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Abstract
We introduce a new characterization of the Cauchy distribution and propose a class
of goodness-of-fit tests for the Cauchy family. The limit distribution is derived in a
Hilbert space framework under the null hypothesis. The new tests are consistent against
a large class of alternatives. A comparative Monte Carlo simulation study shows that
the test is a good competitor for the state of the art procedures, and we apply the tests
to log-returns of cryptocurrencies.
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1 Introduction

In this article we dedicate our studies to answer the question of whether a data set
of univariate real numbers belongs to the famous family of Cauchy distributions. The
Cauchy distribution is undoubtedly the standard example for a distribution without
existing mean value and was studied in the mathematical world for more than 300
years, having wide applicability in diverse fields ranging from modeling resonances
in physics (then often called Lorentz distribution) to cryptocurrencies in finance, see
Szczygielski et al. (2020). It is also known as the Breit–Wigner distribution, for an
extensive historical overview, see Stigler (1974). To be precise, we write shorthand
C(α, β), α ∈ R, β > 0, for the Cauchy distribution with location parameter α and
scale parameter β, having density
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f (x, α, β) = 1

π

β

β2 + (x − α)2
, x ∈ R.

For a detailed discussion on this family, see Johnson et al. (1994), Chapter 16. The
Cauchy distribution is a so called heavy tailed distribution and is amember of the stable
distributions, see Nolan (2020). Note that X ∼ C(α, β) if, and only if, (X − α)/β ∼
C(0, 1) and hence the Cauchy distribution belongs to the location-scale family of
distributions. In the following we denote the family of Cauchy distributions by C :=
{C(α, β) : α ∈ R, β > 0}, a family of distributions which is closed under translation
and rescaling. We test the composite hypothesis

H0 : P
X ∈ C (1)

against general alternatives on the basis of independent identical copies X1, . . . , Xn

of X defined on an underlying probability space (�,A,P). This testing problem has
been considered in the literature: Gürtler and Henze (2000) propose a test procedure
based on the empirical characteristic function andMatsui and Takemura (2005) extend
this test by considering alternative estimation methods. More recently, Mahdizadeh
and Zamanzade (2017) propose to use the likelihood ratio as in Zhang (2002) as
well as the Kullback–Leibler (KL) distance, an idea that is extended in Mahdizadeh
and Zamanzade (2019). A quantile based method is proposed in Rublik (2001) and
compared to the classical omnibus procedures. An empirical power study of goodness-
of-fit tests for the Cauchy model based on the empirical distribution function as the
Kolmogorov–Smirnov test, the Cramér–von Mises test, the Kuiper test, the Anderson
Darling and theWatson test is found inOnen et al. (2001). InLitvinova (2005), two tests
for the standard Cauchy distribution based on characterizations are given; however,
they are not designed for the composite hypothesis (1).

The novel procedure is based on the following new characterization of the standard
Cauchy distribution.

Theorem 1.1 Let X be a random variable with absolutely continuous density p and

E

[ |X |
1+X2

]
< ∞. Then X has a Cauchy distribution C(0, 1) if and only if

E

[(
i t − 2X

1 + X2

)
exp(i t X)

]
= 0 (2)

holds for all t ∈ R, where i denotes the imaginary unit.

Proof For X ∼ C(0, 1) a direct calculation shows the assertion. Let X be a random
variable with absolutely continuous density function p(x) such that

E

[(
i t − 2X

1 + X2

)
exp(i t X)

]
= 0
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holds for all t ∈ R. Note that since −i tE[exp(i t X)] is the Fourier-Stieltjes transform
of the derivative p′(x) of p(x) we have

0 = E

[(
i t − 2X

1 + X2

)
exp(i t X)

]
=

∫ ∞

−∞

(
−p′(x) − 2x

1 + x2
p(x)

)
exp(i t x) dx

for all t ∈ R. By properties of the Fourier-Stieltjes transform, we hence note that p(x)
must satisfy the ordinary differential equation

p′(x) + 2x

1 + x2
p(x) = 0

for almost all x ∈ R. The only solution satisfying
∫ ∞
−∞ p(x)dx = 1 is p(x) =

f (x, 0, 1), x ∈ R, and X ∼ C(0, 1) follows. ��
Remark 1.2 The characterization in Theorem 1.1 is related to the spectral representa-
tion of the Stein operator of the so called density approach pioneered in Stein et al.
(2004). Note that the quotient in (2) is f ′(x, 0, 1)/ f (x, 0, 1) = −2x/(1+ x2), x ∈ R,
and the set of so called test functions is given by {exp(i t x) : t ∈ R}. For details on
this approach see Anastasiou et al. (2022), Sect. 5.4.2.

This paper is organized as follows. In Sect. 2, we introduce a family of test statistics,
denoted by Tn,a , which is based on the characterization in Theorem 1.1. In Sect. 3, the
limit distribution of Tn,a is derived in a Hilbert space framework under the null hypoth-
esis. Furthermore, we derive the limit distribution of the statistic T̃n,0 = lima→0 aTn,a .
Consistency of the new tests against a large class of alternatives is shown in Sect. 4. An
extensive Monte Carlo simulation study in Sect. 5 shows that the test is a good com-
petitor for the state of the art procedures. In Sect. 6, the tests are applied to log-returns
of cryptocurrencies. Finally, conclusions are given in Sect. 7.

2 A new class of goodness of fit tests for the Cauchy distribution

The testing problem under discussion is invariant with respect to transformations of
the kind x → ax + b, x ∈ R, where a ∈ R and b > 0. Consequently, a decision in
favor or against H0 should be the same for X1, . . . , Xn and aX1 + b, . . . , aXn + b.
This goal is achieved if the test statistic Tn , say, is based on the standardized data
Yn,1, . . . ,Yn,n , given by

Yn, j = X j − α̂n

β̂n
, j = 1, . . . , n. (3)

Here, α̂n = α̂n(X1, . . . , Xn) and β̂n = β̂n(X1, . . . , Xn) denote consistent estimators
of α ∈ R and β > 0 such that

α̂n(aX1 + b, . . . , aXn + b) = aα̂n(X1, . . . , Xn) + b, (4)

β̂n(aX1 + b, . . . , aXn + b) = aβ̂n(X1, . . . , Xn), (5)
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holds for each a > 0 and b ∈ R. By (4) and (5) it is easy to see that Yn, j , j = 1, . . . , n,

do not depend on the location nor on the scale parameter. Hence, Tn has the property
Tn(aX1 + b, . . . , aXn + b) = Tn(X1, . . . , Xn), and we may and do assume α = 0
and β = 1 in the following. Motivated by Theorem 1.1, we choose the test statistic

Tn = n
∫ ∞

−∞

∣∣∣1
n

n∑
j=1

(
i t − 2Yn, j

1 + Y 2
n, j

)
eitYn, j

∣∣∣
2
ω(t) dt, (6)

which is the weighted L2-distance from (2) to 0. Here, | · | is the complex absolute
value and ω : R → (0,∞) denotes a positive weight function that is given by
ω(t) = ωa(t) = exp(−a|t |), t ∈ R. Note that ω is symmetric around the origin, i.e.
ω(t) = ω(−t) holds for all t ∈ R, and that

∫ ∞

−∞
t6ω(t) dt < ∞ (7)

holds. We have the integration-free, numerical stable formula

Tn = Tn,a = 1

n

n∑
j,k=1

(
8aYn, j Yn,k

(1 + Y 2
n, j )(1 + Y 2

n,k)((Yn, j − Yn,k)2 + a2)

− 16aYn, j (Yn, j − Yn,k)

(1 + Y 2
n, j )((Yn, j − Yn,k)2 + a2)2

+ 4a3 − 12a(Yn, j − Yn,k)
2

((Yn, j − Yn,k)2 + a2)3

)
,

(8)

and hence a whole family of tests depending on the so called tuning parameter a > 0.
The next result deals with the limit behavior of Tn,a for a → 0 and a → ∞.

Theorem 2.1 For fixed n, we have

lim
a→0

a

(
Tn,a − 4

a3

)
= 8

n

n∑
j=1

Y 2
n, j

(1 + Y 2
n, j )

2
= T̃n,0, (9)

and

lim
a→∞ aTn,a = 8

n

( n∑
j=1

Yn, j

1 + Y 2
n, j

)2

. (10)

Proof Splitting the sum in (8) in a diagonal and a non-diagonal part results in

Tn,a = 1

n

n∑
j,k=1

R j,k,a = 1

n

n∑
j=1

R j, j,a + 1

n

∑
j 	=k

R j,k,a = T d
n,a + T nd

n,a,
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say. Since

T d
n,a = 8

na

n∑
j=1

Y 2
n, j/(1 + Y 2

n, j )
2 + 4

a3

and lima→0 T nd
n,a = 0, we obtain

lim
a→0

a

(
Tn,a − 4

a3

)
= lim

a→0
a

(
T d
n,a − 4

a3

)
= 8

n

n∑
j=1

Y 2
n, j

(1 + Y 2
n, j )

2
.

By the symmetry of the weight function ωa(·), straightforward calculations show

Tn,a =
∫ ∞

−∞
Z2
n(t) ωa(t)dt,

where

Zn(t) = 1√
n

n∑
j=1

( 2Yn, j

1 + Y 2
n, j

+ t
)
cos(tYn, j ) +

(
t − 2Yn, j

1 + Y 2
n, j

)
sin(tYn, j ), t ∈ R.

(11)

Then, aTn,a = ∫ ∞
−∞ Z2

n(s/a) exp(−|s|)ds, where Zn satisfies Z2
n(s/a) ≤ 4n(1+|s|)2,

for a > 1, and

lim
t→0

Zn(t) = 1√
n

n∑
j=1

2Yn, j

1 + Y 2
n, j

.

Now, the second assertion follows from an application of the dominated convergence
theorem. ��

3 Limit distribution under the null hypothesis

The asymptotic theory is derived in the Hilbert space H of measurable, square inte-
grable functionsH = L2(R,B, ω(t)dt), where B is the Borel-σ -field ofR and ω(t) is
the weight function defined in the introduction. Notice that Tn = ∫ ∞

−∞ Z2
n(t) ω(t)dt,

where Zn is defined in (11), is a real-valued (A⊗ B,B)-measurable random element
of H. We denote by

‖ f ‖H =
(∫ ∞

−∞
∣∣ f (t)∣∣2 ω(t) dt

)1/2

, 〈 f , g〉H =
∫ ∞

−∞
f (t)g(t) ω(t) dt
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the usual norm and inner product inH. In the following, we assume that the estimators
α̂n and β̂n allow linear representations

√
nα̂n = 1√

n

n∑
j=1

ψ1(X j ) + oP(1), (12)

√
n(β̂n − 1) = 1√

n

n∑
j=1

ψ2(X j ) + oP(1), (13)

where X1, . . . , Xn ∼ C(0, 1) are independent random variables, oP(1) denotes a term
that converges to 0 in probability, and ψ1 und ψ2 are measurable functions with

E[ψ1(X1)] = E[ψ2(X1)] = 0, and E[(ψ1(X1), ψ2(X1))
� (ψ1(X1), ψ2(X1))]

= C · I2;

here, C is a positive constant, � stands for the transpose of a vector and I2 is the 2×2-
identitymatrix. SeeRemark 3.2 for examples of estimation procedures satisfying these
assumptions.

Theorem 3.1 Let X1, . . . , Xn be i.i.d. C(α, β) distributed random variables. Then
there exists a centred Gaussian random process Z in H with covariance kernel

K (s, t) = 1

2

(
s2 + t2 + |s − t | + 1

)
e−|s−t |

− 1

2
(t2 + |t | + 1)e−|t |

E

[((
2X1

1 + X2
1

+ s

)
cos(sX1) +

(
s − 2X1

1 + X2
1

)
sin(sX1)

)
ψ1(X1)

]

+ 1

2
t(|t | + 1)e−|t |

E

[((
2X1

1 + X2
1

+ s

)
cos(sX1) +

(
s − 2X1

1 + X2
1

)
sin(sX1)

)
ψ2(X1)

]

− 1

2
(s2 + |s| + 1)e−|s|

E

[((
2X1

1 + X2
1

+ t

)
cos(t X1) +

(
t − 2X1

1 + X2
1

)
sin(t X1)

)
ψ1(X1)

]

+ 1

2
s(|s| + 1)e−|s|

E

[((
2X1

1 + X2
1

+ t

)
cos(t X1) +

(
t − 2X1

1 + X2
1

)
sin(t X1)

)
ψ2(X1)

]

+ 1

4
(s2 + |s| + 1)(t2 + |t | + 1)e−|s|−|t |

E[ψ2
1 (X1)] + 1

4
s(|s| + 1)t(|t | + 1)e−|s|−|t |

E[ψ2
2 (X1)]

for s, t ∈ R, such that Tn
D−→ ‖Z‖2

H
as n → ∞.

A proof of Theorem 3.1 is found in Appendix A.1. It is well known that the
distribution of ‖Z‖2

H
is that of

∑∞
j=1 λ j N 2

j , where N1, N2, . . . are i.i.d. standard
normal random variables and (λ j ) is a decreasing sequence of positive eigenvalues of
the integral operator

Kg(s) =
∫ ∞

−∞
K (s, t)g(t)ω(t) dt .

Due to the complexitiy of the covariance kernel K as given in Theorem 3.1 it seems
hopeless to solve the integral equation Kg(s) = λg(s) and find explicit values of λ j ,
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j ≥ 1. For a numerical approximation method we refer to Subsect. 3.3 in Matsui and
Takemura (2005). Note that

E‖Z‖2
H

=
∫ ∞

−∞
K (t, t)ω(t) dt (14)

and

Var‖Z‖2
H

= 2
∫ ∞

−∞

∫ ∞

−∞
K 2(s, t)ω(t)ω(s) dtds (15)

can be derived for specific estimation procedures. Such results in the theory of
goodness-of-fit tests for the Cauchy family are sparse, for some explicit formulae
for mean values, see Gürtler and Henze (2000) and Matsui and Takemura (2005).

Remark 3.2 The generality of Theorem 3.1 in view of the linear representations of
the estimators and hence dependence on the functions ψ1 and ψ2 leads to explicit
covariance kernels for different parameter estimation procedures. To estimate α and
β we choose the following location and scale estimators α̂n and β̂n , which all satisfy
(4) and (5) respectively. For a compact notation, we write ψ(x) = (ψ1(x), ψ2(x))�.
Some derivations were partially provided by the computer algebra system Maple, see
Maplesoft (2019).

1. Median and interquartile-distance estimators: Let ξp, p ∈ (0, 1), denote the
p-quantile of the underlying distribution F , ξ̂p,n the sample p-quantile, and X(1) ≤
· · · ≤ X(n) the order statistics of X1, . . . , Xn . With �·� denoting the floor function,
let

α̂n =
{

1
2 (X( n2 ) + X( n2+1)), if n even,

X(� n
2 �+1), otherwise,

(16)

be the unbiased empirical median and

β̂n = 1

2
(̂ξ 3

4 ,n − ξ̂ 1
4 ,n) (17)

the half-interquartile range (iqr) of the sample. Under mild regularity conditions
α̂n and β̂n are consistent estimators of α and β. Display (3.3) of Gürtler and Henze
(2000) then gives the so-called Bahadur representations (see Theorem 2.5.1 in
Serfling (1980)) with

ψ1(x) = π

(
1

2
− 1{x ≤ 0}

)
, and ψ2(x) = π

(
1

2
− 1{−1 ≤ x ≤ 1}

)
, x ∈ R.
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It is easy to see that E[ψ1(X1)] = E[ψ2(X1)] = 0 and E[ψ(X1)ψ(X1)
�] = π2

4 I2
holds.With these representations, we get the covariance kernel ofZ in Theorem 3.1

KMI Q(s, t) = 1

2

(
s2 + t2 + |s − t | + 1

)
e−|s−t |

+
[
t
(|t | + 1

)(
2J1(s) − s J2(s)

) − (
t2 + |t | + 1

)( s
2
J3(s) + J4(s)

)]
e−|t |

+
[
s
(|s| + 1

)(
2J1(t) − t J2(t)

) − (
s2 + |s| + 1

)( t
2
J3(t) + J4(t)

)]
e−|s|

+ π2

16

[(
s2 + |s| + 1

)(
t2 + |t | + 1

) + st
(|s| + 1

)(|t | + 1
)]
e−|s|−|t |,

for s, t ∈ R, where

J1(t) =
∫ 1

0

x sin(t x)

(1 + x2)2
dx, J2(t) =

∫ 1

0

cos(t x)

1 + x2
dx,

J3(t) =
∫ ∞

0

sin(t x)

1 + x2
dx, J4(t) =

∫ ∞

0

x cos(t x)

(1 + x2)2
dx .

Direct calculations of integrals lead to

E‖Z‖2
H

=
∫ ∞

−∞
KMI Q(t, t)ωa(t) dt

= (8 (a + 2)5 (1 + a)3 a3
(
a2 + 2 a + 2

)3
)−1

[(
π2 − 8

)
a16 +

(
19π2 − 152

)
a15

+
(
173π2 − 1368

)
a14 +

(
1003π2 − 7720

)
a13 +

(
4126π2 − 30192

)
a12

+
(
12594π2 − 84304

)
a11 +

(
29128π2 − 163520

)
a10

+
(
51460π2 − 188832

)
a9 +

(
69320π2 − 8256

)
a8

+
(
70296π2 + 457664

)
a7 +

(
52176π2 + 1025920

)
a6

+
(
26848π2 + 1323264

)
a5 +

(
8576π2 + 1151488

)
a4

+
(
1280π2 + 693248

)
a3 + 280576 a2 + 69632 a + 8192

]
.

2. Maximum likelihood estimators: Matsui and Takemura (2005) show in Lemma
A.1 that for the maximum-likelihood estimator α̂n and β̂n in the Cauchy family the
linear representations are given by

ψ1(x) = 4x

1 + x2
, and ψ2(x) = 2(x2 − 1)

1 + x2
, x ∈ R.

Again, straightforward calculations show E[ψ1(X1)] = E[ψ2(X1)] = 0 as well as
E[ψ(X1)ψ(X1)

�] = 2I2. Note that there are no closed form expressions for the
estimators, such that the log-likelihood equations have to be solved numerically.
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This leads to the covariance kernel of Z in Theorem 3.1 given by

KML(s, t) = 1

2

(
s2 + t2 + |s − t | + 1

)
e−|s−t |

− 1

2
(t2 + |t | + 1)(s2 + |s| + 1)e−|t |−|s|

− 1

2
t(|t | + 1)s(|s| + 1)e−|t |−|s|, s, t ∈ R.

With this explicit formula for the covariance kernel, we compute

E‖Z‖2
H

=
∫ ∞

−∞
KML(t, t)ωa(t) dt = 8 a4 + 80 a3 + 352 a2 + 320 a + 128

a3 (a + 2)5

and

Var‖Z‖2
H

= 2
∫ ∞

−∞

∫ ∞

−∞
K 2

ML(s, t)ωa(s)ωa(t) dtds

=
(
1

2
a5 (a + 1)7 (a + 2)10

)−1 [
10 a14 + 270 a13 + 3521 a12

+27987 a11 + 146819 a10 + 510582 a9 + 1194078 a8 + 1914216 a7

+2134432 a6 + 1671456 a5 + 928192 a4 + 369792 a3 + 104192 a2

+18432 a + 1536] .

3. Equivariant integrated squared error estimator: InMatsui andTakemura (2005)
the authors propose an equivariant version of the minimal integrated squared error
estimator introduced by Besbeas and Morgan (2001) for the Cauchy distribution.
The estimators are derived by minimization of the weighted L2-distance

I (α, β) =
∫ ∞

−∞

∣∣∣ϕn(t;α, β) − e−|t |
∣∣∣
2
ω(t)dt,

where ϕn(t;α, β) = 1
n

∑n
j=1 exp

(
i t(X j − α)/β

)
, t ∈ R, is the empirical char-

acteristic function of a distribution from the location scale family in dependence
of the parameters. As weight function the authors chose the same weight function
ων(t) = exp(−ν|t |), t ∈ R, ν > 0, and hence get families of estimators α̂n,ν

and β̂n,ν in dependence of ν. Note that the optimization problem has to be solved
numerically and no closed-form formula is known for the estimators. We denote
this class of estimators hereinafter EISE. Lemma A.1 in Matsui and Takemura
(2005) provides the linear asymptotic representations

ψ1(x, ν) = (ν + 1)(ν + 2)3
x

((ν + 1)2 + x2)2
,

ψ2(x, ν) = 1

2
(ν + 2) − 1

2
(ν + 2)3

(ν + 1)2 − x2

((ν + 1)2 + x2)2
,
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for x ∈ R, which lead for every ν > 0 to an explicit expression of the covariance
kernel of Z in Theorem 3.1, which can be found in Appendix A.3.

As demonstrated in Remark 3.2, the estimation procedure has some influence on
the limit null distribution of Tn . We refer to Chen (2011); Fegyverneki (2013) for
alternative estimators of the parameters of the Cauchy distribution and to Cohen Freue
(2007) for a Pitman estimator of the location parameter α when β is known.

3.1 Asymptotic normality of the limit statistic under the null hypothesis

The next result gives the limiting distribution of the scaled limiting statistic aTn,a for
a → 0 given in (9).

Theorem 3.3 (a) Let arcsine(a, b) denote the arcsine distribution on [a, b] with dis-
tribution function

F(x) = 2

π
arcsin

√
x − a

b − a
, a ≤ x ≤ b.

If X ∼ C(0, 1), then

4X2

(1 + X2)2
∼ arcsine(0, 1).

(b) Let X1, . . . , Xn be i.i.d. C(0, 1) distributed random variables, and let Yn, j be the
corresponding scaled residuals, using any estimator (̂α, β̂) with linear represen-
tation. Then,

T̃n,0 = √
2n

⎛
⎝8

n

n∑
j=1

Y 2
n, j

(1 + Y 2
n, j )

2
− 1

⎞
⎠ D−→ N (0, 1), (18)

where N (0, 1) denotes the standard normal distribution.

Proof (a) Let U have a uniform distribution on (−π/2, π/2), and put X = tanU .
Then, X ∼ C(0, 1). Further, sinU , X2/(1+X2) = sin2U , 1/(1+X2) = cos2U
as well as 2 sinU cosU have an arcsine(−1, 1) distribution (see, e.g., Norton
(1983)). If Z ∼ arcsine(−1, 1), then Z2 ∼ arcsine(0, 1). Hence,

4X2

(1 + X2)2
∼ 4 sin2U cos2U ∼ arcsine(0, 1).
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(b) A Taylor expansion around (α0, β0) = (0, 1) yields

1√
n

n∑
j=1

(X j − α)2/β2

(1 + (X j − α)2/β2)2

= 1√
n

n∑
j=1

{
X2

j

(1 + X2
j )
2

+ 2X j (X2
j − 1)α

(1 + X2
j )
3

+ 2X2
j (X

2
j − 1)(β − 1)

(1 + X2
j )
3

+ f1(X j , α̃, β̃)α2 + f2(X j , α̃, β̃)α(β − 1) + f3(X j , α̃, β̃)(β − 1)2
}

,

where (α̃, β̃) lies between (α, β) and (0, 1), and

f1(x, α, β) = 2

β2

(
1 + (x − α)2

β2

)−2

− 20(x − α)2

β4

(
1 + (x − α)2

β2

)−3

+ 24(x − α)4

β6

(
1 + (x − α)2

β2

)−4

,

f2(x, α, β) = 4(x − α)

β3

(
1 + (x − α)2

β2

)−2

− 24(x − α)3

β5

(
1 + (x − α)2

β2

)−3

+ 24(x − α)5

β7

(
1 + (x − α)2

β2

)−4

,

f3(x, α, β) = 6(x − α)2

β4

(
1 + (x − α)2

β2

)−2

− 28(x − α)4

β6

(
1 + (x − α)2

β2

)−3

+ 24(x − α)6

β8

(
1 + (x − α)2

β2

)−4

.

Ifwe replace (α, β)by any estimator (̂αn, β̂n)with linear representation, the second
and third term converge to zero in probability, since, by the results given in the
proof of part a),

1

n

n∑
j=1

X j (X2
j − 1)

(1 + X2
j )
3

a.s.−→ E
X1(X2

1 − 1)

(1 + X2
1)

3
= 0, (19)

1

n

n∑
j=1

X2
j (X

2
j − 1)

(1 + X2
j )
3

a.s.−→ E
X2
1(X

2
1 − 1)

(1 + X2
1)

3
= 0, (20)

and
√
nα̂n and

√
n(β̂n − 1) have limiting normal distributions. Putting z = (x −

α)/β, the functions f j , j = 1, 2, 3, involve terms of the form zk(1 + z2)−l/β2,
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where k < 2l. Hence,

1

n

n∑
j=1

| f j (X j , α̃n, β̃n)| ≤ c j

β̃2
n

, j = 1, 2, 3,

where c j > 0, and (α̃n, β̃n) lies between (̂αn, β̂n) and (0, 1). Since
√
nα̂2

n ,√
nα̂n(β̂n − 1) and

√
n(β̂n − 1)2 converge to zero in probability, and β̃n

P−→ 1,
we obtain

8√
n

n∑
j=1

Y 2
n, j

(1 + Y 2
n, j )

2
= 8√

n

n∑
j=1

X2
j

(1 + X2
j )
2

+ Rn,

where Rn
P−→ 0 for n → ∞. By a), 8X2

1/(1 + X2
1)

2 has expected value 1 and
variance 1/2, and the assertion follows by the central limit theorem. ��

Remark 3.4 (i) Let X ∼ F , and assume that 8X2/(1+ X2)2 has expected value 1 and
finite variance. Then, the test based on T̃n,0 is not consistent against F , i.e. the test
is not an omnibus test.

(ii) Typically, the estimation method enters the asymptotic distribution via the func-
tions ψ1 and ψ2 in (12) and (13) and the first order terms in the Taylor expansion.
Here, this is not the case, because the corresponding expected values in (19) and
(20) vanish.

Remark 3.5 Note that the sum appearing on the right hand side of (10) involves essen-
tially the first component of the score function of the Cauchy distribution (see the
second part of Remark 3.2). Hence, when using the maximum-likelihood estimator
for (α, β), lima→∞ aTn,a ≡ 0. For other estimators, the limit does not vanish, but
a goodness-of-fit test based on it has very low power. Hence, we don’t give further
results for this statistic.

4 Consistency

In this section we show that the new tests are consistent against all alternatives sat-
isfying a weak moment condition. Let X , X1, X2, . . . be i.i.d. random variables with
cumulative distribution function F having a unique median as well as unique upper
and lower quartiles and E|X |4/(1+ X2)2 < ∞. Since the tests Tn are affine invariant,
we assume w.l.o.g. that the true median α = 0 and the half interquartile range β = 1.

Under these assumptions we clearly have that (̂αn, β̂n)
P−→ (0, 1) as n → ∞ for the

MIQ estimation method in Remark 3.2, for details see Gürtler and Henze (2000), and
assume the convergence in all other cases.

Theorem 4.1 Under the standing assumptions, we have

Tn
n

P−→
∫ ∞

−∞

∣∣∣∣E
[(

i t − 2X

1 + X2

)
eit X

]∣∣∣∣
2

ω(t)dt = F , as n −→ ∞.
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Table 1 Empirical 0.95-quantiles, based on 10 000 MC samples, for Tn,1 and Tn,5 using median/half-IQR
and ML estimator

Median and half-IQR Maximum Likelihood

Tn,1 Tn,5 Tn,1 Tn,5

n = 10 7.72 0.56 6.26 0.139

n = 20 7.62 0.80 6.45 0.130

n = 50 7.37 0.98 6.54 0.128

n = 100 7.32 1.08 6.59 0.127

n = 200 7.34 1.12 6.58 0.127

n = 500 7.32 1.15 6.60 0.127

A proof of Theorem 4.1 is deferred to Appendix A.2. In view of the characterization
in Theorem 1.1 F = 0 if and only if F = C(0, 1). Hence, we conclude that the tests
Tn are able to detect all alternatives satisfying the assumptions of this section.

Remark 4.2 In this remark we fix the weight function ω1(t) = exp(−|t |), t ∈ R. By
numerical integration we calculate that if X ∼ U(−√

3,
√
3), then U ≈ 2.332019,

if X ∼ N(0, 1) then N ≈ 0.021839 and if X ∼ Log(0, 1), then L ≈ 0.041495.

5 Simulation results

In this section, we describe an extensive simulation study to compare the power of
the new tests with established ones. For all computations in this and the following
section, we used the statistical software R (R Core Team, 2021). All simulations have
been done at nominal level α = 0.05 and for sample sizes n = 20 and n = 50. The
unknown parameters are estimated either by median and half-IQR estimators or by
the method of maximum likelihood, see Remark 3.2. The convergence of the critical
values of the new test statistics to its asymptotic values is generally quite slow. Table 1
shows a few selected cases. For Tn,a in (8) with weight a = 1, asymptotic values could
be used for sample sizes larger than 100; however, for a = 5 and the median and half-
IQR estimators, sample sizes of 500 or more are necessary. Hence, in a first step,
critical values are determined for each test statistic by a Monte Carlo simulation with
105 replications. In a second step, empirical power of the different tests is calculated
based on 104 replications.

Besides the new tests based on Tn,a with weights a = 1, 2, 3, 4, 5, 6, we use the
limiting test T̃n,0 in (18). Power decreased for larger weights for all distributions used
in the study; hence, we omit the results for weights larger than 6 as well as for the test
based on the limiting statistic Tn,∞ in (10), see also Remark 3.5. Moreover, we use
the test based on the KL distance described in Mahdizadeh and Zamanzade (2017).
For the nonparametric estimation of the entropy, the authors recommend the window
size m = 4 for n = 20 and m = 20 for n = 50 (Mahdizadeh and Zamanzade
2017, p. 1109), and we followed this suggestion. For computing the Vasicek estimate
of differential Shannon entropy, we used the function entropy.estimate in the
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R package vsgoftest (Lequesne and Regnault 2020). From the classical tests that
utilize the empirical distribution function (so-called edf tests),we choose the following:
Kolmogorov-Smirnov test (K S), Cramér-von Mises test (CM), Anderson-Darling
test (AD) and Watson test (W ). Finally, we apply the tests based on the statistics
Dn,λ considered in Gürtler and Henze (2000) and Matsui and Takemura (2005), with
weights λ = 1, 2, 3, 4, 5, 6.

Of course, there are further goodness of fit tests for the Cauchy distribution. For
example, one can use the procedure proposed by Chen and Balakrishnan (2012) which
consists in transforming the observations to approximately normally distributed ran-
dom variables, and then applying any edf test for normality with estimated parameters.
For the latter, there exist tables and software, so there is no need for, say, a parametric
bootstrap procedure. This is a nice feature for distributions with shape parameters
or in more complicated situations (Klar and Meintanis 2012; Goldmann et al. 2015).
However, for location-scale families and parameter-free test statistics, where the null
distribution can be obtained by Monte Carlo simulation, this is only a minor advan-
tage. On the other hand, these tests don’t maintain exactly the theoretical level. Further,
besides the results derived in Goldmann et al. (2015), not much is known about asymp-
totic properties of the tests.

Similarly as in Chen and Balakrishnan (2012), Villaseñor and González-Estrada
(2021) suggest to transform the observations to approximately exponentially dis-
tributed random variables. Then, the authors apply the Anderson-Darling test for
exponentiality with estimated parameters. They use this procedure to test for the
Cauchy distribution, but recommend to obtain critical values by Monte Carlo sim-
ulation. Their results show that neither the classical Anderson-Darling test nor the
Anderson-Darling tests based on the two transformations outperforms the other two
in all cases. Clearly, one could construct a multitude of further tests by (approximate)
transformations to an arbitrary continuous distribution, and using any of the well-
known edf test statistics. For the above reasons, and since we don’t aim at a complete
overview over gof tests for the Cauchy distribution, we decided not to include such
transformation based tests in our power study.

Besides the standard Cauchy and normal distribution (C(0, 1) and N(0, 1), for
short), we use Cauchy-normal mixtures CN(p) = (1 − p)C(0, 1) + pN(0, 1) with
p = 0.5 and p = 0.8. Further, we employ Student’s t-distribution (Student(k))
with k = 2, 3, 5, 10 degrees of freedom, the (symmetric) Tukey g-h distribution with
g = 0 and h = 0.2, 0.1, 0.05, denoted by Tukey(h), and the Tukey lambda distribution
(Tukey-L(λ)) with λ = −3,−2,−0.5, 0.5. Note that the Tukey lambda distribution
approximates the Cauchy distribution for λ = −1, it coincides with the logistic distri-
bution for λ = 0, it is close to the normal for λ = 0.14, and coincides with the uniform
distribution for λ = 1. In the family of stable distributions S(α, β), we choose sym-
metric distributions S(α, 0) with α = 0.4, 0.7, 1.2, 1.5, 1.8, and skewed distributions
S(α, 1) with α = 0.5, 1, 1.5, 2. Moreover, we use the uniform, logistic, Laplace,
Gumbel and exponential distribution, and the Mittag-Leffler distribution ML(α) with
α = 0.25, 0.5, 0.75. The ML(α) distribution has Laplace transform (1 + tα)−1, and
coincides with the exponential distribution for α = 1.

Power estimates of the tests under discussion are given in Tables 2, 3, 4 and 5.
All entries are the percentage of rejection of H0, rounded to the nearest integer. In
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Table 2 Percentage of 10,000 MC samples declared significant by various tests for the Cauchy distribution
using median and half-IQR estimator (α = 0.05, n = 20)

Tn,1 Tn,2 Tn,3 Tn,4 Tn,5 Tn,6 T̃n,0 K L K S

C(0,1) 5 5 5 5 5 5 5 5 5

N(0,1) 8 4 1 0 0 0 29 73 5

CN(0.5) 4 3 3 3 3 3 9 14 4

CN(0.8) 6 3 1 1 1 1 19 36 4

Student(2) 4 2 2 2 2 2 9 22 3

Student(3) 5 2 1 1 1 1 14 34 3

Student(5) 6 3 1 1 1 1 20 49 4

Student(10) 7 3 1 1 1 1 24 61 4

Stable(0.4,0) 55 52 39 26 18 13 79 2 39

Stable(0.7,0) 16 15 12 9 8 7 21 2 12

Stable(1.2,0) 4 3 3 3 3 3 6 10 4

Stable(1.5,0) 5 2 1 1 1 2 14 28 4

Stable(1.8,0) 7 3 1 1 1 1 22 52 5

Stable(0.5,1) 91 97 90 76 61 50 40 65 94

Stable(1.5,1) 10 10 7 6 6 6 19 49 9

Stable(2,1) 8 4 0 0 0 0 28 73 5

Tukey(0.2) 5 2 1 1 1 1 14 36 3

Tukey(0.1) 5 3 1 1 1 1 21 52 4

Tukey(0.05) 7 3 1 0 0 0 24 62 4

Tukey-L(-3) 43 42 33 24 17 12 64 2 31

Tukey-L(-2) 21 22 18 14 11 10 33 1 16

Tukey-L(-0.5) 4 3 2 2 2 2 7 15 3

Tukey-L(0.5) 17 11 1 0 0 0 45 94 10

Uniform 32 21 1 1 0 0 56 99 24

Logistic 6 3 1 1 1 1 21 56 4

Laplace 4 2 1 1 1 1 10 32 3

Gumbel 10 9 3 3 2 2 26 70 9

ML(0.25) 100 100 100 97 92 83 93 89 100

ML(0.5) 98 99 93 79 63 49 55 81 99

ML(0.75) 78 87 69 52 43 39 20 75 85

Exponential 39 44 23 15 13 11 27 92 48

CM AD W Dn,1 Dn,2 Dn,3 Dn,4 Dn,5 Dn,6

C(0,1) 5 5 5 5 5 5 5 5 5

N(0,1) 6 6 15 15 21 26 26 23 19

CN(0.5) 3 3 5 5 5 5 5 4 3

CN(0.8) 4 4 8 8 11 13 12 10 8

Student(2) 4 3 5 4 5 5 5 5 3

Student(3) 4 3 7 6 7 9 9 8 6
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Table 2 continued

CM AD W Dn,1 Dn,2 Dn,3 Dn,4 Dn,5 Dn,6

Student(5) 4 4 9 8 11 14 14 12 9

Student(10) 5 5 11 11 15 18 19 16 13

Stable(0.4,0) 45 83 58 62 64 66 69 71 74

Stable(0.7,0) 13 23 14 16 18 20 22 24 25

Stable(1.2,0) 4 3 4 4 4 4 4 3 3

Stable(1.5,0) 4 3 6 6 7 8 8 6 5

Stable(1.8,0) 5 5 11 10 14 16 16 14 11

Stable(0.5,1) 90 97 88 95 76 57 46 44 46

Stable(1.5,1) 9 9 11 13 11 12 11 10 8

Stable(2,1) 6 6 14 14 20 24 24 22 17

Tukey(0.2) 4 3 7 6 8 10 9 8 7

Tukey(0.1) 4 4 9 8 12 15 15 13 10

Tukey(0.05) 5 5 12 11 15 19 19 17 13

Tukey-L(-3) 35 79 44 52 58 62 65 68 71

Tukey-L(-2) 17 41 19 24 28 32 35 38 41

Tukey-L(-0.5) 4 3 5 4 4 4 4 3 3

Tukey-L(0.5) 12 15 31 36 45 50 50 47 40

Uniform 22 28 51 60 67 69 68 65 59

Logistic 5 4 11 9 13 16 17 15 11

Laplace 3 3 6 5 6 8 8 7 5

Gumbel 8 8 15 17 18 20 20 18 15

ML(0.25) 100 100 100 100 99 98 96 96 96

ML(0.5) 96 99 97 99 86 69 58 55 57

ML(0.75) 71 79 72 83 52 33 25 23 23

Exponential 31 32 41 49 34 30 28 27 25

Tables 2 and 3, the results using the median and interquartile-distance estimators are
given, with sample size n = 20 and n = 50, respectively. Tables 4 and 5 show the
corresponding results for the maximum likelihood estimator.

The main conclusions that can be drawn from the simulation results are the follow-
ing:

– As always in similar situations, there exists no uniformlymost powerful test, which
is in accordance to the results in Janssen (2000).

– As expected, the power of nearly all test statistics increases for increasing sample
size for all alternative distributions. An exception is the KL distance based test.
Its power decreases for certain alternatives, in particular for the Mittag-Leffler
distribution. This behavior has been reported previously, see Tables 3 to 6 in
Mahdizadeh and Zamanzade (2019), and may be due to the choice of the window
size.
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Table 3 Percentage of 10,000 MC samples declared significant by various tests for the Cauchy distribution
using median and half-IQR estimator (α = 0.05, n = 50)

Tn,1 Tn,2 Tn,3 Tn,4 Tn,5 Tn,6 T̃n,0 K L K S

C(0,1) 5 5 4 5 5 5 5 5 5

N(0,1) 24 24 4 1 0 0 72 100 26

CN(0.5) 8 5 3 3 3 3 23 14 7

CN(0.8) 16 13 2 1 1 1 51 46 14

Student(2) 6 4 2 2 2 2 23 52 6

Student(3) 10 7 2 2 1 1 38 82 9

Student(5) 14 12 2 1 1 1 52 96 13

Student(10) 18 18 3 1 1 0 64 100 18

Stable(0.4,0) 91 90 76 47 25 15 99 0 80

Stable(0.7,0) 23 23 14 10 8 7 46 0 16

Stable(1.2,0) 6 4 3 3 3 3 12 19 6

Stable(1.5,0) 11 8 3 2 2 2 38 53 9

Stable(1.8,0) 18 16 3 1 1 1 62 88 18

Stable(0.5,1) 100 100 100 100 97 87 71 13 100

Stable(1.5,1) 28 41 26 18 15 13 52 81 56

Stable(2,1) 23 23 4 1 1 0 72 100 26

Tukey(0.2) 10 7 2 1 1 1 40 87 9

Tukey(0.1) 15 13 2 1 1 1 56 98 15

Tukey(0.05) 19 17 3 1 1 1 64 100 18

Tukey-L(-3) 70 74 57 35 20 13 96 0 64

Tukey-L(-2) 33 35 24 16 12 10 64 0 26

Tukey-L(-0.5) 5 4 3 3 3 3 13 37 5

Tukey-L(0.5) 56 61 11 1 0 0 90 100 68

Uniform 87 87 18 1 0 0 97 100 95

Logistic 15 14 3 1 1 1 59 100 15

Laplace 6 4 2 1 1 1 21 94 6

Gumbel 33 43 18 8 6 5 68 100 58

ML(0.25) 100 100 100 100 100 100 100 4 100

ML(0.5) 100 100 100 100 98 91 86 15 100

ML(0.75) 100 100 100 93 78 62 30 45 100

Exponential 94 96 75 44 32 26 64 100 100

CM AD W Dn,1 Dn,2 Dn,3 Dn,4 Dn,5 Dn,6

C(0,1) 5 5 5 5 5 5 5 5 5

N(0,1) 29 55 67 65 83 89 92 93 94

CN(0.5) 6 7 13 13 15 16 16 15 13

CN(0.8) 14 23 38 37 49 54 55 55 54

Student(2) 6 8 14 10 15 19 21 23 23
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Table 3 continued

CM AD W Dn,1 Dn,2 Dn,3 Dn,4 Dn,5 Dn,6

Student(3) 10 16 27 21 32 40 44 47 49

Student(5) 15 28 41 36 52 62 67 70 72

Student(10) 20 41 54 49 70 78 83 85 86

Stable(0.4,0) 91 99 98 97 96 97 97 98 98

Stable(0.7,0) 17 39 26 29 34 37 41 45 48

Stable(1.2,0) 5 5 8 6 7 8 8 8 8

Stable(1.5,0) 9 13 24 20 29 34 36 37 37

Stable(1.8,0) 19 35 50 46 63 71 74 77 77

Stable(0.5,1) 100 100 100 100 100 100 100 99 99

Stable(1.5,1) 38 53 60 61 71 72 70 69 68

Stable(2,1) 28 55 67 65 84 89 92 94 94

Tukey(0.2) 9 16 27 22 34 42 47 50 52

Tukey(0.1) 16 32 44 39 57 67 72 75 77

Tukey(0.05) 21 41 54 50 70 78 83 85 87

Tukey-L(-3) 73 99 91 90 94 95 96 97 98

Tukey-L(-2) 29 72 47 48 58 64 68 72 75

Tukey-L(-0.5) 5 5 8 7 8 10 11 12 12

Tukey-L(0.5) 63 89 92 96 99 100 100 100 100

Uniform 86 98 99 100 100 100 100 100 100

Logistic 17 35 48 43 63 72 77 80 82

Laplace 7 12 18 13 24 32 37 40 42

Gumbel 42 64 73 74 86 89 90 91 91

ML(0.25) 100 100 100 100 100 100 100 100 100

ML(0.5) 100 100 100 100 100 100 100 100 100

ML(0.75) 100 100 100 100 100 100 98 94 91

Exponential 92 98 99 100 100 99 98 97 97

– The new tests Tn,a, a = 1, . . . , 6, perform better using the maximum likelihood
estimator than with median and half-IQR. Hence, the latter estimators should not
be used. For all other test statistics, including T̃n,0, performance is comparable,
or even better when using median and half-IQR. In any case, the choice of the
estimation method can have a pronounced influence on the performance of the
tests.

– The power of T̃n,0 is comparable under both estimation methods.
– For alternatives with finite first and second moments, the KL distance based test
has the highest power among all competitors. On the other hand, its power breaks
down completely for some alternatives without existing first moment, and it is low
for some alternatives with infinite second moment. Hence, the test can not really
be seen as an omnibus test.

123



Cauchy or not Cauchy? New goodness-of-fit tests...

Table 4 Percentage of 10,000 MC samples declared significant by various tests for the Cauchy distribution
using ML estimation (α = 0.05, n = 20)

Tn,1 Tn,2 Tn,3 Tn,4 Tn,5 Tn,6 T̃n,0 K L K S

C(0,1) 5 5 5 5 5 5 5 5 5

N(0,1) 16 30 34 28 10 3 26 76 5

CN(0.5) 8 10 8 5 2 2 9 14 4

CN(0.8) 13 19 18 12 5 2 18 37 5

Student(2) 8 9 8 6 3 2 10 22 4

Student(3) 10 14 14 10 4 2 15 37 4

Student(5) 12 19 20 14 6 2 19 51 5

Student(10) 15 25 27 20 8 3 22 64 5

Stable(0.4,0) 53 64 72 77 80 81 76 0 42

Stable(0.7,0) 10 14 19 22 25 26 19 1 12

Stable(1.2,0) 7 6 5 4 2 2 7 11 4

Stable(1.5,0) 10 13 12 8 3 2 14 29 4

Stable(1.8,0) 14 23 25 18 7 3 21 55 5

Stable(0.5,1) 55 70 78 81 83 84 26 54 99

Stable(1.5,1) 14 21 22 17 11 7 16 50 14

Stable(2,1) 17 29 34 28 10 4 26 76 5

Tukey(0.2) 10 14 14 10 4 2 14 38 4

Tukey(0.1) 13 20 21 16 6 2 19 55 5

Tukey(0.05) 15 25 28 21 7 3 23 65 5

Tukey-L(-3) 34 49 60 67 72 75 60 0 35

Tukey-L(-2) 13 21 29 35 40 42 29 1 17

Tukey-L(-0.5) 6 7 6 4 3 2 8 16 4

Tukey-L(0.5) 31 55 64 59 24 8 37 96 11

Uniform 48 74 81 78 43 14 45 99 22

Logistic 14 22 24 18 7 3 21 60 5

Laplace 8 10 10 8 4 2 10 35 3

Gumbel 18 31 35 30 16 9 24 74 13

ML(0.25) 99 99 100 100 100 100 92 77 100

ML(0.5) 80 86 90 91 92 92 43 72 100

ML(0.75) 52 63 66 66 65 64 12 70 96

Exponential 38 53 57 54 45 36 20 92 64

CM AD W Dn,1 Dn,2 Dn,3 Dn,4 Dn,5 Dn,6

C(0,1) 5 5 5 5 5 5 5 5 5

N(0,1) 3 2 29 23 17 10 7 4 2

CN(0.5) 4 3 9 7 3 2 2 2 1

CN(0.8) 3 2 18 14 8 5 3 2 1
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Table 4 continued

CM AD W Dn,1 Dn,2 Dn,3 Dn,4 Dn,5 Dn,6

Student(2) 3 2 10 7 4 2 2 1 1

Student(3) 2 1 14 10 6 3 2 2 1

Student(5) 3 2 19 14 9 5 4 3 2

Student(10) 3 2 24 19 13 8 5 3 2

Stable(0.4,0) 33 77 77 71 79 83 86 87 88

Stable(0.7,0) 11 18 15 18 24 26 28 29 30

Stable(1.2,0) 4 3 7 5 3 2 2 2 2

Stable(1.5,0) 3 2 14 9 5 3 2 2 1

Stable(1.8,0) 3 2 23 17 11 7 5 3 2

Stable(0.5,1) 99 99 82 79 82 85 87 88 89

Stable(1.5,1) 12 9 22 17 11 9 7 6 5

Stable(2,1) 3 2 28 23 17 10 7 4 3

Tukey(0.2) 3 2 14 10 6 4 3 2 1

Tukey(0.1) 3 2 20 15 10 5 4 2 2

Tukey(0.05) 3 2 24 19 13 8 5 3 2

Tukey-L(-3) 27 72 60 58 71 76 79 81 82

Tukey-L(-2) 15 34 26 27 38 42 45 48 49

Tukey-L(-0.5) 3 2 7 5 3 2 2 1 1

Tukey-L(0.5) 6 5 50 50 43 28 19 11 7

Uniform 13 10 66 72 65 48 35 24 14

Logistic 3 2 22 17 11 6 4 3 2

Laplace 2 1 10 8 5 3 2 2 1

Gumbel 10 7 31 25 19 14 12 9 7

ML(0.25) 100 100 100 100 100 100 100 100 100

ML(0.5) 100 100 96 93 92 94 95 95 96

ML(0.75) 93 91 72 66 62 64 66 67 68

Exponential 50 43 55 50 41 39 38 37 35

– Among the new tests, values of the tuning parameter around a = 3 result in a quite
homogeneous power against all alternatives. For the tests based on Dn,λ, λ = 5
seems to be a good choice. Both classes of tests perform similarly for the ML
estimator; for the median and half-IQR estimator, the latter is preferable.

– Among the group of edf tests, W outperform the other tests in most cases.
– For symmetric alternatives without existing first moment as Stable(0.4,0), Sta-
ble(0.7,0), Tukey-L(-3) and Tukey-L(-2), the tests based on T̃n,0, AD and Dn,6
perform best.
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Table 5 Percentage of 10,000 MC samples declared significant by various tests for the Cauchy distribution
using ML estimation (α = 0.05, n = 50)

Tn,1 Tn,2 Tn,3 Tn,4 Tn,5 Tn,6 T̃n,0 K L K S

C(0,1) 5 5 5 5 5 5 5 5 5

N(0,1) 40 76 90 95 96 96 64 100 16

CN(0.5) 14 20 20 15 10 6 22 14 6

CN(0.8) 28 53 61 60 52 39 48 46 11

Student(2) 12 20 24 23 20 15 23 52 5

Student(3) 19 36 45 48 46 38 38 82 7

Student(5) 26 51 66 71 71 66 48 96 9

Student(10) 32 65 81 86 88 86 57 100 13

Stable(0.4,0) 95 98 99 99 99 99 99 0 82

Stable(0.7,0) 23 34 40 45 47 49 44 0 18

Stable(1.2,0) 8 10 10 8 6 4 12 18 5

Stable(1.5,0) 19 34 40 39 33 25 35 53 7

Stable(1.8,0) 34 62 76 80 78 71 56 88 12

Stable(0.5,1) 98 100 100 100 100 100 46 6 100

Stable(1.5,1) 32 61 74 78 76 68 44 80 57

Stable(2,1) 41 77 90 95 97 96 65 100 17

Tukey(0.2) 20 36 46 49 48 42 37 87 7

Tukey(0.1) 27 55 70 76 77 73 51 98 9

Tukey(0.05) 33 66 81 88 89 87 57 100 13

Tukey-L(-3) 79 92 96 97 98 98 96 0 68

Tukey-L(-2) 33 51 63 69 73 76 63 0 29

Tukey-L(-0.5) 8 11 13 12 11 8 13 37 4

Tukey-L(0.5) 75 98 100 100 100 100 83 100 54

Uniform 95 100 100 100 100 100 91 100 91

Logistic 28 58 74 81 82 80 52 100 10

Laplace 10 21 30 36 38 36 19 94 4

Gumbel 44 79 91 94 96 94 59 100 57

ML(0.25) 100 100 100 100 100 100 100 0 100

ML(0.5) 100 100 100 100 100 100 76 6 100

ML(0.75) 97 99 100 100 100 99 14 38 100

Exponential 87 98 99 100 100 99 48 100 100

CM AD W Dn,1 Dn,2 Dn,3 Dn,4 Dn,5 Dn,6

C(0,1) 5 5 5 5 5 5 5 5 5

N(0,1) 9 15 77 77 87 90 91 91 91

CN(0.5) 4 3 19 16 13 10 9 8 7

CN(0.8) 6 6 50 48 50 48 46 43 39
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Table 5 continued

CM AD W Dn,1 Dn,2 Dn,3 Dn,4 Dn,5 Dn,6

Student(2) 3 3 21 16 15 14 15 14 13

Student(3) 4 4 38 30 33 34 36 35 35

Student(5) 5 6 54 47 55 58 60 61 60

Student(10) 6 10 67 63 74 78 80 80 80

Stable(0.4,0) 81 99 100 99 99 100 100 100 100

Stable(0.7,0) 15 31 38 36 44 49 52 53 55

Stable(1.2,0) 4 3 10 8 6 5 5 4 4

Stable(1.5,0) 4 4 34 28 28 27 27 25 24

Stable(1.8,0) 6 9 64 60 67 68 69 68 67

Stable(0.5,1) 100 100 100 100 100 100 100 100 100

Stable(1.5,1) 43 46 62 60 66 66 67 67 66

Stable(2,1) 9 16 78 77 88 90 92 92 91

Tukey(0.2) 3 4 39 31 35 36 38 38 38

Tukey(0.1) 5 7 57 52 61 65 67 67 67

Tukey(0.05) 6 10 68 65 75 79 81 82 82

Tukey-L(-3) 60 98 96 94 97 98 99 99 99

Tukey-L(-2) 23 62 60 57 69 75 78 80 81

Tukey-L(-0.5) 3 3 12 9 8 8 7 7 7

Tukey-L(0.5) 27 50 97 99 100 100 100 100 100

Uniform 53 80 100 100 100 100 100 100 100

Logistic 5 8 60 56 66 70 72 73 72

Laplace 2 2 23 20 25 25 26 26 26

Gumbel 36 43 80 80 88 90 91 91 91

ML(0.25) 100 100 100 100 100 100 100 100 100

ML(0.5) 100 100 100 100 100 100 100 100 100

ML(0.75) 100 100 100 100 100 100 100 100 100

Exponential 96 97 98 99 99 99 99 99 99

6 Real data example: log-returns of cryptocurrencies

In this section, we apply the tests for the Cauchy distribution to log-returns of various
cryptocurrencies, namely Bitcoin (BTC), Ethereum (ETH), Ripple (XRP), Litecoin
(LTC), BitcoinCash (BCH), EOS (EOS), BinanceCoin (BNB) and Tron(TRX). The
Cauchy distribution is found to be a comparably good model for such data sets in
Szczygielski et al. (2020). There, 58 hypothetical distributions have been fitted to 15
major cryptocurrencies, and the Cauchymodel turned out to be the best fitting distribu-
tion for 10 cryptocurrencies (including all currencies considered here). In Szczygielski
et al. (2020), the number of observations of the various data sets varied widely from
638 to 2255. Further, with very large data sets, each model will be rejected in the end.
Hence, we decided to consider shorter time series: a series with daily observations
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Fig. 1 Histograms of cryptocurrency log-returns from January01,2020 to June10,2021, together with fitted
Cauchy densities

from January 01, 2020 to June 10, 2021, with sample size 527 (526 for ETH), and
an even shorter series from January 01, 2021 to June 10, 2021, with sample size 161
(160 for ETH). All prices are closing values in U.S. dollars, freely accessible from
CryptoDataDownload via the link www.cryptodatadownload.com/data. Returns are
estimated by taking logarithmic differences. Days with zero trading volume are omit-
ted. Figure 1 shows histogramms of the datasets with larger time span, together with
the densities of fitted Cauchy distributions. Visually, the Cauchy model seems to be a
reasonable approximation.

As in the above cited literature, we assume in the following the independence of
daily log return data.This is justified in view of the very weak serial correlations of
all datasets. Figure 2 shows the autocorrelations of the first four datasets with larger
time span, which are all quite small and not significant in most cases. The findings are
similar for the other four cryptocurrencies and the shorter time span.
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Fig. 2 Autocorrelations of cryptocurrency log-returns from January01,2020 to June10,2021

Tables 6 and 7 report the results of the different tests for the Cauchy model for
the two time series. The p-values are based on Monte Carlo simulation under the
Cauchy model with 104 replications. For the test based on the KL distance, we choose
the window length m = 100 for the longer time series, and m = 50 for the shorter
one. The results show that even if the Cauchy distribution fits better than many other
distributional models, it is still not an acceptable fit in any of the cases, possibly with
the exception of EOS data. The tests based on Tn,5, K L and Dn,5 result in p-values of
0.000 for all currencies for the longer time series, and p-values smaller than 0.01 for all
currencies for the shorter one. The edf based tests have generally larger p-values, with
the Watson test having smallest, and Cramér–von Mises test having largest p-values.

Overall, the EOS data seem to be most compatible with the hypothesis of a Cauchy
distribution. For the shorter series, the p-values of all edf based tests are larger than
0.1, and the tests based on Tn,1, T̃n,0, K S and CM don’t reject H0 on the 5%-level
even for the larger data set. These tests also show relatively large values for Ripple
(XRP) and BitcoinCash (BCH). On the whole, the results confirm the findings of the
simulation study concerning the comparative power of the test.

7 Conclusion

Wehave proposed a family of tests for theCauchy family of distributionswith desirable
theoretical and computational features as consistency and competitiveness to existing
procedures. The authors suggest in view of the results of the simulation study to use
the tuning parameter a = 4 in applications for good power against most alternatives.
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We conclude the paper by pointing out some open problems for further research.
The explicit formula of the covariance kernels in Remark 3.2 open ground to numerical
approximation of the eigenvalues of the integral operator K. Especially an approxi-
mation of the largest eigenvalue would offer more theoretical insights, since, as is
well known, it is useful for efficiency statements in the sense of Bahadur, see Bahadur
(1960) and Nikitin (1995). A profound knowledge of the eigenvalues leads to explicit
values of cumulants of the null distribution, such that a fit of the null distribution to the
Pearson distribution system is possible. This usually gives a very accurate approxima-
tion of the quantiles of the distribution and hence of the critical values of the test, see
i.e. in the context of normality testing (Ebner 2020; Henze 1990). In view of the results
of Baringhaus et al. (2017), we conjecture that for a large class of fixed alternatives√
n(Tn/n − F ) converges weakly to a centred normal distribution, where the vari-

ance is positive andmay be consistently estimated. Since the derivation involves heavy
algebra, the authors postpone results of such kind to future work. Another desirable
extension for the family of tests is a data dependent choice of the tuning parameter
a, see Tenreiro (2019) for a procedure which might be applicable. Finally, it is clear
that the choice of the weight function ωa(t) has an impact on the power of the tests,
so maybe other choices lead to better performances.
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A Proofs

A.1 Proof of Theorem 3.1

Recall that Tn = ‖Zn‖2H with Zn defined in (11). In view of the affine invariance of
Tn we assume w.l.o.g. α = 0 and β = 1. Denoting

h(t, x) = 2x

1 + x2
(cos(t x) − sin(t x)) + t (cos(t x) + sin(t x)) , t, x ∈ R, (21)

we have Zn(t) = 1√
n

∑n
j=1 h(t,Yn, j ). A simple change of variable and a multivariate

Taylor expansion around (α, β) = (0, 1) shows

‖Zn‖2H = β̂n

∫ ∞

−∞

∣∣∣∣
1√
n

n∑
j=1

2Yn, j

1 + Y 2
n, j

(
cos(uX j − uα̂n) − sin(uX j − uα̂n)

)
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+β̂nu
(
cos(uX j − uα̂n) + sin(uX j − uα̂n)

) ∣∣∣∣
2

ω
(
β̂nu

)
du

= β̂n

∫ ∞

−∞

∣∣∣∣
1√
n

n∑
j=1

h(u, X j ) + g1(u, X j )̂αn + g2(u, X j )
(
β̂n − 1

) + R j (u)

∣∣∣∣
2

ω
(
β̂nu

)
du,

where

g1(u, x) = 1

(1 + x2)2

(
(u2x4 − 2ux3 + (2u2 − 2)x2 − 2ux + u2 + 2) cos(ux)

−(u2x4 + 2ux3 + (2u2 − 2)x2 + 2ux + u2 + 2) sin(ux)
)

, (22)

and

g2(u, x) = 1

(1 + x2)2

(
(ux4 + 2ux2 + 2x3 + u − 2x) cos(ux)

+(ux4 + 2ux2 − 2x3 + u + 2x) sin(ux)
)

, u, x ∈ R. (23)

The remainder term R j (u) = (̂
αn, β̂n − 1

)
A j (u, ξn)

(̂
αn, β̂n − 1

)�
, t ∈ R, and

A j (u, ξn) is the 2× 2 matrix given by the second order partial derivatives in the Tay-
lor expansion. Here, each component of the matrix is evaluated at ξn = (ξ1,n, ξ2,n) ∈
[0, α̂n]×[1, β̂n], where the order of the endpoints of the intervals is reversed whenever
α̂n < 0 or β̂n < 1. Note that by assumption, we have

√
nα̂n = 1√

n

n∑
j=1

ψ1(X j ) + r1n,
√
n(β̂n − 1) = 1√

n

n∑
j=1

ψ2(X j ) + r2n, (24)

with r1n, r2n = oP(1) and E[ψ1(X)] = E[ψ2(X)] = 0 and E[ψ(X)ψ(X)�] = C · I2,
where X ∼ C(0, 1), ψ(X) = (ψ1(X), ψ2(X))�, C is a positive constant and I2

and is the 2 × 2 unit matrix. This shows that (̂αn, β̂n)
P→ (0, 1) and consequently

ξn
P→ (0, 1) when n → ∞. Next, we denote by ‖ · ‖Hn the norm in the Hilbert

space Hn = L2(R,B, ω(β̂nu)du), equipped with the usual scalar product. By the
Cauchy-Schwarz inequality, we have

‖R j‖2Hn
≤ ‖ (̂

αn, β̂n − 1
) ‖4

∫ ∞

−∞
‖A j (u, ξn)‖2Fω(β̂nu) du,

where ‖ · ‖F denotes the Frobenius norm. Denote by A j,1(u, ξn) the upper left com-
ponent of the matrix A j (u, ξn). Writing κm,�(x) = xm(1 + x2)−� for all x ∈ R and
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m, � ∈ N, we have |κm,�(x)| ≤ 1 for m ≤ � ∈ N, and hence

|A j,1(u, ξn)| ≤ 8

ξ2,n
|u||κ0,1((X j − ξ1,n)/ξ2,n)| + 4u2|κ1,1((X j − ξ1,n)/ξ2,n)|

+ 24

ξ22,n
|κ1,2((X j − ξ1,n)/ξ2,n)| + 16

ξ2,n
|κ2,2((X j − ξ1,n)/ξ2,n)|

+ 32

ξ22,n
|κ3,3((X j − ξ1,n)/ξ2,n)| + 2ξ2,n|u|3

≤ 8

ξ2,n
|u| + 4u2 + 56

ξ22,n
+ 16

ξ2,n
+ 2ξ2,n|u|3

follows. Similar expressions hold for all components of the matrix A j (u, ξn). There-
fore by a change of variable we have

β̂n

∫ ∞

−∞
‖A j (u, ξn)‖2Fω(β̂nu) du ≤ C max{1/ξ42,n, 1/ξ22,n, ξ22,n}

∫ ∞

−∞
u6ω(u) du,

(25)

where C is a positive constant.
Hence, defining

Z∗
n(u) = 1√

n

n∑
j=1

[
h(u, X j ) + g1(u, X j )̂αn + g2(u, X j )(β̂n − 1)

]
, u ∈ R, (26)

we have by the triangle inequality and (25)

∣∣∣∣‖Zn‖H −
√

β̂n‖Z∗
n |Hn

∣∣∣∣ ≤
√

β̂n
1√
n

n∑
j=1

‖R j‖Hn

≤ √
n

∥∥(̂
αn, β̂n − 1

)∣∣2 1

n

n∑
j=1

(
β̂n

∫ ∞

−∞
‖A j (u, ξn)‖2Fω(β̂nu) du

)1/2

≤ C |max{1/ξ22,n, 1/ξ2,n, ξ2,n}| × . . .

. . . × √
n
(̂
αn, β̂n − 1

) (̂
αn, β̂n − 1

)�
(∫ ∞

−∞
u6ω(u) du

)1/2

.

The last term is oP(1) since
√
n

(̂
αn, β̂n − 1

)
is tight due to the linearity assumption

(24) and the multivariate central limit theorem, ξ2,n
P−→ 1, the continuous mapping

theorem, as well as (7) and
(̂
αn, β̂n − 1

) = oP(1). This concludes that ‖Zn‖2H =
β̂n‖Z∗

n‖2Hn
+ oP(1).
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We obtain using symmetry arguments

E[g1(t, X1)] = −1

2

(
t2 + |t | + 1

)
e−|t |, and E[g2(t, X1)] = 1

2
t
(|t | + 1

)
e−|t |.

By applying theCauchy-Schwarz inequality, we directly see that both functions belong
to H, since

∫ ∞

−∞
|E[g1(t, X1)]|2ω(t) dt ≤ 13

8

∫ ∞

−∞
ω(t) dt < ∞,

∫ ∞

−∞
|E[g2(t, X1)]|2ω(t) dt ≤ 7

8

∫ ∞

−∞
ω(t) dt < ∞.

By the law of large numbers in Hilbert spaces, we have for l = 1, 2

∥∥∥1
n

n∑
j=1

gl(·, X j ) − E[gl(·, X1)]
∥∥∥
H

= oP(1). (27)

Replacing
√
nα̂n and

√
n(β̂n − 1) by the linear representations (24), and substituting

the arithmetic means by their asymptotic counterparts leads to

Z̃n(t) = 1√
n

n∑
j=1

h(t, X j ) − 1

2

(
t2 + |t | + 1

)
e−|t |ψ1(X j )

+1

2
t
(|t | + 1

)
e−|t |ψ2(X j ), t ∈ R. (28)

Since for all a1, a2 ∈ R, (a1 + a2)2 ≤ 2a21 + 2a22 holds, we have

‖Z∗
n − Z̃n‖2H =

∫ ∞

−∞

∣∣∣∣
1√
n

n∑
j=1

g1(t, X j )̂αn + g2(t, X j )(β̂n − 1)

+ 1

2

(
t2 + |t | + 1

)
e−|t |ψ1(X j ) − 1

2
t
(|t | + 1

)
e−|t |ψ2(X j )

∣∣∣∣
2

ω(t)dt

(24)≤
∫ ∞

−∞

∣∣∣∣
(
1

n

n∑
j=1

g1(t, X j ) + 1

2

(
t2 + |t | + 1

)
e−|t |

)
1√
n

n∑
k=1

ψ1(Xk)

+
(
1

n

n∑
j=1

g2(t, X j ) − 1

2
t
(|t | + 1

)
e−|t |

)
1√
n

n∑
k=1

ψ2(Xk)

∣∣∣∣
2

ω(t)dt + oP(1)

≤ 2

∥∥∥∥
1

n

n∑
j=1

g1(·, X j ) − E[g1(·, X1)]
∥∥∥∥
2

H

(
1√
n

n∑
k=1

ψ1(Xk)

)2

+ 2

∥∥∥∥
1

n

n∑
j=1

g2(·, X j ) − E[g2(·, X1)]
∥∥∥∥
2

H

(
1√
n

n∑
k=1

ψ2(Xk)

)2

+ oP(1).
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By (27), the tightness of 1√
n

∑n
j=1 ψl(X j ), l = 1, 2 and Slutzky’s Theorem, we

have ‖Z∗
n − Z̃n‖H P−→ 0, as n → ∞. Hence Z∗

n and Z̃n share the same weak limit
in H. Writing Z̃n(t) = n−1/2 ∑n

j=1 Z̃n, j (t), t ∈ R, where Z̃n, j (t) = h(t, X j ) −
1
2

(
t2 + |t | + 1

)
e−|t |ψ1(X j ) + 1

2 t
(|t | + 1

)
e−|t |ψ2(X j ), t ∈ R, j = 1, . . . , n, we

have E[Z̃n,1(t)] = 0 and Z̃n,1, Z̃n,2, . . . are i.i.d. centred random elements in H.
Straightforward calculations show that K (s, t) = E[Z̃n,1(s)Z̃n,1(t)] has the stated
formula and the weak limit of Z̃n follows by the central limit theorem in Hilbert
spaces. To conclude the proof, we have by the Cauchy-Schwarz inequality

∣∣‖Z∗
n‖Hn − ‖Z∗

n‖H
∣∣ ≤

(∫ ∞

−∞
(
Z∗
n(t)

)4
ω(t) dt

)1/2
(∫ ∞

−∞

∣∣∣∣
ω(β̂nt)

ω(t)
− 1

∣∣∣∣
2

ω(t) dt

)1/2

.

Since by assumption ω1/2 is a weight function, we directly see using the Cauchy-

Schwarz inequality and the continuousmapping theorem that
(∫ ∞

−∞
(
Z∗
n(t)

)4
ω(t) dt

)1/2

is tight. Since by direct calculations
∫ ∞
−∞

∣∣∣ω(β̂n t)
ω(t) − 1

∣∣∣
2
ω(t) dt = oP(1) holds, we see

that ‖Zn‖2H = β̂n‖Z∗
n‖2H + oP(1). Finally, by Slutzky’s theorem, ‖Zn‖2H has the same

weak limit as ‖Z̃n‖2H and the assertion follows. �

A.2 Proof of Theorem 4.1

Let Zn and Z∗
n be defined as in (11) and (26). Since by assumption we have

(̂αn, β̂n)
P−→ (0, 1), we can show in complete analogy to the proof of Theo-

rem 3.1, that n−1
∣∣‖Zn‖2H − ‖Z∗

n‖2H
∣∣ P−→ 0 holds. Let g j (·, ·), j = 1, 2, be

defined as in (22) and (23), and put Z0
n(t) = n−1/2 ∑n

j=1 h(t, X j ), t ∈ R. Then

n−1/2
(
Z∗
n(t)− Z0

n(t)
) = α̂n/n

∑n
j=1 g1(t, X j )+ (β̂n −1)/n

∑n
j=1 g2(t, X j ) follows

and by the triangle inequality we have

‖n−1/2(Z∗
n − Z0

n)‖2H =
∫ ∞

−∞

∣∣∣̂αn
1

n

n∑
j=1

g1(t, X j ) + (β̂n − 1)
1

n

n∑
j=1

g2(t, X j )

∣∣∣
2
ω(t)dt

≤
∫ ∞

−∞

(
|̂αn |

∣∣∣ 1
n

n∑
j=1

g1(t, X j )

∣∣∣ + |β̂n − 1|
∣∣∣ 1
n

n∑
j=1

g2(t, X j )

∣∣∣
)2

ω(t)dt

≤ 2|̂αn |2
∥∥∥ 1
n

n∑
j=1

g1(t, X j )

∥∥∥
2

H

+ 2|β̂n − 1|2
∥∥∥ 1
n

n∑
j=1

g2(t, X j )

∥∥∥
2

H

.

By the law of large numbers in Hilbert spaces and (̂αn, β̂n)
P−→ (0, 1), the right

hand side is oP(1). Note that the existence of the mean values is guaranteed by the
assumptions. Again, the law of large numbers inH shows n−1/2Z0

n(t)
a.s.−→ Eh(t, X),
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as n → ∞, and by the symmetry of the weight function, we have

Tn
n

=
∥∥∥ 1√

n
Zn

∥∥∥
2

H

P−→
∫ ∞

−∞
|Eh(t, X)|2ω(t)dt

=
∫ ∞

−∞

∣∣∣∣E
[(

i t − 2X

1 + X2

)
eit X

]∣∣∣∣
2

ω(t)dt,

as n → ∞. ��

A.3 Covariance kernel under EISE estimators

We have for the covariance kernel in Theorem 3.1 in case of EISE estimators

KEI SE (s, t; ν) = 1

2

(
s2 + t2 + |s − t | + 1

)
e−|s−t |

− 1

2
(t2 + |t | + 1)(ν + 1)

(
2|s|(ν + 2)ν3 + (ν + 1)(1 − |s|) + |s| + 3

ν3

)
e−|s|−|t |

+ 1

2
(t2 + |t | + 1)

(
(ν + 1)(|s|(ν + 1)2 + 3(ν + 1) − |s|) − 1

ν3

+ (ν + 1)(s2(ν + 2)(ν + 1) + 2|s|(ν + 2) + s2)

)
e−(ν+1)|s|−|t |

− 1

2
t(|t | + 1)(ν + 1)

(
s(ν + 2)3(ν + 1)

2ν2
+ s(ν + 1)2 + s − 4 sgn(s)

)
e−|s|−|t |

+ 1

2
t(|t | + 1)

(
s(ν + 2)3(|s|(ν + 1)3 − 3(ν + 1)2 + |s|(ν + 1) + 1)

4(ν + 1)ν2

− s(ν + 1)2 + s − 4 sgn(s)(ν + 1)

)
e−|s|−|t |

+ 1

2π
t(|t | + 1)(ν + 2)3

(
s J1(s) − 2J2(s)

)
e−|t |

− 1

2
(s2 + |s| + 1)(ν + 1)

(
2|t |(ν + 2)ν3 + (ν + 1)(1 − |t |) + |t | + 3

ν3

)
e−|s|−|t |

+ 1

2
(s2 + |s| + 1)

(
(ν + 1)(|t |(ν + 1)2 + 3(ν + 1) − |t |) − 1

ν3

+ (ν + 1)(t2(ν + 2)(ν + 1) + 2|t |(ν + 2) + t2)

)
e−(ν+1)|s|−|t |

− 1

2
s(|s| + 1)(ν + 1)

(
t(ν + 2)3(ν + 1)

2ν2
+ t(ν + 1)2 + t − 4 sgn(t)

)
e−|s|−|t |

+ 1

2
s(|s| + 1)

(
t(ν + 2)3(|t |(ν + 1)3 − 3(ν + 1)2 + |t |(ν + 1) + 1)

4(ν + 1)ν2

− t(ν + 1)2 + t − 4 sgn(t)(ν + 1)

)
e−|s|−|t |

+ 1

2π
s(|s| + 1)(ν + 2)3

(
t J1(t) − 2J2(t)

)
e−|s|

+ (
(s2 + |s| + 1)(t2 + |t | + 1) + s(|s| + 1)t(|t | + 1)

) (ν + 2)2(5ν2 + 14ν + 10)

64(ν + 1)3
· e−|s|−|t |,
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where sgn(·) is the sign function, and

J1(t; ν) =
∫ ∞

0

x2 cos(t x)

(1 + x2)((ν + 1)2 + x2)2
dx,

J2(t; ν) =
∫ ∞

0

x3 sin(t x)

(1 + x2)2((ν + 1)2 + x2)2
dx .
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