KIT | KIT-Bibliothek | Impressum | Datenschutz

Kinetics and Pore Formation of the Sodium Metal Anode on NASICON‐Type Na$_{3.4}$ Zr$_2$Si$_{2.4}$P$_{0.6}$O$_{12}$ for Sodium Solid‐State Batteries

Ortmann, Till; Burkhardt, Simon; Eckhardt, Janis Kevin; Fuchs, Till; Ding, Ziming 1; Sann, Joachim; Rohnke, Marcus; Ma, Qianli; Tietz, Frank; Fattakhova-Rohlfing, Dina; Kübel, Christian ORCID iD icon 1,2; Guillon, Olivier; Heiliger, Christian; Janek, Jürgen
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
2 Karlsruhe Nano Micro Facility (KNMF), Karlsruher Institut für Technologie (KIT)

Abstract:

In recent years, many efforts have been made to introduce reversible alkali metal anodes using solid electrolytes in order to increase the energy density of next-generation batteries. In this respect, Na$_{3.4}$Zr$_2$Si$_{2.4}$P$_{0.6}$O$_{12}$ is a promising solid electrolyte for solid-state sodium batteries, due to its high ionic conductivity and apparent stability versus sodium metal. The formation of a kinetically stable interphase in contact with sodium metal is revealed by time-resolved impedance analysis, in situ X-ray photoelectron spectroscopy, and transmission electron microscopy. Based on pressure- and temperature-dependent impedance analyses, it is concluded that the Na|Na$_{3.4}$Zr$_2$Si$_{2.4}$P$_{0.6}$O$_{12}$ interface kinetics is dominated by current constriction rather than by charge transfer. Cross-sections of the interface after anodic dissolution at various mechanical loads visualize the formed pore structure due to the accumulation of vacancies near the interface. The temporal evolution of the pore morphology after anodic dissolution is monitored by time-resolved impedance analysis. Equilibration of the interface is observed even under extremely low external mechanical load, which is attributed to fast vacancy diffusion in sodium metal, while equilibration is faster and mainly caused by creep at increased external load. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000154675
Veröffentlicht am 19.01.2023
Originalveröffentlichung
DOI: 10.1002/aenm.202202712
Scopus
Zitationen: 18
Dimensions
Zitationen: 20
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Karlsruhe Nano Micro Facility (KNMF)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 1614-6832, 1614-6840
KITopen-ID: 1000154675
HGF-Programm 43.35.01 (POF IV, LK 01) Platform for Correlative, In Situ & Operando Charakterizat.
Weitere HGF-Programme 38.02.01 (POF IV, LK 01) Fundamentals and Materials
Erschienen in Advanced Energy Materials
Verlag Wiley-VCH Verlag
Band 13
Heft 5
Seiten Art.-Nr.: 2202712
Vorab online veröffentlicht am 23.12.2022
Schlagwörter current constriction, impedance spectroscopy, interphase growth, NASICON electrolytes, SEI formation, sodium metal anodes; KNMFi 2022-029-031463 FIB TEM
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page