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Abstract
We study weak solutions and its approximation of hyperbolic linear symmetric Friedrichs
systems describing acoustic, elastic, or electro-magnetic waves. For the corresponding first-
order systems we construct discontinuous Galerkin discretizations in space and time with
full upwind, and we show primal and dual consistency. Stability and convergence estimates
are provided with respect to a mesh-dependent DG norm which includes the L2 norm at final
time. Numerical experiments confirm that the a priori results are of optimal order also for
solutions with low regularity, and we show that the error in the DG norm can be closely
approximated with a residual-type error indicator.

Keywords Weak solution of linear symmetric Friedrichs systems · Discontinuous Galerkin
methods in space and time · Error estimators for first-order systems

Mathematics Subject Classification 35K20 · 65M15 · 65M60 · 65M55

1 Introduction

Linearwave equations are hyperbolic, and the formulation as first-order symmetric Friedrichs
system provides a well established setting for analyzing and approximating solutions. A
specific feature of hyperbolic systems is the transport of discontinuities along characteristics.
Our goal is to provide a numerical scheme which is efficient for smooth solutions as well as
for weak solutions with discontinuities.

For smooth solutions of linear symmetric Friedrichs systemsO(hs−1/2) convergence can
be established for discontinuous Galerkin approximations in space with respect to suitable
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mesh-dependent DGnorm [9, Chap. 57], [5, Chap. 7]. For acoustics, the convergence analysis
of a space-time approximation in a DG semi-norm provides estimates for all discrete time
steps [2, Prop. 6.5].

Finite volume convergenceO(h1/2) for hyperbolic linear symmetric Friedrichs systems is
established in [18] combinedwith first-order time-stepping. DiscontinuousGalerkinmethods
in time are analyzed in [12] for tent-type space-time meshes. This is adapted to space-
time discontinuous Galerkin methods on general space-time meshes with upwind flux for
acoustics in [2], where the convergence is established for sufficiently smooth solutions based
on estimates in a suitable DG semi-norm. In particular, the analysis includes the adaptive
approximation of corner singularities.

Here, we consider aDGmethod in space and time for linear symmetric Friedrichs systems,
and we show inf-sup stability and convergence in the DG norm. Therefore we transfer our
results for space-time Petrov–Galerkin methods in [6, 7] with continuous approximations in
time and for the DPG method in [10, 11], where convergence in a stronger graph norm is
considered. Our analysis includes bounds for the consistency error in the case that piecewise
discontinuous material parameters are not aligned with the mesh. Convergence in the limit
for piecewise discontinuous solutions of Riemann problems is established only in L2.

The space-time method is realized in the parallel finite element system M++ [4]. In our
numerical exampleswe confirm the a priori estimates forweak aswell as for smooth solutions,
and we demonstrate the efficiency of the p-adaptive scheme.

Space-time computations have a long history in practical engineering applications and in
parallel time integration [13, 26]. The space-time approach allows for large-scale parallel
computing and in case of point sources the reduction to the time cone within the space-time
cylinder. Moreover, it allows for dual-primal goal-oriented error control and applications
to inverse and optimal control problems where the adjoint problem is backward in time
and relies on the forward solution in the full space-time cylinder. Space-time discretizations
for the wave equation are constructed within a second-order approach in [19, 25], with
isogeometric methods in [27], a very weak approach is presented in [15], a quasi-Trefftz
method is considered in [17], and a new approach to space-time boundary integral equations
for the wave equation is developed in [24]. In comparison with these methods the first-order
DG approach is numerically expensive. On the other hand, convergence can be established
with minimal regularity assumptions, the method easily extends to more general material
laws and to more general hyperbolic conservation laws.

The paper is organized as follows. In Sect. 2 we introduce the notation and the formulation
of wave equations as first-order systems, in Sect. 3 we introduce the DG discretization in time
and in space. In Sect. 4we consider well-posedness and stability, in Sect. 5we prove existence
of weak solutions and convergence estimates, in Sect. 5.3 we introduce an a posteriori error
indicator, and in Sect. 6we present numerical results. In Sect. 7we concludewith a discussion
of possible extensions and open problems.

2 Symmetric Friedrichs Systems

We consider weak solutions of linear hyperbolic first-order systems in the form of symmetric
Friedrichs systems. Let � ⊂ R

d be a bounded domain in space with Lipschitz boundary
∂�, I = (0, T ) a time interval, and we denote the space-time cylinder by Q = (0, T ) × �.
Boundary conditions will be imposed on�k ⊂ ∂� for k = 1, . . . ,m depending on themodel,
where m is the dimension of the first-order system.
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For S ⊂ Q the L2 norm and inner product are denoted by ‖ · ‖S and (·, ·)S .
Let L = M∂t + A be a linear differential operator in space and time, where (Mv)(t, x) =

M(x)v(t, x) defines the operatorM with a uniformly positive definite matrix-valued function
M ∈ L∞(�;Rm×m

sym ), and where Av = ∑d
j=1 A j∂ jv is a differential operator in space with

matrices A j ∈ R
m×m
sym . Since M is uniformly positive definite, constantsCM ≥ cM > 0 exists

such that

cM y�y ≤ y�M(x)y ≤ CM y�y , y ∈ R
m and a.a. x ∈ � .

We observe
(
Lv,w

)
Q = (M∂tv,w

)
Q + (Av,w)Q = −(v, M∂tw

)
Q − (v, Aw)Q

= −(v, Lw)Q , v,w ∈ C1
c(Q;Rm) ,

so that L∗ = −L is the adjoint differential operator. This is now complemented by initial
and boundary conditions.

For the unit normal vector n ∈ L∞(∂�;Rd) we define the matrix An = ∑d
j=1 n j A j ∈

R
m×m
sym , so that

(
Av,w

)
�

+ (v, Aw)
�

= (Anv,w
)
∂�

= (v, Anw
)
∂�

, v,w ∈ C1(�;Rm) .

Correspondingly, we get for the operator L in space and time
(
Lv,w

)
Q + (v, Lw)Q = (Mv(T ),w(T )

)
�

− (Mv(0),w(0)
)
�

+ (Anv,w
)
(0,T )×∂�

, v,w ∈ C1(Q;Rm) ,

i.e., inserting L∗ = −L ,
(
v, L∗w

)
Q = (Lv,w)Q − (Mv(T ),w(T )

)
�

+ (Mv(0),w(0)
)
�

− (Anv,w
)
(0,T )×∂�

, v,w ∈ C1(Q;Rm) .

In order to define weak solutions, we include initial values for t = 0 and boundary conditions
on�k for k = 1, . . . ,m in the right-hand side.Therefore,weuse a test spaceV∗ ⊂ C1(Q;Rm)

such that
(
v, L∗w

)
Q = (Lv,w)Q + (Mv(0),w(0)

)
�

− (Anv,w
)
(0,T )×∂�

,

v ∈ C1(Q;Rm) , w ∈ V∗

with

(
Anv,w

)
(0,T )×∂�

=
m∑

k=1

(
(Anv)k, wk

)
(0,T )×�k

,

v ∈ C1(Q;Rm) , w = (w1, . . . , wm) ∈ V∗ . (1)

The property (1) characterizes adjoint boundaries �∗
k ⊂ ∂� for k = 1, . . . ,m, so that the

test space is defined by

V∗ = {w ∈ C1(Q;Rm) : w(T ) = 0 in �, w(t) ∈ S∗ for t ∈ [0, T )
}

with S∗ = {w ∈ C1(�;Rm) : (Anw)k = 0 on �∗
k , k = 1, . . . ,m

}

with homogeneous final values at t = T and homogenous values at the adjoint boundaries.
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Our aim is to find a weak solution u ∈ L2(Q;Rm) solving
(
u, L∗w

)
Q = 〈�,w〉 , w ∈ V∗ (2)

with
〈
�,w

〉 = (f,w)Q + (Mu0,w(0)
)
�

− (g,w)
(0,T )×∂�

, w ∈ V∗

for given volume data f ∈ L2(Q;Rm), initial data u0 ∈ L2(�;Rm), and boundary data
g ∈ L2((0, T ) × ∂�;Rm), where the boundary data g = (gk)k=1,...,m are extended to ∂� by
gk = 0 on ∂� \ �k for k = 1, . . . ,m.

Testing the weak solution u ∈ L2(Q;Rm) in (2) with functions in v ∈ C1
c(Q;Rm)

defines the weak derivative Lu = f in L2(Q;Rm). If in addition u(0) ∈ L2(�;Rm) and
Anu|(0,T )×�k ∈ L2((0, T ) × �k) for k = 1, . . . ,m, the weak solution is also a strong
solution characterized by

Lu = f in L2(Q;Rm) , u(0) = u0 in L2(�;Rm) ,

(Anu)k = gk on L2((0, T ) × �k) , k = 1, . . . ,m . (3)

This is now specified for acoustic, elastic and electro-magnetic waves.
Acoustic waves The second-order wave equation

�∂2t φ − ∇ · (κ∇φ) = b

is considered as first-order system with p = ∂tφ and q = −κ∇φ, i.e.,

�∂t p + ∇ · q = b and ∂tq + κ∇ p = 0 in (0, T ) × �,

p(0) = p0 and q(0) = q0 in � at t = 0 ,

p(t) = pD(t) on �D and n · q(t) = gN(t) on �N on ∂� for t ∈ (0, T )

for volume data b, boundary data gN, pD, initial data q0, p0, positive parameters �, κ , and
the disjoint decomposition of the boundary ∂� = �D ∪�N into Dirichlet and Neumann part.
The corresponding Friedrichs system with m = 1 + d components is given by

u =
(
p
q

)

, Mu =
(

�p
κ−1q

)

, Au =
(∇ · q

∇ p

)

,

Anu =
(
n · q
pn

)

, f =
(
b
0

)

, g =
(

gN
pDn

)

, (4)

so that for smooth functions ϕ,ψ with ϕ = 0 on (0, T ) × �D and n · ψ = 0 on (0, T ) × �N

(
An(p,q), (ϕ,ψ)

)
(0,T )×∂�

= (n · q, ϕ
)
(0,T )×�N

+ (p,n · ψ
)
(0,T )×�D

.

In two space dimensions, this corresponds to the boundary parts �1 = �∗
1 = �D and

�2 = �∗
2 = �3 = �∗

3 = �N, and

M =
⎛

⎝
� 0 0
0 κ−1 0
0 0 κ−1

⎞

⎠ ∈ L∞(�;R3×3
sym ) ,

A1 =
⎛

⎝
0 1 0
1 0 0
0 0 0

⎞

⎠ ∈ R
3×3
sym , A2 =

⎛

⎝
0 0 1
0 0 0
1 0 0

⎞

⎠ ∈ R
3×3
sym .
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Elastic waves Linear elastic waves are described by the first-order system for velocity v and
stress σ

�∂tv − ∇ · σ = b and ∂tσ − Cε(v) = 0 in (0, T ) × �,

v(0) = v0 and σ (0) = σ 0 in � at t = 0 ,

v(t) = vD(t) on �D and σ (t)n = gN(t) on �N on ∂� for t ∈ (0, T )

with mass density �, the symmetric gradient ε = ε(v) of v, and, in isotropic media, with
Cε = 2με + λ trace(ε)I3 depending on the Lamé parameters μ, λ > 0. This corresponds to
the Friedrichs system with

u =
(
v
σ

)

, Mu =
(

�v
C−1σ

)

, Au =
(−∇ · σ

−ε(v)

)

,

Anu =
( −σn

−nv� − vn�
)

, f =
(
b
0

)

, g =
( −gN

−nv�
D − vDn�

)

. (5)

For d = 3 we have m = 9 and �k = �∗
k = �D for k = 1, 2, 3, and �k = �∗

k = �N for
k = 4, . . . , 9.
Electro-magnetic waves The first-order system for the electric field E and the magnetic field
intensity H

ε∂tE − ∇ × H = −J and μ∂tH + ∇ × E = 0 in (0, T ) × �,

E(0) = E0 and H(0) = H0 in � at t = 0 ,

n × E(t) = 0 on �E and n × H(t) = gM on �M on ∂� for t ∈ (0, T )

with permittivity ε, permeabilityμ, and boundary decomposition ∂� = �E∪�M corresponds
to a Friedrichs system with

u =
(
E
H

)

, Mu =
(

εE
μH

)

, Au =
(−∇ × H

∇ × E

)

,

Anu =
(−n × H

n × E

)

, f =
(−J

0

)

, g =
(−gM

0

)

. (6)

For d = 3 we have m = 6 and �k = �∗
k = �E for k = 1, 2, 3, and �k = �∗

k = �M for
k = 4, 5, 6.

Remark 1 We only consider the case that the symmetric matrices A j , j = 1, . . . , d , are
constant in �. In general, A j may depend on x ∈ �, e.g., for the linear transport equation

Lu = ∂t u + a · ∇u with m = 1 and transport vector a(x) ∈ R
d . Then, �1 is the inflow

boundary, and for the adjoint equation we obtain L∗v = −∂tv − a · ∇v − (∇ · a)v with
�∗
1 = ∂� \ �1. For the DG analysis of this case we refer to [5, Chap. 2] in the steady case

and to [6] for a Petrov–Galerkin space-time method.

The suitable choice of the subsets �k ⊂ ∂� for k = 1, . . . ,m for the boundary conditions
in general Friedrichs systems is discussed in [5, Chap. 7.2]. Here we consider the special
case for wave systems. The property (1) characterizes the adjoint boundaries �∗

k ⊂ ∂� for
k = 1, . . . ,m, and we observe
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m∑

k=1

(
(Anv)k, wk

)
(0,T )×�k

= (Anv,w
)
(0,T )×∂�

= (v, Anw
)
(0,T )×∂�

=
m∑

k=1

(
vk, (Anw)k

)
(0,T )×∂�\�∗

k

for v = (v1 . . . , vm) ∈ C1(Q;Rm) and w = (w1, . . . , wm) ∈ V∗ and thus, defining

V = {v ∈ C1(Q;Rm) : v(0) = 0 in �,

(Anv)k = 0 on (0, T ] × �k , k = 1, . . . ,m
}

with homogeneous initial value at t = 0 and homogeneous boundary values on�k , we obtain
(
Anv,w

)
(0,T )×∂�

= (v, Anw
)
(0,T )×∂�

= 0 , v ∈ V , w ∈ V∗ .

Boundary conditions are required in order to obtain uniqueness and well-posedness of the
solution. Therefore, we require for the subsets �k ⊂ ∂�, for k = 1, . . . ,m, that the operators
L and L∗ are injective on V and V∗, respectively, i.e.,

{
v ∈ V : Lv = 0

} = {0} ,
{
w ∈ V∗ : L∗w = 0

} = {0} , (7)

where the relatively open adjoint boundaries �∗
k ⊂ ∂� for k = 1, . . . ,m are determined by

property (1).
Now we show that both conditions in (7) are necessary. The first condition for �k is

required for uniqueness for strong solutions: if v ∈ V \ {0} exists with Lv = 0, then this is
a non-trivial homogeneous strong solution, i.e., v solves (3) with u0 = 0, f = 0, and g = 0.
On the other hand, if the second condition is violated, weak solutions do not exist for all
volume data: if w ∈ V∗ \ {0} and f ∈ L2(Q;Rm) exists with L∗w = 0 and (f,w)Q �= 0, no
weak solution of (2) with homogeneous initial and boundary data u0 = 0 and g = 0 exists.

Remark 2 The formulation of wave equations in our examples as Friedrichs systems yields

symmetric matrices of the form A j =
(
0 Ã j

Ã
�
j 0

)

with Ã j ∈ R
m1×m2 and m = m1 + m2.

For the boundary conditions we can select a relatively open set �1 ⊂ ∂�. Then, defining
�k = �1 for k = 2, . . . ,m1, �k = ∂� \ �1 for k = m1 + 1, . . . ,m, and �∗

k = �k for
k = 1, . . . ,m, we observe that property (1) and conditions (7) are satisfied.

Remark 3 For smooth domains and data, the solution is also smooth, e.g., for acoustics
φ(t) ∈ Hs(�) for all t ∈ [0, T ] with s ≥ 2. This allows for improved approximation orders
O(hs) for φ. On the other hand, the necessary regularity requirements are quite restrictive
[21], and the second-order formulation does not allow for the convergence analysis of piece-
wise discontinuous solutions.

Remark 4 Waves in realmedia are dissipative and dispersive; e.g., modeling electro-magnetic
waves in matter needs to include conductivity and impedance. The DG analysis can be
extended to this case; see, e.g., [5, Chap. 7] for the steady case and [8] for visco-elastic waves
with impedance boundary conditions.
In the elastic model for Rayleigh damping or for the Kelvin–Voigt model, the linear operator
takes the form L = M∂t + D + A with (Dv)(t, x) = D(x)v(t, x) and D ∈ L∞(�;Rd×d

sym )

symmetric positive semi-definite; then, L∗ = −M∂t + D − A.
All our subsequent results extend to this case, but for simplicity we only consider the case
D = 0.
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3 The Full-Upwind Discontinuous Galerkin Discretization

In this section we introduce an upwind DG discretization for the first-order system.

3.1 The DG Finite Element Space in the Space-Time Cylinder

For the discretization, we use tensor product space-time cells combining the mesh in space
with a decomposition in time. For 0 = t0 < t1 < · · · < tN = T , we define time intervals
In,h = (tn−1, tn), time-step sizes �tn = tn − tn−1, and

Ih = (t0, t1) ∪ · · · ∪ (tN−1, tN ) ⊂ I = (0, T ) , ∂ Ih = {t0, t1, . . . , tN−1, tN } .

We set �t = max�tn , and we assume quasi-uniformity, i.e., �tn ∈ [Csr�t,�t] with Csr ∈
(0, 1] independent of N .

Let Kh be a mesh so that �h = ⋃
K∈Kh

K is a decomposition in space into open cells

K ⊂ � ⊂ R
d . Then, we obtain a tensor-product decomposition into space-time cells R =

In,h × K

Qh = Ih × �h =
N⋃

n=1

Qn,h =
⋃

R∈Rh

R ⊂ Q = I × � ⊂ R
1+d ,

Qn,h =
⋃

K∈Kh

In,h × K ⊂ In,h × �

of the space-time cylinder Q. Let F ∈ FK be the faces of the element K , and we set
Fh = ⋃K FK , so that ∂�h = ⋃F∈Fh

F is the skeleton in space; ∂Qh = ⋃N
n=0{tn} × ∂�h

is the corresponding space-time skeleton. For inner faces F ∈ Fh ∩ � and K ∈ Kh , let KF

be the neighboring cell such that F̄ = ∂K ∩ ∂KF . On boundary faces F ∈ Fh ∩ ∂� we set
KF = K . Let nK be the outer unit normal vector on ∂K . We assume that � = �h ∪ ∂�h

and that the boundary decomposition is compatible with the mesh, i.e., �k =⋃F∈FK∩�k
F

for k = 1, . . . ,m.
We set hK = diam K , hF = diam F , and h = max hK . We assume quasi-uniformmeshes

and shape-regularity, i.e., hF ≥ csrhK for F ∈ FK with csr > 0 independent of hK . In the
following, we use the mesh-dependent norms

∥
∥hα/2vh

∥
∥
Q =

( N∑

n=1

∑

K∈Kh

hα
K ‖vh‖2In,h×K

)1/2
, α ∈ R . (8)

In order to calibrate the accuracy in space and time, we assume, depending on a reference
velocity cref > 0, that the mesh size in time and space are well balanced satisfying

cref�t ≤ h . (9)

Since we only consider fully implicit methods, we have no restriction with respect to stability
of the time integration.

Remark 5 For simplicity we use only tensor-product space-time meshes. For the extension
to more general meshes in the space-time cylinder we refer to [14], see also the analysis in
[2]. General meshes in R

1+d are considered in [22]. Then, the condition (9) can be relaxed
to a local condition.
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TheDGdiscretization is defined for a finite dimensional subspace Vh ⊂ Vh ⊂ C1(Ih;Sh),
where

Vh = {vh ∈ C1(Qh;Rm) : vn,h,K = vh |In,h×K extends continuously to

vn,h,K ∈ C0(In,h × K ;Rm)
}
,

Sh = {vh ∈ C1(�h;Rm) : vh,K = vh |K extends continuously to

vh,K ∈ C0(K ;Rm)
}
.

On the space-time skeleton ∂Qh , we define

∥
∥vh
∥
∥

∂Qh
=
( N∑

n=1

∑

K∈Kh

‖vn,h,K ‖2∂(In,h×K )

)1/2
, vh ∈ Vh . (10)

For the positive definite matrix function M ∈ L∞(�;Rm×m
sym ) let Mh ∈ L∞(�h;Rm×m

sym )

be a piecewise constant approximation, and for K ∈ Kh let Mh,K ∈ R
m×m
sym be the continuous

extension of Mh |K to K ; in case of material jumps this can result to different values on the
left and right side of a face, i.e., Mh,K |F �= Mh,KF |F .

Let Lh = Mh∂t + A be the corresponding linear differential operator, where the approx-
imated operator Mh is given by (Mhv)(t, x) = Mh(x)v(t, x). Note that then Lh(Vh) ⊂ Vh .

For our applications, we use a tensor-product construction of the finite element space.
For every space-time cell R = In,h × K we select polynomial degrees pR = pn,K ≥ 0

in time and qR = qn,K ≥ 0 in space. With this we define the discontinuous finite element
spaces

Sn,h =
∏

K∈Kh

Pqn,K (K ;Rm) ⊂ Sh , Sh = S1,h + · · · + SN ,h , (11a)

Vn,h =
∏

K∈Kh

Ppn,K ⊗ Pqn,K (K ;Rm) , Vh = V1,h + · · · + VN ,h ⊂ Vh , (11b)

where Pp denotes the set of polynomials up to order p. For the following, we fix p = max pR
and q = max qR , so that

Sn,h ⊂ Sh ⊂ Pq(�h;Rm) ⊂ Sh ,

Vh ⊂ Pp(Ih) ⊗ Sh ⊂ Pp(Ih) ⊗ Pq(�h;Rm) ⊂ Vh .

On the space-time skeleton ∂Qh = ⋃N
n=0{tn} × � ∪ Ih × ∂�h , the inverse inequality and

the discrete trace inequality [5, Lem. 1.44 and Lem. 1.46] yield
∥
∥h1/2M−1/2

h Lhvh
∥
∥
Qh

≤ Cinv
∥
∥h−1/2M1/2

h vh
∥
∥
Q , (12a)

∥
∥M1/2

h vh
∥
∥

∂Qh
≤ Ctr

∥
∥h−1/2M1/2

h vh
∥
∥
Q , vh ∈ Vh , (12b)

with Cinv,Ctr > 0 depending on the space-time mesh regularity (and thus also on cref), the
polynomial degrees in Vh , and the material parameters.

Let 
h : L2(Q;Rm) −→ Vh be the space-time L2 projection defined by
(
Mh
hv, vh

)
Q = (Mhv, vh

)
Q , vh ∈ Vh . (13)

For vh ∈ Vh , let vn,h ∈ C0
([tn−1, tn];L2(�h;Rm)

)
be the extension of vh |Qn,h ∈

L2(Qn,h;Rm) to [tn−1, tn].
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In every time interval In,h we use the projection
n,h : L2(�;Rm) −→ Sn,h ⊂ Sh defined
by

(
Mh
n,hw,wn,h

)
�

= (Mhwn,wn,h
)
�

, wn,h ∈ Sn,h .

In the following,wederive the discretizations in the infinite dimensional piecewise continuous
spacesSh andVh , since several properties only rely on themesh.Weuse the finite dimensional
DG spaces Vh ⊂ Vh and Sh ⊂ Sh if we require additional properties of the discrete space
such as inverse and trace inequalities.

3.2 A Discontinuous Galerkin Method in Time

For vh,wh ∈ Vh we obtain after integration by parts in all intervals In,h ⊂ Ih

(
Mh∂tvh,wh

)
Qh

=
N∑

n=1

(
− (Mhvn,h, ∂twn,h

)
Qn,h

+ (Mhvn,h(tn),wn,h(tn)
)
�

− (Mhvn,h(tn−1),wn,h(tn−1)
)
�

)
.

Introducing the jump terms [wh]n = wn+1,h(tn) − wn,h(tn) for n = 1, . . . , N − 1 and
[wh]N = −wN ,h(tN ), we define the dual representation of the full upwind DG method in
time for vh,wh ∈ Vh

mh(vh,wh) = −(Mhvn,h, ∂twn,h
)
Qh

−
N∑

n=1

(
Mhvn,h(tn), [wh]n

)
�

. (14)

We have dual consistency by construction, i.e.,

mh(vh,w) = −(Mhvh, ∂tw
)
Qh

, w ∈ V∗ . (15)

Again integrating by parts and defining [vh]0 = v1,h(0) yields the primal representation

mh(vh,wh) = (Mh∂tvh,wh
)
Qh

+
N∑

n=1

(
Mh[vh]n−1,wn,h(tn−1)

)
�

. (16)

Together, we obtain

2mh(vh, vh) = mh(vh, vh) + mh(vh, vh)

=
N∑

n=1

((
Mh[vh]n−1, vn,h(tn−1)

)
�

− (Mhvn,h(tn), [vh]n
)
�

)

= (Mhvh(0), vh(0)
)
�

+ (Mhvh(T ), vh(T )
)
�

+
N−1∑

n=1

((
Mh[vh]n, vn+1,h(tn)

)
�

− (Mhvn,h(tn), [vh]n
)
�

)
,

which yields

mh(vh, vh) = 1

2

N∑

n=0

(
Mh[vh]n, [vh]n

)
�

≥ 0 , vh ∈ Vh , (17)
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so that

mh
(
vh, vh

) = 0 �⇒ mh
(
vh,wh

) = −(Mhvh, ∂tw
)
Qh

= (Mh∂tvh,w
)
Qh

, vh,wh ∈ Vh . (18)

For mh(vh, vh) = 0 we observe vh ∈ H1
0(0, T ;Sh).

This yields with dT (t) = T − t

(
Mhvh, vh

)
Q =

∫ T

0

(
Mhvh(t), vh(t)

)
�
dt

= −
∫ T

0

(
Mhvh(t), vh(t)

)
�
∂t dT (t) dt

= 2
∫ T

0

(
Mh∂tvh(t), vh(t)

)
�
dT (t) dt

≤ 2T
∥
∥M−1/2

h ∂tvh
∥
∥
Qh

∥
∥M1/2

h vh
∥
∥
Q ,

i.e., we have
∥
∥M1/2

h vh
∥
∥
Q ≤ 2T

∥
∥M−1/2

h ∂tvh
∥
∥
Qh

.
This extends to discontinuous functions in Vh as follows.

Lemma 1 We have

(
Mhvh, vh

)
Q +

N−1∑

n=0

dT (tn)
(
Mh[vh]n, [vh]n

)
�

≤ 2mh(vh, dT vh) , vh ∈ Vh .

Proof The assertion follows from

(
Mhvh, vh

)
Q = −

N∑

n=1

∫ tn

tn−1

(
Mhvh(t), vh(t)

)
�
∂t dT (t) dt

= 2
∫ T

0

(
Mh∂tvh(t), vh(t)

)
�
dT (t) dt

−
N∑

n=1

(
dT (tn)

(
Mhvn,h(tn), vn,h(tn)

)
�

− dT (tn−1)
(
Mhvn,h(tn−1), vn,h(tn−1)

)
�

)

= 2
(
Mh∂tvh, dT vh

)
Qh

− T ‖M1/2
h v1,h(0)‖2�

+
N−1∑

n=1

dT (tn)
((

Mhvn+1,h(tn), vn+1,h(tn)
)
�

− (Mhvn,h(tn), vn,h(tn)
)
�

)

≤ 2
(
Mh∂tvh, dT vh

)
Qh

+ 2
N−1∑

n=1

dT (tn)
(
Mh[vh]n, vn+1,h(tn)

)
�

−
N−1∑

n=1

dT (tn)
(
Mh[vh]n, [vh]n

)
�

− T ‖M1/2
h v1,h(0)‖2�
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≤ 2mh
(
vh, dT vh

)−
N−1∑

n=0

dT (tn)
(
Mh[vh]n, [vh]n

)
�

using
(
Mhvn+1,h(tn), vn+1,h(tn)

)
�

− (Mhvn,h(tn), vn,h(tn)
)
�

= (Mh(vn+1,h(tn) − vn,h(tn)), vn+1,h(tn) + vn,h(tn)
)
�

= (Mh[vh]n, vn+1,h(tn)
)
�

+ (Mh[vh]n, vn,h(tn)
)
�

= 2
(
Mh[vh]n, vn+1,h(tn)

)
�

− (Mh[vh]n, [vh]n
)
�

.

��

3.3 A Discontinuous Galerkin Method in Space

For vh,wh ∈ Sh we observe, integrating by parts for all elements K ∈ Kh ,

(
Avh,wh

)
�h

=
∑

K∈Kh

⎛

⎝−(vh,K , Awh,K
)
K +

∑

F∈FK

(
AnK vh,K ,wh,K

)
F

⎞

⎠ .

For conforming functions v, we have for the flux AnK v = −AnKF
v on inner faces F ⊂ �, and

for discontinuous functions we define the jump term [wh]K ,F = wh,KF −wh,K . On boundary
faces F ⊂ ∂� this depends on the boundary conditions, and we set (An[vh])k = −2(Anvh)k
on �k ⊂ ∂� and (An[vh])k = 0 on ∂� \ �k for k = 1, . . . ,m.
We use the discontinuous Galerkin method with full upwind discretization in space which is
of the form

ah(vh,wh) = −(vh, Awh
)
�h

+
∑

K∈Kh

∑

F∈FK

(
vh,K , Aup

nK [wh]K ,F
)
F ,

where the upwind flux Aup
nK ∈ R

m×m is obtained by solving local Riemann problems.
For the DG method we require dual consistency for the bilinear form and the right hand side
for the boundary values for vh ∈ Sh , w ∈ S∗

ah
(
vh,w

) = −(vh, Aw
)
�h

and
〈
�∂�,h(t),w

〉 = (g(t),w)
∂�

, (19)

and for the inconsistency complement we require that C1 ≥ c1 > 0 exists such that

c1
∥
∥An[vh]

∥
∥2

∂�h
≤ ah

(
vh, vh

) ≤ C1
∥
∥An[vh]

∥
∥2

∂�h
, vh ∈ Sh , (20)

so that for vh,wh ∈ Sh

ah
(
vh, vh

) = 0 �⇒ ah
(
vh,wh

) = −(vh, Awh
)
�h

= (Avh,wh
)
�h

. (21)

We assume that C1 > 0 only depends on the material parameters, and that
∣
∣ah
(
vh,wh

)+ (vh, Awh
)
�h

∣
∣ ≤ C1

∥
∥M1/2

h vh
∥
∥

∂�h

∥
∥An[wh]

∥
∥

∂�h
, (22a)

∣
∣ah
(
vh,wh

)+ (Avh,wh
)
�h

∣
∣ ≤ C1

∥
∥An[vh]

∥
∥

∂�h

∥
∥M1/2

h wh
∥
∥

∂�h
, (22b)

∣
∣
〈
�∂�,h(t),wh

〉− (g(t),wh
)
∂�

∣
∣ ≤ C1

∥
∥g(t)

∥
∥

∂�h

∥
∥M1/2

h wh
∥
∥

∂�h
(22c)

for vh,wh ∈ Sh .
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For acoustic, elastic and electro-magnetic waves the upwind flux is explicitly evaluated,
e.g., in [16, Sect. 4.3]. Here, we only consider the dual representation; integration by parts
yields the primal representation.
Acoustic waves

The full upwind DG approximation for the acoustic wave equation (4) is given by

ah
(
(ph,qh), (ϕh,ψh)

)=
∑

K∈Kh

(

− (qh,K ,∇ϕh,K
)
K − (ph,K ,∇ · ψh,K

)
K

−
∑

F∈FK

1

ZK + ZKF

(
pK ,h + ZKFnK · qK ,h, [ϕh]K ,F + ZKnK · [ψh]K ,F

)
F

)

for (ph,qh), (ϕh,ψh) ∈ Sh with impedance ZK = √
κh,K�h,K depending on the piecewise

constant approximations for the material parameters κ, � > 0. On inner boundaries material
discontinuities can result in ZK �= ZKF , on boundary faces we define Zh = ZK on ∂�∩∂K .
On Dirichlet boundary faces F ∈ Fh ∩�D, we set [ph]K ,F = −2ph and n · [qh]K ,F = 0. On
Neumann boundary faces F ∈ Fh ∩ �N, we set [ph]K ,F = 0 and n · [qh]K ,F = −2 n · qh .
The right-hand side is complemented by the stabilization, so that

〈
�∂�,h(t), (ϕh,ψh)

〉 = −(pD(t),n · ψh

)
�D

− (gN(t), ϕh
)
�N

+ (pD(t), Z−1
h ϕh

)
�D

+ (gN(t), Zhn · ψh

)
�N

. (23)

Integration by parts gives

ah
(
(ph,qh), (ph,qh)

) =
1

2

∑

K∈Kh

∑

F∈FK

1

ZK + ZKF

(
∥
∥[ph]K ,F

∥
∥2
F + ZK ZKF

∥
∥nK · [qh]K ,F

∥
∥2
F

)

.

Elastic waves
The full upwind DG approximation for the elastic wave equation (5) is given by

ah
(
(vh, σ h), (wh, ηh)

) =
∑

K∈Kh

(
(
σ h.K , ε(wh,K )

)
K + (vh,K ,∇ · ηh,K

)
K

−
∑

F∈FK

(
nK · (σ h,KnK − Zp

KF
vh,K

)
,nK · ([ηh]K ,FnK − Zp

K [wh]K ,F
))

F

Zp
K + Zp

KF

−
∑

F∈FK

(
nK × (σ h,KnK − Z s

KF
vh,K

)
,nK × ([ηh]K ,FnK − Z s

K [wh]K ,F
))

F

Z s
K + Z s

KF

)

(24)

for (vh, σ h), (wh, ηh) ∈ Sh . The coefficients Zp
K = √

(2μh,K + λh,K )�h,K and Z s
K =√

μh,K�h,K are the impedance of compressional waves and shear waves, respectively. On
Dirichlet boundary faces F ∈ Fh ∩ �D, we set [vh]K ,F = −2vh and [σ h]K ,FnK = 0, and
on Neumann faces F ∈ Fh ∩ �N we set [vh]K ,F = 0 and [σ h]K ,FnK = −2 σ hnK . The
right-hand side is given by

〈
�∂�,h(t), (wh, ηh)

〉 = (vD(t), ηhn
)
�D

+ (gN(t),wh
)
�N

+ (n · vD(t), (Zp
h)

−1n · wh
)
�D

+ (n · gN(t), Zp
hn · ηhn

)
�N

+ (n × vD(t), (Z s
h)

−1n × wh
)
�D

+ (n × gN(t), Z s
hn × ηhn

)
�N
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with Zp
h = Zp

K and Z s
h = Z s

K on ∂K ∩ ∂�. Integrating by parts yields

ah
(
(vh, σ h), (vh, σ h)

) =
1

2

∑

K∈Kh

∑

F∈FK

(∥∥nK · ([σ h]K ,FnK
)∥
∥2
F + Zp

K Zp
KF

∥
∥nK · [vh]K ,F

∥
∥2
F

Zp
K + Zp

KF

+
∥
∥nK × ([σ h]K ,FnK

)∥
∥2
F + Z s

K Z s
KF

∥
∥nK × [vh]K ,F

∥
∥2
F

Z s
K + Z s

KF

)

. (25)

Electro-magnetic waves
The full upwind DG approximation for the electro-magnetic wave equation (6) is given

by

ah
(
(Eh,Hh), (ϕh,ψh)

) =
∑

K∈Kh

(
(
Eh,K ,∇ × ψh,K

)
K − (Hh,K ,∇ × ϕh,K

)
K

+
∑

F∈FK

1

ZK + ZKF

((
ZKEh,K − nK × Hh,K ,nK × [ψh]K ,F

)
F

− (ZKnK × Eh,K + Hh,K , ZKFnK × [ϕh]K ,F
)
F

))

(26)

for (Eh,Hh), (ϕh,ψh) ∈ Sh with coefficient ZK = √
εK /μK . On the boundary faces, we

set nK ×[E]K ,F = −2nK ×Eh,K and nK ×[Hh]K ,F = 0 on F ∈ Fh∩�E, and on impedance
boundary faces F ∈ Fh ∩�M, we set nK ×[E]K ,F = 0 and nK ×[H]K ,F = −2nK ×Hh,K .
The right-hand side is given by

〈
�∂�,h(t), (ϕh,ψh)

〉 = (gM(t),ϕh − Z−1
h n × ψh

)
�M

with Zh = ZK on ∂K ∩ �M. Again, integration by parts yields

ah
(
(Eh,Hh), (Eh,Hh)

) =
1

2

∑

K∈Kh

∑

F∈FK

1

ZK + ZKF

(
ZK ZKF

∥
∥nK × [Eh]K ,F

∥
∥2
F + ‖nK × [Hh]K ,F

∥
∥2
F

)
.

3.4 A Discontinuous Galerkin Method in Time and Space

Combining the two semi-discretizations, we obtain the full DG discretization

bh(vh,wh) = mh(vh,wh) +
∫ T

0
ah
(
vh(t),wh(t)

)
dt , vh , wh ∈ Vh (27)

with right-hand side in the space-time cylinder for vh ∈ Vh

〈
�h,wh

〉 = (f,wh
)
Q + (Mhu0,wh(0)

)
�

+
∫ T

0

〈
�∂�,h(t),wh(t)

〉
dt . (28)

For the space-time DG method we have by construction dual consistency for the bilinear
form and the right hand side

bh
(
vh,w

) = (vh, L∗
hw
)
Qh

, vh ∈ Vh , w ∈ V∗ , (29)
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and
〈
�h,w

〉 = (f,w)Q + (Mhu0,w(0)
)
∂�

+ (g,w)
(0,T )×∂�

, w ∈ V∗ ,

and positivity for the inconsistency complement

bh
(
vh, vh

) ≥ 1

2

N∑

n=0

∥
∥M1/2

h [vh]n
∥
∥2

�
+ c1

∥
∥An[vh]

∥
∥2
Ih×∂�h

, vh ∈ Vh (30)

by combining (17) and (20). Together with (18) and (21) we obtain

bh
(
vh, vh

) = 0 �⇒ bh
(
vh,wh

) = (vh, L∗
hwh

)
Qh

= (Lhvh,wh
)
Qh

(31)

for vh,wh ∈ Vh , and (22) yields with C1 > 0
∣
∣bh
(
vh,wh

)− (vh, L∗
hwh

)
�h

∣
∣

≤ ∥∥M1/2
h vh

∥
∥

∂Qh

√∥
∥M1/2

h [wh]
∥
∥2

∂ Ih×�
+ C1

∥
∥An[wh]

∥
∥2
Ih×∂�h

, (32a)
∣
∣bh
(
vh,wh

)− (Lhvh,wh
)
�h

∣
∣

≤
√∥
∥M1/2

h [vh]
∥
∥2

∂ Ih×�
+ C1

∥
∥An[vh]

∥
∥2
Ih×∂�h

∥
∥M1/2

h wh
∥
∥

∂Qh
(32b)

∣
∣
〈
�,wh

〉− 〈�h,wh
〉∣
∣

≤ ∥∥M1/2
h u0

∥
∥

�

∥
∥M1/2

h wh
∥
∥

�
+ C1

∥
∥g
∥
∥
Ih×∂�

∥
∥M1/2

h wh
∥
∥
Ih×∂�

. (32c)

For sufficiently smooth functions v ∈ L2(Q;Rm) with Lhv ∈ L2(Q;Rm), v(0) ∈
L2(�;Rm), [v]n = 0 for n = 1, . . . , N−1, An[v] = 0 on Ih×F for inner faces F ∈ Fh\∂�,
and An[v] ∈ L2(I × ∂�;Rm), we obtain consistency of the form

∣
∣bh
(
v,wh

)− 〈�h,wh
〉− (Lhv − f,wh

)
Q − (Mh(v(0) − u0),wh

)
�

∣
∣

≤ C1

m∑

k=1

∥
∥(Anv)k − gk

∥
∥
Ih×�k

∥
∥wh,k

∥
∥
Ih×�k

. (33)

Lemma 2 We have, depending on c1 > 0 in (20),

∥
∥M1/2

h vh
∥
∥2
Q +

N−1∑

n=0

dT (tn)
∥
∥M1/2

h [vh]n
∥
∥2

�
+ 2c1

∫ T

0
dT (t)

∥
∥An[vh(t)]

∥
∥2

∂�h
dt

≤ 2 bh(vh, dT vh) , vh ∈ Vh .

Proof By inserting vh(t) into (20) and integrating over time we find

c1

∫ T

0
dT (t)

∥
∥An[vh(t)]

∥
∥2

∂�h
dt ≤

∫ T

0
dT (t)ah(vh(t), vh(t)) dt ,

and thus with Lem. 1 we get for all vh ∈ Vh

(
Mhvh, vh

)
Q +

N−1∑

n=0

dT (tn)
(
Mh[vh]n, [vh]n

)
�

≤ 2mh(vh, dT vh)

≤ 2mh(vh, dT vh) + 2
∫ T

0
dT (t) ah

(
vh(t), vh(t)

)
dt
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− 2c1

∫ T

0
dT (t)

∥
∥An[vh(t)]

∥
∥2

∂�h
dt

= 2 bh(vh, dT vh) − 2c1

∫ T

0
dT (t)

∥
∥An[vh(t)]

∥
∥2

∂�h
dt .

��

4 Well-posedness and Stability

We show that the discrete problem has a unique solution and is stable with respect to different
norms.

4.1 Well-Posedness of the Space-Time DG Discretization

The well-posedness of the discrete equation is now established as in [2, Prop. 5.1].

Lemma 3 A unique discrete approximation uh ∈ Vh exists solving

bh(uh, vh) = 〈�h, vh
〉
, vh ∈ Vh . (34)

Proof Since dim Vh < ∞, it is sufficient to show that uh = 0 is the unique solution of the
homogeneous problem

bh(uh, vh) = 0 , vh ∈ Vh . (35)

Since (35) impliesbh(uh,uh) = 0,weobtain by (30) for the jump terms
∥
∥M1/2

h [uh]
∥
∥

∂ Ih×�h
=

∥
∥An[uh]

∥
∥
Ih×∂�h

= 0, so that bh(uh, vh) = (Lhuh, vh
)
Qh

= 0. Since Mh is piecewise con-
stant in K ∈ Kh , we observe Lhuh ∈ Vh , so that we can test with vh = Lhuh ; thus, also(
Lhuh, Lhuh

)
Qh

= 0, i.e., Lhuh = 0. Now the assertion follows from Lem. 2 and (31) by

∥
∥M1/2

h uh
∥
∥2
Q = (Mhuh,uh

)
Q ≤ 2 bh(uh, dT uh) = 2

(
Lhuh, dT uh

)
Q = 0 .

��
Remark 6 The previous lemma shows that the discrete graph norm defined by

‖vh‖Vh = sup
wh∈Vh\{0}

bh(vh,wh)
∥
∥M1/2

h wh
∥
∥
Q

, vh ∈ Vh , (36)

is well defined and a norm in Vh .
Since the discrete graph norm is only a semi-norm in Vh , we have to use stronger norms for
the convergence analysis.

4.2 Stability in Space and Time

Let 0 = cp,0 < cp,1 < · · · < cp,p < 1 be the Radau Ia collocation points, so that

∫ 1

0
φ(s) ds =

p∑

k=0

ωp,kφ(cp,k) , φ ∈ P2p
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(with quadrature weightsωp,k > 0 for k = 0, . . . , p), and let λp,k ∈ Pp be the corresponding
Lagrange polynomials

λp,k(s) =
p∏

j=0, j �=k

s − cp, j
cp,k − cp, j

, s ∈ [0, 1] .

This defines λn,h,k ∈ Ppn (In,h) by λn,h,k(tn−1 + s�tn) = λpn ,k(s) for s ∈ [0, 1] and
tn,k = tn−1 + cpn ,k�tn .

Together this is combined to the corresponding interpolation Ih : Vh −→ Vh by

(In,hvn,h)(t, x) =
pn∑

k=0

λn,h,k(t)vn,h(tn,k, x) , (t, x) ∈ In,h × �h,

vn,h ∈ C0([tn−1, tn];Sh), n = 1, . . . , N .

For the interpolation we will use in the following the estimate

∥
∥M1/2

h Ih(dT vh)
∥
∥2
Q =

N∑

n=1

pn∑

k=0

ωpn ,k
∥
∥M1/2

h Ih(dT vh)(tn,k)
∥
∥2

�

=
N∑

n=1

pn∑

k=0

dT (tn,k)
2ωpn ,k

∥
∥M1/2

h vh(tn,k)
∥
∥2

�

≤ T 2
N∑

n=1

pn∑

k=0

ωpn ,k
∥
∥M1/2

h vh(tn,k)
∥
∥2

�
= T 2

∥
∥M1/2

h vh
∥
∥2
Q . (37)

Lemma 4 If pn,K = pn for all K ∈ Kh and n = 1, . . . , N, we have for vh ∈ Vh

∥
∥M1/2

h vh
∥
∥2
Q +

N∑

n=1

(
dT (tn−1)

∥
∥M1/2

h [vh]n−1
∥
∥2

�

+ 2c1

pn∑

k=0

dT (tn,k)ωpn ,k
∥
∥An[vh(tn,k)]

∥
∥2

∂�h

)
≤ 2 bh

(
vh,Ih(dT vh)

)
.

Proof We observe

(
Mh∂tvh, dT vh

)
Qh

=
N∑

n=1

(
Mh∂tvn,h, dT vn,h

)
In,h×�

=
N∑

n=1

pn∑

k=0

ωpn ,k
(
Mh(∂tvn,h)(tn,k), dT (tn,k)vn,h(tn,k)

)
�

=
N∑

n=1

pn∑

k=0

ωpn ,k
(
Mh(∂tvn,h)(tn,k),In,h(dT vn,h)(tn,k)

)
�

= (Mh∂tvh,Ih(dT vh)
)
Qh

.

Using Ih(dT vh)(tn−1) = dT (tn−1)vn,h(tn−1) for n = 1, . . . , N , we have

mh(vh, dT vh) = (Mh∂tvh, dT vh
)
Qh

+
N∑

n=1

(
Mh[vh]n, dT (tn−1)vn,h(tn−1)

)
�
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= (Mh∂tvh,Ih(dT vh)
)
Qh

+
N∑

n=1

(
Mh[vh]n,Ih(dT vh)(tn−1)

)
�

= mh
(
vh,Ih(dT vh)

)
,

and together with Lem. 1 we obtain

∥
∥M1/2

h vh
∥
∥2
Q+

N∑

n=1

dT (tn−1)
∥
∥M1/2

h [vh]n−1
∥
∥2

�

≤ 2mh(vh, dT vh) = 2mh
(
vh,Ih(dT vh)

)
.

For the upwind DG discretization in space we obtain by (20)

0 ≤ c1

N∑

n=1

pn∑

k=0

dT (tn,k)ωpn ,k
∥
∥An[vh(tn,k)]

∥
∥2

∂�h

≤
N∑

n=1

pn∑

k=0

dT (tn,k)ωpn ,k ah
(
vh(tn,k), vh(tn,k)

)

=
N∑

n=1

pn∑

k=0

ωpn ,k ah
(
vh(tn,k),In,h(dT vn,h)(tn,k)

)

=
N∑

n=1

∫ tn

tn−1

ah
(
vh(t),In,h(dT vn,h)(t)

)
dt

=
∫ T

0
ah
(
vh(t),Ih(dT vh)(t)

)
dt ,

so that together we obtain the assertion by

∥
∥M1/2

h vh
∥
∥2
Q +

N∑

n=1

(
dT (tn−1)

∥
∥M1/2

h [vh]n−1
∥
∥2

�

+ 2c1

pn∑

k=0

dT (tn,k)ωpn ,k
∥
∥An[vh(tn,k)]

∥
∥2

∂�h

)

≤ 2mh
(
vh,Ih(dT vh)

)+
∫ T

0
ah
(
vh(t),Ih(dT vh)(t)

)
dt

= 2 bh
(
vh,Ih(dT vh)

)
.

��

Remark 7 Together with (36) and (37) we obtain L2 stability with respect to the discrete
graph norm by

∥
∥M1/2

h vh
∥
∥
Q ≤ 2

bh
(
vh,Ih(dT vh)

)

∥
∥M1/2

h Ih(dT vh)
∥
∥
Q

∥
∥M1/2

h Ih(dT vh)
∥
∥
Q

∥
∥M1/2

h vh
∥
∥
Q

≤ 2T ‖vh‖Vh

for vh ∈ Vh \ {0}, i.e., ‖M1/2
h vh‖Q ≤ 2T ‖vh‖Vh .
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Corollary 1 Let uh ∈ Vh be the discrete solution (34), and assume homogeneous boundary
data g = 0.
If pn,K = pn for all K ∈ Kh and n = 1, . . . , N, the solution is bounded by

∥
∥M1/2

h uh
∥
∥2
Q +

N∑

n=1

dT (tn−1)
(∥
∥M1/2

h [uh]n−1
∥
∥2

�
+ 2c1

∥
∥An[uh]

∥
∥2
In,h×∂�h

)

≤ 4
∥
∥dT M

−1/2
h f

∥
∥2
Q + 4T

∥
∥M1/2

h u0
∥
∥2

�
.

Proof We have for n = 1, . . . , N

dT (tn−1)
∥
∥An[uh]

∥
∥2
In,h×∂�h

= dT (tn−1)

pn∑

k=0

ωpn ,k
∥
∥An[uh(tn,k)]

∥
∥2

∂�h

≤
pn∑

k=0

dT (tn,k)ωpn ,k
∥
∥An[uh(tn,k)]

∥
∥2

∂�h
,

so that together with Lem. 4 and Ih(dT uh)(0) = Tuh(0) we get the assertion by

1

2

∥
∥M1/2

h uh
∥
∥2
Q + 1

2

N∑

n=1

dT (tn−1)
(∥
∥M1/2

h [uh]n−1
∥
∥2

�
+ 2c1

∥
∥An[uh]

∥
∥2
In,h×∂�h

)

≤ bh
(
uh,Ih(dT uh)

) = 〈�h,Ih(dT uh)〉
= (f, dT uh

)
Q + (Mhu0, Tuh(0)

)
�

≤ ∥∥dT M−1/2
h f

∥
∥2
Q + 1

4

∥
∥M1/2

h uh
∥
∥2
Q

+ T
∥
∥M1/2

h u0
∥
∥2

�
+ T

4

∥
∥M1/2

h uh(0)
∥
∥2

�
.

��

Remark 8 The estimate in Lem. 2 directly implies that the Petrov–Galerkin method with test
space V ∗

h = dT Vh is well-defined and L2 stable: the Petrov–Galerkin solution uPGh ∈ Vh
given by

bh(uPGh , dT vh) = 〈�h, dT vh〉 , vh ∈ Vh (38)

is bounded by

1

2

∥
∥M1/2

h uPGh
∥
∥2
Q + T

2

∥
∥M1/2

h uPGh (0)
∥
∥2

�
≤ bh(uPGh , dT uPGh ) = 〈�h, dT uPGh 〉 ,

and thus, in case of homogeneous boundary data g = 0 we obtain

∥
∥M1/2

h uPGh
∥
∥2
Q + T

∥
∥M1/2

h uPGh (0)
∥
∥2

�
≤ 4

∥
∥dT M

−1/2
h f

∥
∥2
Q + 4T

∥
∥M1/2

h u0
∥
∥2

�
.

This is proposed and analyzed in [1] in the semi-discrete case for the advection-diffusion prob-
lem. Our numerical tests indicate, that the Petrov–Galerkin modification does not improve
the approximation quality, and in the next section we show, that stability and convergence in
the DG norm can be established also for the Galerkin method with ansatz and test space Vh
and with adaptively chosen pn,K .
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4.3 Inf-Sup Stability in the DG Norm

Suitable mesh-dependent DG semi-norms and norms can be defined for all vh ∈ Vh by
∣
∣vh
∣
∣
h,DG = √bh(vh, vh) ,

∣
∣vh
∣
∣
h,DG+ =

( N∑

n=1

(∥
∥M1/2

h vn,h(tn−1)
∥
∥2

�
+ ∥∥M1/2

h vn,h(tn)
∥
∥2

�

)

+ C1

∑

K∈Kh

∥
∥M1/2

h vh
∥
∥2
Ih×∂K

)1/2

,

∥
∥vh
∥
∥
h,DG =

√∣
∣vh
∣
∣2
h,DG + ∥∥h1/2 M−1/2

h Lhvh
∥
∥2
Qh

,

∥
∥vh
∥
∥
h,DG+ =

√∣
∣vh
∣
∣2
h,DG+ + ∥∥h−1/2M1/2

h vh
∥
∥2
Q , (39)

see [5, Chap. 2 and 7]. Analogously to the proof of Lem. 3 we observe that
∥
∥vh
∥
∥
h,DG = 0

implies vh = 0, so that
∥
∥ · ∥∥h,DG indeed is a norm. Using (32), we obtain for vh,wh ∈ Vh

∣
∣bh(vh,wh) + (vh, Lhwh

)
Qh

∣
∣ ≤ ∣∣vh

∣
∣
h,DG+

∣
∣wh
∣
∣
h,DG ,

∣
∣bh(vh,wh) − (Lhvh,wh

)
Qh

∣
∣ ≤ ∣∣vh

∣
∣
h,DG

∣
∣wh
∣
∣
h,DG+ . (40)

We have

2
∣
∣vh
∣
∣2
h,DG = 2 bh(vh, vh) + (Lhvh, vh

)
Qh

− (vh, Lhvh
)
Qh

≤ 2
∣
∣vh
∣
∣
h,DG+

∣
∣vh
∣
∣
h,DG ,

i.e.,
∣
∣vh
∣
∣
h,DG ≤ ∣

∣vh
∣
∣
h,DG+ , and continuity of the bilinear form bh(vh,wh) ≤ ∥

∥vh
∥
∥
h,DG∥

∥wh
∥
∥
h,DG+ and bh(vh,wh) ≤ ∥∥vh

∥
∥
h,DG+

∥
∥wh

∥
∥
h,DG.

The inf-sup stability for the advection equation [5, Lem. 2.35] can be transferred to our
setting.

Theorem 1 A constant cinf−sup > 0 exists such that

sup
wh∈Vh\{0}

bh(vh,wh)∥
∥wh

∥
∥
h,DG

≥ cinf−sup
∥
∥vh
∥
∥
h,DG , vh ∈ Vh .

Proof For given vh ∈ Vh \ {0} we define zh = hM−1
h Lhvh ∈ Vh , and we obtain by the

discrete trace inequality (12b)
∣
∣zh
∣
∣
h,DG+ ≤ Ctr

∥
∥h−1/2M1/2

h zh
∥
∥
Qh

= Ctr
∥
∥h1/2M−1/2

h Lhvh
∥
∥
Qh

≤ Ctr
∥
∥vh
∥
∥
h,DG ,

and together with the inverse inequality (12a) this yields
∥
∥zh
∥
∥2
h,DG = ∣∣zh

∣
∣2
h,DG + ∥∥h1/2M−1/2

h Lhzh
∥
∥2
Qh

≤ ∣∣zh
∣
∣2
h,DG+ + C2

inv

∥
∥h−1/2M1/2

h zh
∥
∥2
Qh

≤ (C2
tr + C2

inv

)∥
∥vh
∥
∥2
h,DG . (41)

We observe, using (40),
(
Lhvh, zh

)
Qh

− bh(vh, zh) ≤ ∣∣vh
∣
∣
h,DG

∣
∣zh
∣
∣
h,DG+
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≤ C2
tr

2

∣
∣vh
∣
∣2
h,DG + 1

2C2
tr

∣
∣zh
∣
∣2
h,DG+

≤ C2
tr

2

∣
∣vh
∣
∣2
h,DG + 1

2

∥
∥vh
∥
∥2
h,DG .

This yields, inserting
∥
∥h1/2M−1/2

h Lhvh
∥
∥2
Qh

= (Lhvh, zh
)
Qh

,

∥
∥vh
∥
∥2
h,DG = ∣∣vh

∣
∣2
h,DG + (Lhvh, zh

)
Qh

≤ ∣∣vh
∣
∣2
h,DG + C2

tr

2

∣
∣vh
∣
∣2
h,DG + 1

2

∥
∥vh
∥
∥2
h,DG + bh(vh, zh) ,

so that with C2 = 2 + C2
tr

∥
∥vh
∥
∥2
h,DG ≤ C2

∣
∣vh
∣
∣2
h,DG + 2 bh(vh, zh) = bh(vh,C2vh + 2zh) . (42)

Using (41), we obtain the assertion with cinf−sup = (C2 + 2
√
C2
tr + C2

inv

)−1 by

∥
∥vh
∥
∥2
h,DG ≤ ∥∥C2vh + 2zh

∥
∥
h,DG

bh(vh,C2vh + 2zh)∥
∥C2vh + 2zh

∥
∥
h,DG

≤ c−1
inf−sup

∥
∥vh
∥
∥
h,DG sup

wh∈Vh\{0}
bh(vh,wh)∥
∥wh

∥
∥
h,DG

.

��

5 Convergence of the DG Space-Time Approximation

In the first step, we show that stability in L2 implies convergence in the limit of the DG
approximation. Then, by assuming some regularity of the solution, qualitative convergence
results are obtained in the DG norm.

5.1 Convergence in the Limit

Let
(
Qh
)
h∈H be a shape-regular family of space-time meshes with mesh sizes H =

{h0, h1, h2, · · · } ⊂ (0,∞) and 0 ∈ H.
Let
(
Vh
)
h∈H be corresponding DG finite element spaces, so that

lim
h∈H inf

vh∈Vh
∥
∥v − vh

∥
∥
Q = 0 , v ∈ V∗ . (43)

For h ∈ H, let uh ∈ Vh be the solution of the discrete problem (34).
The proof of existence of a unique discrete solution in Lem. 3 only relies on the properties

(30) and (31) of theDGbilinear form and thus only implicitly on the boundary parts�k ⊂ ∂�.
In order to obtain a unique weak solution of (2) in the limit, constraints for the selection of
�k ⊂ ∂�, k = 1, . . . ,m, are necessary, cf. (7). This is used in the following.

Theorem 2 Assume that pn,K = pn ≥ 1 and qn,K ≥ 1. In case of homogeneous boundary
data g = 0 and convergent approximations of thematerial parameters Mh −→ M, M−1

h −→
M−1 in L∞(�;Rm×m

sym ), the discrete solutions
(
uh
)
h∈H are converging to a weak solution

u ∈ L2(Q;Rm) of (2). Moreover, u is a strong solution satisfying (3), and the strong solution
is unique.
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Proof By the assumption pn,K = pn we can apply Lem. 4 with the construction of the
interpolation Ih and Cor. 1, so that (uh)h∈H is uniformly bounded by

∥
∥M1/2

h uh
∥
∥2
Q + T

∥
∥M1/2

h uh(0)
∥
∥2

�
≤ 4T

(∥
∥M−1/2

h f
∥
∥2
Q + ∥∥M1/2

h u0
∥
∥2

�

)
.

By (30) and the definition of �h (with g = 0), this also implies that

c1

m∑

k=1

∥
∥(Anuh)k

∥
∥2

(0,T )×�k
= c1

∥
∥An[uh]

∥
∥2

(0,T )×∂�h

≤ b(uh,uh) = 〈�h,uh
〉 = (f,uh

)
Q + (Mhu0,uh(0)

)
�

≤ 1

2

∥
∥M−1/2

h f
∥
∥2
Q + 1

2

∥
∥M1/2

h uh
∥
∥2
Q + 1

2T

∥
∥M1/2

h u0
∥
∥2

�
+ T

2

∥
∥M1/2

h uh(0)
∥
∥2

�

≤
(1

2
+ 2T

)∥
∥M−1/2

h f
∥
∥2
Q +

( 1

2T
+ 2T

)∥
∥M1/2

h u0
∥
∥2

�

is uniformly bounded for h ∈ H, so that together with the asymptotic consistency of the
material parametersMh −→ M ,M−1

h −→ M−1 in L∞(�;Rm×m
sym )we obtainwith a constant

Cf,u0 > 0 depending on the data

∥
∥M1/2uh

∥
∥2
Q + T

∥
∥M1/2uh(0)

∥
∥2

�
+ c1

m∑

k=1

∥
∥(Anuh)k

∥
∥2

(0,T )×�k
≤ Cf,u0 , h ∈ H .

The uniform stability in L2(Q;Rm) implies, that a subsequenceH0 ⊂ H with 0 ∈ H0 and a
weak limit u ∈ L2(Q;Rm) with u(0) ∈ L2(�;Rm) and (Anu)k |(0,T )×�k ∈ L2((0, T ) × �k)

for k = 1, . . . ,m exists, i.e.,
(
Mu, v

)
Q = lim

h∈H0

(
Mhuh, v

)
Q , v ∈ L2(Q;Rm)

(
Mu(0), v0

)
�

= lim
h∈H0

(
Mhuh(0), v0

)
�

, v0 ∈ L2(�;Rm)

(
(Anu)k, v

)
(0,T )×�k

= lim
h∈H0

(
(Anuh)k, v

)
(0,T )×�k

, v ∈ L2((0, T ) × �k),∀k .

Then we obtain for all v ∈ Vh
(
u, L∗v

)
Q = lim

h∈H0

(
uh, L∗v

)
Qh

= lim
h∈H0

(
uh, L∗

hv
)
Qh

= lim
h∈H0

bh(uh, v)

using dual consistency (29) for the last step. This extends to H1
0(Q;Rm), and by the

assumption pn,K , qn,K ≥ 1, for all v ∈ H1
0(Q;Rm) a sequence (vh)h∈H0 exists with

vh ∈ Vh ∩ H1
0(Q;Rm) and lim

h∈H0
vh = v, so that by (29)

(
u, L∗v

)
Q = lim

h∈H0
bh(uh, v) = lim

h∈H0
bh(uh, vh) = lim

h∈H0

(
f, vh

)
Q = (f, v)Q ,

i.e., for the limit u the weak derivative Lu = f in L2(Q;Rm) exists. This extends to initial
and boundary data. Therefore, let V∗ ⊂ H1(Q;Rm) be the closure of V∗ in H1(Q;Rm);
then, for all v ∈ V∗ a sequence (vh)h∈H0 with vh ∈ Vh ∩ V∗

and lim
h∈H0

vh = v exists, and

we get again by (29)
(
u, L∗v

)
Q = lim

h∈H0
bh(uh, v) = lim

h∈H0
bh(uh, vh) = lim

h∈H0

〈
�h, vh

〉

= (f, v)Q + (Mu0, v(0)
)
�

.
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Thus, using v(T ) = 0 for v = (v1 . . . , vm) ∈ V∗ yields

0 = (u, L∗v
)
Q − (f, v)Q − (Mu0, v(0)

)
�

= (u, L∗v
)
Q − (Lu, v

)
Q − (Mu0, v(0)

)
�

= (Mu(0), v(0)
)
�

− (Anu, v
)
(0,T )×∂�

− (Mu0, v(0)
)
�

= (M(u(0) − u0), v(0)
)
�

+
m∑

k=1

(
(Anu)k, vk

)
(0,T )×�k

,

so that u(0) = u0 in � and (Anu)k = 0 on (0, T ) × �k for k = 1, . . . ,m, and thus u is
indeed a strong solution with homogeneous boundary conditions at (0, T ) × ∂�.

Next, we show that the weak limit is unique. Therefore, select another subsequence
H1 ⊂ H with 0 ∈ H1 and with a weak limit ũ ∈ L2(Q;Rm) with ũ(0) ∈ L2(�;Rm)

and (Anũ)k |(0,T )×�k ∈ L2((0, T ) × �k) for k = 1, . . . ,m. Then, we also obtain ũ(0) = u0
and (Anũ)k = 0 for k = 1, . . . ,m. A sequence (eh)h∈H with eh ∈ Vh exists such that
limh∈H eh = u − ũ, and we get

1

2

∥
∥M1/2(u − ũ)

∥
∥2
Q = 1

2
lim
h∈H

∥
∥M1/2eh

∥
∥2
Q

≤ lim
h∈H bh

(
eh,Ih(dT eh)

)

= lim
h∈H0

bh
(
uh,Ih(dT eh)

)− lim
h∈H1

bh
(
ũ,Ih(dT eh)

)

= lim
h∈H0

〈
�h,Ih(dT eh)

〉− lim
h∈H1

〈
�h,Ih(dT eh)

〉

= 〈�, dT (u − ũ)
〉− 〈�, dT (u − ũ)

〉 = 0 ,

so thatu = ũ. This shows that theweak limit is unique, so that the full sequence is converging,
i.e., limh∈H uh = u.
The same argument applies to all strong solutions, i.e., u is the unique strong solution of (3).

��
Remark 9 The result extends to inhomogeneous boundary data g �= 0, if ug ∈ L2(Q;Rm)

exists with Lug ∈ L2(Q;Rm) and (Anug)k ∈ L2(I × �k) satisfying (Anug)k = gk , k =
1, . . . ,m. In particular, the regularity result that the limit of the DG approximations is a
strong solution requires sufficient regularity of the boundary data.

5.2 Convergence in the DG Norm

We adapt the convergence result for the DG norm (39) in [5, Thm. 2.37] to our setting.

Theorem 3 Assume that the strong solution of (3) is sufficiently smooth satisfying u ∈
Hs(Q;Rm) with s ≥ 1 and s ≤ minn,K {pn,K , qn,K } + 1. Then, the error for the discrete
solution uh ∈ Vh of (34) is bounded by

∥
∥u − uh

∥
∥
h,DG ≤ Chs−1/2

∥
∥Dsu

∥
∥
Q + CTh−1/2

∥
∥M−1/2

h (Mh − M)∂tu
∥
∥
Q

with C > 0 depending on the mesh regularity, the polynomial degrees in Vh, and the material
parameters.

Proof Since we assume for the solution u ∈ H1(Q;Rm), we have Lu, Lhu ∈ L2(Q;Rm),
for all traces u|∂Qh ∈ L2(∂Qh;Rm), [u]n = 0 for n = 1, . . . , N − 1, and An[v] = 0 on
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Ih × F for inner faces F ∈ Fh \ ∂�, and (Anu)k = gk on I × �k for k = 1, . . . ,m, so that
bh(u, vh) is well defined with

bh(u,wh) = (Lhu,wh
)
Q+ (Mhu(0),wh)Q +

∫ T

0

〈
�∂�,h(t),wh

〉
dt

= 〈�h,wh
〉+ ((Mh − M)∂tu,wh

)
Q , wh ∈ Vh . (44)

Thus we obtain for the discrete solution uh ∈ Vh Galerkin orthogonality up to data error

bh(uh,wh) = bh(u,wh) + ((M − Mh)∂tu,wh
)
Q , wh ∈ Vh .

By the trace estimate (12) we obtain
∥
∥wh

∥
∥2
h,DG+ ≤ (C2

tr + 1)h−1
∥
∥M1/2

h wh
∥
∥2
Q , so that by

Lem. 2
∥
∥M1/2

h wh
∥
∥2
Q ≤ 2 bh(wh, dTwh) ≤ 2

∥
∥wh

∥
∥
h,DG

∥
∥dTwh

∥
∥
h,DG+

≤ 2T
∥
∥wh

∥
∥
h,DG

∥
∥wh

∥
∥
h,DG+

≤ 2T 2(C2
tr + 1)h−1

∥
∥wh

∥
∥2
h,DG + 1

2(C2
tr + 1)

h
∥
∥wh

∥
∥2
h,DG+

≤ 2T 2(C2
tr + 1)h−1

∥
∥wh

∥
∥2
h,DG + 1

2

∥
∥M1/2

h wh
∥
∥2
Q ,

so that the consistency term can by bounded by
(
(M − Mh)∂tu,wh

)
Q ≤ ‖(M−1/2

h (Mh − M)∂tu
∥
∥
Q

∥
∥M1/2

h wh
∥
∥
Q

≤ 2T
√

C2
tr + 1h−1/2‖(M−1/2

h (Mh − M)∂tu
∥
∥
Q

∥
∥wh

∥
∥
h,DG .

For all vh ∈ Vh this yields the estimate, using Thm. 1 and continuity of the bilinear form
bh(·, ·) in the DG norms

cinf−sup
∥
∥uh − vh

∥
∥
h,DG ≤ sup

wh∈Vh\{0}
bh(uh − vh,wh)∥
∥wh

∥
∥
h,DG

= sup
wh∈Vh\{0}

bh(u − vh,wh) + ((M − Mh)∂tu,wh
)
Q∥

∥wh
∥
∥
h,DG

≤ ∥∥u − vh
∥
∥
h,DG+

+ 2T
√

C2
tr + 1h−1/2‖(M−1/2

h (Mh − M)∂tu
∥
∥
Q .

Now select an H1-stable quasi-interpolation vh = 
Cl
h u of Clement-type [3, Sect. 4.4.2] with

∥
∥M1/2(u − 
Cl

h u)
∥
∥
Q ≤ C4h

∥
∥Du

∥
∥
Q ,

∥
∥M−1/2Lh(u − 
Cl

h u)
∥
∥
Q ≤ C5

∥
∥Du

∥
∥
Q

and constants C4,C5 depending on the mesh regularity and the polynomial degrees in Vh .
Using s ≤ min{p, q} + 1,

∥
∥M1/2(u − 
Cl

h u)
∥
∥

∂Qh
+ h−1/2

∥
∥M1/2(u − 
Cl

h u)
∥
∥
Q

+ h1/2
∥
∥M−1/2Lh(u − 
Cl

h u)
∥
∥
Q ≤ C6h

s−1/2
∥
∥Dsu

∥
∥
Q .

Then, the result follows from interpolation estimates using [5, Lem. 1.59] and
∥
∥u − uh

∥
∥
h,DG ≤ ∥∥u − 
Cl

h u
∥
∥
h,DG + ∥∥uh − 
Cl

h u
∥
∥
h,DG
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≤ ∥∥u − 
Cl
h u
∥
∥
h,DG + c−1

inf−sup

∥
∥u − 
Cl

h u
∥
∥
h,DG+

+ 2T
√

C2
tr + 1 c−1

inf−suph
−1/2

∥
∥M−1/2

h (Mh − M)∂tu
∥
∥
Q

≤ C6h
s−1/2

∥
∥Dsu

∥
∥
Q + C7Th

−1/2
∥
∥M−1/2

h (Mh − M)∂tu
∥
∥
Q .

��

This recovers the convergence result [2, Prop. 6.5] for the DG semi-norm (39).

Corollary 2 Assume that the strong solution of (3) is sufficiently smooth satisfying u ∈
Hs(Q;Rm) with s ≥ 1.

Then, the error for the discrete solution uh ∈ Vh of (34) is bounded in every time step by

∥
∥M1/2

h

(
u(tn) − un,h(tn)

)∥
∥

�
≤ Chs−1/2

∥
∥Dsu

∥
∥

(0,tn)×�

+ CTh−1/2
∥
∥M−1/2

h (Mh − M)∂tu
∥
∥

(0,tn)×�

with C > 0 depending on the mesh regularity, the polynomial degree, and the material
parameters.

For the proof Thm. 3 is applied with T = tn ; then, the assertion directly follows from
1
2

∥
∥M1/2

h vh(T )
∥
∥

�
≤ ∥∥vh

∥
∥
h,DG.

Remark 10 If M ∈ L∞(�;Rm×m
sym ) is smooth, the consistency term can be estimated by

∥
∥M−1/2

h (Mh − M)∂tu
∥
∥
Q ≤ ∥∥M−1/2

h (M − Mh)M
−1/2

∥
∥∞
∥
∥M1/2∂tu

∥
∥
Q .

If M is discontinuous and if the jumps of the material parameters are not resolved by the
mesh, the consistency error can be estimated in case of higher regularity of the solution: if
∂tu ∈ L2(0, T ;Lq(�;Rm)) with q > 2, we obtain

∥
∥M−1/2

h (Mh − M)∂tu
∥
∥
Q ≤ ∥∥M−1/2

h (M − Mh)M
−1/2

∥
∥
L2q/(2−q)(�;Rm×m

sym )

· ∥∥M1/2∂tu
∥
∥
L2(0,T ;Lq (�;Rm ))

.

Remark 11 For the continuous solution the energy is conserved, i.e.,

(
Mu(tn),u(tn)

)
�

= (Mu(0),u(0)
)
�

+
∫ tn

0
〈�(t),u(t)〉 dt .

From Lem. 4 and Cor. 2 we obtain energy conservation in the limit
(
Mu(tn),u(tn)

)
�

= (Mhuh(tn),uh(tn)
)
�

+ O(h2s−1)

in case of consistent data M = Mh .

Remark 12 The constants in Thm. 1 and 3 depend on the mesh and polynomial degrees p.
For triangulations and a quasi-uniform distribution of p it is known that C inv ∼ p2, C tr ∼ p
[23, Thm. 4.7]. Estimates of quasi-interpolations are considered in [20, Thm. 3.1] where it
is shown that the classical Clément interpolation estimate holds with h replaced by h/p.
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5.3 Error Control

For the error u − uh in the DG semi-norm we obtain from (18) and (20)

∣
∣u − uh

∣
∣2
h,DG ≤ 1

2

(∥
∥M1/2

h (uh(0) − u0)
∥
∥2

�
+

N−1∑

n=1

∥
∥M1/2

h [uh]n
∥
∥2

�

+ ∥∥M1/2
h (uh(T ) − u(T ))

∥
∥2

�

)

+
m∑

k=1

∥
∥(Anuh)k − gk

∥
∥2
Ih×�k

+ C1
∥
∥An[uh]

∥
∥2
Ih×(∂�h∩�)

(45)

and in the DG norm
∥
∥u − uh

∥
∥2
h,DG = ∣∣u − uh

∣
∣2
h,DG + ∥∥h1/2M−1/2

h Lh(u − uh)
∥
∥2
Qh

≤ ∣∣u − uh
∣
∣2
h,DG + 2

∥
∥h1/2M−1/2

h (Lhuh − f)
∥
∥2
Qh

+ 2
∥
∥h1/2M−1/2

h (M − Mh)∂tu
∥
∥2
Qh

. (46)

Up to the error uh − u at final time T in (45) and the parameter approximation error
M − Mh in (46), this can be evaluated explicitly by the residual error indicator η res,h =
( ∑

R∈Rh

η2res,R

)1/2
given by the local contributions

η2res,R = η2res,n,K + 2hK
∥
∥M−1/2

h (Lhuh − f)
∥
∥2
R

+
m∑

k=1

∥
∥(Anuh)k − gk

∥
∥2

(tn−1,tn)×(�k∩∂K )
+ C1

∥
∥An[uh]

∥
∥2

(tn−1,tn)×(�∩∂K )

for R = (tn−1, tn) × K , n = 1, . . . , N , with

η2res,1,K = 1

2

∥
∥M1/2

h (uh(0) − u0)
∥
∥2
K + 1

2

∥
∥M1/2

h [uh]1
∥
∥2
K , R = (0, t1) × K ,

η2res,n,K = 1

2

∥
∥M1/2

h [uh]n−1
∥
∥2
K + 1

2

∥
∥M1/2

h [uh]n
∥
∥2
K , R = (tn−1, tn) × K

1 < n < N ,

η2res,N ,K = 1

2

∥
∥M1/2

h [uh]N−1
∥
∥2
K , R = (tN−1, T ) × K .

Lemma 5 Let u ∈ L2(Q;Rm) be the weak solution of (2) and uh ∈ Vh the discrete solution
of (34). Then, if u is a strong solution, the error in the DG norm is bounded by

∥
∥u − uh

∥
∥
h,DG ≤

(
η2res,h + ∥∥M1/2

h (uh(T ) − u(T ))
∥
∥2

�

+ 2
∥
∥h1/2M−1/2

h (M − Mh)∂tu
∥
∥2
Qh

)1/2
.

6 Numerical Experiments

The convergence estimates in the DG norm are illustrated by numerical experiments for
acoustics (4) for cases where the exact solution is know which is then used for Dirichlet
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Fig. 1 Convergence test for the first experiment with γ = 0.5 andm = (0, 1)t

boundary conditions. The results for uniform refinement are comparedwith a simple adaptive
strategy by increasing the polynomial degree for ηres,R ≥ θ1 max

R′ η res,R′ and decreasing the

polynomial degree for η res,R ≤ θ0 max
R′ η res,R′ , see [6] for details. In addition, we consider

an example motivated from the application to seismic imaging where the exact solution is
not known, and the convergence is demonstrated with respect to the residual error indicator.
Experiment 1 We test the convergence of the solution in Q = (0, 1) × (0, 1)2 and f = 0
with smooth initial value and piecewise constant material

�(x) =
{
1 x · m ≤ γ ,

2 x · m > γ ,
κ(x) = 1/�(x) , γ ∈ (0, 1) , m ∈ R

2 , m · m = 1 ,

so that the impedance is constant across the interface. We start with

u0(x) = a0(x · m)

(
1
m

)

with a0(x) =
{
sin(3πx)2 x ∈ [0, 1/3]
0 else.

Then, the solution is given by u(t, x) =
{
u0(x − tm) x · m ≤ γ ,

u0(2x − (t + 2/3)m) x · m > γ .

Case a) If the material interface is resolved by the mesh (M = Mh), we observe for linear
approximations in space and time on uniformly refined meshes the expected convergence
rate in the DG norm (Fig. 1). For this configuration also the dual problem is smooth which
results in better convergence rates for the L2 error, in particular in the adaptive case.

Case b) If thematerial interface cannot be resolved by themesh (M �= Mh), the consistency
error gets relevant, which is observed by the results in Fig. 2.

Although the material interface cannot be resolved by the mesh, the solution is sufficiently
smooth so that the approximation error of the material data Mh − M can be estimated by
Rem. 10.Weobserve nearly optimal convergence in theDGnorm, but now theL2 convergence
gets worse in comparison with the first case.

In both cases, the convergence of u(T )−uh(T ) in L2 is faster than the convergence in the
DG norm, and the residual error indicator yields results close to the error in the DG norm; this
confirms the estimate in Lem. 5. We observe that adaptivity provides better solutions with
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Fig. 2 Convergence test for the first experiment with γ = 4/7 and m =(0.8,0.6)t

a substantial reduction of the required problem size dim Vh to achieve a certain accuracy.
Therefore a single adaptive step is sufficient, where the polynomial degree in space and time is
increased for η res,R ≥ ϑ1 maxR′∈Rh η res,R′ and decreased for η res,R ≤ ϑ0 maxR′∈Rh η res,R′ ,
depending on ϑ1 > ϑ0 > 0. Note that this results in a different refinement pattern in every
time interval, and a simple refinement in space is not sufficient for a strong reduction of the
required degrees of unknowns. Here, we select ϑ1 = 0.3 and ϑ0 = 0.02, and in the figures for
the adaptive results the mesh size is logarithmically interpolated depending on the degrees
of freedom.

Experiment 2 At next, we test the convergence of a Riemann problem in Q = (0, 1/2) ×
(−1, 1) × (0, 1) with f = 0, where the solution is given by

u(t, x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
0

0

)

x · m < −t ,
(
1

m

)

−t < x · m < t ,
(
1

0

)

t < x · m ,

m =
(
0.8
0.6

)

, κ = 1 , � = 1 .

Then, Lu = 0, so that u is a strong solution, and since the condition in Rem. 9 applies,
we obtain convergence in the limit by Thm. 2. On the other hand, the solution is piecewise
discontinuous, so that the smoothness assumption in Thm. 3 is not satisfied.

We also observe convergence, cf. Fig. 3, but with a reduced rate O(h1/3). In particular,
the rate is not improved for the L2 error, and simple adaptivity is not sufficient to increase
the efficiency.

Here, the solution is not smooth, and the results do not improve if the material parame-
ters are aligned with the mesh. Moreover, further tests show that the convergence order of
approximately O(h0.4) in the DG norm cannot be improved by adaptivity, which indicates
that without sufficient regularity and jumps along the characteristics the DG norm is not
appropriate for a qualitative convergence analysis, as it is possible for point singularities, see
[2]. Then, the convergence analysis requires high regularity in weighted Sobolev spaces.
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Fig. 3 Convergence test for the Riemann Problem

Fig. 4 Convergence test for a forward problem in seismic imaging in a truncated space-time domain

Experiment 3 In our final example we test the space-time method for the forward problem in
seismic imaging. Here, we only consider 2d acoustics in� = (0, 10)× (0, 3) and I = (0, 4)
with homogeneous initial andNeumann boundary conditions. For this test we use a piecewise
constant right-hand side b(t, x) = 1 for (t, x) ∈ (0, 0.5) × (0.25, 0.75) × (0, 0.5) and b = 0
else.

The configuration, the distribution of the the piecewise constant parameters � and κ , and
the parallel solution framework inM++ are described in detail in [8]. Since in this application
only the evaluation in a small measurement region (4.75, 7.25)× (0, 0.4) ⊂ � is of interest,
the space-time domain can be truncated, see [10, Lem. 2]. Here the convergence is only tested
by evaluating the residual error indicator on uniformly refined meshes and for one and two
p-adaptive steps with θ0 = 0.01 and θ1 = 0.1. Since all data are aligned with the mesh
but discontinuous, the regularity of the solution is limited. We observe approximately linear
convergence with respect to the estimate of the DG norm, and again we observe improved
convergence by space-time adaptivity, cf. Fig. 4.
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7 Conclusion and Outlook

The convergence analysis in the DG norm only assumes regularity of the space-time solution
u in H1(Q;Rm); this implies regularity of the solution u(tn) at all time steps in H1/2(�;Rm).
This clearly extends convergence results with respect to the graph norm, where the analysis
requires higher regularity. Moreover, the simple residual error indicator yields estimates very
close to the error in the DG norm. On the other hand, for discontinuous Riemann problems
we can prove only convergence in the limit, and the numerical experiments demonstrate that
we obtain convergence in L2 but with a reduced rate, which can be improved by adaptivity
in L2 but not in the DG norm.

All our estimates rely on a Hilbert space setting. This may be not appropriate for hyper-
bolic systems, and numerical tests demonstrate better convergence rates in L1(Q;Rm), but
a corresponding analysis remains an open problem.
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18. Jovanović, V., Rohde, C.: Finite-volume schemes for Friedrichs systems in multiple space dimensions:
A priori and a posteriori error estimates. Numer. Method. Partial Different. Eq. An Int. J. 21(1), 104–131
(2005)

19. Löscher, R., Steinbach, O., Zank, M.: Numerical results for an unconditionally stable space-time finite
elementmethod for thewave equation. In: S. Brenner, E. Chung, A. Klawonn, F. Kwok, J. Xu, J. Zou (eds.)
Domain Decomposition Methods in Science and Engineering XXVI, Lecture Notes in Computational
Science and Engineering, (2022). https://arxiv.org/abs/2103.04324

20. Melenk, J.M.: hp-interpolation of nonsmooth functions and an application to hp-a posteriori error esti-
mation. SIAM J. Numer. Anal. 43, 127–155 (2005)

21. Rauch, J.: On convergence of the finite element method for the wave equation. SIAM J. Numer. Anal.
22(2), 245–249 (1985)

22. Schafelner, A.: Space-time finite element methods. Ph.D. thesis, Johannes Kelper University Linz (2022).
http://www.numa.uni-linz.ac.at/Teaching/PhD/Finished/schafelner

23. Schwab, C.: p- and hp-finite Element Methods. Theory and applications in solid and fluid mechanics.
Clarendon Press, Oxford (1998)

24. Steinbach, O., Urzúa-Torres, C.: A new approach to space-time boundary integral equations for the wave
equation. SIAM J. Math. Anal. 54(2), 1370–1392 (2022). https://doi.org/10.1137/21M1420034

25. Steinbach, O., Zank, M.: A generalized inf-sup stable variational formulation for the wave equation. J.
Math. Anal. Appl. 505(1), 24 (2022). https://doi.org/10.1016/j.jmaa.2021.125457. (Paper No. 125457)

26. Tezduyar, T.E., Takizawa, K.: Space-time computations in practical engineering applications: a summary
of the 25-year history. Comput.Mech. 63(4), 747–753 (2019). https://doi.org/10.1007/s00466-018-1620-
7

27. Zhu, S., Dedè, L., Quarteroni, A.: Isogeometric analysis and proper orthogonal decomposition for the
acoustic wave equation. ESAIM Math. Modell. Numer. Anal. 51(4), 1197–1221 (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1007/978-3-319-23321-5
https://doi.org/10.1007/978-3-319-23321-5
https://doi.org/10.1051/m2an/2022035
http://arxiv.org/abs/2011.04617
https://arxiv.org/abs/2103.04324
http://www.numa.uni-linz.ac.at/Teaching/PhD/Finished/schafelner
https://doi.org/10.1137/21M1420034
https://doi.org/10.1016/j.jmaa.2021.125457
https://doi.org/10.1007/s00466-018-1620-7
https://doi.org/10.1007/s00466-018-1620-7

	Space-Time Discontinuous Galerkin Methods for Weak Solutions of Hyperbolic Linear Symmetric Friedrichs Systems
	Abstract
	1 Introduction
	2 Symmetric Friedrichs Systems
	3 The Full-Upwind Discontinuous Galerkin Discretization
	3.1 The DG Finite Element Space in the Space-Time Cylinder
	3.2 A Discontinuous Galerkin Method in Time
	3.3 A Discontinuous Galerkin Method in Space
	3.4 A Discontinuous Galerkin Method in Time and Space

	4 Well-posedness and Stability
	4.1 Well-Posedness of the Space-Time DG Discretization
	4.2 Stability in Space and Time
	4.3 Inf-Sup Stability in the DG Norm

	5 Convergence of the DG Space-Time Approximation
	5.1 Convergence in the Limit
	5.2 Convergence in the DG Norm
	5.3 Error Control

	6 Numerical Experiments
	7 Conclusion and Outlook
	Acknowledgements
	References




