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ABSTRACT

The method of successive approximations is applied to solve the Maxwell equations in cylindrical plasma waveguide geometry for
electromagnetic waves with arbitrary azimuthal wave index and small axial wavenumber. The theory of surface flute waves is used as zeroth
approximation. This study generalizes previous investigations whose results are utilized for verification of newly obtained conclusions. The
influences of several plasma waveguide parameters such as magnitude and sign of the azimuthal wave index, the width of the dielectric layer
between a plasma and a waveguide wall and the magnitude of its dielectric constant, the radii of the plasma column and the metal wall, and
the external axial static magnetic field on the wave dispersion properties are analyzed.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0131261

I. INTRODUCTION

Studying electromagnetic flute waves with zero axial wavenum-
ber (kz ¼ 0Þ can be of interest in different fields of plasma physics. A
comprehensive overview of surface wave applications in the fields of
plasma electronics, plasma-antenna systems, description of phenom-
ena in the plasma periphery of magnetic confinement fusion devices,
nano-technologies, and for plasma production is given in Ref. 1. In
particular, surface flute waves can be of interest for plasma electronics
due to their efficient interaction with an annual electron beam, which
gyrates along large Larmor orbits around the plasma column.2–9

Studying flute waves has the advantage that they are electromag-
netic waves of ordinary (with the components Ez , Hr , and Hu of the
wave fields) and extraordinary (with the components Hz , Er , and Eu

of the wave fields) polarization, which propagate in an axial static mag-
netic field independently of each other. In addition, the Maxwell equa-
tions can be solved for these two polarizations separately. The subset
of Maxwell equations for each polarization can be written in the form
of second order differential equations, e.g., for either Ez orHz .

On the other hand, studying flute waves also has an obvious dis-
advantage. They describe specific waves with kz ¼ 0 only. However,

the theory of flute waves can be and has been used as base for studying
electromagnetic waves with small axial wavenumbers, kz 6¼ 0.1,9–11 In
particular, Ref. 11 was devoted to the investigation of surface flute
waves in circular metal waveguides entirely filled with cold plasma in
the presence of an axial static magnetic field. The dispersion properties
of surface flute waves in circular metal waveguides partially filled by
plasma without any magnetic field were studied in Ref. 10. The initial
stage of the interaction of long-wavelength waves of surface type with
an annular electron beam gyrating around the plasma column along
large Larmor orbits was investigated in Ref. 9.

This study is devoted to investigation of the dispersion properties
of surface type waves, which propagate with arbitrary azimuthal wave
index m and small axial wavenumber kz in circular metal waveguides
partially filled with cold collisionless plasma in the presence of an axial
static magnetic field~B0. Such a statement of the problem significantly
differs from both considered in Refs. 10 and 11. This study generalizes
the results in Ref. 10 by taking into account an axial static magnetic
field, which is applied in many technological devices. At the same
time, the investigation carried out in Ref. 11 is generalized in the pre-
sent paper by introducing the dielectric layer. The latter can, for
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instance, play an important role in a plasma device preventing interac-
tion between the plasma and the metal wall.

Taking into account the plasma particles’ thermal motion is
known to result in the appearance of a number of new physical effects.
In particular, the propagation of potential surface waves, which do not
exist in the Voigt geometry in a cold plasma, becomes possible.
Moreover, these “new” waves propagate in different frequency ranges
than in the case of cold plasmas. From the mathematical point of view,
these new phenomena are the result of including a term proportional
to the kinetic pressure gradient into the quasi-hydrodynamic equa-
tions of motion for the plasma particles. In other words, the account
for the plasma particle thermal motion modifies the plasma permittiv-
ity tensor by introducing terms proportional to the Larmor radius
squared. This causes the increase in the order of the differential equa-
tion, which describes the spatial distribution of the wave field with the
consequences similar to mode coupling described in the present paper.
The properties of the surface waves at the plasma-metal interface,
which arise when a hot plasma permittivity tensor is taken into
account in the Voigt geometry, were presented, in particular, in Refs.
12 and 13.

This paper is arranged as follows: The motivation of the study is
provided in Sec. I. The model of the plasma-dielectric-metal structure
under the consideration and basic assumptions are described in Sec. II.
The spatial distribution of the wave fields is given in Sec. III, and the
dispersion relation is derived in Sec. IV. Then, the numerical analysis
of the dispersion relation is given in Sec. V. Finally, the obtained
results are discussed in Sec. VI.

II. STATEMENT OF THE PROBLEM

The following plasma waveguide structure is under consideration
(see Fig. 1). A circular metal waveguide with inner radius b and infinite
electrical conductivity is assumed to be infinite in the axial direction z.
The plasma cylinder with radius a is placed concentrically inside the
waveguide. The plasma column is separated from the metal wall by a
dielectric layer with dielectric constant ed . A static magnetic field is
directed along the waveguide axis,~B0jj~z .

The electrodynamic properties of the plasma column are
described in terms of the cold collisionless plasma dielectric permittiv-
ity tensor eij,

be ¼ e1 ie2 0

�ie2 e1 0

0 0 e3

0B@
1CA: (1)

The components of the tensor are given by

e1 ¼ 1�
X

a

X2
a

x2 � x2
a

; e2 ¼ �
X

a

X2
axa

x x2 � x2
a

� � ;
e3 ¼ 1�

X
a

X2
a

x2
:

(2)

In the above equation, Xa is the plasma frequency of the particle of
species a (a ¼ i for ions and a ¼ e for electrons), and xa is the corre-
sponding cyclotron frequency.

This paper employs the method of variable separation.
Specifically, one can search for the solution of the Maxwell equations
in the following form:

Hz ~r ; tð Þ ¼ Hz rð Þexp½i kzz þmu� ixtð Þ�: (3)

Here, kz , m, and x are the axial wavenumber, azimuthal wave index,
and angular wave eigenfrequency, respectively. In this approach, the
Maxwell equations can be written in the form of two coupled differen-
tial equations of the second order10,11

1
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In Eqs. (4) and (5), k2? ¼ k2N2
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2
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zð Þ ; k ¼ x=c; Nz ¼ kz=k, Nu ¼ m=ðrkÞ. The right hand

sides of Eqs. (4) and (5) are small values proportional to the first order
of kz ,
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The presence of a few terms proportional to k2z in the left hand sides of
Eqs. (4) and (5) provides turning of these equations into those known
for the case of wave propagation in a dielectric and/or plasma without
any external static magnetic field.

III. SPATIAL DISTRIBUTION OF THE WAVE FIELDS

In the dielectric region, the wave field distribution is well-known
precisely asFIG. 1. Schematic of the waveguide geometry.
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Hz rð Þ ¼ G½J 0m jbð ÞNm jrð Þ � N 0m jbð ÞJm jrð Þ�; (8)

Eu rð Þ ¼ ik
�j

G J 0m jbð ÞN 0m jrð Þ � N 0m jbð ÞJ 0m jrð Þ
� 	

� kzm
rj2

F Jm jbð ÞNm jrð Þ � Nm jbð ÞJm jrð Þ
� 	

; (9)

Ez rð Þ ¼ F½Jm jbð ÞNm jrð Þ � Nm jbð ÞJm jrð Þ�: (10)

In Eqs. (8)–(10), j2 ¼ k2ed � k2z > 0. Expressions (8) and (10) for the
amplitudes of the axial electric and magnetic wave fields contain only
two constants of integration G and F since two other constants are
determined from the boundary conditions: the tangential electric wave
fields Eu and Ez are equal to zero at the metal wall, r ¼ b.

Within the plasma column, the radial distribution of the wave
fields is found by the method of successive approximations. The wave
field amplitudes are presented in the form as

Hz rð Þ ¼ H 0ð Þ
z rð Þ þ H 1ð Þ

z rð Þ; H 1ð Þ
z rð Þ




 


 � kzH
0ð Þ
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z rð Þ




 


;
(11)

Ez rð Þ ¼ E 0ð Þ
z rð Þ þ E 1ð Þ

z rð Þ; E 1ð Þ
z rð Þ
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0ð Þ
z rð Þ




 


� E 0ð Þ
z rð Þ




 


:
(12)

The wave field amplitudes, Hð0Þz rð Þ and Eð0Þz rð Þ, are assumed to be
known from zero approximation, in which kz ¼ 0. In other words,
Hð0Þz rð Þ and Eð0Þz rð Þ are the solutions of Eqs. (4) and (5) with zero right
hand sides

H 0ð Þ
z rð Þ ¼ A1/ rð Þ þ A2

~/ rð Þ; (13)

E 0ð Þ
z rð Þ ¼ C1w rð Þ þ C2

~w rð Þ: (14)

In Eqs. (13) and (14), A1;2 and C1;2 are the constants of integration,
and the functions / rð Þ and w rð Þ are the solutions of Eqs. (4) and (5),
respectively, with zero right hand sides, which are finite at the axis,
r ¼ 0.

The functions ~/ rð Þ and ~w rð Þ are the solutions of the same equa-
tions, which are linearly independent from the functions / rð Þ and
w rð Þ; they are singular at the axis, r ¼ 0. The singularity makes it pos-
sible immediately to determine two constants of integration, A2 ¼ 0
and C2 ¼ 0.

To find the first order corrections Hð1Þz rð Þ and Eð1Þz rð Þ to the
radial distributions of the wave fields, one can substitute the wave field
amplitudes Hð0Þz rð Þ and Eð0Þz rð Þ into the right-hand sides of Eqs. (4)
and (5) instead of full expressions without any loss in precision. Then
the corrections Hð1Þz rð Þ and Eð1Þz rð Þ are derived by the method of con-
stant variation

H 1ð Þ
z rð Þ ¼ ~/

ðr
0

k2?/bKE 0ð Þ
z dr

W /; ~/
� � � /

ðr
a
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z dr
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E 1ð Þ
z rð Þ ¼ ~w

ðr
0

k2w bMH 0ð Þ
z dr
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a
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z dr

W w; ~w
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Here, W /; ~/
� �

and W w; ~w
� �

are the Wronskians of the two pairs of
functions

W /; ~/
� �

¼ /
@~/
@r
� ~/

@/
@r
; W w; ~w

� �
¼ w

@~w
@r
� ~w

@w
@r
: (17)

IV. DISPERSION RELATION

The calculations presented above describe the radial distribution
of the wave field, which is sufficient for studying the dispersion prop-
erties of electromagnetic waves with arbitrary azimuthal wave indices
and small axial wavenumbers in circular metal waveguides with an
inhomogeneous radial profile of the plasma particle density. However,
in the following numerical calculations, a plasma column with a uni-
form plasma particle density profile is considered to investigate the
effect of the non-zero axial wavenumber rather than that of plasma
density non-uniformity.

The waves under study should be of surface type. This means
that the plasma is nontransparent for these waves. The waves do not
propagate in the absence of the plasma-dielectric interface in infinite
plasma media. A sufficiently dense plasma is considered, so that
X2

e � x2
e . In this case, surface type waves propagate in the following

frequency ranges:

xej j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

i þ c2k2z
X2

e þ x2
e

s
< x < xej j; xej j < x < x�: (18)

The range (18) encloses the electron cyclotron frequency and is
referred hereinafter as low frequency (LF) one. One more range lies
above the upper hybrid frequency and is called here as high frequency
(HF) one ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
e þ X2

e þ c2k2z

q
< x < xþ: (19)

In Eqs. (18) and (19), x7 are the cutoff frequencies for bulk modes

x7 ¼ 70:5 xej j þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25x2

e þ X2
e

q
þ c2k2z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25x2

e þ X2
e

q
6 0:5 xej j

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25x2

e þ X2
e

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25x2

e þ X2
e

q
7 0:5 xej j

� � : (20)

Dissipativeless boundary conditions at the plasma–dielectric
interface are applied to the solutions derived above for these two
regions (plasma column and dielectric layer). The dispersion relation
is obtained in the form of a 4� 4 determinant, aijj j ¼ 0. In this
respect, the present problem is much more complicated than those
solved earlier in Refs. 10 and 11. The components of the determinant
are listed in the Appendix.

Electron beam excitation of long-wavelength surface waves in the
HF range was demonstrated in Ref. 9 to be much less efficient as com-
pared with the LF range. That is why the following consideration is
restricted to the LF range, though the derived dispersion relation is
applicable for studying the dispersion properties of the waves in HF
range (19) as well.

V. RESULTS OF THE NUMERICAL ANALYSIS

The dispersion relation is solved numerically. The shape of the
dispersion curves is similar to those obtained earlier in Refs. 10 and 11.
The dependencies of the wave dispersion properties on kz , B0, magni-
tude and sign of m, ed , a, and b are studied. The dispersion curves are
presented in the form of dependencies of normalized eigenfrequencies
x=jxej on kza.
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The results of the numerical studies are presented in Figs. 2–6. As
already mentioned, the product kza is chosen as the abscissa axis. The
present consideration is only valid for small magnitudes of the axial
wavenumber. It was analytically derived in Refs. 10 and 11 that the
method of successive approximations is applicable in this case of
kz � m=a. The latter condition is fulfilled for all the calculations pre-
sented in Figs. 2–6.

The wave eigenfrequency normalized by the electron cyclotron
frequency, x=jxej is chosen as the ordinate axis in Figs. 2–5. Since Fig.
6 demonstrates the influence of the external axial static magnetic field
on the wave dispersion properties, the eigenfrequency is normalized
by the Langmuir (electron plasma) frequency,x=Xe.

In the case of surface flute waves, the ratiom=a is the appropriate
observable to play the role of the wavenumber, and it seems to be nat-
ural to normalize this wavenumber by the skin-depth d ¼ c=Xe. Then
the effective wavenumber is kef � mj jd=a, which in Figs. 2–6 is chosen
as kef ¼ 0:6 to make it possible to compare the present results with
those reported earlier in Ref. 10.

Since ordinary and extraordinary waves are coupled in the pre-
sent problem, one can see two branches of the dispersion curve in the

FIG. 2. Surface wave eigenfrequency vs axial wavenumber for different positive
azimuthal wave indices m¼ 1, 2, 3 (indicated by the numbers near the curves).
ed ¼ 2; D ¼ ðb� aÞ=a ¼ 0:1; kef ¼ 0:6; Z ¼ Xe= xej j ¼ 7:5.

FIG. 3. Surface wave eigenfrequency vs axial wavenumber for azimuthal wave indi-
ces of different signs m¼61, 62 (indicated by numbers near the curves).
ed ¼ 2; D ¼ 0:1; kef ¼ 0:6; Z ¼ 7:5. Dashed curves correspond to positive indi-
ces, and solid curves correspond to the negative indices.

FIG. 4. Surface wave eigenfrequency vs axial wavenumber for different magnitudes
of dielectric constant. ed ¼ 2; D ¼ 0:1; kef ¼ 0:6; Z ¼ 7:51, 2, 3 (indicated by
numbers near the curves). m¼ 1, D¼ 0.1, kef¼ 0.6, Z¼ 7.5.

FIG. 5. Surface wave eigenfrequency vs axial wavenumber for different widths of
the dielectric layer b

a ¼ 1:1; 1:2; 1:3 (indicated by numbers near the curves).
m ¼ 1; ed ¼ 2; kef ¼ 0:6; Z ¼ 7:5.
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figures. This is the main distinguishing feature, which differs the dis-
persion properties of surface waves with non-zero axial wavenumber
from those of surface flute waves.1

The branch that turns to surface flute waves in the limit kz ! 0
(it almost looks like a horizontal line) is the high frequency (HF)
branch. The other branch is characterized by smaller magnitudes of
the wave eigenfrequencies. (The frequencies are approximately pro-
portional to kz .) That is why this branch is referred here as the low fre-
quency (LF) one.

In general, the shapes of all the dispersion curves are similar. For
example, in the curve marked by “3” in Fig. 2, the HF branch starts
with x=jxej¼1.903 for kz ¼ 0. For small kz < 0:8=a, the normalized
wave eigenfrequency increases to x=jxej ¼ 1:939 approximately pro-
portionally to k2z . This circumstance is predictable from the mathemat-
ical point of view. The dispersion relation derived in this paper can be
presented in the following form, which is common for the problems of
coupled waves

DXDO þ D 2ð Þ ¼ 0: (21)

In Eq. (21), DX ¼ 0 is the dispersion relation of extraordinary surface
flute waves,1 DO ¼ 0 is the dispersion relation of electromagnetic waves
with ordinary polarization, and the term Dð2Þ is of the second order of
smallness in the axial wavenumber. The solution of Eq. (21) can be pre-
sented as a series in kz : x ¼ xð0Þ þ Dx, where xð0Þ is the solution of
the dispersion relation in zeroth approximation, DX x 0ð Þð Þ ¼ 0. Then
the correction Dx to the eigenfrequency is given by

Dx ¼ �D 2ð Þ

DO

@DX

@x

� �
jx¼x 0ð Þ

/ k2z : (22)

For larger magnitudes of the axial wavenumber, 0:8=a < kz
< 1:1138=a, the HF branch decreases to x=jxej¼ 1.766 to meet with
the LF branch. The LF branch decreases almost linearly with decreas-
ing axial wavenumber approaching to the frequency range lower limit
(19). For the maximum magnitude of kz ¼ 1:1138=a, ed ¼ 1; 2; 3

(indicated by numbers near the curves). m ¼ 1; D ¼ 0:1; kef ¼ 0:6;
Z ¼ 7:5, and the wave group velocity turns to infinity, @x=@kz !1.
In the vicinity of this point, the modal representation of the wave fails.

The axial wavenumber for which the frequencies of the HF and
LF branches coincide is denoted as kz ¼ km. Nearby km the represen-
tation of electromagnetic eigenwaves in the harmonic form,
/ exp i kzz þmu� xtð Þ½ �, fails. Near the point in question, the dis-
persion curve kz xð Þ can be approximately described by the quadratic
parabola kz xð Þ ¼ km � x� xmð Þ2=a (where a is a constant having
the dimension of acceleration, cm/s2). In this case, an electromagnetic
pulse with the field proportional to exp �t2= 2s2ð Þ

� �
cos kmz þmu½

�xmt� (where s is the pulse duration) spreads out from the point at
which it was originally formed in the axial direction over a distance of
about as2=2.11

Increasing azimuthal wave index m is demonstrated in Fig. 2 to
cause an increase in the HF branch, which is in agreement with the
theory of surface flute waves1,10,11 and to expansion of the kz range
where the present consideration is applicable. The increase in m from
1 to 3 is accompanied by broadening the kz range from kz ¼ 0:257=a
for m¼ 1 to kz ¼ 0:640=a for m¼ 2 and then to kz ¼ 1:114=a for
m¼ 3 (by 77%).

Figure 3 shows how the sign of the azimuthal wave index influen-
ces the wave dispersion properties. The surface flute waves with nega-
tive azimuthal wave indices have smaller magnitudes of their
eigenfrequencies. That is why the dispersion curves of the waves with
m < 0 are shown in Fig. 3 by solid curves, which lie lower than those
for the waves with positive azimuthal wave indices. The range of axial
wavenumbers, where the waves exist, is smaller for the waves with
m < 0 than for the waves with positive azimuthal wave indices.

The results presented in Fig. 3 are most appropriate to be com-
pared with those obtained in Ref. 10. In the absence of an external static
magnetic field ~B0; the dispersion properties of electromagnetic waves
are known to be degenerate with respect to the sign of the azimuthal
wave indexm. Therefore, the influence of the sign ofm on the wave dis-
persion properties was not studied in Ref. 10. There, the dispersion
curve of surface type long-wavelength waves was given for the same
plasma waveguide parameters as those applied for the calculations in
Fig. 3 of the present paper: mj j ¼ 2; ed ¼ 2; D ¼ 0:1; kef ¼ 0:6.
However, an external static magnetic field was not considered in Ref.
10. Application of ~B0 causes the splitting of the dispersion curve. The
HF branch of the dispersion curve, which was shown in Fig. 1 of Ref.
10, lies in the middle between the HF branches shown in Fig. 3 for
m ¼ 62. The axial wavenumber, for which the frequencies of the HF
and LF branches coincide in Fig. 1 of Ref. 10, is approximately equal to
the arithmetic mean of those for the dispersion curves presented here in
Fig. 3 form ¼ 62.

The dispersion curves in Fig. 4 demonstrate that the decrease in
the HF branch eigenfrequencies does not unambiguously mean nar-
rowing of the kz range where the present consideration is applicable.
These curves show the effect of the magnitude of the dielectric con-
stant ed on the wave dispersion properties. Increasing ed from ed ¼ 1
to ed ¼ 2 and then to ed ¼ 3 results in decreasing maximum magni-
tude of the HF branch of eigenfrequencies from x=jxej ¼ 1:943 for
ed ¼ 1 to x=jxej ¼ 1:471 for ed ¼ 2 and then to x=jxej ¼ 1:262 for
ed ¼ 3 (or in other words, by 35% in general), while the maximum of
the observed axial wavenumbers increase from kz ¼ 0:237 for ed ¼ 1
to kz ¼ 0:257 for ed ¼ 2 and then to kz ¼ 0:274 for ed ¼ 3 (by 14%

FIG. 6. Surface wave eigenfrequency vs axial wavenumber for different magnitudes
of external static axial magnetic field (numbers near the curves indicate the dimen-
sionless parameters Z ¼ 5:0; 7:5; 10:0). m ¼ 1; b=a ¼ 1:1; ed ¼ 2; kef ¼ 0:6.
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only). The decrease in the kz range with increasing magnitude of the
HF branch eigenfrequencies is pointed out because it is observed in
Fig. 4 on the contrary to the tendencies given in Figs. 2, 3, 5, and 6.

The dispersion properties of the waves also depend on the width
of the dielectric layer where the waves are of bulk nature (oscillating
along the radial coordinate). The wider the layer is, the larger are the
eigenfrequencies of the HF branch, and the wider is the kz range where
the present consideration is applicable (see Fig. 5). Increasing dielectric
layer width from D ¼ ðb� aÞ=a ¼ 0:1 to D ¼ 0:2 and then to
D ¼ 0:3 (by 67%) causes an increase in the maximum of the wave
eigenfrequency of the HF branch from x=jxej ¼ 1:471 for D ¼ 0:1 to
x=jxej ¼ 1:757 for D ¼ 0:2 and then to x=jxej ¼ 1:905 for D ¼ 0:3
(by 23%), while the maximum magnitude of the axial wavenumber
increases from kz ¼ 0:257 for D ¼ 0:1 to kz ¼ 0:318 for D ¼ 0:2 and
then to kz ¼ 0:355 for D ¼ 0:3 (by 28%).

The results presented in Fig. 5 are most appropriate to be com-
pared with those obtained in Ref. 11. Propagation of long-
wavelength electromagnetic waves of surface type in circular metal
waveguides entirely filled by cold plasma in the presence of an axial
static magnetic field was studied there. Surface flute waves are
known to be unidirectional in circular metal waveguides entirely
filled by cold plasma.1 In other words, they propagate with azi-
muthal wave indices of definite sign: m > 0 in the LF range (18) and
m < 0 in the HF range (19). Turning the width of the dielectric layer
to zero, b=a! 1, makes it impossible for LF surface flute waves with
negativem to propagate. This is one more reason why the dispersion
curves shown in Fig. 5 are calculated just for positive azimuthal
wave index.

The influence of the magnitude of the external axial static mag-
netic field B0 on the dependence of the wave eigenfrequency on the
axial wavenumber is shown in Fig. 6. Increasing B0 is associated with
the decrease in the dimensionless parameter Z ¼ Xe=jxej, which is
inversely proportional to B0. Doubling of Z from Z ¼ 5:0 to Z ¼ 7:5
and then to Z ¼ 10:0 causes the decrease in the maximum of the
wave eigenfrequency of the HF branch from x=Xe ¼ 0:219 for
Z ¼ 5:0 to x=Xe ¼ 0:20 for Z ¼ 7:5 and then to x=Xe ¼ 0:186 for
Z ¼ 10:0 (by 15%), while the maximum magnitude of the axial wave-
number decreases from kz ¼ 0:296 for Z ¼ 5:0 to kz ¼ 0:257 for
Z ¼ 7:5 and then to kz ¼ 0:240 for Z ¼ 10:0 (by 19%).

The results of the numerical analysis presented in Fig. 2 are
applied in the following to demonstrate the wave field radial distribu-
tion in Figs. 7 and 8. The following plasma waveguide parameters are
chosen for the calculations: m ¼ 2; ed ¼ 2; D ¼ ðb� aÞ=a
¼ 0:1; kef ¼ 0:6; Z ¼ Xe= xej j ¼ 7:5. The axial wavenumber is cho-
sen in the middle of the range wherein the surface waves exist as
kza ¼ 0:3. In this case, surface waves from the LF branch propagate
with the frequency x=jxej 	 0:632, and those from HF branch—
with the frequency x=jxej 	 1:738. The radial distribution is pre-
sented for the axial magnetic and electric wave fields by solid and
dashed curves, respectively. The field amplitudes are given in arbi-
trary units. They are normalized in such a way that maxima of the
electric field amplitudes are equal to unit. The wave field radial dis-
tributions are calculated from Eqs. (8), (10), (15), and (16). Both
magnetic and electric wave fields turn to zero when approaching to
the axis, r ¼ 0. The electric wave field turns to zero also at the metal
wall, r ¼ a. The magnetic wave field has zero radial derivative at the
metal wall.

VI. CONCLUSIONS

The transition from surface flute waves to long-wavelength waves
with small magnitude of the axial wavenumber kz is accompanied by
the appearance of a second branch of the dispersion curve x ¼ xðkzÞ.
This happens due to weak coupling between waves of ordinary and
extraordinary polarizations.

The following conclusions can be made from analyzing the influ-
ence of different physical observables on the wave dispersion proper-
ties. It is the azimuthal wave indexm, which causes the most influence
on the width of the kz range where the waves propagate. The influence
of the magnitude of m is much more pronounced than those of the

FIG. 7. Radial distribution of the surface wave fields for the LF branch. The solid
curve corresponds to the axial magnetic field, and the dashed curve relates to the
axial electric field. b=a ¼ 1:1, m ¼ 2; ed ¼ 2; kef ¼ 0:6; kza ¼ 0:3; Z ¼ 7:5;
x=jxej 	 0:632.

FIG. 8. The same as in Fig. 7 but for the HF branch with x=jxej 	 1:738.
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width (which is characterized by the dimensionless parameter D) of
the dielectric layer between plasma and waveguide wall, and the mag-
nitude of an external axial static magnetic field B0. The weakest affect
is caused by the magnitude of the dielectric constant ed of the layer.

To summarize the results concerning the group velocity, the fol-
lowing issues should be underlined. First, the wave group velocity of
the HF branch is small and changes its sign from positive to negative
with increasing axial wavenumber. Second, the transfer from the HF
branch to the LF branch is accompanied by an increase in the group
velocity going to infinity. In addition, the group velocity changes its
sign from negative to positive during this transfer. Third, the group
velocity of the LF branch does not depend on kz , except of the small
range of kz near the points of transfer from one branch into the other.
Fourth, the group velocity of the LF branch varies with varying azi-
muthal wave index and dielectric constant, and does not vary with the
change in the sign of the azimuthal wave index, the width of the dielec-
tric layer, and the magnitude of the external axial static magnetic field.

There is no mathematical problem to generalize the suggested
method of solving the Maxwell equations to the case of bulk waves. In
the case of uniform radial profile of the plasma particle density, the
bulk waves propagate in another frequency range than for surface
waves, and are described by Bessel functions of the first and second
kinds rather than by the modified Bessel functions.

The suggested method of successive approximations can also be
applied for solving the Maxwell equations for electromagnetic waves
with small axial wavenumbers in plasma waveguides with inhomoge-
neous plasma particle density. In this case, even the numerical solution
of the Maxwell equations can be simplified since one needs to solve
two uniform differential equations of the second order, which are
independent rather than the similar coupled equations. Including an
inhomogeneity of the plasma particle density modifies the surface
wave dispersion relation. The latter can be written in implicit form
incorporating the solutions of the Maxwell equations in zeroth
approach, which are assumed to be known like it is presented in Eqs.
(15) and (16).

This study substantially contributes to the development of the
theory of plasma waveguides. It generalizes the results of investigating
the dispersion properties of long-wavelength electromagnetic waves of
surface type in isotropic metal waveguides partially filled by plasma
obtained in Ref. 10 by introducing an axial static magnetic field. The
latter is often applied in modern plasma technological devices. On the
other hand, it generalizes the outcomes of research into the eigenfre-
quencies and spatial distribution of the long-wavelength electromag-
netic wave of surface type in magneto-active metal waveguides entirely
filled by plasma presented in Ref. 11 by taking into account a dielectric
layer between the plasma column and the metal wall. In Ref. 11, the
dispersion relation had the form of the second order determinant on
the contrary to the present case and that studied in Ref. 10 when the
dispersion relation has the form of a fourth order determinant. A com-
bination of these two elements (presence of both axial static magnetic
field and the dielectric layer) not only makes the analytic and numeri-
cal calculations more complicated but also brings the theoretical model
much closer to real conditions of experimental setups.

The presented results can be of interest in the field of plasma elec-
tronics and high-power microwave generation and amplification to
analyze the interaction of surface-type electromagnetic waves with
annual electron beams gyrating in a static axial magnetic field around

the plasma column along large Larmor orbits, e.g., in large orbit gyro-
trons with circular waveguide cavity.1–9 In such so-called higher har-
monic LOG gyrotrons, the azimuthal index of the transverse electric
cavity mode is equal to the harmonic number. It operates very close to
its cutoff frequency, so that the present approximation of very small
axial wavenumber is perfectly fulfilled. The important advantage of
the higher harmonic gyro-interaction is that the necessary strength of
the static axial magnetic field in the cavity is divided by the harmonic
number, which makes the needed, very often superconducting magnet,
much cheaper.
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APPENDIX: COMPONENTS OF THE DISPERSION
RELATION

The components of the determinant aij that form the disper-
sion relation of the studied waves read

a11 ¼ Im x1ð Þ; a14 ¼ a33 ¼ 0; (A1)

a12 ¼ Km x1ð ÞlNzx
2
2Q; (A2)

a13 ¼ Jm x3ð ÞN 0m x4ð Þ � J 0m x4ð ÞNm x3ð Þ; (A3)

a21 ¼
lm
x21

Im x1ð Þ þ
I0m x1ð Þ
x1

; (A4)

a22 ¼ x22 1� k2z
k2?

 !
NzQ

lm
x21

Km x1ð Þ þ
K 0m x1ð Þ

x1

 !

þ
lNzx2I0m x2ð Þ

x21
þ Nzm

x21
Im x2ð Þ; (A5)

a23 ¼
1
x3

J 0m x4ð ÞN 0m x3ð Þ � J 0m x3ð ÞN 0m x4ð Þ
� 	

; (A6)

a24 ¼
Nzm
x23

a34; (A7)
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a31 ¼ Km x2ð Þkzka2lQ= 1� k2z=k
2
?

� �
; (A8)

a32 ¼ �Im x2ð Þ; (A9)

a34 ¼ Jm x4ð ÞNm x3ð Þ � Jm x3ð ÞNm x4ð Þ; (A10)

a41 ¼
kzl
k?

I0m x1ð Þ þ
kzm
k2?a

Im x1ð Þ þ
K 0m x2ð Þx2kzalQ

1� k2z=k
2
?

; (A11)

a42 ¼ �
x2
ka

I0m x2ð Þ; (A12)

a43 ¼ �
mkza
x23

a13; (A13)

a44 ¼
j
k

Jm x4ð ÞN 0m x3ð Þ � J 0m x3ð ÞNm x4ð Þ
� 	

; (A14)

Q ¼ a2

x21 � x22
x1Im x2ð ÞImþ1 x1ð Þ � x2Im x1ð ÞImþ1 x2ð Þ
� 	

; (A15)

x1 ¼ k?a; x2 ¼ ak
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� e3
1� k2z=k

2
?

r
; x3 ¼ ja; x4 ¼ jb:

(A16)
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