KIT | KIT-Bibliothek | Impressum | Datenschutz

Deep learning and geochemical modelling as tools for solute geothermometry

Ystroem, Lars H. ORCID iD icon 1; Vollmer, Mark 1; Nitschke, Fabian 1; Kohl, Thomas 1
1 Institut für Angewandte Geowissenschaften (AGW), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Geothermometry is constituted as one of the most important geochemical tools for reservoir exploration and development. Solute geothermometers are used to estimate the temperature in the subsurface. Therefore, the chemical composition of a discharging geothermal fluid is used to infer the temperature of the reservoir. Conventional solute geothermometers are using element ration or single mineral phases for reservoir temperature estimation. These geothermometers have large uncertainties applying them on the same fluid sample. Therefore, a new method called multicomponent geothermometry was introduced. Assuming the reservoir rock and the geothermal fluid are in equilibrium, the mineral assemblage of the reservoir rock is used to determine the temperature within the reservoir. Thus, the temperature-dependent saturation indices of the mineral set are calculated. Utilising multiple mineral phases for temperature estimation leads to a statistically more robust and precise result than the conventional method. Nevertheless, secondary processes such as boiling, degassing, and dilution are disturbing the equilibrium reaction within the fluid.
... mehr

Zugehörige Institution(en) am KIT Institut für Angewandte Geowissenschaften (AGW)
Publikationstyp Poster
Publikationsdatum 19.10.2022
Sprache Englisch
Identifikator KITopen-ID: 1000155106
HGF-Programm 38.04.04 (POF IV, LK 01) Geoenergy
Veranstaltung European Geothermal Congress (EGC 2022), Berlin, Deutschland, 17.10.2022 – 21.10.2022
Schlagwörter solute geothermometry; multicomponent geothermometer; artificial neural network geothermometer

Volltext §
DOI: 10.5445/IR/1000155106
Veröffentlicht am 26.01.2023
Seitenaufrufe: 92
seit 26.01.2023
Downloads: 59
seit 30.01.2023
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page