KIT | KIT-Bibliothek | Impressum | Datenschutz

The Effect of Single versus Polycrystalline Cathode Particles on All‐Solid‐State Battery Performance

Payandeh, Seyedhosein 1,2; Njel, Christian 3,4; Mazilkin, Andrey 1,2; Teo, Jun Hao 1,2; Ma, Yuan 1,2; Zhang, Ruizhuo 1,2; Kondrakov, Aleksandr 1,2; Bianchini, Matteo 1,2; Brezesinski, Torsten ORCID iD icon 1,2
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
2 Center for Electrochemical Energy Storage Ulm & Karlsruhe (CELEST), Karlsruher Institut für Technologie (KIT)
3 Institut für Angewandte Materialien – Energiespeichersysteme (IAM-ESS), Karlsruher Institut für Technologie (KIT)
4 Karlsruhe Nano Micro Facility (KNMF), Karlsruher Institut für Technologie (KIT)


Lithium-thiophosphate-based all-solid-state batteries (ASSBs) are increasingly attracting attention for high-density electrochemical energy storage. In this work, the cycling performance of single and polycrystalline forms of LiNi$_{x}$Co$_{y}$Mn$_{z}$O$_{2}$ (NCM, with ≥83% Ni content) cathode active materials in ASSB cells with an Li$_{4}$Ti$_{5}$O$_{12}$ composite anode is explored, and the advantages and disadvantages of both morphologies are discussed. The virtual lack of grain boundaries in the quasi-single-crystalline material is found to contribute to improved stability by eliminating the tendency of Ni-rich NCM particles to crack during cycling, due to volume differences between the lithiated and delithiated phases. Although the higher crack resistance mitigates effects of chemical oxidation of the lithium thiophosphate solid electrolyte, the cells suffer from electrochemical side reactions occurring at the cathode interfaces. However, coating the single-crystal particles with a protective LiNbO$_{3}$ overlayer helps to stabilize the interface between cathode active material and solid electrolyte, leading to a capacity retention of 93% after 200 cycles (with q$_{dis}$ ≈ 160 mAh g$_{NCM}$$^{-1}$ or 1.7 mAh cm$^{-2}$ at C/5 rate and 45 °C). ... mehr

Verlagsausgabe §
DOI: 10.5445/IR/1000154741
Veröffentlicht am 18.01.2023
DOI: 10.1002/admi.202201806
Zitationen: 10
Web of Science
Zitationen: 11
Zitationen: 11
Cover der Publikation
Zugehörige Institution(en) am KIT Center for Electrochemical Energy Storage Ulm & Karlsruhe (CELEST)
Institut für Angewandte Materialien – Energiespeichersysteme (IAM-ESS)
Institut für Nanotechnologie (INT)
Karlsruhe Nano Micro Facility (KNMF)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 2196-7350
KITopen-ID: 1000154741
HGF-Programm 38.02.01 (POF IV, LK 01) Fundamentals and Materials
Erschienen in Advanced Materials Interfaces
Verlag John Wiley and Sons
Band 10
Heft 3
Seiten Art.-Nr.: 2201806
Vorab online veröffentlicht am 04.12.2022
Schlagwörter 2022-028-031299 FIB TEM, XPS
Nachgewiesen in Dimensions
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page