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The shape of particles has a significant influence on the behavior of suspensions, as the particle fluid,
particle particle, and particle wall interactions depend on it. However, the simultaneous consideration
of complex particle shapes and four way coupling remains a major challenge. This is mainly due to a lack
of suitable contact models. Contact models for complex shapes have been proposed in literature, and
most limit the accuracy of the particle fluid interaction. For this reason, this paper presents a novel
contact model for complex convex particle shapes for use with partially saturated methods, in which we
propose to obtain necessary contact properties, such as the indentation depth, by a discretization of the
contact area. The goal of the proposed model is to enable comprehensive and accurate studies of par
ticulate flows, especially with high volume fractions, that lead to new insights and contribute to the
improvement of existing industrial processes. To ensure correctness and sustainability, we validate the
model extensively by studying cases with and without fluid. In the latter case, we use the homogenized
lattice Boltzmann method. The provided investigations show a great agreement of the proposed discrete
contact model with analytical solutions and the literature.
1. Introduction

Particle laden flows are essential in many fields such as solid
liquid separation and food processing. In various applications, a
high particle concentration is present and, therefore, modeling
requires four way coupling. Thus, besides coupling of the fluid to
the particle (one way coupling) and particle to the fluid (two way
coupling), particle particle and particle wall interactions are also
essential for a correct investigation. In food processing, for instance,
the accurate calculation of acting forces is indispensable to avoid
damage to the particulate phase, as this would reduce the quality of
the end product.

An option to consider individual particles is the use of the
discrete element method (DEM), which has many applications (Zhu
et al., 2008). Resolving an arbitrary geometry is, e.g., possible by a
Group, Karlsruhe Institute of
rmany.
ardt).
simple approach of glued spheres (Nolan & Kavanagh, 1995).
Kodam et al. (2010) apply the same logic to model contacts of more
complex shapes. In a similar fashion, the framework Grains3D
(Rakotonirina&Wachs, 2018; Wachs et al., 2012) enables modeling
the contact of non convex particle geometries through a descrip
tion of glued convex shapes (Rakotonirina et al., 2019). Yet, the
arbitrary shapes’ approximation by, e.g., spheres leads to a limited
accuracy. To increase the accuracy, the number of sphere segments
must also increase immensely, leading to expensive computations.
Additionally, to model the influence of a surrounding fluid remains
a challenge as all the above mentioned models consider dry colli
sions. Although, studies regarding the coupling with a surrounding
fluid exist. However, these mostly use simple spherical geometries
(Qiu & Wu, 2014; Sun & Xiao, 2016) or solely model the drag co
efficient and lack a back coupling from the particles to the fluid
(Weers et al., 2022). Thus, to process an accurate four way coupling
with realistic and complex shapes, resolving these by direct nu
merical simulations (DNS) is necessary.

Nagata et al. (2020) proposed an immersed boundary method
(IBM) collision algorithm that is suitable for arbitrary shapes and



Nomenclature

Acronyms
BGK BhatnagareGrosseKrook
DEM discrete element method
DNS direct numerical simulations
EDM exact difference method
EOC experimental order of convergence
HLBM homogenized lattice Boltzmann method
IBM immersed boundary method
LBM lattice Boltzmann method
MEA momentum exchange algorithm
PSM partially saturated cells method
SDF signed distance function

Roman Symbols
Ai estimated corresponding surface of the ith surface

cell
C point of impact
c damping constant
ci ith discrete lattice velocity
cs lattice speed of sound
D dimension
d indentation depth/displacement
dB HLBM model parameter
ds signed distance to a surface
_dn relative velocity of two bodies in direction of the

normal contact force
E modulus of elasticity
E* effective modulus of elasticity
EA modulus of elasticity of an object A
EB modulus of elasticity of an object B
e signed coefficient of restitution
Ff external forces acting on the fluid
Fn normal contact force
Fn magnitude of the normal contact force
Fp forces acting on a particle
Fp,h hydrodynamic forces acting on a particle
Ft tangential contact force
Ft magnitude of the tangential contact force
fi ith particle distribution function
fieq ith equilibrium distribution
fi* ith post collision distribution
H cylinder height
I the sphere's moment of inertia
Ip particle's moment of inertia
Ixx moment of inertia with respect to x axis
Iyy moment of inertia with respect to y axis
Izz moment of inertia with respect to z axis
k parameter for calculation of normal contact force
m particle mass
N resolution of a characteristic length for the LBM

simulation
Nc resolution of the overlap of the particles in contact
nc contact normal
ncell number of cells in the overlap
ncell,s number of cells on the surface of the overlap
ns,i surface normal of the ith surface grid point
nt number of sub time steps
p pressure
R radius
Ri radius of object i

Rr reduced radius
r distance between the cylinder's center and the

contact point
Si source term
Tp torque acting on a particle
Tp,h torque acting on a particle caused by hydrodynamic

forces
t time
u fluid velocity
Vc overlap volume
Vcell volume of a single cell
v particle velocity
vA velocity of a rigid body A
vAB relative velocity of two objects (A and B)
vAB,n relative normal velocity of two objects (A and B)
vAB,t relative tangential velocity of two objects (A and B)
vB velocity of a rigid body B
vp velocity at the particle's center of mass
vs velocity at which the transition from static to kinetic

friction takes place
vzþ rebound velocity in z direction
vz initial velocity in z direction
wi ith weight for the equilibrium distribution

calculation
Xi centroid of the ith cell in the overlap
x position in the global coordinate system of the

simulationex position in the local coordinate system located at the
particle's center of mass

xc contact point
xm the particle's center of mass in the global coordinate

system of the simulation
xmax maximum coordinate of the contact enclosing

cuboid (bounding box)
xmax,j jth component of the bounding boxes maximum

coordinate
xmin minimum coordinate of the contact enclosing cuboid

(bounding box)
xmin,j jth component of the bounding boxes minimum

coordinate

Greek Symbols
a angle between the line from the contact point to the

cylinder center and the face of the cylinder
Dt time step size
Dtc differing time step size for solution of equations of

motion with existing contact
Du difference between fluid and particle velocity
Dx spacing between two neighboring lattice cells
Dxc,j spacing between two neighboring points on the

overlap grid in the j direction
h dynamic viscosity
q impact angle
mk coefficient for kinetic/sliding friction
ms coefficient for static friction
n Poisson's ratio
nA Poisson's ratio of an object A
nB Poisson's ratio of an object B
r fluid density
t relaxation time
Ui collision operator
u angular velocity
uyþ rebound angular velocity about the y axis



shows good accuracy for simple geometries. The underlying IBM 
resolves surfaces using Lagrange points (Uhlmann, 2005). These 
points interact with the fluid, but need not depend on the particular 
fluid grid. As a result, IBM achieves a high accuracy. However, the 
frequent interpolations between particle and fluid points are costly. 
Also, it is beneficial that it is coupleable with different approaches 
for solving the fluid, such as the finite element method, the finite 
volume method, and the lattice Boltzmann method (LBM).

The latter, LBM, is of increasing interest as it is efficient and is 
easy to parallelize because costly computations are purely local 
(Succi, 2001). Other LBM based approaches to simulate arbitrary 
particle shapes also exist. The partially saturated cells method 
(PSM) is the most common and was first proposed by Noble and 
Torczynski (1998) in its original form. Since then, there have been 
several new approaches, such as the homogenized lattice Boltz 
mann method (HLBM) introduced by Krause et al. (2017). All PSMs 
use a level set function to describe an approximation of the volume 
fraction of the particle over the complete computation domain 
(Haussmann et al., 2020). Previous studies using HLBM show that it 
allows representation of almost every shape (Trunk et al., 2018, 
2021a, 2021b). Since the method uses the LBM voxel representa 
tion, the approximation of the shape, depends on the grid, and very 
thin objects are prone to problems. Though PSMs have shown po 
tential, modeling the contact of arbitrary shaped particles, which is 
essential to consider realistic suspensions with high particle con 
centrations, remains a big challenge. Although previous studies 
show that lubrication forces suffice to decelerate particles, the in 
fluence of contacts is still incorrectly represented (Trunk et al., 
2021a).

The aim of this paper is to provide a model to consider the 
contact of complex convex particle shapes to close the above gap. 
The literature lacks viable options to consider high particle volume 
fractions along with fluid interaction, when the particle geometry is 
realistic and complex. For this purpose, we propose a discretized 
contact model that is useable along with PSMs, such as HLBM. In 
other words, this paper introduces a novel model for dense sus 
pensions using PSMs and validates it on suitable test cases. The 
associated simulations for validation use OpenLB (Krause et al., 
2020a, 2020b).

To introduce the method and its applicability, the paper adopts 
the following structure. In Section 2, the models used to consider 
the fluid, particles, and interactions are introduced. In Section 3, we  
discuss the numerical methods that are used to solve the model 
system. This is followed by a validation of the novel method for 
contact treatment and its application in a system with and without 
a particle laden viscous fluid in Sections 4 and 5. Finally, in Section 
6, we give a summary and draw a conclusion.
2. Modeling

Suspensions consist of fluids and particles. Both components
need to be described by a proper model. This also applies to the
particle particle and particle wall interaction in the presence of a
high particle concentration. For these interactions, the geometries
of the objects under consideration are of great importance.
Therefore, we show themodels for fluids in Section 2.1, for particles
in Section 2.2, for geometries in Section 2.3, and for contacts in
Section 2.4.
2.1. Fluid

We describe the fluid component by the incompressible
NaviereStokes equations:
vu
vt

þ ðu,VÞu h

r
Duþ 1

r
Vp Ff ;

V,u 0;
(1)

where u is the fluid velocity, t the time, p the pressure, Ff the total of
all forces acting on the fluid, e.g., gravity, h and r are the fluid's
dynamic viscosity and density.
2.2. Particle

To consider particles, we need to describe the particle motion
and represent the particle's shape. For the former, we use Newton's
second law of motion. The translation is then given by

m
vvp
vt

Fp (2)

and the rotational motion by

Ip
vu

vt
Tp: (3)

In the above mentioned equations, m, Ip, vp, u, Fp, Tp are the par
ticle's mass, moment of inertia, velocity, angular velocity, and the
sum of forces as well as torque acting on the particle. Here, all
quantities with index p refer to the particle's center of mass. Note
that in this work Fp is composed of hydrodynamic forces Fp,h,
normal and tangential contact forces Fn and Ft. The torque acting on
the particle Tp also stems from the hydrodynamic and the contact
forces. For the latter, the lever results from the difference between
the contact point xc and the center of mass of the particle xm.
2.3. Geometries

In this work, we use signed distance functions (SDFs) to describe
the geometries of the particles and walls. Since a comprehensive
discussion of these would exceed the scope of this paper, the
interested reader is referred to the literature (Hart, 1996; Haugo
et al., 2017) for more information.

We use SDFs to determine the signed distance ds of a point x to a
surface B2RD with the dimension D. Here, the sign indicates
whether the point x is inside or outside the geometry. This distance
to the surface is particularly valuable for contact modeling and al
lows us to derive a significant part of the necessary quantities. For
example, the normal on the geometry surface is obtained from the
derivative of the SDF. Stemming from computer graphics, SDFs are
also highly efficient. These advantages make them a perfect fit for
the application discussed here.

Henceforth, we use

dsð~xÞ k~xk R (4)

to describe spheres and

dsð~xÞ max
���ð~xx; ~xyÞ�� R; ~xz H

�
2
�

(5)

to represent cylinders which have an axis orthogonal to the x y
plane. Here, R is the radius, H the cylinder's length and x is location
relative to the center of mass of the respective geometry. The
transformation from the global coordinate system of the simulation
into the coordinate system of the geometry uses translation and
rotation depending on the motion of the particle.



Following this model, the normal contact force'smagnitude reads

Fn E*k Vcd
p �

1þ c _dn
�
; (6)

with the effective modulus of elasticity E*, a constant k, the overlap
volume Vc, the indentation depth d, a damping constant c, and the
magnitude of the relative velocity between two bodies in contact in

the direction of the normal force _dn. The former is given as

E*
1 n2A
EA

þ 1 n2B
EB

!�1

: (7)

Here, EA and nA are the modulus of elasticity and the Poisson's ratio
of objects A and EB and nB of object B, which are in contact.

The constant k 4=ð3 p
p Þ applies to a sphereehalf space and

sphereesphere contact (Nassauer & Kuna, 2013). For a cylindrical
flat punch, on the other hand, k 2= p

p
applies.

By multiplication with the contact normal nc, we obtain vector
components from the magnitude of the force

Fn ncFn; (8)

which is necessary for solving the particle motion equations, see
Eqs. (2) and (3).

To solve the above mentioned model equations, we need to
determine the overlap volume V, indentation depth d, and contact
normal nc numerically, as presented in Section 3.3.

Also, a correct damping factor, which depends on the initial
relative velocity in the normal contact direction, is crucial. How
ever, the consideration of this correlation is beyond the scope of
this paper. Nevertheless, it is vital to evaluate the applicability of
existing models from the literature (Alves et al., 2015; Carvalho &
Martins, 2019) in future works.

2.4.2. Tangential contact
Tangential forces occur due to friction. Commonly, friction de

pends on the normal force, see Eq. (6), and the coefficients of static
and kinetic/sliding friction, ms and mk, respectively. Nassauer and
Kuna (2013) follow a similar logic and describe the magnitude of
the friction force by

Ft

	�
2m*s mk

� a2

a4 þ 1
þ mk

mk
a2 þ 1



Fn; (9)

with

m*s ms 1 0:09
	
mk
ms


4
!
; (10)

and

a

��vAB;tðxcÞ��
vs

: (11)

2.4. Contact

In order to describe interactions of arbitrary geometries, we use 
a model proposed by Nassauer and Kuna (2013) to compute the 
normal, Section 2.4.1, and tangential, Section 2.4.2, contact force 
from an overlap volume. The commonly very small overlap models 
deformation during the contact and does not occur in reality.

2.4.1. Normal contact
Here, we use the relative tangential velocity vAB,t at the contact
point xc of the objects A and B that are in contact and the model
parameter vs, which denotes the velocity at which a transition from
static to kinetic friction occurs. The friction force acts against the
relative tangential velocity vAB,t and thus

Ft Ft
vAB;tðxcÞ��vAB;tðxcÞ�� (12)

applies.
3. Numerical methods

3.1. Lattice Boltzmann method

To solve the incompressible NaviereStokes equations
mentioned in Section 2.1, we use the lattice Boltzmann method
(LBM) (Krüger et al., 2017; Succi, 2001; Sukop & Thorne, 2006).

The origin of LBM is gas kinetics, and for this reason, it operates
on a mesoscopic scale and considers particle populations. We
describe these populations by a discrete velocity distribution
function fi(x, t). The arguments of the particle populations, the
position x and the time t, are discrete. Also, there is a discrete set of
velocities ci, which is predetermined. For example, in the following,
we use a D3Q19 velocity set for all of our simulations, which
operates in a three dimensional space and has 19 discrete velocities
(Krüger et al., 2017; Succi, 2001). We can additionally use the dis
tribution function to calculate macroscopic quantities, such as
density r(x, t)

P
ifi(x, t) and velocity ru(x, t)

P
icifi(x, t).

To compute the distribution function's value in the next time
step, we use the lattice Boltzmann equation (LBE) with an addi
tional source term Si(x, t) to account for forces acting on the fluid Ff,
which in this context is the influence of submerged particles via the
HLBM, see Section 3.2. The LBE is usually utilized with a time step
size Dt 1 in lattice units and divided into two distinct parts. The
collision step

f *i ðx; tÞ fiðx; tÞ þ Uiðx; tÞ þ Siðx; tÞ; (13)

with the collision operator Ui, through which we obtain the post

collision distributions f *i , and the streaming step

fiðxþ ci; tþ1Þ f *i ðx; tÞ; (14)

which distributes the post collision distribution f *i to the neigh
boring lattice nodes. Furthermore, we use the Bhatnagare
GrosseKrook (BGK) collision operator (Bhatnagar et al., 1954),
which is given by

Uiðx; tÞ
fiðx; tÞ f eqi ðr;uÞ

t
; (15)

where t is the relaxation time that governs the speed of the particle
populations’ relaxation towards its equilibrium state. The equilib
rium is given by the discrete MaxwelleBoltzmann distribution

f eqi ðr;uÞ wir 1þ ci,u
c2s

þ ðci,uÞ2
2c4s

þ u2

2c2s

!
: (16)

The necessary weights wi and constant lattice speed of sound cs
depend on the chosen velocity set. The former comes from a
GausseHermite quadrature rule, and cs 1= 3

p
when using a

D3Q19 set.



Duðx; tÞ dBðx; tÞðvðx; tÞ uðx; tÞÞ: (17)

Here, v(x) v(xm) þ u� (x xm) is the particle's velocity at position
x, and xm is the particle's center of mass. The aforementioned
smoothing at the particle surface uses trigonometric functions, as
described by Krause et al. (2017), with the signed distance to the
particle surface. We use

dBðx;tÞ x

8>>>><>>>>:
1 if ds � e=2

cos2
	
p

	
ds
e
þ1
2




if e=2>ds> e=2

0 if ds � e=2

(18)

to compute the model parameter and set the size of the smooth
boundary via the parameter e.

Since studies by Trunk et al. (2021a) show that it provides the
best results, we use the adaption of the exact difference method
(EDM) by Kupershtokh et al. (2009) as the forcing scheme as well.
The method solely uses the source term

Siðx; tÞ f eqi ðr;uþDuÞ f eqi ðr;uÞ (19)

in Eq. (13) with the above mentioned local velocity difference Du,
see Eq. (17).

To obtain the hydrodynamic force acting on the particle Fp,h and
the resulting torque Tp,h, we use the momentum exchange algo
rithm (MEA) by Wen et al. (2014). We then compute the accelera
tion from the resulting hydrodynamic force alongwith other forces,
such as gravitation and buoyancy, via Newton's second law of
motion and use it within an explicit time integration scheme. Here,
we choose the velocity Verlet algorithm (Swope et al., 1982; Verlet,
1967) to solve the equations of motion.

3.2. Homogenized lattice Boltzmann method

Trunk et al. (2021a) distinguish between three different ele 
ments in the method. Namely, object representation, forcing 
scheme, and momentum exchange.

The former uses a voxel representation, which was explained in 
detail by Trunk et al. (2018). This representation allows to calculate 
necessary physical properties such as volume, mass, center of mass, 
and moment of inertia. Additionally, we map the particle onto the 
fluid domain during this step. For this, we use a model parameter 
dB 2 [0, 1] to calculate the local velocity difference
3.3. Discrete contacts

In the following, we propose a discrete method to treat particle
particle and particle wall interactions. To do so, we need to find a
simple cuboid with which the contact geometry is enclosed, see
Section 3.3.1. In the following, we refer to this enclosing cuboid as
bounding box. Afterwards, we must correct this bounding box as
presented in Section 3.3.2. We then iterate over the improved
bounding boxwith discrete steps to calculate the contact properties
in Section 3.3.3. The necessary steps and their outcome are illus
trated in Fig. 1.
3.3.1. Contact detection
In Fig. 1(a), we see an exemplary contact. For simplification, this

is a 2D contact, however, the following analogously applies to 3D. It
is easy to see that the two objects are in contact. However, this is
much more difficult to determine numerically for complex
geometries.
To overcome this challenge, we use a very simple detection
while setting the HLBM model parameter dB on the lattice, since in
both cases, we have a dependency on the signed distance ds. For
clarity, Fig. 1(b) shows the magnified contact area with the lattice
drawn in gray. Each grid point where the signed distance to both
object surfaces is less than half of a cell's diagonal, ds <0:5 D

p
Dx,

with the considered dimension D, we consider being inside the
overlap. If a point is inside the contact according to the previously
mentioned condition, we update the minimum and maximum
coordinates, xmin and xmax, of the bounding box, represented by the
dashed line. Because of this, Fig. 1(b) illustrates an overestimation
of the bounding box. This is advantageous, however, as it increases
the accuracy and stability. Otherwise, a higher fraction of the
overlap is incorrect and, for the next step presented in Section 3.3.2,
an overestimation is better than an underestimation. Because un
derestimation can lead to erroneous missing contact detections
that are impossible to correct with currently known approaches
and reasonable effort.

The contacts found are saved in contact objects. For example, we
store the particle IDs and the minimum as well as maximum co
ordinates, xmin and xmax, of the bounding box of the contact for
particle particle contacts in it. For particle wall interactions, we
solely need to replace one particle ID with an identifier for the wall.
This means that all data is available for the later correction of the
bounding box (Section 3.3.2) or contact force calculation (Section
3.3.3).

The aforementioned identifiers are, e.g., simple indices of a field
which stores the particles or walls. Naturally, other implementa
tions are also plausible. It is only important that this identifier is
unique and constant during the contact treatment, or, if a change is
absolutely necessary, then the changes must also be applied to the
contact object.
3.3.2. Correct detected contacts
Since the rough contact detection most likely overestimates the

bounding box, we need to shrink it to the actual contact, using
Algorithm 1. This step causes the change from Fig. 1(b) to (c).
Thereby, we improve the accuracy of the contact force calculation,
which we discuss in Section 3.3.3. To do this, we first calculate a
step size

Dxc;j
1
Nc

�
Dx if xmax;j xmin;j 0;
ðxmax;j xmin;jÞ if xmax;j xmin;j >0: (20)

with which we iterate over the overlap volume's bounding box per
spatial direction j. This resolves the overlapping area with Nc cu
boids, which may have different aspect ratios.

In the following, we iterate over the bounding box's surface,
using the step sizes from Eq. (20). During this iteration, we deter
mine the distances to the real contact surface, which is inside the
bounding box, in different discrete directions. These directions
change in 45� steps as illustrated for selected grid points (black
disks) in Fig. 1(b). Based on the point on the surface, the direction
and the distance determined, we can now identify points on the
contact surface and derive an improved bounding box. The distance
to the contact surface can be calculated, e.g., via raymarching or ray
tracing.

In the end, we thus obtain a bounding box of the overlapping
region of two identifiable objects. This gives us sufficient infor
mation to calculate the contact forces in the next step.



Algorithm 1. Algorithm to correct the initial bounding box.

3.3.3. Calculation of contact forces
Having obtained the bounding box, we continue with the

calculation of the forces acting on the objects in contact. For this, we
apply another uniform rectangular grid on the bounding box, as
shown in Fig. 1(c), to obtain the necessary parameters for the
calculation of the contact force. Some of them are shown in
Fig. 1(d). We again compute the distance between the respective
grid points from Eq. (20). To derive the contact information, as
mentioned in Section 2.4, we evaluate if it lies within the contact
(solid lines) or outside the contact (dashed lines), on each grid
point, and count the total number of cells ncell within the overlap.

Overlap volume. We then calculate the overlap volume Vc of two
colliding objects by a sum of the volume of all individual cells that
are within the contact:

Vc ncellVcell: (21)

Here, Vcell is each cell's volume. In Fig.1(c), we see that a pointmay lie
right on the surface of the contact, which therefore would lead to an
overestimation of the overlap volume. However, this is solely a dis
cretization error and decreases drastically with an increased resolu
tion. Also, in actual simulations, such an ideal contact is almost
impossible, so, if at all, theminimumandmaximumareon thesurface
of the contact and all other grid points are inside. It is therefore ad
vantageous touse intersections of the grid lines andnot the centers as
it compensates for the otherwise missing volume to an extent.

Contact normal. Another required quantity is the contact normal
nc. We calculate it from the cells on the surface, but we use the first
layer of grid points outside the contact. In Fig. 1(c), some considered
points and their respective normals ns,i are presented in blue. This
leads to greater accuracy, because we have more cells in this layer
than in the inner one for convex shapes. Additionally, we verify that a
point is actually on the surface by checking that the neighbor in the
direction of the normalized normal at the cell's center ns,i is inside
the overlap. The normal ns,i Vds(x) is obtained from the derivative
of the SDF at the corresponding position. To calculate this, we use the
central difference method. Analogous to the procedure of Nassauer
and Kuna (2013), we calculate the normal from a weighted average
of the normals of the previously defined surface cells
nc

Pncell;s

i Ai
ns;i

kns;ikPncell;s

i Ai
: (22)

Here, we sum over all surface cells ncell,s and weigh each with the
surface Ai, which is the cross section in the cell's normal direction
ns,i. It is further important to note that we use ns,i Vds(x) for the
second object in contact, so that the normals of both objects point
in the same direction. We estimate Ai in 3D with

Ai

0@Dxc;yDxc;z
Dxc;xDxc;z
Dxc;xDxc;y

1A,
ns;i��ns;i
��1 ns;i��ns;i

��
!
; (23)

and in 2D with

Ai

	
Dxc;y
Dxc;x



,

ns;i��ns;i
��1 ns;i��ns;i

��
!
; (24)

In the equations above, 1 refers to the Hadamard product, i. e., an
element wise product.

Contact point. According to Nassauer and Kuna (2013), the
contact point xc is defined as the center of mass of the overlap
volume. This can be determined by dividing this area into cuboids,
as shown in Fig. 1(c), and by assuming that the particles have a
constant density distribution. Then, we simply calculate the mean
value of all cell centroids Xi

xc

Pncell
i Xi

ncell
: (25)

Displacement. Now, the displacement d is to be determined. For
this purpose, the distance from the contact point xc to the contact
surface is determined in two directions. On the one hand, in the
direction of the contact's normal nc and, on the other hand, in the
opposite direction nc. Both distances together result in the wan
ted displacement d, as illustrated in Fig. 1(d). The temporal change
of the displacement d reads (Nassauer & Kuna, 2013)

_dn kvAB;nðxcÞk: (26)

Here, we use the relative velocity in normal direction (D�ziugys &
Peters, 2001)

vAB;nðxcÞ
	
vABðxcÞ,

nc

knck



nc

knck; (27)

at the contact point xc. The total relative velocity of two objects in
contact, A and B, is calculated via

vABðxcÞ vAðxcÞ vBðxcÞ: (28)

Tangential velocity. The tangential velocity is the difference be
tween the total relative velocity vAB and its normal component vAB,n
(D�ziugys & Peters, 2001):

vAB;t vAB vAB;n: (29)



Fig. 1. Illustration of two convex objects in contact. Showing a rectangle and a rounded geometry and highlighting the overlap area with a thickened circle (a). (b) shows the
magnified contact area with an example lattice in gray and the approximated bounding box. It also presents the magnified contact with the improved bounding box and the grid
used for the calculation of all contact-relevant properties (c). Furthermore, the contact and the necessary properties are displayed in (d).
3.4. Time step algorithm with four way coupling

For a better overview, Algorithm 2 shows the basic LBM time
step algorithm with the four way coupling. Here, the previously
explained methods are listed in the necessary order. Additionally,
we show the possibility of sub time steps solely for the solution of
the equations of motion, with a time step size Dtc Dt/nt, for
nt2N>0. Here, nt is the number of sub time steps to process.

Algorithm 2. Basic LBM time step algorithm with four way
coupling.

4. Validation

In the subsequent section, we consider several cases for vali
dation. First, in Section 4.1, we validate the normal contact force.
This is followed by a cylinder wall impact test to check the resulting
particle motion in Section 4.2.
4.1. Contact force

As a first challenge for the proposed method, we consider
several contact problems with known analytical solutions, as
described in Section 4.1.1. This is followed by the numerical results
and a comparison of these with the analytical solutions in Section
4.1.2. Finally, in Section 4.1.3, we perform a grid independence
study.
4.1.1. Setup
To validate the correctness of the normal contact force, we

consider multiple test cases as illustrated in Fig. 2. The tests
include: a contact between a sphere with radius R and a half space,
see Fig. 2(a), a contact between two spheres with different radii R1
and R2, see Fig. 2(b), a cylindrical flat punch, see Fig. 2(c), and a
contact between two perpendicular crossed cylinders with an equal
radius R, see Fig. 2(d).

In the aforementioned tests, we increase the indentation depth
incrementally and compare the results with given analytical solu
tions. For a contact between a sphere with radius R and a half
space, we expect the normal force (Popov et al., 2019)

Fn
4
3
E*R1=2d3=2: (30)

The equation looks similar for a contact between two crossed cyl
inders with the same radius R and for a contact of two spheres with
radii R1 and R2. However, for the latter wemust replace the radius R
with the effective radius Rr reading (Popov, 2017)

Rr

	
1
R1

þ 1
R2


�1
: (31)



Fig. 2. Sketches of the considered test cases with an indentation depth d: (a) contact
between a sphere with radius R and a half-space, (b) contact between two spheres
with radii R1 and R2, (c) contact between a cylinder with radius R and a half space, and
(d) contact between two perpendicular crossed cylinders with the same radius R.
Fn 2RE*d: (32)

For the following tests, we consider a contact of two materials with
EA 0.01 GPa, nA 0.5 as well as EB 200 GPa and nB 0.3.
Additionally, we resolve the smallest diameter with eight cells for
the contact detection and use k 4=ð3 p

p Þ for all except the cy
lindrical flat punch case, where we use k 2= p

p
.

4.1.2. Results
Fig. 3 shows the comparison of the analytical solutions as a solid

line and computational results with different contact resolutions
Nc. It is evident that for smaller resolutions, the resulting force has
large deviations. Sometimes, the contact force is even mistakenly
assumed to be 0. However, the results improve with increasing
resolution, as expected. For a resolution of Nc 8, this already leads
to a good agreement of the simulation results with the analytical
solutions, and larger resolutions provide an even better accuracy.

4.1.3. Grid independence
To confirm the grid independence, we calculate the root mean

square relative error from the numerical results and analytical so
lutions provided in Section 4.1.2. Previously, we considered
different radii. In Fig. 4, however, the average errors of the
respective test cases are plotted over the dimension of the overlap
Nc and the indentation depth d 0 remains unconsidered. In
addition, we compare the data with the experimental order of
convergence, EOC 1 and EOC 2. As expected, a reduction of the
error with increasing resolution is noticeable. Furthermore, we see
in large parts of the diagram that a linear slope similar to the
EOC 1 exists, i.e., doubling the resolution halves the error.
However, outliers occur because the anisotropic voxel representa
tion in some cases over and in other cases underestimates curved
surfaces.

4.2. Cylinder wall impact

As a further test, the impact of a cylinder on a plane wall is
investigated. Since results for this are known from the literature
(Park, 2003), this case is frequently considered (Kodam et al., 2010;
Rakotonirina et al., 2019).

Fig. 5 shows the basic setup. A cylinder with radius R and height
Hmoves at a constant velocity v�z toward the wall located on the x
axis since no fluid is present. Furthermore, there is no friction be
tween the cylinder and the wall.

According to Park (2003), the post impact angular velocity reads

uþ
y

mv�z ð1þ eÞrcosðaþ qÞ
Iyy þmr2cos 2ðaþ qÞ ; (33)

with themass of the cylinderm, the signed coefficient of restitution
e vþz =v�z that depends on the post impact velocity vþz , themoment
of inertia with respect to the y axis Iyy, and the distance between

the impact point C and the center of the cylinder r R2 þ 1
4H

2
q

.

Additionally, two angles influence the outcome. One is the impact
angle q, which can take values between 0� and 90�and the other
one is a, which is the angle between the line from the point of
impact to the center of the cylinder and the face of the cylinder.
There is also a solution for the rebound velocity (Park, 2003)

vþz uþ
y rcosðaþ qÞ ev�z : (34)

According to Popov et al. (2019), the resulting normal contact force 
of a contact between a rigid cylinder with radius R and an elastic 
half space is given by
In the following, we consider a cylinder with a height
H 0.0053 m, radius R 0.004 m, mass m 3.1 , 10�4 kg and a
moment of inertia Iyy Ixx 1.96566 , 10�9 kg m2 and Izz 2.48 ,
10�9 kg m2. Furthermore, the cylinder settles with an initial ve
locity of v�z 1 m/s. The cylinder's radius is resolved by a reso
lution of N 4, for the on lattice contact detection. However, for
the rest of the contact treatment, the resolution Nc varies as is
visible in Fig. 6(a)e(b). Additionally, we use time steps of Dtz 1.7 ,
10�6 s. When a collision is detected, we reduce the time step size
and use Dtc Dt/10 instead. Furthermore, we set c 0.264 s/m
since this corresponds to a coefficient of restitution of about 0.85,
thus e 0.85 applies. Themodulus of elasticity is E 5 ,108 Pa for
both thewall and particle. Following Kodam et al. (2010), we set the
Poisson's ratio n both times to 0.35.

In Fig. 6(a), we compare the resulting de dimensionalized
rebound velocity from our simulations with the analytical solu
tion mentioned before Eq. (34) and simulations by Kodam et al.
(2010) using three layers of glued spheres and Rakotonirina et al.
(2019) using three glued cylinders. Furthermore, we plot the de
dimensionalized angular velocities versus the analytical solution
Eq. (33) and numerical results in Fig. 6(b). In both figures, we
consider post collision values.

We see in both cases that a low resolution, Nc 2, again yield
less satisfactory results. However, a good agreement with the
comparison data is already obvious from a resolution of Nc 4,
which becomes even better with further increasing resolution. It is
visible that the simulation data conform to the solid line of the
analytical solution. This agreement is better than for the three
layers of glued spheres by Kodam et al. (2010) illustrated as blue
crosses and similar to consideration of three glued cylinders by
Rakotonirina et al. (2019) illustrated as orange crosses. For the
latter, good results are expected, since a cylinder can be perfectly
composed of smaller cylinders. For more complex geometries,
however, a perfect match may not be possible and the results may
decrease in accuracy similar to the glued spheres. In general, this
test case shows a very good accuracy of the proposed novel method.



5. Particle rebound in viscous fluid

In the following chapter, we deal with a collision between a
spherical particle and a resting wall in a viscous fluid to further
validate the presented method and to show its potential.
5.1. Description

We numerically study the experimental setup by Li (2010) in
which spherical particles with a radius of 4.75 mm, a density of
Fig. 3. Comparison of the analytical solution for the normal contact force Fn over the indenta
with radius R 1 m and a half-space, (b) a sphere with radius R 2 m and a half-space, (c) tw
(e) a cylinder with radius R 1 m and a half-space, (f) a cylinder with radius R 2 m and
cylinders with equal radius R 2 m.
7780 kg/m3 and a moment of inertia of 3.15207 , 10�8 kg m2 are
released from different heights.We consider the initial heights h0 of
5.5 mm, 19.6 mm and 35.7 mm to cover the range of experiments.
The surrounding fluid is an aqueous glycerol solution that has a
density and viscosity of 1230 kg/m3 and 50.2 , 103 Pa,s,
respectively.

In the numerical setup, we consider a closed container with a
height of 0.05 m and an equally sized length as well as width of
0.042 m. For the walls, we use a no slip halfway bounce back
condition (Sukop & Thorne, 2006). Furthermore, we set the
tion depth d as a solid line with computational results for contact between (a) a sphere
o spheres with equal radius R 1 m, (d) two spheres with radii R1 1 m and R2 2 m,

a half-space, (g) two crossed cylinders with equal radius R 1 m, and (h) two crossed



Fig. 4. Relative error versus overlap resolution per dimension Nc.
elasticity modulus of the particle to 20 GPa and of the wall to 3 GPa
and use the damping constant c 0.12. Additionally, the Poisson's
ratios of the particle and wall are 0.33 and 0.24.

We discretize the spatial domain by Dx 0.3 mm, and Dt 5 ms
is the size of the time steps to solve the fluid with HLBM. To solve
the equations of motion and calculate the contact force, we use
smaller time steps of Dt/1000. For this, it is necessary to sufficiently
resolve the time the particle and the wall are in contact. Also, we
use an overlap resolution Nc 16. To avoid tiny channels between
the particle and the wall and thus insufficiently studied nano
effects, we enlarge the particle by Dx/7 solely for the collision
consideration.

In this case, the tangential force is negligible. It therefore re
quires another benchmark with surrounding fluid for validation of
the existing model in future considerations.
5.2. Results

A comparison of the results obtained by using the proposed
novel method with the experimental results by Li (2010) and nu
merical results by Qiu andWu (2014) is given in Fig. 7. In this figure,
we see the minimum distance h from the falling sphere's surface to
the bottom wall plotted over time. We consider three cases, as
Fig. 5. Sketch of the normal cylinder-wall impact test case.
mentioned before. Different colors highlight these. Thereby, the
simulation data are shown as dashed lines and the measurement
data by Li (2010) as points and the results of Qiu and Wu (2014) as
crosses.

In all cases, the ball first accelerates from its rest position h0
towards the bottomwall. Due to varying drop heights, acceleration
phases of different lengths are also noticeable. The subsequent
contact with the wall causes the spherical particle to move up
wards. Therefore, the distance h increases again. However, the
height reached after the rebound is smaller than the initial height
h0 before and particles with greater drop height also rebound more
strongly and reach a greater heights after the impact. This process is
repeated until the ball comes to rest on the ground, as each time, it
loses energy.

Overall, a good agreement of our results with the data by Li
(2010) and Qiu and Wu (2014) is visible. Small deviations are
particularly noticeable in the first impact from the highest falling
height h0, since the influence of the fluid is greatest there. We can
see, for example, that in the same case, at the second impact, the
Fig. 6. Comparison of the analytical solution and computational results of dimen-
sionless post-impact velocities for the collision of a cylinder and a wall. The plots show
(a) the rebound velocity vþz =vz and (b) the rebound angular velocity ruþ

y =vz over the
impact angle q.



Fig. 7. Plot of the shortest distance between a settling sphere's surface and the bottom
wall over time.
maximum rebound height corresponds to the measured values.
Furthermore, deviations between the numerical results of the
current simulation and the one of Qiu andWu (2014) are evident in
the initial acceleration of the sphere.

5.3. Discussion

We have shown that the proposed discrete collision model is
capable of an accurate contact treatment for arbitrarily shaped
particles. The contact model is essential in the considered case
because without it there would be no rebound and only a decel
eration of the particle. This reveals the great potential of this novel
model for further studies of particulate flows of all kinds.

However, we also see that the method still has further potential
for improvement. For example, the different heights after the first
rebound of the sphere with an initial height of 35.7 mm in Fig. 7 are
probably due to the assumption of a constant damping factor.
Contrary to the assumption, the literature suggests that the
damping depends on the initial relative velocity of the two objects
in contact.

The differences between the current and the results by Qiu &
Wu (2014) in the initial particle acceleration are because of the
surface resolved particles in this work and the resulting advantages
in the determination of hydrodynamic forces.

It is also evident that it is important to study the mechanics of
almost collisions, especially for viscous fluids. This is due to the fact
that the formation of nanoscale channels may induce other effects.
As we have shown, it is possible to model the collision by a virtual
particle enlargement. However, further studies are required to find
an optimal parameter which influences the accuracy of the result
solely positively.

6. Summary and conclusions

In this paper, we propose a novel contact model for complex
arbitrary shaped convex geometries and show that it describes
contacts with high accuracy. This is highlighted multiple times in
various cases, where we verify the correctness of the contact force
and the resulting motion of a particle with and without a fluid
present.

In the latter case, we furthermore demonstrate that the pro
posed method works well with HLBM. However, other PSMs make
no difference. With this contact model, it is now possible to
simulate complex suspensions precisely and thus to study real
world applications, e.g., hindered settling, extensively.

However, there is also potential for improvement, e.g. we
recommend deriving the contact model parameter k directly from
the respective shape of the overlap, which further improves the
accuracy of the resulting force. Furthermore, future studies of the
relationship between the damping factor c and the initial relative
velocity have the potential to lead to improvements in the pro
posed method. In addition, it is significant to model the respective
fluid correctly, even with nano sized channels shortly before the
collision. Alternatively, this is solvable by a virtual enlargement of
the colliding objects. However, this solution also requires further
investigations. Additional studies are also desired for validation of
the tangential force in the presence of a (viscous) fluid.

Overall, the novel method suits the previously mentioned
challenges well and can be used flexibly with different methods for
particulate flows, such as PSMs.
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