thus, the results may be interpreted as general
trends rather than a quantitative performance discrimination to the last
digit.

The results quantify what Figure 5.25 already graphically implied: The
GA converges slowest, while SBO and RL range in the same order of
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Table 5.2: Convergence comparison according to the convergence metric C for g̃1.

Optimiser GA SBO SBO* RL
imax 180 22 42 4
C 4.39 0.79 1.83 0.31

magnitude when neglecting the sampling effort. When the sampling ef-
fort is considered, SBO positions itself between RL and GA. The true
value presumably lies between the two values: Since sampling is done
according to a sampling plan, it can be perfectly parallelised if sufficient
computational resources are available, which in turn cuts the computa-
tion time.

Optimisation performance on g̃5. In a similar fashion, Figure 5.26
shows plots for each optimiser on g̃5 (double-dome). Unlike before how-
ever, the problem structure proves much more complex: It is no longer
convex but shows two connected, local maxima which divide the objec-
tive function into plateaus of approximately constant, mediocre quality
(qrel ≈ 40 %). These plateaus take up most of the parameter space. The
optimum (qrel = 0 %) falls into a comparably small region and is sur-
rounded by the maxima in a funnel-like shape. This poses two main chal-
lenges: First, the optimisers must not lock-in in one of these mediocre
plateaus and, second, must successfully overcome the ridge between the
maxima in order to descend into the funnel.

The overall behaviour of the algorithms stays the same as before: A suc-
cessful optimisation can be observed. However, this time a notable effect
of additional iterations is observed. Due to the majority of mediocre pro-
cess responses (plateaus), all methods start with qrel ≈ 40 . . . 50 % in their
first iteration, but then the progresses differ. The markers in sub-image
a) show that in the first generation of the GA the best (elitist) individual
lies in the plateau region. In the next generation however, the population
has changed and the best individual is now located in the funnel. From
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then on all markers gradually descend to the minimum, while a substan-
tial improvement occurs in the fifth generation (80 < i ≤ 100) when qrel
drops from ≈ 24 % to ≈ 8 %.

The SBO approach in sub-image b) looks different. It shows significant
initial scatter (20 6 i . 30) before eventually closing in on the optimum.
The initial scatter presumably stem from elimination of the false minima
(quasi exploration) and for i & 30 the optimiser reproducibly runs into
the minimum (exploitation) with only minimal scatter. The RL-based ap-
proach has been discussed above, see Figure 5.22 and the neighbouring
paragraphs for details.

Ultimately, Figure 5.27 plots again the optimisation progress for each
optimiser in a single plot for g̃5. Overall, the plot resembles the pre-
vious: The graphs decline in a monotonous manner to the minimum
(qrel = 0 %) and RL and SBO outperform the GA. However, this time
all graphs show a substantial improvement of the objective function qrel
during optimisation.

All optimisers find a solution within a 5 %-range around the optimum,
while SBO approach finds the overall best-solution with (qrel ≈ 2 %)
within i = 32 (with sampling) or i = 32− 20 = 12 iterations (without
sampling), respectively. To determine the convergence factor C, the al-
gorithms must reach a minimal quality of qrel = 5 %. The GA reaches
this goal after 160 simulations, SBO after 32 and RL after 18 iterations.
Table 5.3 summarises the resulting values for C.

Table 5.3: Convergence comparison according to the convergence metric C for g̃5.

Optimiser GA SBO SBO* RL
imax 160 12 32 19
C 37.13 3.84 13.50 4.02

Again, Table 5.3 corroborates the findings of Figure 5.27. SBO and RL
perform equally well, when neglecting the sampling effort. If sampling

170



5.3 Comparison of optimisation methods

Fi
gu

re
5.

26
:C

on
ve

rg
en

ce
be

ha
vi

ou
r

on
g̃ 5

fo
r

a)
a

ge
ne

ti
c

al
go

ri
th

m
(G

A
),

b)
SB

O
(C

ha
pt

er
3)

an
d

c)
th

e
R

L-
ap

pr
oa

ch
.M

ar
ke

rs
re

pr
es

en
tt

he
tr

ie
d

ca
nd

id
at

e
so

lu
ti

on
s

of
ea

ch
op

ti
m

is
er

(t
op

);
th

e
lin

e
pl

ot
vi

su
al

is
es

th
e

ev
ol

ut
io

n
of

th
e

no
rm

al
is

ed
ob

je
ct

iv
e

fu
nc

ti
on

q r
el

(b
ot

to
m

).

171



5 Process optimisation of variable geometries

Figure 5.27: Juxtaposition of the objective function qrel on g̃5 for the genetic algorithm (GA),
SBO (Chapter 3) and the RL-approach. The plots of GA and SBO are offset and
account for the number of simulations until a first iteration takes place.

must be considered, e.g. due to limited computational resources, RL be-
comes superior and SBO positions itself between GA and RL.

The advantage of the pre-trained RL-model, becomes even more evident
when optimising multiple geometries: Suppose, both geometries g̃1 and
g̃5 need to be manufactured and their processes optimised. Optimising
both geometries with SBO requires in total ig̃1

max + ig̃5
max = 42 + 32 = 74

simulations, whereof 20 sampling simulations are necessary for each ge-
ometry, i.e. 40 simulations in total for the two geometries considered
here. In contrast, the RL-model can do without component-specific sam-
pling due to its pre-training on boxes and takes only ig̃1

max + ig̃5
max =

4 + 19 = 23 simulations. Although the exact numbers will certainly
vary in different applications, the non-necessity of the a-priori sampling
substantially cuts the computational effort. Note however, that this de-
ployment advantage comes at the cost of substantial pre-training effort.

5.4 Intermediate summary

This chapter presents an approach for estimation of optimal process pa-
rameters for textile forming of variable component geometries. It ex-
tends the grid-based approach for formability estimation and accepts
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the strain field estimation (image) as input and yields an estimation of
optimal parameters. Unlike the formability assessment, however, the
algorithm is trained by Reinforcement Learning (RL) instead of super-
vised learning. During training, the algorithm interacts with a respon-
sive forming-simulation and a set of training geometries. More specif-
ically, for each geometry it infers a process parameter recommendation
and starts an according forming simulation. If the recommendation im-
proves the forming result, the algorithm is rewarded and will give sim-
ilar recommendations in the future. Otherwise it is penalised. The pro-
cess iterates for a predefined number of epochs.

Training of the algorithm is done using actor-critic-techniques and com-
prises two networks: The desired actor-network µp and an auxiliary
critic-network. During the training, the actor-network µp gives process
recommendations and the critic-network in turn informs the actor how
to improve.

The algorithm is applied to an exemplary forming process of doubly-
symmetric box-geometries and can be manipulated by freely position-
able pressure pads. The part quality is measured by the local fabric
curvature as a measure of wrinkling tendencies. At first, an extensive
hyperparameter study is performed to maximise training efficiency. It
revealed two aspects: First, data augmentation can be used to improve
training performance. Second, a finite number of training geometries
introduces sufficient information to µp to give useful parameter estima-
tions for geometries inside and – to a certain degree – outside the class
of training geometries.

After a (pre-)training on box-geometries, µp is deployed on five non-
box geometries. Its recommendations are found to follow the geometry
changes in a plausible way. Two limit cases are selected for further as-
sessment of their optimality. To this end, µp’s recommendations are com-
pared to a full-factorial sampling. The results show that they are indeed
near-optimal. Component-specific refinement iterations are additionally
applied to converge µp’s recommendations to the true optimum like in
regular SBO.
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Ultimately, this chapter concludes with a performance comparison of the
newly developed RL approach, a classical genetic algorithm (GA) and
surrogate-based optimisation (SBO). Again the previous two geometries
are considered. The results hint that RL and SBO outperform the GA
and show a similar convergence during refinement iterations. However,
SBO needs a component-specific a-priori sampling while the RL-based
method is pre-trained and can directly start refining. Thus, µp speeds up
the optimisation process similar to a classical surrogate but beneficially
cuts the component-specific sampling effort. However, this comes at the
cost of substantial numerical efforts for algorithm pre-training.

In summary, the overall results of this chapter show that it is possible to
extract usable part-process-relations from generic samples. The obtained
relations can then be applied to a new geometry and give a meaningful
initial recommendation. The results further hint that µp converges to the
true optimum at roughly the same speed as a regular surrogate.
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6.1 Summary

Modern manufacturing processes generally require a careful adjustment
of process parameters to achieve maximum part quality. To cut the cost
of experimental production trials, physics-based process simulations are
increasingly applied as they allow for detailed analyses of the process
dynamics at early development stages before procurement of equipment
and material. Owing to their digital nature, they can beneficially be
coupled with optimisation algorithms for performance maximisation.
However, despite considerable process improvements being observed,
the computational load for algorithmic optimisation still poses a sub-
stantial barrier in practice.

An option to reduce the computational load during process optimisa-
tion is surrogate-based optimisation (SBO). SBO employs time-efficient,
phenomenological models (surrogates) to guide the optimisation proce-
dure and concentrates costly simulations on the most promising regions.
While this generally accelerates the optimisation, classical SBO still
proves inflexible and cumbersome when the optimisation task varies,
e.g. due to recurring design adaptions for customisation. Recent ad-
vances in Machine Learning (ML) – especially neural networks (NN) –
show promise to enhance SBO-capabilities towards flexible optimisation
tasks. This is mainly for two reasons: First, they are able to handle and
learn form large amounts of high-dimensional data and, second, they
can be tailored so as to take advantage from certain, potentially more
informative data structures, e.g. images.
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This work explores the potential of ML-techniques as a prospective tool
for efficient process engineering and focusses on three main aspects:
1) Their applicability as classical surrogate for SBO (Chapter 3), 2) the
potential of structured input data (images) for manufacturability assess-
ment of variable geometries (Chapter 4) and 3) their suitability as an
advisory tool for process optimisation of variable components (Chap-
ter 5). These aspects apply in principle to any manufacturing process
but are exemplarily studied at the example of textile forming.

Applicability as classical surrogates. Chapter 3 examines the use of
deep neural networks as surrogate models for virtual process optimisa-
tion. The considered use-case is gripper-assisted fabric forming. Differ-
ent NN-types are compared regarding their predictive quality. The best
prediction performance is achieved using a deep NN which predicts the
full strain field instead of just a single performance scalar. This hints
that the full-field resolution facilitates learning, especially when multi-
ple critical regions impact on the overall part quality: Compressing this
information into a single performance scalar removes informativeness.
A spatial resolution is found to help allocate the quality gains or losses
to specific regions, retains sensitivity information and overall facilitates
learning.

The network is further integrated into an SBO-framework to study the
suitability and convergence behaviour during optimisation. Four SBO-
configurations with different exploration-exploitation emphasis are in-
vestigated. In each case, the developed SBO-framework successfully re-
duces the objective function, while best performance is observed for an
exploitation-emphasised variant. Also, each SBO-variant outperformed
a state-of-the-art genetic algorithm (GA) in terms of efficiency. Overall,
the results show that deep neural networks are a viable option for SBO.
The developed NN-based SBO-framework is later on used as a reference
for optimisation of variable geometries.
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Surrogate-based formability assessment. Chapter 4 develops and
assesses options for surrogate-assisted formability assessment of variable
geometries. Two overarching approaches are compared: a feature-based
and a grid-based approach.

The feature-based approach scans a component for (potentially critical)
features from a predefined geometry-scheme. It then assigns each recog-
nised feature a set of geometry parameters and a pre-trained surrogate
model then evaluates them for the expected forming quality, e.g. max-
imum shear strain. The approach is exemplarily applied to a complex
box-geometry with rounded corners and is found to well-reproduce the
results of physics-based simulations while being numerically inexpen-
sive. Thus, the surrogate may be used to explore many geometry alterna-
tives in an intuitive manner without need for laborious and computation-
intensive FE-simulations.

In contrast, the grid-based discards distinct geometry parameters but en-
codes the geometry – and also the forming result (strain field) – in an
image. A convolutional neural network (CNN), a sub-type of NN for
image-processing, then learns the part-process-relation from supplied
simulation samples. As the geometry description is not confined to a
preselected set of geometry parameters, the grid-approach proves more
versatile and can principally process any undercut-free geometry. The re-
sults show that the trained CNN gives sound estimations not only within
the class of training geometries but also for new geometries outside this
class. However, at the same time the importance of an appropriate train-
ing database becomes apparent: It can only make valid predictions for
geometry characteristics covered during training. If process-relevant as-
pects, e.g. concave indentations, are not covered during training, the al-
gorithm remains unaware of their process effects.

Process optimisation for variable geometries. Chapter 5 uses rein-
forcement learning (RL) to train an NN that estimates optimal process
parameters for a given geometry. The algorithm builds on the grid-based
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CNN presented in Chapter 4: It accepts a strain field estimation as in-
put (image) and yields a set of process parameters as output. During
training, the algorithm is repeatedly presented (generic) geometries and
issues for each geometry a parameter recommendation. If they prove
useful in according process simulations, the algorithm is rewarded and
penalised otherwise. It thereby learns which geometry features require
which parameters. The approach is again applied to an example from
fabric forming and optimises the position of restraining forces from pres-
sure pads (blank holders).

Although being trained on generic geometries only, the algorithm is
found to give useful recommendations also for non-generic geometries.
This implies that the proposed RL-approach is capable of extracting pro-
cess ‘knowledge’ from a finite set of process samples and can apply it
in a new situation. Further investigations show that its initial (near-
optimal) recommendations do converge to the true process optimum
upon component-specific continuation of training. In the studied exam-
ples, the speed of convergence is approximately equal to a classical SBO.
Unlike classical SBO however, the RL-algorithm needs no a-priori sam-
pling for new geometries due to its pre-training on generic geometries.
Thus, once (pre-)trained, it is more efficient, although it must be noted
that the computational effort for the initial pre-training may be consid-
erable. However, the benefits of an immediate process recommendation
and rapid convergence to the optimum may outweigh initial expenses in
the long term.
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6.2 Answers to research hypotheses

The results can be used to answer the initial research hypotheses formu-
lated in Chapter 1:

Hypothesis 1. It is possible with ML-methods to extract process knowl-
edge from generic part-process-samples and apply it to a new geometry.

Answer: Validated.
The results show that a finite set of generic part-process-samples con-
tains – within certain limits – sufficient information for generalisation to
a new, non-generic use-case. With growing complexity of part and/or
process, this number may however become significantly large. The re-
sults further show that (grid-)structured input variables like images pro-
vide a substantially larger expressiveness for a geometry encoding than
unstructured input variables like (scalar) geometry parameters. The in-
evitable increase in data dimensionality can be compensated for by re-
cent ML-techniques, e.g. convolutional neural networks.

Hypothesis 2. Once, trained, such an ML-model speeds up the optimi-
sation similar to a classical surrogate.

Answer: Validated.
In the studied examples, the classical surrogate-based optimisation (SBO)
and the developed RL-based method both show roughly the same con-
vergence speed during optimisation. However, when taking the a-priori
sampling effort into account, the RL-method gradually takes the lead:
Being pre-trained on generic geometries it does not need an a-priori
sampling and can directly start optimising. In contrast, SBO requires an
initial sampling for each new geometry. This advantage comes however
at the expense of (significantly) increased pre-training efforts.

179



6 Summary and outlook

6.3 Outlook

Further research is still envisaged and can be divided into three main
areas of research, namely

1) application and evaluation in real-world scenarios,

2) inclusion of known physics into the surrogates,

3) usage of more versatile ML-architectures

and will be outlined one by one in the following.

Application. The results obtained in this work exemplify the use of
ML-techniques in the context of manufacturing process optimisation at
a simplified example from textile forming. Having outlined their princi-
pal potential, the techniques need yet to be advanced to more complex
and application-centred use-cases for use in industrial practice. Regard-
ing textile-forming, this means the integration of more complex process
scenarios, i.e. additional process parameters and variable material prop-
erties or orientations. The results have also shown that the generalisation
capabilities depend substantially on the underlying training catalogue
of geometry characteristics, e.g. convex/concave, (a-)symmetry or non-,
singly- or doubly-curved. However, at the moment it is unclear how to
define a comprehensive sampling plan for them.

Besides additional process parameters also their variation over time may
be addressed. This work assumes constant process parameters during
tool stroke. However, some process technologies may require parameter
variations over time. For instance, consider in-situ adaptions of the tool
closing speed to avoid defects from excessive or uneven cavity pressures.
In such cases, the process passes through a whole sequence of states
(pressure distributions) and according actions (increase/decrease speed).
Such adaptive processes can also be solved by RL and may be addressed
in the future.
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In the wider sense, the developed methods can also be transferred to
other processes inside and outside composite manufacturing. The ex-
periences from this work hints processes with recurrent characteristics
most promising. For instance, consider additive manufacturing by fused
filament fabrication: The distribution of surrounding material, its tem-
perature field and heat transfer conditions will certainly affect the opti-
mal deposition parameters for e.g. optimal filament adhesion. Encoding
them in a grid-structure around the deposition point may enable an ML-
algorithm to learn optimal deposition parameters given the local process
situation. Since the governing process dynamics (melting, deposition,
cooling) are mainly local effects, algorithm training may be easier and it
would presumably be applicable to any printed geometry.

Ultimately, the results also show that (pre-)training and deployment can
be decoupled to a certain extent. That is, the computation- and know-
how-intensive (pre-)training could be centralised, while a potential user
‘only’ evaluates the algorithm at comparably low numerical cost – a pos-
sible business case in the long term for software manufacturers. Leaving
aside issues of data security, such a centralised system could also use
user requests for algorithm refinement similar to internet search engines
refine their results based on user interaction.

Inclusion of known physics. Data-driven methods learn the dynamics
of a system from (sufficiently many) observations. However, especially
in engineering applications, comprehensive knowledge on the govern-
ing physics is at hand, such as conservation of energy, momentum and
mass. Integrating this knowledge into the training progress, this could
reduce the required amount of data, speed up the training and make
ML-predictions more physically consistent.

So called physics-informed neural networks (PINNs) pursue exactly this
concept. First introduced 2019 by Raissi et al. [272], they do not just min-
imise the error between ML-predictions and observations but between
ML-predictions and an underlying constitutive equation . In extreme,
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PINNs can do without observations and just minimise the error with
respect to a constitutive equation. They thereby essentially become a
solver for PDEs. Unlike classical numerical methods however, they can
cope with variable boundary conditions: If appropriately trained on a
multitude of boundary conditions, they can be evaluated for a new sit-
uation and will provide a physically-consistent solution. From a user
perspective, it feels like an analytical solution.

First applications to composite processing - specifically curing – show
comparable accuracy compared to classical numerical methods [273].
However, for lack of efficient preprocessing tools, applying PINNs cur-
rently involves substantial amounts of manual work and restricts them
to comparably simple scenarios. Especially, the appropriate configura-
tion of the loss function such that it correctly accounts for the PDE, initial
and boundary conditions and the solution domain is currently a signif-
icant barrier. Once these issues are resolved, PINNs provide substantial
promise for process engineering.

Usage of more versatile ML-architectures. Although the presented
CNNs are a new ML-tool in engineering, they are not the latest state
of the art in ML-research. The CNNs in this work use an equidistant,
rectangular grid-domain (image) as input. While this is sufficient for
this work, it appears somewhat restrictive in the long term. So called
graph neural networks may offer a more versatile alternative.

In general, a graph is defined as a set of nodes and connecting edges.
Both, nodes and edges can have (engineering) attributes, e.g. material
properties, current temperature or stress/strain state. Overall, such a
graph can be thought of as an information-enriched and more flexible
grid compared to an image. Dedicated graph neural networks (GNN)
can then learn information that resides in the nodes and their connectiv-
ity (edges).

In a recent publication Sanchez-Gonzalez et al. [274] present particle-
based fluid simulation based on GNNs that reproduces remarkably well
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simulation results in real-time. First adaptions to process engineering
(injection moulding) have been done [275]1. Although the techniques are
still in their infancy, the approach’s principal versatility presages great
potential for generalisation to arbitrary geometries – especially when
combined with PINNs.

1Bachelor Thesis at the Institute for Program Structures and Data Organization (KIT-
IPD) at Department of Informatics in cooperation with Nils Meyer and Louis Schreyer from
KIT-FAST.
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A Appendix

A.1 Definition of the CNN error metrics

The accuracy and correlation metrics for the grid-based estimation of a
shear strain field (cf. graphs in Figure 4.27) are defined as follows:

Accuracy metrics

εval = MSE(γ̂12 − γ12) = mean(γ̂12 j − γ12 j)
2

∆γmax
12 = |γ̂max

12 − γmax
12 | = |max(γ̂12)−max(γ12)|

∆max(γ12) = max(|γ̂12 − γ12|)

Correlation metrics [263, p 585]

cd = 1−
∑j(γ12j − γ̂12j)

2

∑j
(
γ12j −mean(γ12j)

) (A.1)

rp =
∑j
[(
γ̂12j −mean(γ̂12j)

)(
γ12j −mean(γ12j)

)]√
∑j
[(
γ̂12j −mean(γ̂12j)

)2
√

∑j
[(
γ12j −mean(γ12j)

)2
(A.2)

Therein, j denotes the j-th grid-pixel in the strain field (greyscale image).
A hat superscript (γ̂) denotes an estimation by the CNN µf; otherwise
a simulation result is implied (ground truth). In Figure 4.27 a) and b),
the metrics are separately computed for nV validation geometries their
average and 95 %-percentiles are plotted.
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