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Abstract – The method of successive approximations is applied to solve the Maxwell 

equations in cylindrical plasma waveguide geometry for electromagnetic waves with 

arbitrary azimuthal wave index and small axial wavenumber. The theory of surface 

flute waves is used as zeroth approximation. The study generalizes previous 

investigations whose results are utilized for the verification of newly obtained 

conclusions. The influences of several plasma waveguide parameters as magnitude 

and sign of the azimuthal wave index, the width of the dielectric layer between 

plasma and waveguide wall and the magnitude of its dielectric constant, the radii of 

the plasma column and the metal wall, and the external axial static magnetic field on 

the wave dispersion properties are analyzed. 
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I. Introduction 

Studying electromagnetic flute waves with zero axial wavenumber (𝑘𝑧 = 0), can 

be of interest in different fields of plasma physics. A comprehensive overview of 

surface wave applications in the fields of plasma electronics, plasma-antenna 

systems, description of phenomena in the plasma periphery of magnetic confinement 

fusion devices, nano-technologies, and for plasma production is given in [1]. In 
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particular, surface flute waves can be of interest for plasma electronics due to their 

efficient interaction with an annual electron beam, which gyrates along large Larmor 

orbits around the plasma column [2-9]. 

Studying flute waves has the advantage that they are electromagnetic waves of 

ordinary (with the components 𝐸𝑧, 𝐻𝑟, and 𝐻𝜑 of the wave fields) and extraordinary 

(with the components 𝐻𝑧, 𝐸𝑟, and 𝐸𝜑 of the wave fields) polarization, which 

propagate in an axial static magnetic field independently of each other. In addition, 

the Maxwell equations can be solved for these two polarizations separately. The 

subset of Maxwell equations for each polarization can be written in the form of 

second order differential equations, e. g., for either 𝐸𝑧 or 𝐻𝑧, respectively. 

On the other hand, studying flute waves also has an obvious disadvantage. They 

describe specific waves with 𝑘𝑧 = 0 only. However, the theory of flute waves can be 

and has been used as base for studying electromagnetic waves with small axial 

wavenumbers, 𝑘𝑧 ≠ 0 [1, 9-11]. In particular, the paper [11] was devoted to the 

investigation of surface flute waves in circular metal waveguides entirely filled with 

cold plasma in the presence of an axial static magnetic field. The dispersion 

properties of surface flute waves in circular metal waveguides partially filled by 

plasma without any magnetic field were studied in [10]. The initial stage of the 

interaction of long-wavelength waves of surface type with an annular electron beam 

gyrating around the plasma column along large Larmor orbits was investigated in [9]. 

The present study is devoted to investigation of the dispersion properties of 

surface type waves which propagate with arbitrary azimuthal wave index m and small 

axial wavenumber 𝑘𝑧 in circular metal waveguides partially filled with cold 

collisionless plasma in presence of an axial static magnetic field 𝐵⃗ 0. Such statement 

of the problem significantly differs from both considered in [10,11]. The present 

study generalizes the results in [10] by taking into account an axial static magnetic 

field, which is applied in many technological devices. At the same time, the 

investigation carried out in [11] is generalized in the present paper by introducing the 
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dielectric layer. The latter can, for instance, play an important role in a plasma device 

preventing interaction between the plasma and the metal wall.  

Taking into account the plasma particles’ thermal motion is known to result in the 

appearance of a number of new physical effects. In particular, the propagation of 

potential surface waves, which do not exist in the Voigt geometry in a cold plasma, 

becomes possible. Moreover, these “new” waves propagate in different frequency 

ranges than in the case of cold plasmas. From the mathematical point of view, these 

new phenomena are the result of including a term proportional to the kinetic pressure 

gradient into the quasi-hydrodynamic equations of motion for the plasma particles. In 

other words, the account for the plasma particle thermal motion modifies the plasma 

permittivity tensor by introducing terms proportional to the Larmor radius squared. 

This causes the increase of the order of the differential equation which describes the 

spatial distribution of the wave field with the consequences similar to mode coupling 

described in the present paper. The properties of the surface waves at the plasma-

metal interface, which arise when a hot plasma permittivity tensor is taken into 

account in the Voigt geometry, were presented in particular in [12,13]. 

The paper is arranged as follows. The motivation of the study is provided in the 

present Section I. The model of the plasma-dielectric-metal structure under the 

consideration, and basic assumptions are described in Section II. The spatial 

distribution of the wave fields is given in Section III and the dispersion relation is 

derived in Section IV. Then, the numerical analysis of the dispersion relation is given 

in Section V. Finally, the obtained results are discussed in the Conclusions, Section 

VI. 

II. Statement of the problem 

The following plasma waveguide structure is under consideration (see Fig. 1). A 

circular metal waveguide with inner radius b and infinite electrical conductivity is 

assumed to be infinite in axial direction z. The plasma cylinder with radius a is placed 

concentrically inside the waveguide. The plasma column is separated from the metal  
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wall by a dielectric layer with dielectric 

constant 𝜀𝑑. A static magnetic field is 

directed along the waveguide axis, 𝐵⃗ 0||𝑧 . 
The electrodynamic properties of the 

plasma column are described in terms of 

the cold collisionless plasma dielectric 

permittivity tensor 𝜀𝑖𝑗: 
















−=

3

12

21

00

0

0

ˆ





 i

i

.                 (1) 

The components of the tensor are given by:  𝜀1 = 1 − ∑ 𝛺𝛼2𝜔2−ω𝛼2𝛼 , 𝜀2 = −∑ 𝛺𝛼2𝜔𝛼𝜔(𝜔2−ω𝛼2 )𝛼 , 𝜀3 = 1 − ∑ 𝛺𝛼2𝜔2𝛼 .                (2) 

In (2), 𝛺α is the plasma frequency of the particle of species α (α = 𝑖 for ions and α =𝑒 for electrons), and 𝜔α is the corresponding cyclotron frequency. 

The present paper employs the method of variable separation. Specifically, one 

can search for the solution of the Maxwell equations in the following form: 𝐻𝑧(𝑟 , 𝑡) = 𝐻𝑧(𝑟)exp[𝑖(𝑘𝑧𝑧 + 𝑚𝜑 − 𝑖𝜔𝑡)].                              (3) 

In (3), 𝑘𝑧, 𝑚, and 𝜔 are the axial wavenumber, azimuthal wave index, and angular 

wave eigenfrequency, respectively. In this approach, the Maxwell equations can be 

written in the form of two coupled differential equations of the second order [10,11]:  1𝑟 𝑑𝑑𝑟 ( 𝑟𝑘⊥2 𝑑𝐻𝑧𝑑𝑟 ) − 𝐻𝑧 [1 + 𝑚2𝑟2𝑘⊥2 − 𝑚𝑟 𝑑𝑑𝑟 ( 𝜇𝑘⊥2)] = 𝐾̂𝐸𝑧,                     (4) 

1𝑘2𝑟 𝑑𝑑𝑟 (𝑟 𝑑𝐸𝑧𝑑𝑟 ) + 𝐸𝑧 [ 𝜀31−𝑘𝑧2/𝑘⊥2 − 𝑁𝜑2] = 𝑀̂𝐻𝑧.                        (5) 

In (4), and (5), 𝑘⊥2 = 𝑘2𝑁⊥2, 𝑁⊥2 = (𝜀1 − 𝑁𝑧2)(𝜇2 − 1) > 0, and 𝜇 = 𝜀2(𝜀1−𝑁𝑧2), 𝑘 =𝜔/𝑐,𝑁𝑧 = 𝑘𝑧/𝑘, 𝑁𝜑 = 𝑚/(𝑟𝑘). The right hand sides of eqs. (4) and (5) are small 

values proportional to the first order of 𝑘𝑧: 

 

Fig. 1. Schematic of the waveguide 

geometry 
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𝐾̂𝐸𝑧 = 𝑖𝑁𝑧𝑁𝜑𝐸𝑧𝑘 𝑑𝑑𝑟 ( 1𝑁⊥2) + 𝑖𝑁𝑧 𝑑𝐸𝑧𝑑𝑟 𝑑𝑑𝑟 ( 𝜇𝑘⊥2) − 𝑖𝑁𝑧𝜇𝜀3𝐸𝑧𝑁⊥2 ,                    (6) 

𝑀̂𝐻𝑧 = 11−𝑘𝑧2/𝑘⊥2 {𝑖𝑁𝑧𝑘⊥2 𝑑𝐻𝑧𝑑𝑟 𝑑𝜇𝑑𝑟 + 𝑖𝑁𝑧𝐻𝑧[𝜇 − 𝜇𝑚𝑟 𝑑𝑑𝑟 ( 𝜇𝑘⊥2) + 𝑚𝑟 𝑑𝑑𝑟 ( 1𝑘⊥2)]}.          (7) 

The presence of a few terms proportional to 𝑘𝑧2 in the left hand sides of eqs. (4) and 

(5) provides turning of these equations into those known for the case of wave 

propagation in a dielectric and/or plasma without any external static magnetic field. 

 

III. Spatial distribution of the wave fields 

In the dielectric region, the wave field distribution is well-known precisely: 𝐻𝑧(𝑟) = 𝐺[𝐽𝑚′ (𝜅𝑏)𝑁𝑚(𝜅𝑟) − 𝑁𝑚′ (𝜅𝑏)𝐽𝑚(𝜅𝑟)],                         (8) 𝐸𝜑(𝑟) = 𝑖𝑘−𝜅 𝐺[𝐽𝑚′ (𝜅𝑏)𝑁′𝑚(𝜅𝑟) − 𝑁𝑚′ (𝜅𝑏)𝐽′𝑚(𝜅𝑟)] − 𝑘𝑧𝑚𝑟𝜅2 𝐹[𝐽𝑚(𝜅𝑏)𝑁𝑚(𝜅𝑟) − 𝑁𝑚(𝜅𝑏)𝐽𝑚(𝜅𝑟)],                (9) 𝐸𝑧(𝑟) = 𝐹[𝐽𝑚(𝜅𝑏)𝑁𝑚(𝜅𝑟) − 𝑁𝑚(𝜅𝑏)𝐽𝑚(𝜅𝑟)].                      (10) 

In eqs. (8)-(10), 𝜅2 = 𝑘2𝜀𝑑 − 𝑘𝑧2 > 0. The expressions (8) and (10) for the 

amplitudes of the axial electric and magnetic wave fields contain only two constants 

of integration G and F since two other constants are determined from the boundary 

conditions: the tangential electric wave fields 𝐸𝜑 and 𝐸𝑧 are equal to zero at the metal 

wall, 𝑟 = 𝑏.  

Within the plasma column, the radial distribution of the wave fields is found by 

the method of successive approximations. The wave field amplitudes are presented in 

the form: 𝐻𝑧(𝑟) = 𝐻𝑧(0)(𝑟) + 𝐻𝑧(1)(𝑟), |𝐻𝑧(1)(𝑟)| ~ |𝑘𝑧𝐻𝑧(0)(𝑟)| ≪ |𝐻𝑧(0)(𝑟)|,          (11) 𝐸𝑧(𝑟) = 𝐸𝑧(0)(𝑟) + 𝐸𝑧(1)(𝑟), |𝐸𝑧(1)(𝑟)| ~ |𝑘𝑧𝐸𝑧(0)(𝑟)| ≪ |𝐸𝑧(0)(𝑟)|.            (12) 

The wave field amplitudes 𝐻𝑧(0)(𝑟) and 𝐸𝑧(0)(𝑟), are assumed to be known from zero 

approximation, in which 𝑘𝑧 = 0. In other words, 𝐻𝑧(0)(𝑟) and 𝐸𝑧(0)(𝑟) are the 

solutions of eqs. (4) and (5) with zero right hand sides: 
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𝐻𝑧(0)(𝑟) = 𝐴1𝜙(𝑟) + 𝐴2𝜙̃(𝑟),                                   (13) 𝐸𝑧(0)(𝑟) = 𝐶1𝜓(𝑟) + 𝐶2𝜓̃(𝑟).                                   (14) 

In (13) and (14), 𝐴1,2 and 𝐶1,2 are the constants of integration, the functions 𝜙(𝑟) and 𝜓(𝑟) are the solutions of eqs. (4) and (5), respectively, with zero right hand sides, 

which are finite at the axis, 𝑟 = 0.  

The functions 𝜙̃(𝑟) and 𝜓̃(𝑟) are the solutions of the same equations which are 

linearly independent from the functions 𝜙(𝑟) and 𝜓(𝑟); they are singular at the axis, 𝑟 = 0. The singularity makes it possible immediately to determine two constants of 

integration, 𝐴2 = 0 and 𝐶2 = 0. 

To find the first order corrections 𝐻𝑧(1)(𝑟) and 𝐸𝑧(1)(𝑟) to the radial distributions of 

the wave fields one can substitute the wave field amplitudes 𝐻𝑧(0)(𝑟) and 𝐸𝑧(0)(𝑟) into 

the right-hand sides of eqs. (4) and (5) instead of full expressions without any loss in 

precision. Then the corrections 𝐻𝑧(1)(𝑟) and 𝐸𝑧(1)(𝑟) are derived by the method of 

constant variation: 𝐻𝑧(1)(𝑟) = 𝜙̃ ∫ 𝑘⊥2𝜙𝐾̂𝐸𝑧(0)𝑑𝑟𝑊(𝜙,𝜙̃)𝑟0 − 𝜙 ∫ 𝑘⊥2 𝜙̃𝐾̂𝐸𝑧(0)𝑑𝑟𝑊(𝜙,𝜙̃)𝑟𝑎 ,                             (15) 

𝐸𝑧(1)(𝑟) = 𝜓̃ ∫ 𝑘2𝜓𝑀̂𝐻𝑧(0)𝑑𝑟𝑊(𝜓,𝜓̃)𝑟0 − 𝜓 ∫ 𝑘2𝜓̃𝑀̂𝐻𝑧(0)𝑑𝑟𝑊(𝜓,𝜓̃)𝑟𝑎 .                            (16) 

In (15) and (16), 𝑊(𝜙, 𝜙̃) and 𝑊(𝜓, 𝜓̃) are the Wronskians of the two pairs of 

functions, 𝑊(𝜙, 𝜙̃) = 𝜙 𝜕𝜙̃𝜕𝑟 − 𝜙̃ 𝜕𝜙𝜕𝑟 , 𝑊(𝜓, 𝜓̃) = 𝜓 𝜕𝜓̃𝜕𝑟 − 𝜓̃ 𝜕𝜓𝜕𝑟 .                    (17) 

  

IV. Dispersion relation 

The calculations presented above describe the radial distribution of the wave field 

which is sufficient for studying the dispersion properties of electromagnetic waves 

with arbitrary azimuthal wave indices and small axial wavenumbers in circular metal 

waveguides with inhomogeneous radial profile of the plasma particle density. 

However, in the following numerical calculations, a plasma column with uniform 
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plasma particle density profile is considered to investigate the effect of the non-zero 

axial wavenumber rather than that of plasma density non-uniformity.  

The waves under study should be of surface type. This means that the plasma is 

nontransparent for these waves. The waves do not propagate in absence of the 

plasma-dielectric interface in infinite plasma media. A sufficiently dense plasma is 

considered, so that 𝛺𝑒2 ≫ ω𝑒2. In this case, surface type waves propagate in the 

following frequency ranges: 

|𝜔𝑒|√𝛺𝑖2+𝑐2𝑘𝑧2𝛺𝑒2+𝜔𝑒2  <𝜔 < |𝜔𝑒|, |𝜔𝑒| <𝜔 < 𝜔−.    (18) 

The range (18) encloses the electron cyclotron frequency and is referred hereinafter 

as low frequency (LF) one. One more range lies above the upper hybrid frequency 

and is called here as high frequency (HF) one: √𝜔𝑒2 + 𝛺𝑒2 + 𝑐2𝑘𝑧2<𝜔 < 𝜔+.   (19) 

In (18) and (19), 𝜔∓ are the cut-off frequencies for bulk modes: 𝜔∓ = ∓0.5|𝜔𝑒|+ √0.25𝜔𝑒2 + 𝛺𝑒2 + 𝑐2𝑘𝑧2 √0.25𝜔𝑒2+𝛺𝑒2±0.5|𝜔𝑒|2√0.25𝜔𝑒2+𝛺𝑒2(√0.25𝜔𝑒2+𝛺𝑒2∓0.5|𝜔𝑒|).     (20) 

Dissipativeless boundary conditions at the plasma-dielectric interface are applied 

to the solutions derived above for these two regions (plasma column and dielectric 

layer). The dispersion relation is obtained in the form of a 4x4 determinant, |𝑎𝑖𝑗| = 0. 

In this respect the present problem is much more complicated than those solved 

earlier in [10, 11]. The components of the determinant are listed in Annex 1. 

Electron beam excitation of long-wavelength surface waves in the HF range was 

demonstrated in [9] to be much less efficient as compared with the LF range. That is 

why the following consideration is restricted to the LF range, though the derived 

dispersion relation is applicable for studying the dispersion properties of the waves in 

HF range (19) as well. 
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V. Results of the numerical analysis 

The dispersion relation is solved numerically. The shape of the dispersion curves 

are similar to those obtained earlier in [10, 11]. The dependencies of the wave 

dispersion properties on 𝑘𝑧, 𝐵0, magnitude and sign of m, 𝜀𝑑, a and b are studied. The 

dispersion curves are presented in the form of dependencies of normalized 

eigenfrequencies 𝜔/|𝜔𝑒| on 𝑘𝑧𝑎. 

The results of the numerical studies are presented in Figs. 2-6. As already 

mentioned, the product 𝑘𝑧𝑎 is chosen as abscissa axis. The present consideration is 

only valid for small magnitudes of the axial wavenumber. It was analytically derived 

in [10,11] that the method of successive approximations is applicable in this case of 𝑘𝑧 ≪ 𝑚/𝑎. The latter condition is fulfilled for all the calculations presented in Figs. 

2-6. 

The wave eigenfrequency normalized by the electron cyclotron frequency, 𝜔/|𝜔𝑒| 
is chosen as ordinate axis in Figs. 2-5. Since Fig. 6 demonstrates the influence of the 

external axial static magnetic field on the wave dispersion properties, there the 

eigenfrequency is normalized by the Langmuir (electron plasma) frequency, 𝜔/𝛺𝑒.  

In the case of surface flute waves, the ratio 𝑚/𝑎 is the appropriate observable to 

play the role of the wavenumber and it seems to be natural to normalize this 

wavenumber by the skin-depth 𝛿 = 𝑐/𝛺𝑒. Then the effective wavenumber is 𝑘𝑒𝑓 ≡|𝑚|𝛿/𝑎, which in Figs. 2-6 is chosen as 𝑘𝑒𝑓 = 0.6 to make it possible to compare the 

present results with those reported earlier in [10]. 

Since ordinary and extraordinary waves are coupled in the present problem, one 

can see two branches of the dispersion curve in the figures. This is the main 

distinguishing feature which differs the dispersion properties of surface waves with 

non-zero axial wavenumber from those of surface flute waves [1]. 

The branch which turns to surface flute waves in the limit 𝑘𝑧 → 0 (it almost looks 

like a horizontal line) is the high frequency (HF) branch. The other branch is 

characterized by smaller magnitudes of the wave eigenfrequencies (the frequencies  
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are approximately proportional to 𝑘𝑧). 

That is why this branch is referred here 

as low frequency (LF) one. 

In general, the shapes of all the 

dispersion curves are similar. For 

example, in the curve marked by “3” in 

Fig. 2, the HF branch starts with  𝜔/|𝜔𝑒|=1.903 for 𝑘𝑧 = 0. For small 𝑘𝑧 < 0.8/𝑎 the normalized wave 

eigenfrequency increases to 𝜔/|𝜔𝑒| =1.939 approximately proportionally to 𝑘𝑧2. This circumstance is predictable 

from the mathematical point of view. 

The dispersion relation derived in the 

present paper can be presented in the following form which is common for the 

problems of coupled waves: 𝐷𝑋𝐷𝑂 + 𝐷(2) = 0.                 (21) 

In (21), 𝐷𝑋 = 0 is the dispersion relation of extraordinary surface flute waves [1], and 𝐷𝑂 = 0 is the dispersion relation of electromagnetic waves with ordinary 

polarization, the term 𝐷(2) is of the second order of smallness in the axial 

wavenumber. The solution of the eq. (21) can be presented as a series in 𝑘𝑧: 𝜔 =𝜔(0) + Δ𝜔, where 𝜔(0) is the solution of the dispersion relation in zeroth 

approximation, 𝐷𝑋(𝜔(0)) = 0. Then the correction Δ𝜔 to the eigenfrequency is given 

by: Δ𝜔 = − 𝐷(2)𝐷𝑂 (𝜕𝐷𝑋𝜕𝜔 )|𝜔=𝜔(0) ∝ 𝑘𝑧2.                              (22) 

For larger magnitudes of the axial wavenumber, 0.8/𝑎 <  𝑘𝑧 < 1.1138/𝑎, the HF 

branch decreases to 𝜔/|𝜔𝑒|=1.766 to meet with the LF branch. The LF branch 

decreases almost linearly with decreasing axial wavenumber approaching to the 

frequency range lower limit (19). For the maximum magnitude of 𝑘𝑧 = 1.1138/𝑎,  

 
Fig. 2. Surface wave eigenfrequency vs 

axial wavenumber for different positive 

azimuthal wave indices m=1, 2, 3 

(indicated by the numbers near the 

curves). 𝜀𝑑 = 2, ∆= (𝑏 − 𝑎)/𝑎 =0.1, 𝑘𝑒𝑓 = 0.6, 𝑍 = Ω𝑒/|𝜔𝑒| = 7.5 

 

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
1
3
1
2
6
1



10 

 

  
Fig. 3. Surface wave eigenfrequency vs 

axial wavenumber for azimuthal wave 

indices of different signs m=±1, ±2 

(indicated by numbers near the curves). 𝜀𝑑 = 2, ∆= 0.1, 𝑘𝑒𝑓 = 0.6, 𝑍 = 7.5. 

Dashed curves correspond to positive 

indices, solid curves correspond to the 

negative indices 

Fig. 4. Surface wave eigenfrequency vs 

axial wavenumber for different 

magnitudes of dielectric constant  𝜀𝑑 = 1, 2, 3 (indicated by numbers near 

the curves). 𝑚 = 1, ∆= 0.1, 𝑘𝑒𝑓 = 0.6, 𝑍 = 7.5 

 

the wave group velocity turns to infinity, 𝜕𝜔/𝜕𝑘𝑧 → ∞. In the vicinity of this point, 

the modal representation of the wave fails. 

The axial wavenumber for which the frequencies of the HF and LF branches 

coincide is denoted as 𝑘𝑧 = 𝑘𝑚. Nearby 𝑘𝑚 the representation of electromagnetic 

eigenwaves in the harmonic form, ∝ exp[𝑖(𝑘𝑧𝑧 + 𝑚𝜑 − 𝜔𝑡)], fails. Near the point in 

question, the dispersion curve 𝑘𝑧(𝜔) can be approximately described by the quadratic 

parabola 𝑘𝑧(𝜔) = 𝑘𝑚 − (𝜔 − 𝜔𝑚)2/𝛼 (where 𝛼 is a constant having the dimension 

of acceleration, cm/s2). In this case, an electromagnetic pulse with the field 

proportional to exp(−𝑡2/(2𝜏2))cos[𝑘𝑚𝑧 + 𝑚𝜑 − 𝜔𝑚𝑡] (where τ is the pulse 

duration) spreads out from the point at which it was originally formed in the axial 

direction over a distance of about 𝛼𝜏2/2 [11]. 

Increasing azimuthal wave index m is demonstrated in Fig. 2 to cause an increase 

of the HF branch, which is in agreement with the theory of surface flute waves 

[1,10,11], and to expansion of the 𝑘𝑧 range where the present consideration is 

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
1
3
1
2
6
1



11 

 

applicable. The increase of m from 1 to 3 is accompanied by broadening the 𝑘𝑧 range 

from 𝑘𝑧 = 0.257/𝑎 for m=1 to 𝑘𝑧 = 0.640/𝑎 for m=2 and then to 𝑘𝑧 = 1.114/𝑎 for 

m=3 (by 77%).  

Figure 3 shows how the sign of the azimuthal wave index influences the wave 

dispersion properties. The surface flute waves with negative azimuthal wave indices 

have smaller magnitudes of their eigenfrequencies. That is why the dispersion curves 

of the waves with 𝑚 < 0 are shown in Fig. 3 by solid curves which lie lower than 

those for the waves with positive azimuthal wave indices. The range of axial 

wavenumbers, where the waves exist, is smaller for the waves with 𝑚 < 0 than for 

the waves with positive azimuthal wave indices.  

The results presented in Fig. 3 are most appropriate to be compared with those 

obtained in [10]. In absence of an external static magnetic field 𝐵⃗ 0 , the dispersion 

properties of electromagnetic waves are known to be degenerate in respect to the sign 

of the azimuthal wave index m. Therefore, the influence of the sign of 𝑚 on the wave 

dispersion properties was not studied in [10]. There, the dispersion curve of surface 

type long-wavelength waves was given for the same plasma waveguide parameters as 

those applied for the calculations in Fig. 3 of the present paper: |𝑚| = 2, 𝜀𝑑 = 2, ∆=0.1, 𝑘𝑒𝑓 = 0.6. However, an external static magnetic field was not considered in [10]. 

Application of 𝐵⃗ 0 causes the splitting of the dispersion curve. The HF branch of the 

dispersion curve, which was shown in Fig. 1 of [10], lies in the middle between the 

HF branches shown in Fig. 3 for 𝑚 = ±2. The axial wavenumber, for which the 

frequencies of the HF and LF branches coincide in Fig. 1 of [10], is approximately 

equal to the arithmetic mean of those for the dispersion curves presented here in Fig. 

3 for 𝑚 = ±2. 

The dispersion curves in Fig. 4 demonstrate that the decrease of the HF branch 

eigenfrequencies does not unambiguously mean narrowing of the 𝑘𝑧 range where the 

present consideration is applicable. These curves show the effect of the magnitude of 

the dielectric constant 𝜀𝑑 on the wave dispersion properties. Increasing 𝜀𝑑 from 𝜀𝑑 =1 to 𝜀𝑑 = 2 and then to 𝜀𝑑 = 3 results in decreasing maximum magnitude of the  
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Fig. 5. Surface wave eigenfrequency vs 

axial wavenumber for different widths 

of dielectric layer  𝑏/𝑎 = 1.1, 1.2, 1.3 

(indicated by numbers near the curves). 𝑚 = 1, 𝜀𝑑 = 2, 𝑘𝑒𝑓 = 0.6, 𝑍 = 7.5 

Fig. 6. Surface wave eigenfrequency vs 

axial wavenumber for different 

magnitudes of external static axial 

magnetic field (numbers near the 

curves indicate the dimensionless 

parameters 𝑍 = 5.0, 7.5, 10.0). 𝑚 =1, 𝑏/𝑎 = 1.1, 𝜀𝑑 = 2, 𝑘𝑒𝑓 = 0.6 

 

HF branch of eigenfrequencies from 𝜔/|𝜔𝑒| = 1.943 for 𝜀𝑑 = 1 to 𝜔/|𝜔𝑒| = 1.471 

for 𝜀𝑑 = 2 and then to 𝜔/|𝜔𝑒| = 1.262 for 𝜀𝑑 = 3 (or in other words, by 35% in 

general), while the maximum of the observed axial wavenumbers increase from 𝑘𝑧 =0.237 for 𝜀𝑑 = 1 to 𝑘𝑧 = 0.257 for 𝜀𝑑 = 2 and then to 𝑘𝑧 = 0.274 for 𝜀𝑑 = 3 (by 

14% only). The decrease of the 𝑘𝑧 range with increasing magnitude of the HF branch 

eigenfrequencies is pointed out because it is observed in Fig. 4 on the contrary to the 

tendencies given by Figs. 2, 3, 5 and 6. 

The dispersion properties of the waves depend also on the width of the dielectric 

layer where the waves are of bulk nature (oscillating along the radial coordinate). The 

wider the layer is, the larger are the eigenfrequencies of the HF branch, and the wider 

is the 𝑘𝑧 range where the present consideration is applicable (see Fig. 5). Increasing 

dielectric layer width from ∆= (𝑏 − 𝑎)/𝑎 = 0.1 to ∆= 0.2 and then to ∆= 0.3 (by 

67%), causes an increase of the maximum of the wave eigenfrequency of the HF 

branch from 𝜔/|𝜔𝑒| = 1.471 for ∆= 0.1 to 𝜔/|𝜔𝑒| = 1.757 for ∆= 0.2 and then to 𝜔/|𝜔𝑒| = 1.905 for ∆= 0.3 (by 23%), while the maximum magnitude of the axial 
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wavenumber increases from 𝑘𝑧 = 0.257 for ∆= 0.1 to 𝑘𝑧 = 0.318 for ∆= 0.2 and 

then to 𝑘𝑧 = 0.355 for ∆= 0.3 (by 28%). 

The results presented in Fig. 5 are most appropriate to be compared with those 

obtained in [11]. Propagation of long-wavelength electromagnetic waves of surface 

type in circular metal waveguides entirely filled by cold plasma in presence of an 

axial static magnetic field was studied there. Surface flute waves are known to be 

unidirectional in circular metal waveguides entirely filled by cold plasma [1]. In other 

words, they propagate with azimuthal wave indices of definite sign: 𝑚 > 0 in the LF 

range (18) and 𝑚 < 0 in the HF range (19). Turning the width of the dielectric layer 

to zero, 𝑏/𝑎 → 1, makes it impossible for LF surface flute waves with negative 𝑚 to 

propagate. This is one reason more why the dispersion curves shown in Fig. 5 are 

calculated just for positive azimuthal wave index.  

The influence of the magnitude of the external axial static magnetic field 𝐵0 on 

the dependence of the wave eigenfrequency on the axial wavenumber is shown in 

Fig. 6. Increasing 𝐵0 is associated with the decrease of the dimensionless parameter 𝑍 = Ω𝑒/|𝜔𝑒| which is inversely proportional to 𝐵0. Doubling of 𝑍 from 𝑍 = 5.0 to 𝑍 = 7.5 and then to 𝑍 = 10.0 causes the decrease of the maximum of the wave 

eigenfrequency of the HF branch from 𝜔/𝛺𝑒 = 0.219 for 𝑍 = 5.0 to 𝜔/𝛺𝑒 = 0.20 

for 𝑍 = 7.5 and then to 𝜔/𝛺𝑒 = 0.186 for 𝑍 = 10.0  (by 15%), while the maximum 

magnitude of the axial wavenumber decreases from 𝑘𝑧 = 0.296 for 𝑍 = 5.0 to 𝑘𝑧 =0.257 for 𝑍 = 7.5 and then to 𝑘𝑧 = 0.240 for 𝑍 = 10.0 (by 19%). 

The results of the numerical analysis presented in Fig. 2 are applied in the 

following to demonstrate the wave field radial distribution in Figs. 7 and 8. The 

following plasma waveguide parameters are chosen for the calculations: 𝑚 = 2, 𝜀𝑑 =2,  ∆= (𝑏 − 𝑎)/𝑎 = 0.1, 𝑘𝑒𝑓 = 0.6, 𝑍 = Ω𝑒/|𝜔𝑒| = 7.5. The axial wavenumber is 

chosen in the middle of the range wherein the surface waves exist as 𝑘𝑧𝑎 = 0.3. In 

this case surface waves from the LF branch propagate with the frequency 𝜔/|𝜔𝑒| ≈0.632, and those from HF branch – with the frequency 𝜔/|𝜔𝑒| ≈ 1.738. The radial 

distribution is presented for the axial magnetic and electric wave fields by solid and  
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Fig. 7. Radial distribution of the 

surface wave fields for the LF branch. 

The solid curve corresponds to the 

axial magnetic field, and the dashed 

curve relates to the axial electric field.  𝑏/𝑎 = 1.1, 𝑚 = 2, 𝜀𝑑 = 2, 𝑘𝑒𝑓 =0.6, 𝑘𝑧𝑎 = 0.3, 𝑍 = 7.5, 𝜔/|𝜔𝑒| ≈0.632  

Fig. 8. The same as in Fig. 7, but for 

the HF branch with 𝜔/|𝜔𝑒| ≈ 1.738 

 

dashed curves, respectively. The field amplitudes are given in arbitrary units. They 

are normalized in such a way that maxima of the electric field amplitudes are equal to 

unit. The wave field radial distributions are calculated from eqs. (8), (10), (15), and 

(16). Both magnetic and electric wave fields turn to zero with approaching to the 

axis, 𝑟 = 0. The electric wave field turns to zero also at the metal wall, 𝑟 = 𝑎. The 

magnetic wave field has zero radial derivative at the metal wall. 

 

VI. Conclusions 

The transition from surface flute waves to long-wavelength waves with small 

magnitude of the axial wavenumber 𝑘𝑧 is accompanied by the appearance of a second 

branch of the dispersion curve 𝜔 = 𝜔(𝑘𝑧). This happens due to weak coupling 

between waves of ordinary and extraordinary polarizations.  

The following conclusions can be made from analyzing the influence of different 

physical observables on the wave dispersion properties. It is the azimuthal wave 
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index m which causes the most influence on the width of the 𝑘𝑧 range where the 

waves propagate. The influence of the magnitude of m is much more pronounced 

than those of the width (which is characterized by the dimensionless parameter ∆) of 

the dielectric layer between plasma and waveguide wall, and the magnitude of an 

external axial static magnetic field 𝐵0. The weakest affect is caused by the magnitude 

of the dielectric constant 𝜀𝑑 of the layer. 

To summarize the results concerning the group velocity the following issues 

should be underlined. First, the wave group velocity of the HF branch is small and 

changes its sign from positive to negative with increasing axial wavenumber. Second, 

the transfer from the HF branch to the LF branch is accompanied by an increase of 

the group velocity going to infinity. In addition, the group velocity changes its sign 

from negative to positive during this transfer. Third, the group velocity of the LF 

branch does not depend on 𝑘𝑧, except of the small range of 𝑘𝑧 near the points of 

transfer from one branch into the other. Fourth, the group velocity of the LF branch 

varies with varying azimuthal wave index and dielectric constant, and does not vary 

with the change in the sign of the azimuthal wave index, the width of the dielectric 

layer, and the magnitude of the external axial static magnetic field. 

There is no mathematical problem to generalize the suggested method of solving 

the Maxwell equations to the case of bulk waves. In the case of uniform radial profile 

of the plasma particle density, the bulk waves propagate in another frequency range 

than for surface waves, and are described by Bessel functions of the first and second 

kinds rather than by the modified Bessel functions. 

The suggested method of successive approximations can also be applied for 

solving the Maxwell equations for electromagnetic waves with small axial 

wavenumbers in plasma waveguides with inhomogeneous plasma particle density. In 

this case, even the numerical solution of the Maxwell equations can be simplified 

since one needs to solve two uniform differential equations of the second order which 

are independent rather than the similar coupled equations. Including an 

inhomogeneity of the plasma particle density modifies the surface wave dispersion 
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relation. The latter can be written in implicit form incorporating the solutions of the 

Maxwell equations in zeroth approach which are assumed to be known like it is 

presented in eqs. (15) and (16). 

The present study substantially contributes to the development of the theory of 

plasma waveguides. It generalizes the results of investigating the dispersion 

properties of long-wavelength electromagnetic waves of surface type in isotropic 

metal waveguides partially filled by plasma obtained in [10] by introducing an axial 

static magnetic field. The latter is often applied in modern plasma technological 

devices. On the other hand, it generalizes the outcomes of research into the 

eigenfrequencies and spatial distribution of the long-wavelength electromagnetic 

wave of surface type in magneto-active metal waveguides entirely filled by plasma 

presented in [11] by taking into account a dielectric layer between the plasma column 

and the metal wall. In [11], the dispersion relation had the form of the second order 

determinant on the contrary to the present case and that studied in [10] when the 

dispersion relation has the form of a fourth order determinant. Combination of these 

two elements (presence of both axial static magnetic field and the dielectric layer) not 

only makes the analytic and numerical calculations more complicated but also brings 

the theoretical model much closer to real conditions of experimental setups.  

The presented results can be of interest in the field of plasma electronics and high-

power microwave generation and amplification to analyze the interaction of surface- 

type electromagnetic waves with annual electron beams gyrating in a static axial 

magnetic field around the plasma column along large Larmor orbits, e.g. in large 

orbit gyrotrons with circular waveguide cavity [1-9]. In such so-called higher 

harmonic LOG gyrotrons the azimuthal index of the transverse electric cavity mode 

is equal to the harmonic number. It operates very close to its cutoff frequency, so that 

the present approximation of very small axial wavenumber is perfectly fulfilled. The 

important advantage of the higher harmonic gyro-interaction is, that the necessary 

strength of the static axial magnetic field in the cavity is divided by the harmonic 
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number, which makes the needed, very often super-conducting magnet, much 

cheaper. 

 

Annex 1. 

The components of the determinant 𝑎𝑖𝑗 which form the dispersion relation of the 

studied waves read: 𝑎11 = 𝐼𝑚(𝑥1), 𝑎14 = 𝑎33 = 0,                                 (A.1) 𝑎12 = 𝐾𝑚(𝑥1)𝜇𝑁𝑧𝑥22𝑄,                                         (A.2) 𝑎13 = 𝐽𝑚(𝑥3)𝑁′𝑚(𝑥4) − 𝐽′𝑚(𝑥4)𝑁𝑚(𝑥3),                          (A.3) 𝑎21 = 𝜇𝑚𝑥12 𝐼𝑚(𝑥1) + 𝐼′𝑚(𝑥1)𝑥1 ,                                     (A.4) 

𝑎22 = 𝑥22 (1 − 𝑘𝑧2𝑘⊥2)𝑁𝑧𝑄 (𝜇𝑚𝑥12 𝐾𝑚(𝑥1) + 𝐾′𝑚(𝑥1)𝑥1 ) + 𝜇𝑁𝑧𝑥2𝐼′𝑚(𝑥2)𝑥12 + 𝑁𝑧𝑚𝑥12 𝐼𝑚(𝑥2),   (A.5) 𝑎23 = 1𝑥3 [𝐽′𝑚(𝑥4)𝑁′𝑚(𝑥3) − 𝐽′𝑚(𝑥3)𝑁′𝑚(𝑥4)],                 (A.6) 𝑎24 = 𝑁𝑧𝑚𝑥32 𝑎34,                                             (A.7) 𝑎31 = 𝐾𝑚(𝑥2)𝑘𝑧𝑘𝑎2𝜇𝑄/(1 − 𝑘𝑧2/𝑘⊥2),                      (A.8) 𝑎32 = −𝐼𝑚(𝑥2),                                           (A.9) 𝑎34 = 𝐽𝑚(𝑥4)𝑁𝑚(𝑥3) − 𝐽𝑚(𝑥3)𝑁𝑚(𝑥4),                  (A.10) 𝑎41 = 𝑘𝑧𝜇𝑘⊥ 𝐼′𝑚(𝑥1) + 𝑘𝑧𝑚𝑘⊥2𝑎 𝐼𝑚(𝑥1) + 𝐾′𝑚(𝑥2)𝑥2𝑘𝑧𝑎𝜇𝑄1−𝑘𝑧2/𝑘⊥2 ,            (A.11) 𝑎42 = − 𝑥2𝑘𝑎 𝐼′𝑚(𝑥2),                                       (A.12) 𝑎43 = − 𝑚𝑘𝑧𝑎𝑥32 𝑎13 ,                                        (A.13) 𝑎44 = 𝜅𝑘 [𝐽𝑚(𝑥4)𝑁′𝑚(𝑥3) − 𝐽′𝑚(𝑥3)𝑁𝑚(𝑥4)],                     (A.14) 𝑄 = 𝑎2𝑥12−𝑥22 [𝑥1𝐼𝑚(𝑥2)𝐼𝑚+1(𝑥1) − 𝑥2𝐼𝑚(𝑥1)𝐼𝑚+1(𝑥2)],            (A.15) 

𝑥1 = 𝑘⊥𝑎, 𝑥2 = 𝑎𝑘√− 𝜀31−𝑘𝑧2/𝑘⊥2 , 𝑥3 = 𝜅𝑎, 𝑥4 = 𝜅𝑏.             (A.16) 
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