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When developping selective crystallization or precipitation processes,

biopharmaceutical modalities require empirical screenings and analytics

tailored to the specific needs of the target molecule. The multi-way

chemometric approach called parallel factor analysis (PARAFAC) coupled

with ultraviolet visible light (UV/Vis) spectroscopy is able to predict specific

concentrations and spectra from highly structured data sets without the need

for calibration samples and reference analytics. These calculated models can

provide exploratory information on pure species spectra and concentrations in

all analyzed samples by representing one model component with one species.

In this work, protein mixtures, monoclonal antibodies, and virus-like particles in

chemically defined and complex solutions were investigated in three high-

throughput crystallization or precipitation screenings with the aim to construct

one PARAFAC model per case. Spectroscopic data sets of samples after the

selective crystallization or precipitation, washing, and redissolution were

recorded and arranged into a four-dimensional data set per case study.

Different reference analytics and pure species spectra served as validation.

Appropriate spectral preprocessing parameters were found for all case studies

allowing even the application of this approach to the third case study in which

quantitative concentration analytics are missing. Regardless of the modality or

the number of species present in complex solutions, all models were able to

estimate the specific concentration and find the optimal process condition

regarding yield and product purity. It was shown that in complex solutions,

species demonstrating similar phase behavior can be clustered as one

component and described in the model. PARAFAC as a calibration-free

approach coupled with UV/Vis spectroscopy provides a fast overview of

species present in complex solution and of their concentration during

selective crystallization or precipitation, washing, and redissolution.
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1 Introduction

The variety and number of biopharmaceutical products are

constantly increasing. There are e.g., monoclonal antibodies

(mAbs) (Elvin et al., 2013), vaccines (Lua et al., 2014; Saxena

et al., 2021), and new therapeutics (Tobin et al., 2014). Each new

therapeutic drug is accompanied by new physico-chemical

properties, which need to be assessed with target molecule-

specific analytics to ensure drug purity and safety for the

patient. Broadly applicable analytical technologies are

preferred as they can characterize various products and

process steps. This may lead to deeper product and process

knowledge, together with cost- and risk-based decisions during

process development.

Downstream processes of biopharmaceutical products

commonly rely on preparative chromatographic processes,

which are costly or difficult to scale-up. In general, selective

protein crystallization or precipitation can be an alternative to

costly chromatography capture steps (Perosa et al., 1990;

McDonald et al., 2009; Smejkal et al., 2013) and bear their

advantages, e.g., high purity, concentration, and stability

during product storage (dos Santos et al., 2017; Roque et al.,

2020). Given that the process conditions are selected

appropriately, these processes can provide highly concentrated

products and can be scaled at lower costs compared to

chromatographic process steps.

To speed up the process of finding optimal process

conditions, empirical high-throughput (HT) studies are

common for early-stage process development and require HT-

compatible analytics. In this context, fast, non-destructive,

versatile methods, e.g., spectroscopic methods, are preferred

and they can be used to determine critical process parameters,

e.g., target protein concentration, yield, and purity.

When combining HT studies and spectroscopy, though, a

situation often arises where large data sets are recorded which are

difficult to interpret and are strongly correlated; the information

sought-after is hidden in a data jungle. To overcome these

limitations, scientists commonly apply chemometric methods

to large spectral data sets, e.g., partial least squares (PLS)

regression (Saleemi et al., 2012; Simone et al., 2014; Rüdt

et al., 2017), convolutional neural networks (CNNs)

(Acquarelli et al., 2017), or Gaussian process regression (Chen

et al., 2007), and generate process analytical technology (PAT)

models to improve the design, analysis, and control during

product manufacturing (Rathore et al., 2010). The mentioned

regression models, however, generally require robust reference

analytics for calibration. Specific PAT research on crystallization

processes mainly focused on mechanistic models for crystal

nucleation or growth implementing physical or empirical

equations and is discussed elsewhere (Szilagyi et al., 2020;

Trampuž et al., 2020, 2021).

In the case of spectroscopy measurements recorded over

time, three-dimensional (3D) data sets are generated, which are

ordered along three dimensions, e.g., wavelength, time, and

absorbance. When the spectra of several samples are recorded,

four-dimensional (4D) data sets are formed. This multi-

dimensionality further complicates the data analysis and calls

for multi-way chemometrics. To process data sets of higher

order, multi-way chemometric approaches, e.g., generalized

rank annihilation method (GRAM), unfolded partial least-

squares (U-PLS), and multi-way partial least-squares (N-PLS)

regression models, require external calibration (Olivieri, 2014;

Anzardi et al., 2021). They cannot be applied when accurate

reference analytics are missing, e.g., in product capture process

steps due to the variety of product- and process-related

impurities.

On the contrary, parallel factor analysis (PARAFAC) models

can analyze data sets of higher order without the need for

calibration samples. Given the number of components in the

data set, the PARAFAC model can decompose a linear, spectral

data set of second or higher order into the signal contribution of

each component and regress the model towards a minimal model

error compared to the original data set. In this application, one

PARAFAC component represents one species in the data set. As

a result, the initial data set can be described as the sum of loading

vectors of each species in each dimension and the model error

(Bro, 1997; Levi et al., 2004; Yu et al., 2021). PARAFAC was

successfully applied to qualitative and quantitative data analysis

on excitation emission spectra of fluorescence spectroscopy

(Andersen and Bro, 2003; Ortiz et al., 2015; Steiner-Browne

et al., 2019) using data sets structured along excitation

wavelength x emission wavelength x samples. Other possible

applications are the flow injection analysis (FIA) (Marsili et al.,

2004; Niazi et al., 2005) and high-performance liquid

chromatography (HPLC) runs equipped with multi-variate

detector, e.g., diode array detector (DAD) (Leitão and Esteves

Da Silva, 2006; García et al., 2007) or mass spectrometry (MS)

(Ortiz et al., 2015; Ortiz et al., 2020).

The mentioned work on PARAFAC models focused on the

deconvolution of overlapping peaks in chromatography runs or the

quantification of chemical analytes in fluorescence spectroscopy.

With regard to the rising number of new biopharmaceuticals and

early stage process development, HT screenings for crystallization

and precipitation processes are time-consuming and need to be

evaluated quickly with versatile analytics.

This calls for the investigation of the PARAFAC model

application to identify sweet spots in the phase behavior of

biopharmaceuticals for crystallization or precipitation processes.

This research project thus investigates how PARAFAC models

can predict specific spectra and concentration profiles in a

screening of unknown species from ultraviolet visible light (UV/

Vis) data. To show the broad applicability of PARAFAC to HT

screenings, three case studies on phase behavior were conducted.

The case studies covered one selective protein crystallization process

of a defined ternary protein system and two selective precipitation

processes of mAbs and virus-like particles (VLPs) in complex
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solutions. Depending on the case study, UV/Vis spectra were

recorded from supernatant samples taken from different process

steps, e.g., crystallization, precipitation, washing, and redissolution.

Time-resolved spectroscopic data were obtained by injecting

samples into a HPLC system equipped with a DAD. No

chromatographic column was installed to save analysis time and

generate the data with a universal method unaffected by the

investigated molecule. This analytical setup led to a second-order

data set of three dimensions (wavelength x time x samples). The

PARAFAC model calculated the loadings in the mentioned

dimensions for each component describing the spectral, time,

and concentration profile of the different species.

The presented results demonstrate how multi-way

chemometrics can explore spectroscopic screening data sets of

higher order. Different case studies with varying product

characteristics may be examined with little experimental effort

and in a calibration-free way. The PARAFAC models can help

to assess selective crystallization and precipitation conditions with

regard to purity and yield while increasing process knowledge in

early stage process development of new biopharmaceutical products.

Reference analytics for calibration are not required for the model

calculation making it suitable for use in early stage process

development. Additionally, qualitative information on spectra

and phase behavior increase process knowledge and may be used

for process development according to quality by design (QbD).

2 Material and methods

The preparation and execution of the first case study were

described in detail by Wegner et al. (2022) and are described in

brief in this work. An overview of the experimental setup,

analytics, and computation is visualized in Figure 1.

2.1 Experiment buffer and protein
preparation

All chemicals were purchased from Merck KGaA

(Darmstadt, DE), unless otherwise stated. The buffer solutions

FIGURE 1
The workflow for the PARAFAC model calculation can be divided into the experimental work of three different case studies, the analytics, and
the computational work. Screening samples are UV/Vis-analyzed and the recorded spectral data set is restructured in the dimensions time t,
wavelength λ, and supernatant sample nBatch. Subsequent preprocessing allowed the calculation of one PARAFAC model per case study. The
reference analytics validate the generated models and vary depending on the target molecule, purification process, i.e., selective crystallization
or precipitation, and the composition of the initial material.
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were prepared at room temperature with ultrapure water

(PURELAB Ultra, ELGA LabWater, Lane End, High

Wycombe, U.K.), pH-adjusted with 32% hydrochloric acid

(HCl) or 4 mol sodium hydroxide (NaOH).

In the first case study, lyophilized model proteins lysozyme

(Lys) from chicken-egg-white (Hampton Research, Aliso Viejo,

CA), ribonuclease A (RibA) from bovine pancreas, and

cytochrome C (CytC) from equine heart were dissolved in

multi-component buffer (MCB, 21 mmol N-1,1- dimethyl-2-

hydroxyethyl-3-amino2-hydroxypropanesulfonicacid

(AMPSO), 17 mmol 3-N-morpholino propansulfonic acid

(MOPS, Carl Roth GmbH + Co. KG, Karlsruhe, DE),

15 mmol succinate acid AppliChem GmbH, Darmstadt, DE)

at pH 9. After dialysis to the target multi-component buffer

(MCB), the protein concentrations were adjusted as required

and the protein solutions were filtered (0.2 µm, Pall Corporation,

Port Washington, NY).

For the second case study, Byondis B.V. (Nijmegen, NL)

kindly provided frozen cell culture supernatant (CCS) of a mAb

harvest of chinese hamster ovary (CHO) cells. The material was

thawed, filtered (0.2 µm, Pall Corporation), aliquoted, and stored

at −20◦ until later usage. The required amount of CCS was

thawed and a buffer exchange was performed to a phosphate-

buffered saline (PBS) buffer [58.4 mmol sodium chloride (NaCl),

74.6 mmol potassium chloride (KCl), 136.1 mmol potassium

dihydrogenphosphate (KH2PO4), 142.0 mmol disodium

hydrogen phosphate (Na2HPO4), pH 7.4] using a PD

MiniTrapTMG-25 column (GE Healthcare, Chicago, IL). The

CCS stock solution was filtered (0.2 µm, Pall Corporation)

prior to screening.

The third case study involved truncated Hepatitis B core

antigen (HBcAg) VLPs (Zlotnick et al., 1996). The VLPs were

produced in-house in E. coli as previously described by

Hillebrandt et al. (2020). After filtering the lysed material with

a glass fiber, a 0.45 µm, and a 0.2 µm cellulose acetate (CA)

syringe filter (Sartorius Stedim Biotech GmbH, Göttingen, DE),

the material was 3x diluted, aliquoted, and stored at −30◦ until

further usage. For the screenings, the material was thawed and

filtered (0.2 µm, CA, Pall Corporation).

The used crystallization solution was the MCB at pH 9 and

contained additional 3.5 mol ammonium sulfate (AMS). The

precipitation solution of the second and third case studies

contained only 3.6 mol AMS. The redissolution buffers were

PBS buffer, pH 7.4 in the second (mAb) and 50 mmol Tris buffer,

pH 7.2 in the third case study (VLP).

2.2 Crystallization and precipitation
experiments

The following subchapter describes the experimental

conditions of the three HT screening case studies. The second

and third paragraphs deal with selective crystallization in a

ternary protein mixture and with the selective precipitation of

mAbs and VLPs in complex solutions, respectively.

The prepared protein solutions for the ternary phase diagram

were mixed and crystallized in 24 µl micro-batches as described

by Wegner et al. (2022). 3 µl samples for the analysis were drawn

after 13 days of incubation at 8°C and 50 times diluted with

MCB, pH 9.

The selective precipitation screenings were conducted by

mixing 278 µl of 12 differently diluted precipitation solutions

with 222 µl of the initial mAb or VLP protein stock solutions

leading to twelve 500 µl batches. The desired screening range of

AMS was between 0 and 2 mol. The precipitation solutions were

shaken using a thermo shaker at 300 rpm for 30–60 min and then

centrifuged (17000 g, 2 min). The shaking and centrifugation

conditions were used for all steps. The supernatant (S1) was

removed, and a wash step was performed by adding 500 µl of a

buffer containing the same components as the respective

screening condition. Then, the supernatant solutions were

centrifuged and the wash step supernatant (S2) was removed.

Adding 500 µl of the respective redissolution buffer (see

Subchapter 2.1) and shaking for 2 h redissolved the

precipitate. Eventually, the redissolution batches were

centrifuged (S3).Supernatant samples (S1–S3) were drawn

after each centrifugation step, diluted (mAb: 2 times; VLP:

10 times) with redissolution buffer, and cooled at 8°C until

the analysis at the end of the experiment.

2.3 Analytics

2.3.1 Multi-way UV/Vis spectra
First, the samples were UV/Vis-analyzed using a Dionex

Ultimate 3000 RS HPLC system (Thermo Fisher Scientific, Inc.,

Waltham, MA) equipped with a RS diode array detector. The

UV/Vis spectra were recorded by injecting 20 µl sample volume

into the device with no column installed. The injection volume

stayed constant for all HPLC measurements. The detector data

acquisition was performed with 100 Hz frequency and in the

wavelength range of 240 nm–450 nm for the first and

220 nm–550 nm for the remaining case studies. A filter

cartridge (pore size 0.5 µm, OPTI/SOLV EXP, Merck KGaA

(Darmstadt, DE)) was integrated to impede aggregates in the

detector. The mobile phase was a (50 mmol Tris, 100 mmol

NaCl, pH 8.0) buffer for the first case study or the respective

redissolution buffer of the case study and the flow rate was

200 μl min−1 in the first or 50 μl min−1 for the remaining case

studies.

2.3.2 Reference analytics
Different analytics were applied depending on the case study

and target protein. The reference data of the first study were

derived from cation exchange chromatography (CEX) performed

with a ProSwift SCX-1S 4.6 × 50 mm column using the
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aforementioned HPLC system (see Subchapter 2.3.1 with a low

salt buffer (50 mmol Tris, pH 8.0) and high salt buffer (50 mmol

Tris, 1 mol NaCl, pH 8.0) with a flow rate of 1.5 ml min−1

(Wegner et al., 2022). A 2.1 × 30 mm POROS™ protein A

column (Applied Biosystems, Waltham, MA) was used to

separate the mAbs from the contaminants, and it allowed

species quantification. After sample injection, the column was

equilibrated with equilibration buffer (PBS buffer, pH 7.4) for 16

column volumes (CVs) and eluted with elution buffer (PBS

buffer, pH 2.6) for 28 CVs. The flow rate was set to

2 ml min−1. For the third case study, the sample purity was

assessed only qualitatively with sodium dodecyl

sulfate–polyacrylamide gel electrophoresis (SDS-PAGE). The

analysis was performed with lithium dodecyl sulfate (LDS)

sample buffer, 2-(N-morpholino)ethanesulfonic acid (MES)

running buffer, and NuPage 4–12% BisTris Protein Gels (all

Thermo Fisher Scientific, Inc.). The addition of reducing

50 mmol dithiothreitol (DTT) was the only adaption to the

manufacturer’s protocol.

The pure species spectra of Lys, RibA, and CytC were

recorded by measuring single protein solutions using the

setup described in Subchapter 2.3.1. In line with this, the pure

VLP spectrum was derived from a re-dissolved and sterile-

filtered VLP solution purified by diafiltration and multimodal

size-exclusion chromatography according to Hillebrandt et al.

(2021). The contaminant and the pure mAb species spectra were

calculated from the protein A analysis flow-through and

elution peak.

2.4 Data analyses

All data analyses, preprocessing, and model calibration were

performed in MATLAB, R2019b (The MathWorks, Inc., Natick,

MA), including the MATLAB N-way toolbox (Andersson and

Bro, 2000) to construct the chemometric models.

2.4.1 Data structure and preprocessing
Each UV/Vis-analyzed sample measurement led to a 3D

spectral data set spanned over the system retention time,

wavelength measuring the absorbance, similar to a 3D

chromatographic data set with strongly overlaying species peaks.

When multiple supernatant samples per case study were analyzed,

the generated data were arranged along the sample number leading

to a 4D data set. For each case study, one 4D data set was

constructed, preprocessed, and used for the model calculation.

Preprocessing (see Figure 1) consisted of the background

subtraction and smoothing the absorbance data set along the

time axis. The preprocessed data were cut to a wavelength range

of 255 nm–410 nm for the first and 255 nm–310 nm for the

remaining case studies to leave out the non-absorbing

wavelength ranges and thus improve the model development.

For each case study, the preprocessing parameters were varied

and tested for the spectral and time-wise smoothing (see

Table 1) with a Savityky-Golay smoothing filter (Savitzky and

Golay, 1964). The third data set required the calculation of the

second derivative with the Savitzky-Golay filter to enhance spectral

differences as the species present in the examined solutions showed

strongly overlapping spectra.

2.4.2 PARAFAC model construction
The calculation of the PARAFAC models (see Figure 1) was

performed varying the model parameters, i.e., error limits, and

number of PARAFAC components. Especially, the latter needs to

be selected with care as this parameter is essential for a valid

model. These model calculation parameter ranges are listed in

Table 1. Additionally, the non-negativity constraint was imposed

in time, wavelength, and concentration dimension in all case

studies with one exception. For the third model, this constraint

was left out in the wavelength dimension due to the second-

derivative preprocessing data treatment (see Subchapter 2.4.1).

Due to instability reasons of the PARAFACmodel algorithm, ten

different models for each selected preprocessing and model

parameter set were calculated. The model with the highest

core consistency diagnostic (CORCONDIA) value (Bro and

Kiers, 2003) was chosen if the loadings in the concentration

mode were sensible and agreed with the theoretical knowledge of

protein crystallization and precipitation. In detail, this means

that the calculated concentration loadings of all protein species

were assumed to decrease to their protein-specific solubility lines

with increasing precipitant concentration. The inverse behavior

was expected for the analyzed redissolution solutions.

The used PARAFAC algorithm kept the data variance only in

the first mode - the time loadings–leading to normalized spectral

and concentration loadings.

3 Results

3.1 Case 1–selective crystallization of
lysozyme in a ternary protein solution

As a proof of concept, the PARAFAC model construction

was first applied to UV/Vis spectral data of a phase transition

process of a chemically defined system. In a system of three

model proteins, the target molecule (Lys) was selectively

crystallized in a HT screening with 96 different

conditions. The other two species (CytC and RibA) are

arbitrarily treated as contaminants and were preferred to

stay in the supernatant to achieve a high Lys purity in the

crystals. The supernatants of the screened conditions holding

different protein-specific concentrations were UV/Vis-

analyzed. The generated data was used for the model

construction. The selected model required two PARAFAC

components–one for the target molecule Lys, and the second

one for clustering the contaminants.
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Figure 2A shows the PARAFAC-predicted single species time

profiles compared to the measured absorbance of the initial

material at the wavelength λ = 280 nm over time. The dashed

and solid lines visualize the model-predicted data (right axis) and

the measured data (left axis), respectively. This remains

consistent throughout this research work. The predicted

spectra of the two components are illustrated in Figure 2B in

different colors for each species. As a reference, the pure Lys

spectrum is included with solid lines for identification of the

target molecule component. The predicted and measured Lys

concentration of the supernatants of the screened conditions are

depicted in Figure 2C. This plot illustrates the phase behavior of

Lys in a phase diagram depending on the AMS and initial Lys

concentration of the screened condition, and distinguishes

between the supersaturation and stable area. The loading

vectors in all three modes are unitless, and one component

represents one species in each mode. The concentration of the

contaminant species did not change (data not shown). The phase

behavior of this HT screening is described and explained in detail

by Wegner et al. (2022).

The time courses of the predicted two species match the

position of the overall absorbance at λ = 280 nm of the analyzed

initial material. Both predicted species demonstrate a similar flow

behavior through the HPLC system during the no-column runs

and resemble the Gaussian shape due to axial diffusion in the

analysis system. The spectral prediction of the Lys component fits

the measured spectrum of pure Lys, only the shoulder at λ =

290 nm is slightly less pronounced than in the measured

spectrum. The predicted concentration loadings and measured

concentrations overlay and indicate the saturation curve of the

phase diagram clearly. This curve distinguishes the screened

condition into the stable area showing no Lys concentration

decline in the supernatant and the supersaturation area, in which

the Lys concentration drops to the saturation curve, possibly due

to crystallization.

To compare the predicted PARAFAC loadings and the

measured reference data, Figure 3 depicts the model and

measurement data sets in two ways. First, the data sets in

Figure 3A show the predicted spectral loadings and measured

species, similarly to Figure 2B, but with the spectra of all three

model proteins (Lys, CytC, and RibA) present in the screening

solutions. Second, the spectral data of the Lys species were mean-

normalized to overcome the difference in axis scale. Finally, the

data sets were plotted against each other and used for the

coefficient of determination (R2) and root mean squared error

of prediction (RMSEP) calculation (see Figure 3B for the Lys

spectrum and Figure 3C for the concentration comparison).

Figure 3C is derived from the mean-normalized concentration

data of Figure 2C. The RMSEP in this work is given without a unit

as the variable is calculated from normalized values.

The RibA UV/Vis spectrum shows a noisy spectrum above

300 nm, which is a normalization artefact as the overall

absorption of the pure RibA spectrum was low due to its low

extinction coefficient and the measured concentration of

0.2 mg ml−1. It is visible that the predicted contaminant

spectrum is similar to the pure CytC spectrum between

300–450 nm. According to the model, below 300 nm, the two

contaminant species (CytC and RibA) do not contribute to the

measured UV/Vis absorbance which differs from the measured

pure species spectra. PARAFAC models with three components

did not lead to reasonable models, so that the species RibA was

not modeled as an own species due to its low contribution to the

overall UV/Vis absorbance. However, RibA and CytC together

can be clustered as impurities and can be described by one

contaminant component as they demonstrate similar phase

behavior.

TABLE 1 Preprocessing and model development parameters: These parameters were varied for each case study to find optimal calculation parameters. The
final calculation parameters are listed as well.

Data preprocessing Model parameters

Derivative Time smoothing range Wavelength smoothing range Number of model components Error
limit

Case 1 max 2 10 13 3 0.010000

min 0 1 3 2 0.000001

Case 2 max 0 51 7 4 0.008000

min 0 10 5 3 0.000010

Case 3 max 2 35 7 4 0.008000

min 0 10 5 2 0.000100

Case 1 final 0 3 7 2 0.000001

Case 2 final 0 10 7 3 0.000100

Case 3 final 2 10 7 3 0.000100
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The mean-normalized model prediction and the measured

mean-normalized spectrum of pure Lys overlay as indicated by

the high R2 value. The Lys concentration loadings of the

PARAFAC model are slightly underestimated at higher

protein concentrations, which is quantified with a lower R2.

3.2 Case 2–selective precipitation of
monoclonal antibodies in a complex
solution

As the second case study, a mAb was selectively precipitated

out of a clarified, complex solution (CCS) consisting of several

different species. In total, 12 different precipitant concentrations

were investigated, and the supernatants of the precipitation (S1),

wash (S2), and redissolution (S3) process steps were UV/Vis-

analyzed to finally construct a valid PARAFAC model.

The results of the constructed model with three different

components are shown in Figure 4. The three components could

be identified as the mAb, contaminants, and AMS. The predicted

time profiles of each component and the measured absorbance at

λ = 280 nm are shown in Figure 4A. The predicted spectral

profiles and the measured spectrum of purified mAb are depicted

in Figure 4B. The predicted, specific concentration in the

supernatant of precipitation (Figure 4C), wash (D), and

redissolution process step (E) are colored according to the

species. As a reference, the measured peak area of the mAbs

and the contaminant are included in Figures 4C–E and represent

FIGURE 2
PARAFAC model results of the selective crystallization screening of Lys in a ternary model protein system. The measured reference data (left
axis) and the predicted loadings (right axis) are illustratedwith solid and dashed lines, respectively. The colors gray, orange, and blue indicate the initial
raw material, the target species Lys, and the contaminating species, respectively. The time course loadings in (A) show the PARAFAC model
predictions of the species absorption loadings over time t in the flow cell of the UV/Vis detector. Additionally, the spectral absorption of the
initial solution A280nm is shown at wavelength 280 nm over time. The spectral loadings in (B) demonstrate the similarity between the predicted and
the measured Lys absorption spectra Aλ over the wavelength λ. From the concentration loadings in (C), the predicted saturation curve can describe
the phase behavior of Lys in the investigated ternary model system and can distinguish the screened conditions into the supersaturation and stable
area. The variables cLys and cAMS represent the concentrations of Lys and AMS, respectively.
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the concentration profile throughout the investigated screening

conditions.

The predicted time profiles in Figure 4A show a Gaussian

curve for the contaminant species, two Gaussian curves for the

AMS species, and an irregular profile for the mAb component

resembling multiple overlaying species. The predicted AMS time

profile overlaps with the measured time profiles of pure AMS

solution measurements (see Supplementary Figure S1).

The predicted spectrum of the target molecule mAb fits

the measured spectrum of protein A purified mAb (see

Figure 4B). The predicted concentration profile of the AMS

during the precipitation and wash step agrees with the

experimental AMS concentration as the precipitant

concentration was linearly increased over the investigated

conditions from 0 mol to 2 mol during the precipitation

and wash process step (see Supplementary Figure S2). The

predicted and the measured mAb concentrations in the

precipitation supernatants decrease strongly above 1.2 mol

AMS in Figure 4C and match the increase in mAb

concentration in the redissolution solutions above the same

AMS concentration in Figure 4E. The predicted and the

measured contaminant concentrations behave likewise with

FIGURE 3
Comparison between predicted and measured data of the spectral and concentration loadings of the selective crystallization screening of Lys.
The measured reference data (left axis) and the predicted loadings (right axis) are illustrated with solid and dashed lines, respectively. The colors
orange, dark blue, and light blue indicate the contaminating species, target species Lys, the model proteins CytC and RibA, respectively. The
predicted spectral loadings, and the measured reference data are used to calculate the mean-normalized predicted and measured absorption
(Âλ,i & Aλ,i) which are plotted over the wavelength λ for each species i in (A). The predicted absorption Âλ,Lys of Lys is shown over the measured
absorption Aλ,Lys of Lys in (B). Figure 2C is used to calculate the mean-normalized predicted concentration loadings ĉLys and the measured
concentration data cLys of Lys in (C). The gray dashed lines visualize the ideal fit of the predicted to the measured data (B,C). The calculated, high
coefficient of determination R2 values support the PARAFAC model validity.
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a different threshold at 1.6 mol AMS. A slight increase in the

mAb concentration at 1.6 mol AMS during the washing step is

visible in the predicted and the measured data sets. A slight

increase in the contaminant concentration with rising AMS

concentration was only seen in the reference analytics and

indicates contaminant removal during the wash step. The

predicted mAb concentration in Figure 4C is overestimated

at AMS concentration between 0 and 0.4 mol AMS whereas

the contaminant concentration is underestimated. Similarly,

the behavior of overestimated mAb and underestimated

contaminant concentrations is visible in the redissolution

samples at higher AMS screening conditions in Figure 4E.

To further validate the constructed PARAFAC model,

comparisons of the predicted loadings, and measured data of

the mAb spectrum and concentration are illustrated in Figure 5.

The predicted spectral loadings of the mAb and the predicted

contaminant are shown in Figure 5A, as well as the spectrum of

the initial contaminants, present in the precipitation supernatant,

and of the co-precipitated contaminants, which are still present

after redissolution. The initial contaminants, which are present in

large excess and remain in solution despite the presence of the

precipitant AMS, are well described by the blue contaminant

component of the PARAFAC model. The co-precipitated

contaminants could not be described by the model as these

FIGURE 4
PARAFAC model results of the selective mAb precipitation screening from clarified CHO CCS. The measured reference data (left axis) and the
predicted loadings (right axis) are illustrated with solid and dashed lines, respectively. The colors gray, orange, dark blue, and light blue indicate the
initial raw material, the target mAb, the contaminating species, and the precipitant AMS. The time course loadings in (A) show the PARAFAC model
predictions of the species absorption loadings over time t in the flow cell of the UV/Vis detector. Additionally, the spectral absorption of the
initial solution A280nm is shown at wavelength 280 nm over time. The spectral loadings in (B) illustrate the predicted contaminant spectrum over the
wavelength λ and the similarity between the predicted and the measured mAb spectrum. The predicted concentration loadings ĉi are shown over
varying precipitant concentration cAMS during the precipitation in (C), wash step (D), and redissolution process step (E). The measured concentration
ci is derived from the peak area of the reference analytics. The peak areas of a reference analytic represent the concentrations of the mAb and the
contaminant. They are shown in (C–E) with solid lines.
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contaminants underwent phase transition at similar precipitant

concentration as the target molecule. The mean-normalized,

predicted spectral loadings and the measured spectrum of the

mAb species are depicted in Figure 5B and agreed as indicated by

the R2 value of 97.38% and a low RMSEP of 0.009.

To further visualize the model agreement, the predicted,

mean-normalized concentration loadings and measured

peak area of the mAb are shown during the different

process steps in Figures 5C–E with their process-specific

R2 and RMSEP values. The concentration loadings show

moderate agreement with the measured data for the

precipitation and wash step samples. In the precipitation

supernatant analysis, the presence of the different

contaminants at high mAb concentration (especially at

lower AMS concentration) might be the cause. The wash

step analysis samples showed very low mAb concentration

except for one outlier. The lowest R2 and the highest RMSEP

values among the investigated process steps might be caused

by a mathematical artefact and the outlier. The high R2 and

low RMSEP values for the precipitation and redissolution

supernatant indicate that the model could produce valid

mAb concentrations.

FIGURE 5
Comparison between predicted and measured data of the spectral and concentration loadings of the selective mAb precipitation screening.
The measured reference data (left axis) and the predicted loadings (right axis) are illustrated with solid and dashed lines, respectively. The colors
orange, dark blue, and light blue represent the target species mAb, the contaminating species before precipitation, and the remaining contaminant
species after redissolution, respectively. The spectral predictions Âλ,i and measurements Aλ,i are mean-normalized and depicted over the
wavelength λ in (A). The predicted spectral mAb loadings Âλ,mAb and the measured reference spectrum of purified mAb Aλ,mAb are used to plot the
predicted over measured data in (B). The predicted mAb concentration loadings ĉmAb and measured concentration reference cmAb from mAb peak
areas see (C–E) are mean-normalized and plotted against each other for the process steps of precipitation (C), washing (D), and redissolution (E).
These data were used to calculate the coefficient of determination R2 values to quantify the validity of the constructed model. The gray dashed lines
visualize the ideal fit of the predicted to the measured data (B–E).
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3.3 Case 3–selective precipitation of virus-
like particles in a complex solution

The third case study dealt with the selective precipitation of

VLPs in E.coli lysate. In line with the second case study, a

screening was performed over different precipitant

concentrations, and the UV/Vis-analyzed precipitation (S1),

wash (S2), and redissolution step (S3) supernatants were used

to construct a PARAFAC model.

The results of the constructed model with three different

components are shown in Figure 6. The three components are

identified as the VLPs and two contaminant clusters.

The time profiles in Figure 6A show a flat, broad peak for the

VLP species. The calculation of the second derivative of the spectra

along the wavelength dimension improved the model validity (data

not shown). The second spectral derivative of a reference spectrum

of purified VLPs validated the spectral PARAFAC loadings (see

Figure 6B). The reference data illustrate howwell the peak position is

found by the PARAFAC model estimation of the spectra. The

concentration loadings of the different species during the

precipitation, wash, and redissolution process step are depicted in

Figures 6C–E, respectively. TheVLP species concentration decreases

with rising AMS concentration above 1 mol concentration and

approaches a limit (see Figure 6C). The VLP concentration

loadings of the redissolution step show the inverse behavior

above the same threshold (see Figure 6E). The first contaminant

cluster shows a similar behavior above 1.5 mol AMS with a higher

limit in the precipitation solutions and a lower limit during the

FIGURE 6
PARAFACmodel results of the selective VLP precipitation screening from E.coli lysate. Themeasured reference data (left axis) and the predicted
loadings (right axis) are illustrated with solid and dashed lines, respectively. The colors gray, orange, dark blue, and light blue indicate the initial raw
material, the VLPs, and two contaminant clusters. The time course loadings in (A) show the PARAFAC model predictions of the species absorption
loadings over time t in the flow cell of the UV/Vis detector. Additionally, the spectral absorption of the initial solution A280nm is shown at
wavelength 280 nm over time. The spectral loadings in (B) illustrate the predicted contaminant spectra over the wavelength λ and the similarity
between the predicted loadings and the measured second derivative of the VLP spectrum d2Aλ,VLP

dλ2
. The predicted concentration loadings ĉi are shown

over varying precipitant concentration cAMS during the precipitation in (C), wash step (D), and redissolution process step (E).
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redissolution step. Presumably, this contaminant cluster precipitates

to the solubility line above the threshold. During redissolution, the

precipitate of screened conditions with high AMS concentration is

redissolved. The AMS concentration does not strongly affect the

concentration loadings of the second contaminant cluster in the

precipitation solutions, but the concentration loadings of this

component increase slightly to a limit in the redissolution

solutions. The second contaminant cluster represents species that

are stable at higher AMS concentration. Similar results were

achieved by Hillebrandt et al. (2020) for a chimeric VLP

construct. The concentration loadings during the wash step show

no significant increase in the VLPs and the first contaminant cluster.

The second contaminant cluster shows a slight concentration

loadings increase and is probably washed out of the precipitate

with the rising AMS concentration.

Scanned SDS-PAGE gels of the precipitation and

redissolution step are included in the Supplementary Material

(see Supplementary Figure S3) analyzing the conditions between

0 mol and 1.27mol and 2 mol AMS concentration. The findings

on the concentration profile of the predicted species match the

scanned gel of the reference SDS-PAGE analysis (see

Supplementary Figure S3).

The similarity between the predicted and measured second

derivative of the VLP spectrum is visible in Figure 7A The

estimated wavelength position of the peak maxima and

minima fits the measured data in the wavelength range below

265 nm and above 275 nm, but the absolute values at the peak

maxima and minima do not overlay. Between the mentioned

wavelengths, the curve characteristics of the predicted spectral

loadings show a flattened curve and differ from the measured

data. The absolute values at the peak maxima and minima do not

overlay.

This may be the result of the applied preprocessing

techniques as smoothing can eliminate or broaden peaks,

whereas the spectral derivative calculation is sensitive to subtle

differences in spectra.

To visualize the fit of the predicted to the measured data, the
mean-normalized predicted VLP loadings and the second
derivative data of a measured VLP spectrum are plotted
against each other in Figure 7B and used for the calculation
of R2 and RMSEP values. Closer to the center, the predicted data
overlay strongly with the measured data. At the boundaries of the
spectral loadings, the predicted and the measured data differ
more. Still, the spectral loadings showed a high R2, but the highest
RMSEP for the spectral regression among the three investigated
case studies.

4 Discussion

To prove the overall applicability of PARAFAC models to

HT screenings, the three conducted case studies are discussed

regarding the choice of the valid PARAFAC model, the process

parameters yield and purity, and the differences between the

investigated case studies.

FIGURE 7
Comparison between predicted and measured data of the
spectral loadings of the selective VLP precipitation screening. The
measured reference data (left axis) and the predicted loadings
(right axis) are illustrated with solid and dashed lines,
respectively. The colors orange, dark blue, and light blue indicate
the VLPs, and two contaminant clusters. The predictions of the
second derivative spectra d2 Âλ,i

dλ2
of the species i and the spectral

second derivative measurements d2Aλ,VLP

dλ2
of purified VLP solutions

are mean-normalized and depicted over the wavelength λ in (A).
The predicted spectral second derivative loadings of VLPs d2 Âλ,VLP

dλ2

and the reference d2Aλ,VLP

dλ2
are used to plot the predicted over the

measured data in (B). The gray dashed line visualizes the ideal fit of
the predicted to the measured data. The measured and the
predicted spectra are used to calculate the coefficient of
determination R2 values to quantify the validity of the constructed
model.
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4.1 PARAFAC model choice

A PARAFAC model can decompose a data set into the signal

contribution of each species if the experimental data set has a

truly trilinear structure (Bro, 1997; Anzardi et al., 2021). In the

case of spectral data sets, this means that an experimental data set

can estimate e.g., the spectrum and concentration profile of each

species present. Considering the physical logic that the spectra

and concentration profiles are positive, the non-negativity

constraints can be included in the calculation of chemometric

models. This is a common practice to find stable, correct multi-

way chemometric models during model calculation (Bro, 1997;

Ebrahimi et al., 2008; Murphy et al., 2013; Steiner-Browne et al.,

2019; Van Benthem et al., 2020).

Still, valid PARAFAC models can only be constructed if the

appropriate number of components (Andersen and Bro, 2003;

Bro and Kiers, 2003; Ortiz et al., 2015), preprocessing techniques,

and suitable model calculation parameters are used.

In the case of biological, complex solutions containing several

different species, the requirement of an appropriate number of

PARAFAC components imposes a problem for the model

calculation. As not every single UV/Vis-absorbing species can

be described by one model component, the different species need

to be categorized in clusters. These clusters are formed on the

basis of their similar phase behaviors among the species and shall

be described by one PARAFAC component accepting

inaccuracies in the spectral prediction. This simplification of

the variety of species to several clusters introduces an error into

the model. However, if the target molecule undergoes a phase

transition and contributes strongly to the measured spectral data

set, the focus of the PARAFAC models is to find the target

molecule in any phase behavior screening study. Further

strategies (Smilde et al., 2004) to determine the correct

number of PARAFAC components are e.g., half-splitting and

comparing the experiments (Bro, 1997), evaluating residuals

(Smilde and Doornbos, 1992; Bro, 1997), and the

CORCONDIA value (Bro and Kiers, 2003). More information

on finding suitable preprocessing (Bro, 1998; Bro and Smilde,

2003) and model calculation parameters (Bro, 1997; Murphy

et al., 2013) can be found elsewhere.

In crystallization or precipitation screenings, it can be

expected that the protein concentration decreases to the

solubility line with increasing precipitant or protein

concentration due to the decreased protein solubility, which

results in protein crystallization (Asherie, 2004; Baumgartner

et al., 2015) or precipitation (Wingfield, 1998; Burgess, 2009;

Watanabe et al., 2009). In the case of selective crystallization or

precipitation processes, the phase behavior is protein-specific

and can be used for protein purification. This theoretical process

knowledge can be included in the choice of the PARAFAC

model.

The spectral data set for the first case study was recorded for a

HT-selective crystallization screening of Lys in a ternary protein

system. In total, 96 conditions were screened varying the initial

Lys concentration and precipitant concentration. The initial

concentrations of the two other proteins (RibA, CytC) were

maintained constant in all screened conditions. As the

calculation of PARAFAC models with three components did

not lead to a robust model, a model with two components was

calculated (see Table 1). Evaluating Figure 3A, one component

can be identified as the target molecule Lys; the other one as a

contaminant cluster resembling mainly CytC. It is assumed that

the absorbance contribution of the third species RibA is built into

a contaminant cluster (Yang et al., 2015), and that this third

species is not described as a single model component. It

contributes to a smaller extent to the UV/Vis spectra due to

the lower extinction coefficient in the investigated wavelength

range (3.8 and 2.8 times lower at 280 nm than for Lys and CytC)

and lower concentration (up to 7.5 times lower than the Lys

concentration). Furthermore, the protein concentrations of CytC

and RibA do not change during the screening, contrary to the

target protein Lys (see Wegner et al. (2022) for further

explanation). As a consequence, the model cannot distinguish

species demonstrating similar phase behavior. This shows that

low-absorbing species are difficult to describe with an ownmodel

component, and that species with similar phase behavior can be

clustered justifying species clustering in screenings with complex

solutions.

The selective precipitation study of mAbs leads to a spectral

data set, which can be described by a PARAFAC model with

three model components (see Table 1). One component

represents the target molecule mAb, the other two the AMS

concentration and a contaminant cluster. The time profile of the

mAb component in Figure 4A may be caused by the changing

light refraction when a solution with a high AMS passes the

detector (see Subchapter 4.2). Another possible source could be

different product-related impurities, e.g., aggregates, fragments,

as they would show a mAb resembling spectrum, but different

retention times in the analysis system due to diffusion. Below the

AMS concentration of 0.5 mol the mAb species is overestimated

and the contaminant cluster is underestimated by the PARAFAC

model in Figure 4C. In Figure 4E, the two model components

show the same effects above 1.4 mol AMS. A possible explanation

of these contrasting model discrepancies of the measured to the

predicted data is that the predicted mAb UV/Vis spectrum is

overestimated below 270 nm leading to inverse effects on the

concentration loadings of the mAb and contaminant component.

As a result, the spectral loadings of the contaminants may be

incorporated in the predicted mAb spectrum and distort the

concentration loadings of both species–the target molecule and

the contaminant cluster. This effect is more pronounced at

higher absorbance values and thus higher protein concentrations.

The protein A chromatography gave further information on

the composition of the contaminants during the precipitation,

wash, and redissolution step. Figure 5A provides information on

the main contaminant cluster during the precipitation and
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during the redissolution step. This means that the co-precipitated

contaminant cluster during redissolution cannot be

distinguished from the target molecule.

The PARAFAC model of the selective VLP precipitation HT

screening could be calculated with three model components (see

Table 1). One component describes the VLP species while the other

two describe two contaminant clusters. Assessing the concentration

loadings of all three PARAFAC components in Figure 6C, the

predicted species show different phase behaviors with increasing

precipitant concentration. This enables the use of a selective VLP

precipitation step for purification. Regarding the screened

redissolution samples in Figure 6E, the predicted concentration

loadings of the VLPs and first contaminant cluster increase above

the same precipitation threshold in Figure 6C. The second

contaminant cluster shows a slight concentration increase at

higher precipitant concentration meaning that this cluster was

redissolved and thus precipitated at a higher precipitant

concentration. This does not comply with the phase behavior

during the precipitation step, and it is expected that this

discrepancy is caused by model inaccuracies. This assumption is

supported by the highest residuals of this model to the measured

summed up spectra for the investigated redissolution samples above

the stated threshold (data not shown). Overall, the predicted VLP

spectral loadings match the measured VLP spectrum (see

Figure 7A). Discrepancies are visible in the regression plot (see

Figure 7B) only at the higher or lower values of the spectral loadings.

Compared to the first and second case studies, the R2 value of the

third case study for the spectral loadings is lower indicating a greater

deviation of the predicted spectra to the measured spectrum. The

highest RMSEP is partially caused by the different scale and the

model mismatch which can be seen in Figure 7B. Additionally, the

required preprocessing of the VLP screening data included the

second derivative to enhance subtle spectral differences between

the screened solutions. The spectral preprocessing may lead to

higher discrepancies in Figure 7A and lower accuracy compared

to the first and second case studies, but led to a robust model.

In summary, the choice of the correct model component and

preprocessing techniques is crucial for the model outcome. These

need to be selected with care when the investigated screening

solutions involve complex solutions. Theoretical knowledge of

selective precipitation and crystallization processes helps finding

valid PARAFAC models. Nonetheless, the species in complex

solutions demonstrating similar phase behavior can be clustered

and described by one model component. In the case of co-

precipitation of contaminants with the target molecule, the

model may merge the spectra of these species in the predicted

spectral loadings.

4.2 Screening for optimal yield and purity

The developed models provided information on the

solubility line, protein phase behavior, and selectivity of the

screened conditions. In the first case study, the solubility line

of Lys is visible in the phase diagram in Figure 3B and can be used

for further yield calculations. As the concentration of the

contaminating species stayed constant in the supernatant, it

can be assumed that the produced Lys crystals demonstrate a

high purity. The research on mAb crystallization screenings

spiked with model protein contaminants showed that a high

mAb crystal purity is accompanied by contaminants present in

the crystallization supernatant (Zang et al., 2011). In general, this

selective crystallization process depends strongly on the impurity

and its concentration (Judge et al., 1998; Burke et al., 2001; Liu

et al., 2022). Regarding yield, optimal process conditions were

achieved in a precipitant range between 0.05 and 0.15 mol AMS.

Assessing the selective mAb precipitation study in Figure 4, a

high AMS concentration above 1.8 mol leads to the highest

precipitate yield. Under the same precipitant conditions, the

concentration loadings of the contaminant species decrease

indicating co-precipitation above 1.5 mol AMS, but with a

lower yield due to the higher specific solubility concentration.

According to the model, the mAb purity of redissolved

precipitate is greatly improved when the predicted

concentration loadings of the redissolution and the

precipitation solutions are compared. Comparing the

predicted to measured concentrations, the redissolution

solutions show an over- and underestimation of the mAb and

contaminant species, respectively. Purity calculations based

solely on the predicted concentration loadings would be

overestimated. This may be caused by the co-precipitated

contaminants (see Figure 5A) as they were not separated

during the screening process.

Regarding the selective VLP precipitation process (see

Figure 6), the model predicts optimal process parameters

when the precipitant concentration lies between 1 mol and

1.5 mol to assure a high purity. The predicted concentration

loadings of both contaminant clusters did not indicate co-

precipitation and, as a result, are not present in the

redissolution samples. To increase the product yield, the

concentration above 1.2 mol is desired, as the VLP

concentrations in the precipitation and redissolution samples

are near the limit. As quantitative reference analytics are missing

for the third case study, these results are based purely on model

predictions and the qualitative validation with the VLP spectrum

and the solution composition with the SDS-PAGE analysis (see

Supplementary Figure S3).

4.3 Experimental and preprocessing
differences between the case studies

The experimental setup and the spectral data preprocessing

of each case study required adjustments to the specific protein

system. This subchapter focuses on the preprocessing differences

between the investigated case study, the experimental screening
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variations between selective crystallization and selective

precipitation studies, and their possible effect on the

calculated PARAFAC models.

The time smoothing range for the final models of the

crystallization case study was lower than for the precipitation

case studies (see Table 1). The four times higher flow rate of the

UV/Vis spectral analysis in the first case study is the reason, as

the sample passed by the detector in a shorter time (compare

Figure 2A, Figure 4A, and Figure 6A) as the time-resolved,

spectral information of the sample is comparable between the

case studies after preprocessing. Longer time-wise smoothing

may lead to the removal of important information for the model

calculation. The selected wavelength range for the first case study

was broader than for the other two (see Subchapter 2.4.1) since

CytC was present in the first case study and has a second

absorption maximum at 410 nm.

The third case study required the calculation of the second

derivative (see Table 1). Possible reasons could be that the target

molecule VLP did not present distinct spectral differences to the

contaminants (Mach et al., 1989) or contributed less to the

measured spectra compared to target molecules of the first

and second case studies. The target protein absorption shares

of the initial material was high with 89.24% and 42.82% for the

first and second case study, respectively. The VLP absorption

share could not be determined as quantitative UV/Vis absorption

data as a reference were missing. The large amount of UV/Vis-

absorbing contaminants in the VLP lysate may interfere with the

identification of the component representing VLPs. The

differences in the time profile peak maxima of the target

molecules compared to the contaminants support this

assumption (see Figure 2A, Figure 4A, and Figure 6A).

For each case study, the buffer system was adapted to the

requirements of the target molecule. The buffer substances were

not UV/Vis-active in the used concentration and did not affect

the model calculation.

On the contrary, the precipitant AMS showed UV/Vis-

absorbing behavior in the second case study and had an

impact on the constructed models. A possible reason could be

that the light refraction occurs when solutions of different density

(mobile phase and sample solvent) pass the detector (Raval and

Patel, 2020). This strongly depends on the screening AMS

concentration and the sample dilution prior to the UV/Vis

analysis. In the first case study dealing with the selective

crystallization of Lys, the maximal screening AMS

concentration was four times lower than in the second and

third case studies.

The dilution factors for the first, second, and third case

studies varied (see Subchapter 2.2) and were adjusted

according to the total absorbance of the initial material at

wavelength 280 nm. Taking all these factors into account, the

analyzed samples of the second case study (mAb) contained the

highest AMS concentration and thus the AMS concentration

contributed to a greater extent to the recorded UV/Vis spectra.

The constructed model compensated this by describing the

precipitant concentration with its own model component (see

Figures 4C, D). UV/Vis data recorded of buffer solutions

containing different amounts of AMS is shown in

Supplementary Figure S1 and support this explanation.

The screening volume, screening size, and the analyzed

process step solutions differed. The first case study (Lys

crystallization) investigated 96 different conditions in

24 µl batches with eight different Lys starting

concentrations and twelve precipitant concentrations.

Only the supernatant samples of the crystallization step

were analyzed. The spectral data set size was varied in this

case study. Screening conditions that did not show

concentration changes of the target molecule were

excluded for model calculation. It was found that a large

screening size with little variety in species composition and

concentration ratios does not improve the model robustness

but decreases the CORCONDIA value and increases the

model error (data not shown). Preferably, the model error

is low and the CORCONDIA high indicating an appropriate

component number (Bro and Kiers, 2003) and, hence, a valid

model. The second and third case studies screened twelve

different precipitant concentrations in 500 µl batches for the

selective precipitation of mAbs and VLPs. Samples were

analyzed during the precipitation, the wash, and the

redissolution step leading to a variety of 36 analyzed

samples per screening differing in species compositions

and concentration ratios. This sample variety improved

the model calculation as the CORCONDIA of the final

models was higher and the model error lower for the

second and the third case studies.

The screening volume did not affect the spectral data set or

the model calculation as long as there is enough supernatant for

sampling.

When selective crystallization or precipitation processes are

characterized with the PARAFAC approach, the models cannot

detect if the proteins crystallized or precipitated, as the generated

models rely solely on the UV/Vis spectroscopic data set and

specific protein concentration reductions. Regarding the

experimental differences between the two processes, an

additional centrifugation step is required to separate

precipitate from the supernatant. Furthermore, the

crystallization process requires more time than precipitation

processes due to the time-intensive crystal nucleation and

crystal growth of macromolecules (Durbin and Feher, 1996;

McPherson, 2004).

In summary, these three case studies illustrate how the

chemometric multi-way approach of PARAFAC can be

applied to different phase behavior screenings with varying

process conditions. The differences in spectral data

preprocessing could be explained leading to a general

preprocessing approach for future crystallization and

precipitation screenings. Experimental differences in scale,
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sample dilution, screening size, and changes of the used

chemicals did not interfere with the model calculation as long

as the spectra of the target molecule and contaminant species

contribute to the UV/Vis spectral measurement and differ in

their spectral profiles. A broad variation of the different species

concentrations and ratios in the data set was found to be

preferred and can be achieved by analyzing different process

solutions during selective precipitation or crystallization,

washing, and redissolution process steps.

5 Conclusion

In this research project, multi-way chemometrics were

successfully applied to three high-throughput (HT) screenings

for the characterization of selective crystallization and

precipitation processes. Supernatant samples were taken after

crystallization in the first case study, and after precipitation,

washing, and redissolution for the second and third case studies.

Besides model proteins, different modalities, e.g., virus-like

particles (VLPs), monoclonal antibodies (mAbs), were

investigated. The recorded ultraviolet visible light (UV/Vis)

spectra of the samples of each case study were structured as a

four-dimensional (4D) data set and preprocessed to eventually

calculate one parallel factor analysis (PARAFAC) model per case

study. The models of the first and second case studies were

compared with quantitative reference data on specific

concentrations and spectra of the purified species to test the

model validity and to find general preprocessing and model

parameters. This knowledge of the calculation parameters was

used for the third study when only the spectrum of the purified

target molecule could serve as a quantitative reference. The

concentration profile was only validated with the qualitative

sodium dodecyl sulfate–polyacrylamide gel electrophoresis

(SDS-PAGE) analysis.

Without prior calibration, these models coupled with UV/Vis

spectroscopy could quickly provide species spectra and

concentration estimations for selective crystallization in

chemically defined solutions or precipitation screenings in

complex solutions.

The calculated PARAFAC components were supposed to

represent the various species present in the solution. Still,

low-absorbing species or species with similar phase

behaviors could not be described with a single model

component per species as shown in the first case study.

This bears the advantage of clustering species depending

on their phase behavior and to better describe multiple

impurity species in complex solutions with one model

component per cluster. This said, only species which

crystallize or precipitate at various precipitant

concentrations can be distinguished.

With quantitative insights calculated from the concentration

estimations, the generated models could visualize the influence of

the precipitant on the different species. Thus, they could be used

to evaluate the screened conditions in terms of purity and yield

and could potentially find optimal process conditions in all three

case studies.

When a suitable model component number was used,

reasonable and valid models could be calculated regardless of

the modality, screening scale, and other experimental

parameters.

This supports the assumption that the approach of coupling

PARAFAC and UV/Vis spectroscopy can be transferred to other

modalities and purification processes based on phase behavior.

At an exploratory stage of process development, this

approach can support process analytical technology (PAT)

and it may be especially valuable as deeper process knowledge

can be generated without refined analytics and with reduced

input of resources. Different impurity clusters and the target

molecule can be characterized regarding their differences in

spectra and phase behavior. The PAT models estimated yield

and purity and can be a basis for detailed process engineering.

This process knowledge helps designing selective crystallization

and precipitation processes and finding optimal process

conditions while complying with the quality by design (QbD)

guidelines and the high standard of biopharmaceutical processes.
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