KIT | KIT-Bibliothek | Impressum | Datenschutz

Failing parametrizations: what can go wrong when approximating spectral submanifolds

Stoychev, Alexander K. 1; Römer, Ulrich J. ORCID iD icon 1
1 Institut für Technische Mechanik (ITM), Karlsruher Institut für Technologie (KIT)

Abstract:

Invariant manifolds provide useful insights into the behavior of nonlinear dynamical systems. For conservative vibration problems, Lyapunov subcenter manifolds constitute the nonlinear extension of spectral subspaces consisting of one or more modes of the linearized system. Conversely, spectral submanifolds represent the spectral dynamics of non-conservative, nonlinear problems. While finding global invariant manifolds remains a challenge, approximations thereof can be simple to acquire and still provide an effective framework for analyzing a wide variety of problems near equilibrium solutions. This approach has been successfully employed to study both the behavior of autonomous systems and the effects of non-autonomous forcing. The current computation strategies rely on a parametrization of the invariant manifold and the reduced dynamics thereon via truncated power series. While this leads to efficient recursive algorithms, the problem itself is ambiguous, since it permits the use of various approaches for constructing the reduced system to which the invariant manifold is conjugated. Although this ambiguity is well known, it is rarely discussed and usually resolved by an ad hoc choice of method, the effects of which are mostly neglected. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000155071
Veröffentlicht am 25.01.2023
Originalveröffentlichung
DOI: 10.1007/s11071-022-08154-3
Scopus
Zitationen: 3
Web of Science
Zitationen: 2
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technische Mechanik (ITM)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 04.2023
Sprache Englisch
Identifikator ISSN: 0924-090X, 1573-269X
KITopen-ID: 1000155071
Erschienen in Nonlinear Dynamics
Verlag Springer
Band 111
Heft 7
Seiten 5963–6000
Vorab online veröffentlicht am 23.12.2022
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page