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Abstract: Macromolecular self-assembly is at the basis of many phenomena in material and life
sciences that find diverse applications in technology. One example is the formation of virus-like
particles (VLPs) that act as stable empty capsids used for drug delivery or vaccine fabrication.
Similarly to the capsid of a virus, VLPs are protein assemblies, but their structural formation, stability,
and properties are not fully understood, especially as a function of the protein modifications. In this
work, we present a data-driven modeling approach for capturing macromolecular self-assembly on
scales beyond traditional molecular dynamics (MD), while preserving the chemical specificity. Each
macromolecule is abstracted as an anisotropic object and high-dimensional models are formulated to
describe interactions between molecules and with the solvent. For this, data-driven protein—protein
interaction potentials are derived using a Kriging-based strategy, built on high-throughput MD
simulations. Semi-automatic supervised learning is employed in a high performance computing
environment and the resulting specialized force-fields enable a significant speed-up to the micrometer
and millisecond scale, while maintaining high intermolecular detail. The reported generic framework
is applied for the first time to capture the formation of hepatitis B VLPs from the smallest building
unit, i.e., the dimer of the core protein HBcAg. Assembly pathways and kinetics are analyzed
and compared to the available experimental observations. We demonstrate that VLP self-assembly
phenomena and dependencies are now possible to be simulated. The method developed can be used
for the parameterization of other macromolecules, enabling a molecular understanding of processes
impossible to be attained with other theoretical models.

Keywords: multiscale modeling; molecular discrete element method; supervised learning; macro-
molecular self-assembly; capsid formation; hepatitis B VLP

1. Introduction

The specific function of a bioactive macromolecule is encoded in its chemical composi-
tion, three-dimensional (3D) structure, and self-assembly affinity. Even if the determination
of the building units of macromolecules is nowadays a regular procedure in many laborato-
ries worldwide, the latter properties are still cumbersome and not fully understood. This
limitation originates often from the relatively weak non-covalent interactions: either within
the macromolecule or between several macromolecules, that cannot be easily measured
experimentally and calculated theoretically. Therefore, many of biologically relevant pro-
cesses are constantly under investigation, hindering the successful treatment of harmful
diseases such as cancer, viral infections, Alzheimer’s disease, etc., which are often based on
misfolding of proteins and mistakes in their self-assembly and aggregation. On the one
hand, unwanted changes are often caused genetically, i.e., by the subtle differences in the
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chemical state in the cell environment or via mutations, therefore, they are determined on a
molecular scale. On the other hand, they happen on relatively long timescales that are not
accessible by most of the first principle atomistic methods due to the high computational
effort, which strongly limits investigated time and length scales.

Recent years are known by the prominent developments of various simulation
methods to upscale calculations, including quantum mechanics/molecular mechanics
(QM/MM) [1], accelerated molecular dynamics (MD) [2], replica-exchange MD [3,4], kinetic
Monte Carlo [5], as well as multi-scale simulations accounting different coarse-graining
(CG) of molecular systems [6-9], representation of solvent [10-12], and more [13,14]. In
addition, the coupling of the micro- and macroscales has been shown to be realized in serial
or in parallel [15] to perform macroscopic simulations including results from microscale
models. The up-scaling of all-atom molecular dynamics (AA-MD) simulations to different
types of CG, i.e., coarse-grained molecular dynamics (CG-MD) [6,9,16] is one of the most
commonly used approaches. Here, groups of atoms are represented as larger single
beads [17] allowing to significantly reduce degrees of freedom (DOF) and permitting an
increase in the timestep, thus enabling simulations of large macromolecules for longer times.
Various types of CG methods exist around Langevin dynamics (LD) [18,19], Brownian
dynamics (BD) [20], and dissipative particle dynamics (DPD) [21]. In the same context,
various coarse-grained force-fields (FF) for a range of systems have been developed,
including Martini [22-24], SIRAH [25,26], UNRES [27], CABS [28], and others.

The application of methods mentioned allows to jump from the nanometer length and
nanosecond time scales to the tens-hundreds nanometers and microseconds. However, the
efficient construction of CG models is related to numerous challenges. The main complexity
related to the development of up-scaling strategies is an appropriate parameterization
of models on higher scales [17]. While various bottom-up strategies exist based on first-
principles (e.g., thermodynamic integration [29], free energy perturbation [30], umbrella
sampling [31]), these methods are often not sufficient leading either to fully empirical force-
fields using a top-down approach or hybrid approaches (e.g., the Martini FF [23]). Similarly,
the transferability decreases with increasing levels of coarse-graining. With regard to their
formulation, the majority of such FF employ the same 1D neoclassical distance-based
functional descriptions [32] as AA-MD, thus employing the same approximation as a
point object for groups of atoms. Recently, machine learning (ML) methods in the context
of, e.g., artificial neural networks (ANN) and Gaussian process regression (GPR), have
gained increasing interest for both formulation and parameterization of CG models [33-35].
However, ML-based FF have largely focused on ANN and been developed/applied to
small molecules or ordered solids [35]. Similarly, GPR methods have, to our knowledge,
only been applied up to four DOF for the potential energy surface in the CG model and for
small molecules such as methanol and benzene [36], as well as alanine tripeptide [37,38].

Even thought some of the methods described above permit efficient simulations of
macromolecules including viruses [39-42], their application to the simulation of virus
self-assembly, e.g., virus capsid formation, is limited. Such simulations require hundreds or
thousands of large protein macromolecules that have to be simulated on the millisecond (or
longer) timescale. One such example is the formation of virus-like particles (VLPs). Here,
the hepatitis B virus (HBV) VLPs (see Figure 1a) [43] are the most studied assembly systems
that are used in many vaccines [44,45] and drug delivery [46,47] systems nowadays. On
contrary to HBV made out of core proteins (C,) with 183 amino acids (aa), VLPs can be
self-assembled from C, with 149 aa that were shown to be the main domain of the protein
taking part in the capsid self-assembly (the rest of the 183 aa chain is binding viral DNA or
RNA) [48,49]. Typically, two types of HBV VLPs of different icosahedral symmetry, i.e., of
T=3and T = 4, are formed from 180 and 240 C,, respectively. Most of such VLPs (95%)
were shown to be of T = 4 symmetry; however, it is strongly dependent on experimental
conditions [50,51], which are modulating the strength of protein—protein interactions, thus
capsid intermediates [52,53]. However, trapping these intermediates is nearly impossible,
because the self-assembly is a nucleation-limited process [51,54]. Thus, the smallest in-
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termediates captured experimentally (after pentamer of HBcAg dimers [50,55], see blue
structures Figure 1a) are 104-108-mers, 110-111-mers and 117-mers [53]. The observation
of capsid nucleus and intermediates obtained out of dimers of C,, i.e., HBcAg, (denoting
subsequently HBcAg dimer), that are known to be the smallest building unit of a capsid [49],
was never done in silico on a large scale.

y4

Figure 1. Atomistic reference structure of (a) HBcAg T = 4 capsid (composed of 120
dimers/240 monomers) and (b) HBcAg, dimer based on PDB 6HTX [56] and PDB 1QGT [43].
(c) The coarse-grained Martini representation after representative clustering.

When going to larger scales beyond traditional coarse-graining, which are especially
interesting for supramolecular assemblies such as VLPs, the challenge is two-fold. Firstly,
models become increasingly specialized and less transferable. Thus, their creation be-
comes a trade-off between the cost of formulation/parameterization and the value of
increased modeling scales, therefore making transferable approaches preferential. Secondly,
at the ultra-coarse-grained level (specifically when abstracting entire macromolecules as
a CG bead), capturing their orientation becomes crucial. This results in the interactions
of such FF being six-dimensional (6D), making both the formulation and parameteri-
zation challenging. While some models exist in this context, specifically for molecular
capsids, they are largely employing heavily simplified geometries, i.e., patchy-spheres,
trapezoidal/triangular shapes, or hard pseudoatoms [57-60] and, consequently, are dif-
ficult to re-parameterize for different systems, as also to understand pathways of capsid
self-assembly.

In order to improve these aspects, we present the development of a multiscale model
framework based on abstracting entire macromolecules as anisotropic beads. These beads
possess a position, orientation, and spatial extent along with data-driven models derived
from MD describing interaction with the environment and between the beads. We focus
on deriving a generally applicable approach for intermolecular interaction potentials (UI)
between the beads through data-driven fields (6D), on which a gradient operation (—VU)
is carried out to determine forces and torques of pairwise contacts, see schematically in
Figure 2. This approach reduces the complexity of a pairwise macromolecular contact
with 1 atoms from between O(nlog(n)) and O(?) 1D neoclassical distance-based atom
contacts [32] to that of a single gradient operation on the intermolecular interaction poten-
tial O(VU)-thus drastically reducing computational requirements, permitting increased
time steps, and maintaining high levels of detail in the potential field. The desired 6D
intermolecular interaction potentials are derived from MD using Kriging [61-64], which
provided the best linear unbiased estimate (BLUE) of the potential in a "white-box” model
fashion (i.e., available for inspection). In addition to intermolecular interaction, anisotropic
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diffusion and the respective thermodynamics of these abstracted molecules (resulting from
the solvent environment) is modeled through an implicit Langevin dynamics approach
using the the previously published method [65] along with MD parameterization. The de-
veloped multiscale methodology is applied to the self-assembly of hepatitis B VLPs starting
from the dimers of core proteins up to capsids of icosahedral T = 3 and T = 4 symmetry. It is
shown to capture the complexity of self-assembly including multiple assembly pathways,
capsid-like intermediates, as well as assembly kinetics.

Potential U

O(nlog(n)) to O(n?) 0(1)xO(wW)

Figure 2. Effect of macromolecule abstraction as anisotropic beads with interaction potential on
computational complexity (1 is number of atoms, neglecting solvent and ions). Note that a single
interaction of HBcAg, is equivalent to n = 9432 and further increased by the solvent atoms (1 = 10°).

2. Methods and Materials

As outlined in the introduction, to gain insight into the self-assembly of molecular
systems, such as HBcAg, through non-covalent interactions we have developed a generi-
cally formulated data-driven framework for describing macromolecular interactions on
the micrometer size and millisecond time scale. For this, each macromolecule is abstracted
as an object with a position and orientation and all its anisotropic properties, e.g., the
interaction with environment and other molecules (including spatial extend), were cap-
tured through data-driven models parameterized from CG-MD. This level of abstraction
is termed by us as the Molecular Discrete Element Method (MDEM), indicating the inter-
mediate level between MD and DEM. An overview of this multiscale model framework
including the parameterization approach is schematically depicted in Figure 3 and ex-
plained in detail below. It is applied here to HBcAg, proteins (see Figure 1), but can be
transferred to any macromolecule or assembly process of interest using a semi-automated
parameterization procedure.

2.1. Framework Overview

At the basis of the framework is the atomic reference structure of the macromolecule
(e.g., from the Protein Data Bank, PDB), including optional information on structural
assembly and binding locations. Two model components (denoted in light orange and
green in Figure 3 with MD parameterization in blue) are then used to describe interactions
of each abstracted molecule with the environment and other molecules, i.e., homodimeric
proteins in the case of the VLPs. The first one (orange) is an anisotropic force-based
diffusion model based on Langevin dynamics that is used to describe the interaction of a
macromolecule with the (implicit) solvent environment and enforce the desired canonical
ensemble. The second one (green) is an intermolecular interaction model, which describes
the interaction between macromolecules. The latter consists of a data-driven interaction
potential derived from MD simulations (blue) using a Kriging-based strategy, which is then
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used as a 6D potential field during the simulation through a numerical gradient operation
to derive interaction forces and torques. Note that in this context, by “conformation’ we refer
to the structure of a molecule, and by ’configuration” we refer to the relative position and
orientation of a molecule B in the body frame of a molecule A, i.e., 6D interaction space with
Cartesian coordinates x,y, z and Euler angles «, §, . The proposed framework accounts for
the inclusion of processes parameters such as temperature, pH, salt, viscosity, some of which
can be altered without requiring a re-parameterization, i.e., temperature and viscosity,
as long as the reference structure is stable in the desired conditions. The framework
implementation and scaling in the context of high-performance computing was published
separately for reporting to the High-Performance Computing Center Stuttgart [66].
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Figure 3. Framework overview with a focus on intermolecular interaction. For details on the diffusion

model see ref. [65]. Blue indicates MD simulations, greyed-out regions are optional components,
dotted lines indicated usage of related functionality (i.e., MD simulation is performed), dashed lines
indicate information exchange.

The main advantage of the proposed methodology is that mesoscales can be investi-
gated, which are much larger in time and length than traditional CG-MD. Furthermore, due
to the generic formulation of the models, the framework is flexible to be adapted to other
systems. This is especially true concerning the intermolecular interaction model, which
possesses significantly more freedom to describe interaction over, e.g., a functional descrip-
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tion in 6D space. At the same time, assumptions and simplifications apply. The flexibility
of the molecular reference structure is captured implicitly in the diffusion and interaction
model, consequently implicitly considering internal degrees of freedom. Furthermore, the
diffusion model is parameterized for dilute systems and the diffusion restriction during
structural formation captured only implicitly through the interaction model. Hydrody-
namic interaction is neglected in agreement with literature for the investigated anisotropic
biomolecules [67]. The quality of parameterization depends on the underlying MD model
for parameterization, which is elaborated in the results section. Further, in the chosen
approach some thermodynamic accuracy is sacrificed in order to gain computational prac-
ticality for the 6D space. Lastly, due to the field formulation of the interaction model,
limitations of resolution apply from memory constraints.

2.2. Reference Structure HBcAgy Dimer

A visualization of the icosahedral capsid with T = 4 symmetry, determined by X-ray
crystallography [43], is shown in Figure 1a. As introduced above, it consists of 120 HBcAg
dimers, denoted as HBcAg, (Figure 1b). They are of quasi-equivalent nature (known
as AB and CD dimers) with slightly different conformations based on some disorder in
the spike tips of CD, shorter gaps between its constituent chains, and differences in the
interdimer interaction regions (particularly residues 128-136) [43]. As these regions are
flexibly modeled along with the entire molecule in the MD parameterization of the proposed
framework, only one reference structure was determined by representative clustering.

The atomistic reference structure of HBcAg, was prepared using two structures of
different resolution reported in the PDB, i.e., 6HTX [56] and 1QGT [43]. Residues 74 and
97 of mutated 6HTX were reverted to the wild type C, residues and reconstructed by
ROSETTA 3.8 [68] using 1QGT as a template. The missing residues of the C-terminal chain
were added by loop homology modeling using Modeller 9.21 [69]. The corresponding
coarse-grained reference structure (see Figure 1c) was determined using representative
clustering of on the martinized structure [22]. For representative clustering, the linkage
method, as implemented in Gromacs version 5.1.1 [70], was applied to dimer conformations
obtained from a 10 ns CG-MD run at 293 K and 150 mM NaCl. The root-mean-square
(RMS) deviation of the determined representative structure with respect to the reference
conformation was 0.39 nm. The structure was oriented along its principle component axes
in descending order to provide the body reference frame at the center of mass. The radius
of gyration of a dimer was measured as 1.31 nm, 1.85 nm and 1.97 nm in x, y, z, respectively.

2.3. Intermolecular Interaction Potential

In order to account for the interactions between macromolecules driving their self-
assembly, we have developed a computational scheme aimed to derive intermolecular
potentials from MD using Universal Kriging. In this section, we explain key components of
this multiscale scheme, including the MD model, spatial descriptors used for describing
configurations, basic functions for trend and variogram modeling, details on Universal
Kriging for multivariant estimation, the field grid design, as well as a 2D example of the
methodology and details of the implementation. The reported model has been applied for
the VLP structure formation.

2.3.1. Molecular Dynamics Simulations

The CG-MD simulations of HBcAg, protein dimers were conducted using the Martini
FF (version 2.2P) with polarizable water (PW) [22,71] in Gromacs [72,73] version 2020.1. The
Particle mesh Ewald (PME) method [74] was used to account for electrostatic interactions.
For all simulations, the ‘new’ parameter set for the Martini force-field was used [22]. All
simulations were conducted at an isothermal-isobaric (NPT) ensemble at the temperature
of 293 K and compressibility of 3 x 10~% bar~!. All systems were charge neutralized
and additional 150 mM sodium chloride added to fulfill capsid formation conditions [51].
The velocity-rescaling algorithm [75] was used as a thermostat for all simulations. Two
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macromolecules A and B, i.e., two HBcAg; (see Figure 1), were placed at a specific starting
configuration (relative position and orientation) centered in a triclinic box with at least the
distance of 5.5 nm to the periodic boundary condition (PBC). A convergence study of PBC
with at least 8 nm distance was performed and showed similar potential trends. A similar
MD approach has been previously employed and validated by AA-MD for modeling of the
pyruvate dehydrogenase complex (PDC) [76-78].

The simulations were conducted in four steps: two sets of energy minimization,
equilibration, and production MD. Firstly, systems were solvated with normal Martini
water and energy minimization was performed without PME for up to 100,000 steps.
Secondly, Martini water was replaced by PW and another energy minimization with PME
for up to 50,000 steps was performed. The steepest descend algorithm with a tolerance of
10,000 kJ/mol/nm was used for both minimizations. Thirdly, equilibration was performed
using a reduced timestep of 5 fs for a total time of 50 ps. Position restraints were employed
on carbon backbone atoms with a force constant of 1000 kJ/mol nm?. To avoid oscillations
with the employed position restraints, the Berendsen barostat [79] with a coupling constant
of 4 ps was used. Finally, production MD runs were performed for 0.6 ns with a timestep of
20 fs using PW, PME and a Parrinello-Rahman barostat [80,81] (coupling constant of 12 ps).
Energies between all groups of components (A, B, PW, ions) were calculated every 400 fs
and saved every 10 ps together with molecule trajectories.

MD simulations were performed for different initial positions and orientations relative
between the two molecules. To avoid overlapping or entangled molecules, configurations
with a minimum distance of d) g1 = 0.4 nm between any two atoms of A and B were
allowed. Molecular positions, orientations, and energies during 0.5-0.6 ns of MD runs
were collected by fitting each molecule to its reference structure and averaged to construct
intermolecular potentials. PBC box size dependent properties, e.g., the water potential,
were compensated by calculation of the residual from a linear trend against the number of
water molecules or the number of ions, depending on the type of a potential. All potentials
were grouped, and Lennard-Jones and Coulomb contributions were added. This led overall
to the following potential components: A-B, A-A + B-B, A-PW + B-PW, PW-PW, A-ions + B-
ions, PW-ions, ions-ions, bonds, G96-angles, improper dihedral angles, Coulomb reciprocal.
Note that ‘+” indicates the addition, while ‘-" indicates potential between two groups of
components. Together with the interaction potentials between the molecules themselves
(A-B), effects of the solvent, ions, bonded interaction, conformational changes, and long-
range electrostatics were also captured. In order to account the symmetric configuration
space, i.e., when molecules A and B are equal, the relative configurations were analyzed
in both A-B and B-A fashion and, consequently, two data points were generated for each
MD simulation.

2.3.2. Spatial Descriptors

Several spatial descriptors, estimating intermolecular distances between molecules
studied, were used for investigating spatial correlations, trend modeling, and interaction
potential (see Section S2.1 in Supplementary Information (SI)). For the lower-dimensional
A-B trend modeling, the minimum distance (4, ) between backbone atoms of molecules
A and B was used, while the RMS deviation (6, ) between backbone atoms of B was
used as a distance measure between two configurations (B-B). For the full configuration
space between two molecules a six dimensional space (6D) of relative position x,y,z
and orientation &, B, v (under the assumption of a stable structure in the chosen process
conditions) was used.

2.3.3. Multivariant Estimation using Universal Kriging

To perform the multivariant estimation of the interaction potential from the set of
MD simulations in a 6D configuration space, a Universal Kriging (UK) approach was
implemented. It addresses the need to determine optimal (regarding minimum estimation
variance) weights for the inference of a spatially distributed and correlated random variable
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in an arbitrarily dimensional space from a set of data points by linear combination. The
estimation of the interaction potential, Uk, as the superposition of potential components P
(see Section 2.3.1) consequently becomes

-

P P
UK(J?/G) = Z uK,p(f/ 9) = Z wp,iup,i(fi/ 91') ’ 1)
p=1 p=1i

L=

where ¥ and 6 are the position and orientation in interaction space, N is the number of
data points used for estimation, and w,; are the desired weights for linear combination
of data points for potential component p. Each potential component is treated separately
and, thus, in the following the index p is dropped. Note that typically only a subset of data
points is used for the estimation at a given location called the local neighborhood. This is
motivated by computational feasibility and additionally leads to an improved estimate by
local estimation of the mean.

In contrast to, e.g., Simple Kriging [61,64], UK describes the underlying random
variable as superpositioned by a systematic trend p(¥, 6), which it can be decomposed of as

U(z,0) = u(z,0) +R(%,0), )

where R is the residual. Such behavior is present in the case of macromolecular interaction
with a specific interaction potential at short distances between molecules and an asymptoti-
cally to zero going potential for large distances. The systematic trend is then modeled as a
linear combination of M deterministic basic functions f,, as

. M . M
u(x,0) = 20 b fn(X,0) = 20 b fn(6m ) 3)

which is simplified in the lower-dimensional space of the minimum distance &, (Section 2.3.2)
due to the complexity of macromolecular interaction in 6D space and a physically rea-
sonable description of decaying interaction. A set of basic functions, documented in SI
Section 52.2, was used for UK here. The fitting was performed using weighted least-squares,
as implemented in Matplotlib version 3.3.4 in Python. Weights were derived by inverse
Gaussian weighting with a kernel width of §, =2 nm to avoid bias due to sampling het-
erogeneity. The best resulting fit concerning R? was then chosen in combination with the
constant function (local mean estimation) to describe the trend.

Following, the remaining residual R can be determined for each data point by subtrac-
tion of the modeled trend. Optimality of the UK estimate requires that the residual R of
the underlying variable, i.e., statistic process, is intrinsically stationary with zero mean, as
well as being Gaussian [61]. While the requirement of a zero mean is fulfilled in é,, space
and further improved in the full 6D space by local estimation of the mean through the local
neighborhood of data points [64], intrinsic stationarity is, strictly speaking, not fulfilled:
With increasing d,; between molecules A and B, the distribution of R changes from a Gaus-
sian distribution to a delta distribution of zero at large ¢, , as it is expected for asymptotic
interaction decay in molecular interaction. In the Kriging context, intrinsic stationarity is
primarily important to model spatial continuity of the underlying statistical process, i.e.,
potential, through a (residual) variogram. Consequently, in order to rectify the issue, spatial
continuity is modeled in sections for which intrinsic stationarity is reasonably fulfilled,
including a Gaussian distribution at short (i.e., binding) distances. For this, the interaction
space is split into five regions over the interaction range in d,, . In each region data points
from the respective region, as well as adjacent regions, are used. Spatial continuity is then
modeled in each section using a variogram defined as

1 >

TR(5:) = Var(R((E9) + 6) = R(E9) ~ g, Y (RG8) - RE)7, @
"I N(6,
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employing the root-mean-square distance (RMSD), J,, as a distance measure between two
configurations (see Section 2.3.2). Due to the number of correlation samples, i.e., > O(10'9),
direct fitting of the widely used variogram models (see Section 52.2 in SI) was not possible.
Consequently, correlation samples were first binned over their J; distance up to a 4 nm
cutoff within each region and the standard deviation in each bin was used as the uncertainty
for weighted least-squares fitting of the variogram model.

Trend and variogram fitting was performed separately for all components of the
potential in the molecular interaction, as both are different for each component. The optimal
weights for unbiased and minimum estimation variance were calculated by solving the UK
system at location 1 [61-64]:

(YR(0r1-1) oo YROr1-N) 1 fi(0m1) - fmM(Oma)] [w1]  [YR(Sr1)]
’YR(&;:,N—l) 'YR(ér;N—N) 1 fi (5;n,N) fM(ém,N) w.N 'YR(ér.,z—N)
1 . 1 o 0 .. 0 Ao | = 1
f1(Oma) cee o f1(0mN) 0 0 e 0 M f1(0m,)

L fiGmt) oo ) 0 0 o0 Jhwd L puen |

Trend and variogram functions were normalized to ensure the same order of all matrix
components [82]. Bi-diagonal divide and conquer singular value decomposition (SVD,
with maximum factor of 10° between eigenvalues using double precision) were employed
to resolve ill-conditioned matrices resulting from, e.g., Gaussian variogram functions due
to the zero slope at 5, = 0 nm. The closest N data points from the estimation location
with respect to J, out of the full data set were found using an incremental search algorithm.
A convergence study on the number of required data points, N, between 100 and 1000
using the random HBcAg, data set (see Section 3.1.1) showed that N = 100 is sufficient to
estimate the interaction field variance for iterative refinement and N = 500 is required to
estimate the interaction potential (see in Section 52.3 in SI, Table S1).

After solving the linear system of equations, the determined weights were used to
calculate the potential estimate for each component using Equation (1), which were then
superpositioned for all components to determine the overall interaction potential. The
corresponding estimation variance for each potential component p was evaluated as

N M
(712((5(',,9,) = Zwi'YR((Sr,tfi) + Z Ajfj(fu 91) . ®)
i=1 j=0

The presented UK approach provides a powerful method to determine the best linear
unbiased estimate of the interaction potential for one relative position and orientation based
on the sample data set. However, it is computationally too expensive to be performed
during an MDEM simulation (see Figure 3). Therefore, the interaction potential fields in
our work were saved in homogeneous grids and multi-grids (see details in Section 52.4).
The advantage of using such homogeneous grids is the fast determination of forces and
torques using a numerical gradient operation (see Section 2.5).

To generate the data set for potential field estimation, a two-step sampling process
using MD simulations was derived. Initially, sampling was performed based on a system-
atic random strategy to generate a data set sufficient for statistical analysis. Later, iterative
refinement was performed using a supervised learning strategy exploiting knowledge
of variance, potential minima and maxima, as well as gradient maxima (for details see
Section 52.5.1 in SI). Overall, 29 iterations were performed, leading to a total of 375,000
MD simulations.
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2.3.4. Molecular Collisions

Due to the fact that the MD model cannot reasonably capture colliding configurations,
they are not sampled and Universal Kriging cannot provide an accurate estimate of the
interaction potential. As determining an estimation through lower-scale models is not
straightforward, an effective model was developed. It is based on the correlation between an
increase in the interaction potential and number of colliding atoms caused by overlapping
molecules. Additionally, molecular flexibility to avoid collisions is accounted by the
distance of a configuration to the next MD data. Details of the molecular collisions model
are provided in SI (Section S2.5), including an objective function for quantifying structural
stability of a capsid.

2.3.5. 2D Example of Kriging and Sampling Algorithm

The algorithm explained was validated and visualized in a 2D simplified test case,
representing the interaction between two single-atom molecules (see Figures 4 and 5).
The truth field of the 2D example was created as following: Firstly, a random field was
created using sequential Gaussian simulation [83] with the spatial correlation described
by a Gaussian variogram model with range » = 0.7, nugget n = 3000 and sill s = 10,000.
Secondly, the random field was scaled to zero between a minimum distance of 0.4 and
1.2. Later, a trend over the minimum distance of Gaussian shape with —400 at minimum
distance zero and range 1.0 was superpositioned. Such a test example possesses similar
statistical properties as the molecular interaction data.

Based on this truth field (Figure 4), 20 initial samples are given to the Universal Krig-
ing algorithm that has to learn’ the overall field through eight iterations of ten samples
each. In this simplified case, only re-sampling through normalized variance minimiza-
tion was performed. (Note that due to the small number of samples, the algorithm was
given the entire field for variogram determination.) As it can be seen in Figure 5, the
algorithm strategically places re-sampling points to reduce the overall variance and ‘learn’
the field. With each iteration, the field estimate improves and the remaining estimation
error consists largely of small-scale discontinuities due to the inherent noise. In addition
to this re-sampling based on the normalized variance, the main algorithm also performs
more elaborate re-sampling based on identification of potential minima, maxima, gradient
maxima, and absolute variance, to localize and quantify, e.g., binding locations. Details are
provided in SI (Section 52.5.1). Furthermore, note the circular sections in the variance of
Figure 4, indicating the separate variogram regions over the minimum distance that ensure
intrinsic stationarity (see Section 2.3.3).

2.3.6. Biased MD Sampling and Insertion of Empirical Data

Effective surrogate models relying on bottom-up parameterization, such as the one
reported here, are often limited by the underlying lower-scale model. Due to finite sampling
density, finite MD simulation time, as well as MD force-field accuracy and applicability,
several limitations apply. These limitations are especially significant in the context of
capturing binding events, which might be rare at the time scales addressable by MD,
especially if they are connected with the conformational changes of molecules. To address
these limitations in our model and improve the overall interaction potential, two effective
modifications were added, preceded by the identification of the underlying reasons.
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Figure 5. 2D Universal Kriging example after initial random sampling (20 samples), two resampling
iterations of 10 samples each (40 samples total), and six resampling iterations of 10 samples each
(80 samples total). Test field possesses no units.

In the first approach, biased MD sampling was performed. It is known that during
capsid assembly four binding locations between dimers are present. We extracted them
from the reference capsid and placed the reference dimers at these relative configurations
(see Table 1). The overlap of atoms was identified, which results from the conformational
flexibility of capsid proteins and structural changes required for binding. Such intermolec-
ular binding cannot be precisely captured by the underlying MD model, indicating the
challenges of binding representation via MD. In order to perform biased simulations at
these configurations, firstly the overlap was corrected: A search algorithm on the relative
position and orientation (five steps of 0.2 nm or 10° in each direction) identified the closest
overlap-free configuration measured by the RMSD of backbone atoms. A set of 1016 MD
repetitions with 10 ns simulation time at each binding location was performed and its
impact on the interaction potential was investigated.

In the second approach, the insertion of empirical data points was explored. Such
an approach is especially useful if previous information on interaction (e.g., binding or
repulsion) is present and meant to be incorporated into the interaction potential. It was
implemented in our model by inserting virtual data points at the binding location between
macromolecules into the data set (see Table 1). Those virtual data points only influence
the nearby interaction potential and have no influence on overall potential trends and
correlations. A variety of approaches were explored and the solution, leading to the most
stable capsids (see Equation (514) in SI Section S2.5 for stability measure), was applied.
It is based on the insertion of two sets of data points as following: The first set with a
constant potential Uping center is centered at the binding locations and replicated at 0.1 nm
steps in each direction (rotational equivalent). The second set, representing a potential well
(i.e., its shape), was located at increasing distance and potential from the binding location
as a function of 6, in all directions from Uping center t© Upind,outer- The best solution found
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consists of a Gaussian potential of range rp,ing (see Equation (57) in SI) on a grid of —0.4,
—0.2,0.0,0.2, 0.4 nm in all directions (rotational equivalent).

Table 1. Binding locations between HBcAg, from the reference capsid (see Figure 1). Positions with
respect to the body frame of the reference (molecule A) on x-, y-, z-axis are in nanometer, while angles
«, B,y are in radian.

# x y z o B 0%

1 —2.74 —0.74 -3.10 —0.48 0.98 —0.32
2 1.47 —0.91 —4.14 —0.88 —1.05 0.67
3 -3.01 —0.70 —3.08 —2.72 —1.05 3.03
4 —0.65 -0.77 4.25 2.72 0.92 2.76

Inclusion of any virtual data point was restricted by two conditions: (a) the point
should be within the range 4, (b) the point should not result in more than 10 additional
backbone collisions. Results of the approaches mentioned are presented in Section 3.

2.3.7. Summary and Implementation

In summary, a data-driven methodology for deriving intermolecular interaction po-
tentials from MD using Universal Kriging has been presented. The UK approach enables
the best linear unbiased estimation of the interaction potential based on a set of data points
and the presented iterative refinement enables supervised learning and improvement of
the interaction potential in a near-optimal fashion. Overall, the proposed methodology
consists of the following steps (as illustrated in Figure 3):

1.  Molecular reference structure of all involved molecules from, e.g., a protein data
bank. This reference structure has to be the same as used for the parameterization of
the diffusion model [65].

2. Initial interaction potential sampling using MD and the outlined sampling method-
ology. (For large interaction spaces proximity sampling might be required for sufficient
correlation data.)

3. Trend fitting in a lower dimensional interaction space of J,, for all potential compo-
nents.

4.  Correlation analysis and sectional variogram fitting of trend-compensated residual
R for all potential components. Identification of potential components with reasonable
spatial continuity besides trend (only fulfilled by A-B potential).

5. Grid design based on interaction distance and memory size constraints.

6.  Universal Kriging for multivariant estimation of interaction potential component
residual R.

7. Molecular collision accounting as a function of molecular overlap and flexibility with
increasing interaction potential.

8.  Iterative refinement of field estimate based on estimation variance and extrema
(potential minima/maxima, gradient maxima) localization and specification.

The framework has been implemented in custom C++/Python/Bash code with hybrid
MPI+OpenMP parallelization. The various components were implemented in a semi-
automatic fashion, including error checking and allowing for user supervision. The library
Eigen (revision 14db78c53) was used for solving the linear system of equations of Universal
Kriging and function fittings were performed using Matplotlib version 3.3.4 in Python.
Potential fields were saved in floating precision within a custom binary format including
the grid specifications.

Once the intermolecular interaction potential U is derived for all type permutations
of molecules, a numerical gradient operation has to be performed to derive forces and
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torques on each molecule A resulting from an interacting molecule B at the relative position
Xpody,A—sp and orientation 0p,4y, 4, p in the body frame of reference of A as

Fyody, A< B Mpody,Ac-B = —VU(Xpody, A—Bs Opody,A—B)- (6)

Here, this gradient operation was performed using central differences (see details in
Section 52.5.2 in SI). Due to the high dimensionality of the problem, gradient pre-calculation
and saving was not feasible. While alternative representations, such as neural networks
or functional fits, are possible, the general representation of the potential field and online
gradient operation during the simulation was chosen for this work, as it provides the
greatest flexibility and constant run-time.

2.4. Diffusion Model

Anisotropic diffusion of the abstracted macromolecules including the desired canonical
ensemble was modeled using the previously reported diffusion model [65]. The determined
diffusion coefficients for HBcAgy are listed in Table 2. The parameterization was performed
at 293 K and 150 mM of NaCl

Table 2. Anisotropic translational (D;) and rotational (D) diffusion coefficients for HBcAg, at 293 K
and 150 mM NaCl used for MDEM (marked in light orange in Figure 3).

D¢ [um?2 s~1] D, [Mrad? s~ 1]
x y z « B 0%
87.69 72.27 71.48 12.05 7.46 7.00

Due to the significant complexity in defining and solving the relative friction tensor for
anisotropic molecules, such as the HBcAg, dimer, hydrodynamic interaction was neglected.
This is in agreement with the literature [67]; however, strictly speaking, this approximation
is only fulfilled for dilute systems. During molecular self-assembly, as the solvent (water)
around each macromolecule (in our case the HBcAg, dimer) is replaced by other macro-
molecules, the friction and random forces in LD, resulting from the solvent, are reduced
and the DOF between macromolecules become increasingly correlated. For example, a
sphere surrounded by four equivalent spheres, positioned at 2.2 times the radius along the
axes of a plus "+’ (similar to the positioning on the VLP capsid), experiences only 5.8% of its
normal drag force in direction of the surrounding spheres and 12.9% perpendicular to the
plane formed by the spheres (approximated using Rotne-Prager-Yamakawa tensor [84,85]).
Thus, the hydrodynamic interaction in our method was included in a simplified fashion,
i.e., via a reduced effective viscosity of 10%. Similar approaches are well established in the
literature: They often reduce the effective viscosity more significantly, i.e., by a factor be-
tween 10 and 1000 [32,86,87]. Such a decrease in effective viscosity additionally accelerates
the dynamics of the system, while largely maintaining equilibrium [29]. Furthermore, note
that the majority of intermolecular interaction during self-assembly, aimed to be captured
here, is a result of the relative position and orientation between macromolecules, which is
fully captured in the model developed.

2.5. Usage and Implementation within the Molecular Discrete Element Method

The discrete model for interaction of macromolecules was implemented in the open-
source DEM code MUSEN [88]. The diffusion model and its implementation has been
published in ref. [65]. The gradient operations for deriving forces and torques from
the intermolecular interaction potential field are described in SI (Section 52.5.2). Unless
otherwise specified, a temperature of 293 K was used and the corresponding dynamic
viscosity of 1.0074 x 1073 Pa s for water. The leap-frog algorithm was used for time
integration and contact detection performed using a Verlet list implementation with an
extended interaction radius derived from the intermolecular interaction distance for each
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molecule kind. Periodic boundary conditions were used throughout and unless otherwise
indicated a time step of 10~!% s used. For details on the critical time step please refer to
Section 52.5.3 in SL

The models were implemented in C++ and CUDA (Toolkit v11.2 by NVIDIA [89])
for simulation on CPUs and GPUs, which are especially advantageous in the context of
discrete simulations. Single precision was used throughout the code in contrast to the
MUSEN default, which is sufficient in the context of the random component introduced
by the diffusion model. Special emphasis was placed on kernel-level optimization of the
numerical gradient operation, which is the most computationally intensive component.
Additionally, helper fields indicating gradient-free locations within the grid were imple-
mented to optionally speed-up computations. Code verification was performed using
energy conservation analysis in artificial potential fields. Overall, a performance gain of
approximately six orders of magnitude could be achieved between coarse-grained MD and
the MDEM abstraction layer of entire macromolecules. This gain is primarily caused by the
implicit solvent model, reduced number of degrees of freedom, and increased simulation
time step. The proposed method thus enables investigation of entirely new phenomena
and scales in comparison to traditional MD.

2.5.1. Simulation Procedure

In order to assess the derived interaction potential in the context of the molecular
system, three different areas were investigated. The respective simulation procedures are
denoted as SPX.

VLP Binding Agreement and Stability (SP1)

Firstly, the binding location agreement and stability was assessed based on a reference
trimer of HBcAgy, extracted from the HBV capsid, which can be seen in Figure 6a. For this,
a simulation at T = 0 K was performed for 25 ns enabling the system to equilibrate to the
respective (local) potential minimum of the interaction potential field without interference
of diffusion. Thus, binding location agreement and stability can be assessed and visualized
on the smallest structural scale.

VLP Capsid Stability (SP2)

Secondly, capsid stability was assessed based on the reference capsid using the objec-
tive function in Equation (S14) (see Section S2.5 in SI) for quantitative evaluation of stability.
For this, simulations at T = 293 K were performed for 250 ns and stability quantitatively
evaluated at 1 ns intervals using Equation (514).

VLP Self-Assembly (SP3)

Thirdly, VLP self-assembly was investigated based on a randomly initialized system
of HBcAg, dimers. For this, the dimers were placed at a random location and orientation
in the simulation domain. Four different core protein concentrations of 5 1M, 10 pM, 50 pM,
and 100 uM were investigated. In order to maintain comparable run times and statistics,
the two lower concentrations were conducted in a 1 pm3 (1 pm edge) domain, while the
higher concentrations were conducted in a 0.125 pm3 (0.5 pm edge) domain. After random
placement, assembly simulations were performed for 5ms (time step of 1072 s and saving
interval of 500 ns) at T = 293 K with a reduced viscosity of 1.0074 x 10~* Pa s as discussed
in Section 2.4.

2.5.2. Postprocessing

The stability of pre-assembled capsids was quantified during SP2 (capsid stability
analysis) using the objective function Oy, provided in Equation (S514) (see Section S2.5
in SI for definition). During self-assembly, structural formation was assessed using a
network search algorithm differentiating between structured contacts (within a , of 1 nm
from a known binding location) and unstructured contacts (within a minimum distance
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dm of 0.3nm and more than 1 nm from a known binding location). The size of each self-
assembled structure (SAS) comprising of both contact types is quantified by the number
of dimers / particles Nsas and its diameter of gyration dsas gy Assembly kinetics are
quantified by exponential fitting of the average of Ngas over time (see Equation (S5) in
SI with asymptotic value Nsasasymp (s in Equation (S5)) and time constant 7sas (7 in
Equation (S5))). Additionally, the differentiation between structured and unstructured
contacts is used to quantify the assembly quality by the average number of structured
and unstructured connections per dimer Csyruc and Gunstruc, respectively. A perfect 120 mer
capsid of HBcAg; is characterized by Csiruc = 4 and Cunstruc Near zero. The fraction
of structured contacts out of all contacts is termed Dgiruc = Cstruc/ (Cstruc + Cunstruc)- In
addition to a global application, these measures can also be used on a per SAS or per
dimer basis.

Moreover, the transition between size classes of Ngag was tracked for each dimer at the
discrete saving intervals of 500 ns to investigate the assembly mechanisms. The total num-
ber of transitions between all classes was normalized by the number of dimers in the system
and visualized using chord diagrams employing the circlize library version 0.4.13 [90] in
R. In addition to the total transitions between classes also the net transitions are provided
in the SI, i.e., sum of both directions between classes. Based on this transition analysis,
the lifetimes of structures t);;, were additionally analyzed as defined by their duration of
existence (up to at most the end of the simulation).

3. Results and Discussion
3.1. HBcAgy Interaction Potential and VLP Stability

In the following section, the interaction potential between HBcAg, dimers will be
presented and its impact on VLP stability discussed in the context of trimer units as the
smallest structural assembly of VLP (SP1). Three interaction potentials based on pure
MD-based sampling, biased sampling at binding locations, and MD-based with inserted
empirical data will be presented. The equilibrated trimers for each interaction potential can
be found in Figure 6 and will be discussed in detail subsequently.

vEOW

(a) (b) (c) (d)

Figure 6. Visualization of trimer equilibrium conformations for various interaction potentials after

equilibration (SP1): capsid reference conformation (a), pure MD-based potential (b) (Section 3.1.1),
biased MD-based potential (c) (Section 3.1.2), with empirical data (d) (Section 3.1.3).

3.1.1. Pure MD-Based Interaction Potential

The interaction potential between HBcAg, dimer units was derived purely on the MD-
based sampling and multivariant estimation using Kriging outlined in Section 2.3. Based on
a set of pairwise MD simulations, randomly located at relative positions and orientations
(see Table S2), the initial interaction potential was estimated and then iteratively refined
(see Section S2.5.1). During resampling, the trend and variogram analysis are left flexibly
to the algorithm and consequently change with each iteration.

MD Data

Statistical analysis of the (final) interaction data (see Section S3.3 in SI for full overview)
shows an attractive trend for potential A-B, repulsive for potential A-PW + B-PW, attractive
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for potential PW-PW, repulsive for potential A-ion + B-ion, attractive for potential PW-ion
(<5 kJ/mol), and repulsive for bond potential (<5 k]J/mol), while the potentials A-A +
BB, ion-ion, G96-angles, improper dihedral angles, and Coulomb reciprocal contain no
significant/valid trend. Consequently, conformational changes account only for a slight
repulsive potential based on bonded interaction, but remain largely stable during inter-
dimer interaction. Furthermore, long range electrostatic effects (Coulomb reciprocal) and
interaction between ions appear negligible. Dominating factors of the interaction are
found to be direct molecular interaction, solvent effects, and ion mediation. The sum
of all minimum distance trends y, i.e., without detailed residual potential R, has a local
minimum of -32 k] /mol at d,; ~ 0.45 nm and increases at 6,, = 0 nm back to approximately
—9 KkJ/mol (see Figure S4 in SI). This is slightly higher than experimentally reported
association energies of HBcAg, for HBV capsid assembly [54,91], where allostery effects
modulating self-assembly are explicitly accounted, however, in accordance with other
theoretical models [92,93]. After subtraction of the trend, out of all potential components
only potential A-B contained a reasonable correlation between data points to employ
Kriging. Variogram values varied between approx. 1000-10,000 kJ? /mol? and correlation
ranges between 2 and 4 nm depending on J;, section. Other potential components contained
significantly larger noise and/or very short correlation ranges, as it can be seen for all
potential components in SI (Section S3.3 Figures S6-516).

Convergence

Resulting from the supervised learning iterative resampling strategy (see Section 52.5.1
and Table S2), the interaction potential changed with each iteration and the resulting
convergence plots can be found in Figure 7. AU indicates the potential change between
consecutive iterations and ¢ the field variance (both within cutoff and outside repulsion).
The three main criteria for resampling (estimation variance, normalized estimation variance,
extrema) can be clearly distinguished in the convergence plots and show a decreasing
change in root-mean-square (RMS) potential changes over each resampling criteria. It can
be noted that the resampling of extrema leads to higher changes in the RMS potential,
which is attributed to the larger deviations from the trend of potential minima/maxima
and gradient maxima being sampled. At the same time, the maximum change of the
interaction potential decreases only slightly from approximately 300 k] /mol to the range
of 100-200 kJ/mol indicating large changes remain to occur locally with each iteration.
Concerning the estimation variance, only a slight decrease in RMS estimation variance over
the variance resampling region (iteration 1-20) can be seen. During extrema resampling
(iteration 21-29), the estimation variance increases drastically at first, followed by a decrease
in its RMS and stabilization concerning its maximum. This drastic increase is attributed to
the increased variance near extrema locations and consequent impact on the variogram
model. Stability of the maximum change in potential for iteration 21-29 indicates that
these extrema samples contain primarily a larger variance. Overall, while changes in
interaction potential decrease, convergence remains challenging due to the dimensionality
of the interaction space as well as inherent noise.
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Figure 7. Convergence of the iterative resampling procedure for potential changes (left, U; — U;_1)
and variance development (right). Figure adapted with permission from Ref. [66]. Copyright 2022,
Springer.

Resulting Field

The resulting overall interaction potential is visualized in Figure 8. As Figure 8a shows,
the interaction range is approximately 2 nm in J,; and prior to an attractive behavior a
potential barrier of approx. 0-5 k] /mol at ,; ~ 1.5 nm has to be overcome. The potential
minimum at 6, ~ 0.45 nm resulting from the trend is slightly increased when averaged over
all grid locations and the binding potential at 4, = 0.45 nm decreased. Furthermore, it can
be seen that the field variance (not estimation variance) increases with decreasing distance
between molecules indicating both binding and repulsion at short distances depending on
relative configuration. These binding potentials are significantly lower in value than those
of the trend itself, which is attributed to strong electrostatic and van der Waals interaction
at short distances.
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Figure 8. Visualizations of the potential field based on pure MD-based sampling strategy. (a) Grid
average and standard deviation binned over minimum distance. (b) X-Y cross-section minimum
over all remaining dimensions. (c) 3D minimum over orientations. (d) 3D mean over orientations.
(a,b) adapted from with permission from Ref. [66]. Copyright 2022, Springer.
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As it can be seen in the 2D minimum projection in Figure 8b and 3D minimum/mean
in Figure 8c,d, the identified interaction potential contains three main binding locations:
in negative and positive x-direction next to the dimer spike (positive y-direction), as well
as underneath the dimer (negative y-direction). When performing equilibration of the
reference trimer with this field (see Figure 6b), the dimers are pushed to be located with
their underneath (negative y) next to the spike of its interaction partner. These identified
binding locations are notably different from the expected binding locations (see Figure 6a
and Table 1). As a result, the derived interaction potential does not produce stable capsids.

Upon investigation of the underlying data and details of binding, these differences and
limitations (in capturing binding) are attributed to the conformation of the reference struc-
ture with respect to that of the binding conformation (self-assembly of viruses is a highly
allostery-driven process), MD timescales, and possibly the employed Martini force-field. As
it can be seen in the overlapping side-chains in Figure 6a, the reference structure, derived
from the representative clustering with the force-field used, deviates from the conformation
during binding, which results in overlapping molecules at the binding configurations.
While structures possess no additional constrains during each MD run and binding at these
relative configurations is allowed, allostery-induced conformational changes at the binding
locations, occurring during real self-assembly, cannot be fully captured by the unbiased
simulation. In order to improve the sampling and conformational challenges during bind-
ing, extended MD simulations near the binding locations are performed next. Note that
testing alternative force-fields goes beyond the scope and computational capabilities of
this work.

3.1.2. Biased MD Interaction Potential

Results of biased MD simulations indicate improved binding recognition, but remain-
ing low probability of strong binding (i.e., low potentials) as well as remaining confor-
mational differences at the flexible C-terminal region, although overall conformationally
similar to literature [43,56,94]. The intermolecular potential A-B over all replicas and all
four binding configurations has a minimum potential of —762 kJ/mol indicating stronger
binding than the previous potential field (Figure 8), but the average potential remains at
—285 kJ/mol, as well as the largest replica fraction around —350 k] /mol. Consequently,
probability of binding to occur remains low. The binding configuration of the lowest
potential is visualized in Figure 9 and resembles expectations from the literature [43,56,94].
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Figure 9. Visualization of two interacting HBcAgy obtained from the biased MD simulation with
lowest potential A-B (side view left, top view right).

The resulting interaction potential after inclusion of data from biased MD simulations
shows no notable visual differences and can be found in SI (Figure S5). Note that trend
and variogram models were generated without biased data. In comparison to the purely
MD-based field (over all grid locations in the interaction range), the average potential
decreases slightly by —0.05 kJ/mol and is locally lowered by up to —299 kJ/mol as well
as increased by up to 234 kJ/mol. These local changes appear to improve the binding
location, nonetheless, as this potential was found to keep the reference trimer stable during
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field equilibration (see Figure 6¢). This improvement is quite significant and underlines
that binding recognition appears to be a major issue at this point. However, the biased
interaction potential remains unable to keep the capsid stable as global binding locations
remain unchanged to that of the pure MD potential. Consequently, binding probability
remains too low and differences in capturing the conformational changes of residues in the
C-terminal remain, which cause the interaction potential at the binding location to be not
specific and strong enough.

Such limitations of lower-scale models are well known in force-field and effective
surrogate model development [29]. In many cases additional (external) knowledge is
necessary to improve the effective model (in this case interaction potential) at strategic
locations or coarse-grained force-fields employ an entirely top-down parameterization
approach (e.g., Martini [23]). In the following section, a hybrid approach is explored.

3.1.3. MD-Based Interaction Potential with Empirical Data

After performing several tests on inserting empirical data of binding locations, we
have found that to generate reasonably stable capsids the binding potential has to be lower
than the potential minima of the pure MD-based potential (at least —800 to —1000 k] /mol at
binding location) and binding shape has to be approximately 1 nm in range with a Gaussian
profile of increasing potential. With decreasing potentials to the range of —1400 kJ/mol, the
capsids were found to improve in stability and self-assembly. Higher potentials were found
to not be specific enough in contrast to the pure MD-based minima and wider potentials
were found to be not spatially specific enough. While these potentials are very low, they
are in agreement with binding occurring during biased MD simulations, especially in the
context of remaining C-terminal binding conformational changes to occur [95].

The best solution found concerning capsid stability and assembly (employing simula-
tion procedure SP2, see Section 2.5.1) was able to keep the capsid stable with an objective
function of Ogyp = 0.725, which is a near perfect capsid. Virtual data points were inserted
as specified in Section 2.3.6 with Uping center = —1400 kJ/mol, Uping outer = —1000 k] /mol,
and #pipng = 1.0 nm. As it can be seen in Figure 10, in comparison to the pure MD-based
potential (Figure 8) the inserted virtual data points create new minima at the binding
locations, but do not affect the remaining overall potential. This is important as remaining
characteristics, such as the potential barrier at J,, ~ 1.5 nm, are kept and consequently
knowledge from MD and empirical data are merged.

3.2. VLP Self-Assembly

We present the self-assembly process of virus-like particles from HBcAg, dimer units
based on the overall framework (depicted in Figure 3) with diffusion and the MD-based in-
teraction potential that includes empirical data (Section 3.1.3). Four HBcAgy concentrations
of 5uM, 10 uM, 50 uM, and 100 uM were studied at the ion concentration of 150 mM sodium
chloride used for model parameterization, thus covering a wide range of conditions. Simu-
lations of each system started from a random state (e.g., as shown in Figure 11), resulting
in capsid formation, as well as other aggregates and intermediates, through self-assembly
over the course of the simulation. In the following sections, we discuss properties of the
capsids formed, including assembly kinetics and assembly pathways.



Int. . Mol. Sci. 2022, 23, 14699

21 of 34

U [kJ/mol]

50
25

=25
=50
=75
-100
-125

6m [Nm]

(@)

y [nm]

x [nm]

(b)

—200

—400

—-600

—800

—1000

—1200

—1400

-200

-400

<
o
8 8

-600

wui K
wui K

“‘4)
- %
800 >
-5

2 -1000
o

~70
5
0
S

(©) (d)

Figure 10. Visualizations of the potential field based on MD with inserted empirical data. (a) Average
and standard deviation binned over minimum distance in grid. (b) X-Y cross-section minimum over
all remaining dimensions. (¢) 3D minimum over orientations. (d) 3D mean over orientations.
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Figure 11. Self-assembly of VLPs during 5 ms simulated using MDEM with SP3 simulation protocol
(box of 1 um?, protein concentration of 5 uM). The size of assemblies formed (Ngag) is depicted using
the designed color scheme and the backbone carbon atom representation.

3.2.1. Assembly Properties

As can be seen in the visualization of all systems studied (Figure 12) and closeups of
structures formed (Figure 13), the systems self-assembled from a random state primarily to
spherical capsid structures around 100 dimers in size (green color). The capsid structures
agree visually well with icosahedral expectations of structures for the majority of the pop-
ulation (see, e.g., Figure 13b,c,e). This is further supported by an average of Csruc = 3.5
structured connections per dimer for all concentrations (see Figure S1 in SI), which is close
to that of the perfect T = 4 capsid (120 dimers) with {sruc = 4.0. However, equilibration
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appears to be incomplete and many capsids show defects with regard to missing dimers
or dimer segments, as well as minor misalignments (see, e.g., Figure 13a,d,h k). These
defects are caused by the low availability of individual dimers (and small dimer assem-
blies) with advancing self-assembly. This is a well-known phenomenon also reported in
experiments [54,96]. Significantly longer simulation times (beyond current computational
capabilities) or addition of new individual dimers are likely required for the finalization to
perfect T = 4 capsids with 120 dimers.
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Figure 12. Visualizations of VLP self-assembly using simulation protocol SP3. Colors indicate
structure size by number of dimers (Nsas) and backbone carbon atoms are visualized. Structure 50E
exceeds scale with 221 and red structure at top left of (d) contains 233 dimers.

When visually comparing VLP formation in different concentrations, it can be seen
that the primary population, comprising around 100 dimers, is similar for all concentrations
(green structures in Figure 12). However, significant differences with regard to smaller
and larger structures are detected and further discussed in Section 3.2.3. At lower HBcAg»
concentrations the number of smaller structures is higher, which can be considered as a pre-
stage of capsids (see, e.g., Figure 13f) and highlight the diffusion limitation for the formation
of larger assemblies. In contrast, at higher concentrations the number of overgrown (more
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than 120 dimers) capsids and colliding structures (i.e., temporarily touching otherwise
intact capsids) is increased. While many still resemble correct icosahedral-like structures
(see, e.g., Figure 13t—v), some also show more significant defects (see, e.g., Figure 13s). This
is further highlighted by an increase in unstructured connections from Cunstruc = 0.34 for
51M to Gunstruc = 0.42 for 100 uM (see Figure S1 in SI). This modulation of capsid assembly
by the initial concentration of core proteins known from experiments, i.e., higher tendency
for kinetic traps and overgrown or aggregated capsids at higher concentrations [50,54,97],
is therefore correctly represented by our multiscale model.
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Figure 13. Magnified capsids marked in Figure 12 using visualization of dimers as spheres with
orientation arrows (x-axis red, y green, z blue). Numbers behind identifier indicate Ngg of structure.
Colors match original coloring scheme according to Ngas in Figure 12.
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The diameter of gyration relative to the number of HBcAg, forming each capsid is
depicted in Figure 14. It includes a marking of capsids with T = 3 and T = 4 symmetries,
enabling further characterization of the self-assembled capsids. As it can be seen, all four
concentrations show similar properties with regard to the primary populations. A smaller
portion of the self-assembled capsids belongs to the T = 3 population made out of 90 dimers
(i.e., 24.0%, 20.7%, 19.2%, and 11.5% with increasing concentration, respectively), while the
majority of capsids can be considered as pre-stages of the T = 4 capsid with 120 dimers.
These pre-stages miss approximately 10-20 dimers, while already closely resembling the
final capsid as indicated by the diameter of gyration in addition to the structuredness
of pairwise contacts (Cstruc = 3.5). This excess of T = 4 capsids over T = 3 capsids is
in agreement with literature [56,98-100] with more than 90% of T = 4 capsids expected.
Overall, the self-assembled aggregates are highly structured and closely resemble the
expected HBV VLPs.
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Figure 14. Final distribution of numbered size versus diameter of gyration (averaged over last ten

saving steps).

3.2.2. Assembly Kinetics

For the first time, the multiscale model, developed in the present study, permits
investigation of the VLP assembly in silico from the smallest building unit of the capsid,
i.e., HBcAgy. The kinetics of capsid assembly for different protein concentrations are
shown in Figure 15, where histograms of the size of self-assembled structures over the
simulation time (5 ms) are demonstrated. As discussed above, all simulations result in the
primary capsid population comprising around 100 dimers. This is more pronounced at the
protein concentration of 10 uM. After the formation of this population, the equilibration
significantly slows down leading to increasing time scales for finalization of perfect T = 4
capsids. This is not surprising since efficient self-assembly with the formation of correct
capsids takes from several seconds to days in experiments [50,96,101], which is far beyond
affordable simulation times. At the same time, capsids with the number of HBcAg; in the
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range of 100-120 are more populated at slightly higher concentrations (see Figure 15¢,d),
which also supports experimental observations [52,97]. Similarly to the visual comparison
of assembled systems in Figure 12, the growth of the capsids depicted in Figure 15 indicates
an increased fraction of smaller structures (i.e., below 90 dimers) for low concentrations
(i-e., 29.0% for 5uM with a decrease to 7.5% for 100 uM) and an increased fraction of
large structures above 120 dimers for high concentrations. This change in distribution
additionally increases the asymptotic average structure size at the end of the simulation
from 83.9 for 5 uM to 109.5 for 100 pM, respectively, (see description given in the caption of
Figure 15).
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Figure 15. Histogram of self-assembled structures by number of constituting HBcAg, (Ngas) over
time. Tgsg for concentrations in increasing order: 2.91, 1.55, 0.39, 0.21 ms. Ng AS,asymp for concentra-
tions in increasing order: 83.9, 90.7, 103.8, 109.5.

From the observations described, we conclude that the final (average) size of the
VLPs formed can be attributed to the diffusion limitation at lower concentrations [54]
(resulting from increased mean distances of structures in the solution) and overgrowing
or capsid collisions at higher concentrations [52]. Moreover, the large structures at high
concentrations, especially for 100 uM, appear to undergo frequent transitions between
population sizes and coincidentally contribute to unstruc increasing to 0.42 (from 0.34 for
5uM, see Figure S1 in SI), thus causing an increase in unstructuredness of assemblies.
Similar observations were summarized in the recent review by Bruinsma et al. [102].

The diffusion limitation at low concentrations is further highlighted by the longer
equilibration times for such systems extending to 1sps = 2.9 ms for a 5 uM concentration,
see Figure 15. Please note that due to the accelerated dynamics of such coarse-grained
simulations these time scales are only of comparative nature and not real-world time
scales. In contrast, at the highest concentration of 100 uM the equilibration time is faster
by more than an order of magnitude with only g4 = 0.2 ms. Similarly, the number of
individual dimers in solution decreases to below 1% within 40 ps for 5 pM and only 2 ps
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for 100 uM, thus scaling inversely with the concentration. With regard to the functional
relationship of assembly kinetics, the average structure size strongly follows an asymptotic
exponential behavior throughout the concentration range (see fits in Figure 15 using
Equation (S5) in SI). This is in accordance with current state-of-the-art [102-105], including
calculations made using dodecahedral model with a trimeric nucleus of core proteins [106].
Alternatively, assembly kinetics can be analyzed by the average number of structured Gstruc
and unstructured Cunstruc contacts per dimer, which is provided in SI (Figure S1).

3.2.3. Assembly Pathways

An important aspect, explored intensively during the last two decades, is understand-
ing the pathways of virus self-assembly (and disassembly) that permits, on the on hand,
to develop antivirals and therapies for treatments and, on the other hand, to design and
predict new vaccines based on VLPs. Even if experimental investigations shined light
on various phenomena, they have limited prediction power (also using rational design)
that can be applied to estimate the self-assembly of previously not investigated capsid
proteins, e.g., after mutations or other amino acid modifications used for chimeric VLP
fabrication [101,107,108]. Here, computational approaches are highly demanded, but are
also limited as we described in the introduction. With the multiscale method developed,
molecular modifications in core proteins can be captured and explicitly accounted for in the
changes of capsid self-assembly. In the following, we describe the pathways for wild-type
HBV VLP self-assembly, obtained in the present study, and show its high potential to
reproduce experimental observations.

Capsid assembly is known to be modulated by lots of weak interactions between its
building units and to be characterize by multiple assembly pathways [50,91], which highly
depend on experimental conditions, e.g., ionic strength or protein concentration. In order
to visualize assembly pathways occurring during 5 ms MDEM simulation of HBV core
proteins, chord diagrams were employed, which are shown in Figure 16. These chord
diagrams incorporate all bi-directional transitions between different population classes, i.e.,
assembly sizes, normalized by the total number of HBcAg,. Net transitions, i.e., sums of
both directions (assembly and disassembly), are additionally visualized in SI (Figure S2).

The complexity of self-assembly and existence of different pathways, including transi-
tion probabilities and types of pre-capsid structures, is clearly seen in Figure 16. Moreover,
a hierarchical structural build-up in stages from smaller to larger capsid-like assemblies (es-
pecially using 5 pM solutions) is noticeable. The initially available HBcAg, dimers (denoted
as ‘1’, the unit structures used in the model) self-assemble into structures of two, three,
four, five, and ten (615 range) with decreasing transition fraction in their first step. Larger
assemblies (mostly up to 35-mers, see light green transitions from “10’-mer population to
‘20’-mer, i.e., 16-25 of dimers, and ‘30’-mer, i.e., 26-35 of dimers), are mostly built from
these smaller ‘10’-mer structures (see additionally Figure S2 in SI). This is an interesting
observation, which was recently reported experimentally [91].

With increasing concentration of HBcAg, this assembly process accelerates (see
Figure 15), further leading to a different transition distribution of dimers (‘1) with an
emphasis on a direct jump to “10’-mer structures (i.e., 6-15 of HBcAgy) within 500 ns at
100 pM concentration. Even if protein concentration increases with the visible rise in the
number of intermediates and large assemblies, an important role of “10’-mer population in
the overall self-assembly is still visible. Moreover, its maximum lifetime (around 3.5ms at
51M, see Figure S3b in SI) is higher than smaller assemblies and is in the range of more
stable pre-capsid structures.
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Figure 16. Self-assembly by bi-directional transitions between size classes normalized by total
number of dimers (major ticks represent unit arrow thickness, i.e., every dimer makes this transition
on average). Starting at class 10, the size denotes the class range between —4 to +5 relative to the
noted value; 206 incorporates all sizes equal to or larger than 206. Colors provide contrast only. See
Section 2.5.2 for further specifications.

A stage-wise assembly through addition of smaller structures occurs until mostly
the ’80’-mer population, as indicated by the low direct transition rates to larger structures
(visually arrows towards the center of the diagram). Larger capsid-like assemblies, e.g.,
‘90’-mer population, are growing via partial disassembly from the overgrown structures (see
green arrows from ‘100’-mer population, i.e., 96-105 dimers, in Figure 15). At the same time,
the “120’-mer population shows two possible formation pathways, i.e., via overgrowth and
a step-wise growth. This is especially visible at higher concentrations starting from 10 pM
(see, e.g., high contribution of transitions from the ‘110’-mer to ‘120"-mer population (arrow
in yellow) in Figure 15b—d and multiple transitions from higher assembly aggregates).
The role of structural overgrowth during wild-type HBV capsid formation was shown by
Lutomski et al. [50]. In addition, huge amounts of intermediates with 96-105 (“100’-mers,
e.g., structures 5B, 10A, 50A, and 100B in Figure 13) and 106-115 dimers (‘110’-mers, e.g.,
structures 5C and 5E in Figure 13) are visible in all chord diagrams. Similar intermediates
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(104/105-mer, e.g., 5B and 50B in Figure 13, and 110/111-mer, e.g., 5C in Figure 13) were
proven also experimentally [53].

For all concentrations, the majority of transitions occurs around the class sizes between
90 and 120, thus being either T = 3 capsids or pre-stages of T = 4 capsids, as previously
discussed. Consequently, this population region can be considered as semi-stable with tran-
sitions primarily motivated by a partial disassembly and re-organization with attempted
addition of small, hopefully in proximity available, assemblies for the stable structure
formation. However, there are also stable T = 3 capsids formed (see Figure 15 and Figure S3
in SI), suggesting both assembly and disassembly processes towards the formation of both
types of VLPs, i.e., with 90 and 120 HBcAg,. Such behavior was reported to be extremely
sensitive to experimental conditions [91] and is observed in the simulation here. As denoted
earlier, the assembly to a perfect T = 4 capsid is mostly the question of probability and
simulation time, especially in the context of how many small structures are available at a
specific point of the self-assembly.

Above these size classes of 120 HBcAg», structures undergo an increasing number
of transitions on their pathway to equilibrium, which increases drastically in frequency
and number with increasing concentration. While only few dimers form structures above
120-140 for low concentrations of 5 uM and 10 pM, the majority of dimers undergo such
transitions for the larger concentrations of 50 pM and 100 uM indicating a pathway through
overgrowth. However, it should be noted that these transitions also incorporate mere
contacts of otherwise proper capsids, as shown in the visual inspection prior. Furthermore,
structures above 120 dimers cannot be considered stable as they break apart on very short
time scales as can be seen in Figure 15.

The assembly pathway and kinetics can additionally be recognized in the development
of structure lifetimes ty;¢,, which is provided in SI (Figure S3). With increasing size, the
average lifetime increases from the microsecond scale to the order of tenth of milliseconds
for '70’-"100"-mers before dropping back to microseconds above ‘120’-mers. This indicates
instability of overgrown structures and stability of the region between T =3 and T = 4 cap-
sids. Similarly, maximum lifetimes increase to multiple milliseconds (up to the simulation
time of 5 ms) for the range of ‘10'—"120"-mers. Additionally, in the range of ‘90'—"120’-mers
the average lifetime decreases with increasing size supporting the previously attributed
re-organization and finalization of T = 4 capsid structures. Lastly, with increasing con-
centration from 5 uM to 100 uM the average lifetime in the range ‘90'—'110"-mers decreases
drastically by one order of magnitude highlighting the increased number of contacts and
unstructuredness of capsids at high concentrations. Moreover, the increase in kinetic traps
and aggregated capsids is clearly captured in the simulation (see Figure 16), which agrees
well with VLP yields obtained experimentally [50,54,97].

4. Conclusions

We have developed a generally applicable modeling framework based on a hierarchical
coarse-grained strategy for capturing macromolecular self-assembly on scales beyond
traditional MD. For this, each macromolecule is abstracted as an anisotropic object and
high-dimensional data-driven models are generically formulated to describe interaction
between molecules and with the solvent environment. As a result, the self-assembly
process is described as a combination of diffusive effects and pairwise interaction of
molecules, including effects of, e.g., dissolved ions. A Kriging-based strategy building
upon high-throughput MD simulations with the Martini force-field is employed including
semi-automated supervised learning to derive data-driven protein—protein interaction
potentials. Through this approach, the multiscale method enables the significant speedup
to the micrometer and millisecond scale, while maintaining the necessary high detail of
intermolecular interaction in their 6D structure.

The framework was applied to study the self-assembly of hepatitis B virus-like parti-
cles starting from their minimal building unit, i.e., dimer of HBcAg. MDEM simulations of
VLP formation were performed using four different protein concentrations (5 uM, 10 uMm,
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50 uM, 100 uM) at 150 mM NaCl. Differences in the formation of pre-capsids structures
and their intermediates were analyzed. VLP formation as a hierarchial build-up and an
overgrowing was captured. The key role of assemblies made out of 10 HBcAg dimers and
up to 35 HBcAg dimers has been demonstrated. Challenges of the HBcAg system due to
allostery-induced conformational changes at the intermolecular binding locations were
discussed and addressed through biased simulations and empirical data.

Future research might apply this generic framework to other systems of macromolec-
ular self-assembly, especially those difficult to study experimentally because of short
timescales or probabilistic structural organization, such as in multi-enzymatic complexes.
Additionally, interface phenomena (e.g., adsorption of proteins at oil-water interfaces)
and fluid flow can readily be integrated in the framework reported here, e.g., through
coupling to computational fluid dynamics. Further improvements might focus on the
underlying MD models, incorporation of gradient information in the potential estimate, or
improved sampling methods during structural formation and MD binding (e.g., replica
exchange). Additionally, finer coarse-graining approaches in MD might incorporate the
same general concept of shifting complexity from many 1D distance-based interactions to
a single gradient operation on a more complex data-driven potential field. In this regard,
the golden mean between granularity of the model and computational resources should
always be considered.
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Abbreviations

The following abbreviations are used in this manuscript:

AA-MD All-Atom Molecular Dynamics

ANN Artificial Neural Networks
BD Brownian Dynamics

BLUE Best Linear Unbiased Estimate
CG-MD Coarse-Grained Molecular Dynamics
CPU Central Processing Unit

DEM Discrete Element Method
DOF Degree of Freedom

DPD Dissipative Particle Dynamics
FF Force Field

GPR Gaussian Process Regression
GPU Graphics Processing Unit

HBcAg Hepatitis B Core Antigen
HBcAg, HBcAg Dimer

HBV Hepatitis B Virus
LD Langevin Dynamics
MDEM Molecular Discrete Element Method
MD Molecular Dynamics
NPT Isothermal-Isobaric Ensemble
PBC Periodic Boundary Conditions
PDB Protein Data Bank
PME Particle Mesh Ewald
PW Polarizable Water
QM/MM  Quantum Mechanics/Molecular Mechanics
RMS Root-Mean-Square
RMSD Root-Mean-Square Distance
SAS Self-Assembled Structure
SI Supplementary Information
SPX Simulation Procedure X
SVD Singular Value Decomposition
UK Universal Kriging
VLP Virus-Like Particles
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