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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

The ramp-up of machines for stack formation processes in the context of battery cell production is difficult due to a lack of knowledge about 
cause-effect relationships. This concerns the initial setup of the machine as well as the change of process input variables. For example, there are 
strong material dependencies in the area of cell stack formation of battery cells. Individual adjustments of the machine parameters to the different 
materials are therefore necessary. Digital twins represent the production process and the machine operations in a virtual environment. Cause-
effect relationships can thus be quantified and evaluated. Optimization approaches for ramp-up-processes can be tested with low risk in virtual 
space before they are implemented in reality. This paper describes the development process of a digital twin representing a machine for flexible 
cell stack formation of pouch cells. As basis for the digital twin, a kinematic process model of the machine is developed from the underlying 
CAD files. Sensors and actuators are virtually integrated in the design environment of the machine. Connecting the model to a virtual controller, 
allows virtual testing and evaluating of the developed PLC code within the digital twin. Furthermore, the development of a simulation model for 
the prediction of the electrode web tension, as a quality-critical parameter, is presented. This purpose requires relevant aspects of the machine, 
for example the unwinder drive behaviour, to be recognized and integrated. In order to enable near-real-time runability, this simulation model is 
converted into a reduced-order-model. This substitution can be validated by tracing and comparing the web tension during commissioning 
scenarios on the real machine. Therefore it is possible to virtually represent control-side kinematic processes while also making statements 
regarding the web tension of the electrode material. The resulting functional digital twin of the flexible stack formation machine will be used to 
optimize the process parameters as well as the current machine design. 
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1. Introduction 

Due to the increasing demand for lithium-ion battery cells, 
efficient production processes and machines will be necessary 
to meet the requirements of the market [1]. The cause-effect 
relationships occurring in the production processes have not 
been finally understood yet, which makes the commissioning 
and ramp-up of the production machines more difficult and 
results in material scrap and high production costs [2]. 

As a part of the development trend “Industry 4.0” and the 
digitalization, the use of digital twins for production processes 

of any kind is becoming increasingly important [3]. These are 
used to represent real physical objects or processes in virtual 
space and allow parameter correlations to be explored [4]. First 
developments and applications of digital twins have already 
taken place in the context of lithium and post-lithium battery 
cells and their production processes, which will be described 
further on. 

In [5–7] methods and approaches are described for the 
development of digital twins, which describe the physical and 
electrochemical behavior of the battery cell or battery system. 
In [8] the influence of calendering on cell performance is 
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Due to the increasing demand for lithium-ion battery cells, 
efficient production processes and machines will be necessary 
to meet the requirements of the market [1]. The cause-effect 
relationships occurring in the production processes have not 
been finally understood yet, which makes the commissioning 
and ramp-up of the production machines more difficult and 
results in material scrap and high production costs [2]. 

As a part of the development trend “Industry 4.0” and the 
digitalization, the use of digital twins for production processes 

of any kind is becoming increasingly important [3]. These are 
used to represent real physical objects or processes in virtual 
space and allow parameter correlations to be explored [4]. First 
developments and applications of digital twins have already 
taken place in the context of lithium and post-lithium battery 
cells and their production processes, which will be described 
further on. 

In [5–7] methods and approaches are described for the 
development of digital twins, which describe the physical and 
electrochemical behavior of the battery cell or battery system. 
In [8] the influence of calendering on cell performance is 
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investigated using a digital twin. The use of a cloud-based 
digital twin to describe battery behavior in electric vehicles is 
presented in [9]. 

Overall, it can be seen that the use of digital twins relates 
predominantly to the battery cell itself, or the overarching 
production system. The development of digital twins for the 
respective production machines has only taken place to a 
limited extend to date. In this paper, a digital twin of a 
production machine for cell stack formation is developed to 
optimize the ramp-up process. Specifically, the development of 
the digital twin is being done on the Coil2Stack machine, which 
has been developed at the wbk – Institute of Production Science 
of KIT and is described in [10, 11]. 

2. Development of the Digital Twin 

In the following, the concept of the production machine and 
the process are shown and the methodology for the construction 
of the digital twin is presented. The machine concept is shown 
in Fig.1. The machine continuously processes incoming 
electrode material. The material is provided to the process as 
an electrode coil. The electrode web is guided by a roll-setup 
to a flexible and functionally integrated handling and 
singulation system. A material storage unit is integrated to 
ensure a constant feed rate. In order to control the web run, a 
web-edge control system is integrated. A web-tension 
measuring roller is built in to capture the web-tension shortly 
before the material is fed to the flexible handling system. The 
web tension is controlled by the unwinder and the material 
storage system at this point. The handling system is able to grip 
the electrode material with the help of three large area surface 
vacuum grippers and produce electrode sheets by using a shear 
cut. The singulated electrode-sheets are then placed on a table. 
The distance between the vacuum grippers can be adjusted 
automatically. This allows different sheet lengths to be set 
which are going to be singulated out of the incoming electrode 
web. The handling system then places the cut electrode sheets 
on the stacking table at a constant depositing speed. 

Fig. 1. Machine Concept 

The web tension of the electrode material is a critical 
parameter for determining whether the material can be 
processed in the system or not. If the web tension on the 

handling element is too low the shear cut cannot be performed 
and the electrode web cannot be guided in the system. If the 
web tension is too high, the electrode sheet may “rip off” during 
the cutting process and the vacuum grippers are not able to hold 
the electrode web in place. Furthermore, it can be seen that the 
web tension has an influence on the dimensional accuracy of 
the electrode sheets. The entire system is characterised by a 
complex motion sequence of the handling system, the 
adjustable drive behavior on the control-system side and the 
resulting material behavior in the production machine. The 
interdependencies between the motion sequence, the occurring 
web tension, the general machine/system parameters and the 
material behavior are largely unknown. This problem 
complicates both, the initial commissioning and the testing of 
the generated control code, as well as the commissioning of the 
system in the event of a change of material or change of the 
sheet lengths of the electrodes to be produced. Long 
commissioning times and the generation of material scrap are 
the result. This leads inevitably to an increase in costs. Against 
the background of the previous process steps, the material is 
associated with a high cost and energy expenditure. Material 
scrap is therefore a major cost driver. 

The transfer of the production machine and the process into 
a digital twin enables the testing of the commissioning 
scenarios mentioned above with no risk in virtual space. Based 
on this digital twin, optimization approaches can be derived 
and implemented in reality. The entire structure of the digital 
twin is shown in Fig.2. The digital twin is made up of three 
parts. These are the kinematic process model, the web tension 
simulation model and a virtual control unit. The kinematic 
process model represents the system in the corresponding CAD 
model. Virtual sensors and actuators are additionally integrated 
here to visualize the movement sequence of the system. In the 
web tension simulation model, mechanical components, the 
control structure of the machine and the drive behavior of the 
system are simulated in order to be able to make conclusions 
about the web tension behavior. The third component of the 
digital twin is the virtual control unit. 

Fig. 2. Structure of the Digital Twin 
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The virtual controller projects the corresponding signals of 
the control code to the respective components in the models. In 
this way, the system behavior in the model can imitate that of 
reality. The software used to build up the digital twin is NX-
Mechatronics Concept Designer / SIMIT (kinematic process 
model), Simcenter AMESIM (web tension simulation model) 
and PLC-SIM-Advanced (virtual control system) from 
SIEMENS AG. An information or data exchange between the 
digital twin and the real system marks the connection between 
the real and virtual system. For example, the actually measured 
behavior of the drives can be fed into the models of the digital 
twin in order to determine the web tension at any position. The 
other way around, there is the possibility of determining 
optimization approaches based on the digital twin and returning 
optimized control parameters to the real system. However, in 
the following chapters, the development process of the 
kinematic process model and the web tension simulation model 
is described. 

2.1. Kinematic Process Model  

The kinematic representation of the real system is based on 
the solid bodies prepared in the CAD-Modell of the production 
machine. The mechanical relations between the solid parts are 
defined by constraints. To implement kinematic actions 
between the parts, corresponding constraints are converted into 
movement axis. These movement axis are subsequently used as 
virtual representations of the actuators of the production 
machine. By defining kinematic variables as feedback, 
interactions between the process model and e.g. the PLC 
(programmable logical controller)-simulation are made 
possible. For optimal use, the model input and output get 
connected to a behavior model. The behavior model offers the 
virtual mechatronic components the framework to interact with 
a logical controller, in this case a virtual representation of the 
PLC. 

Fig. 3. Implemented Kinematic Process Model 

Fig. 3 depicts the key parts of the kinematic process model. 
The virtual control system implements the PLC-program and 
offers it the virtual Input and Output-signals. Output signals 
trigger the virtual actuators of the kinematic model. Within the 
model, virtual sensors return the position signals of the 

machine parts to the virtual controller. These signals are 
transmitted through the virtual Profinet-connection provided 
by the behavior model and then processed in the inner logic of 
the virtual control system. This makes it possible to virtually 
represent and optimize the kinematic sequences of the machine. 
These sequences are finally considered in the web tension 
simulation model. 

2.2. Model for Determining the Electrode Web Tension 

In the following, the development process of the web 
tension simulation model is presented. In the model, relevant 
components and functions of the production machine are 
modelled in order to be able to simulate the web tension of the 
material. Fig. 4 shows the structure of the simulation model.  

Fig. 4. Structure of the Web-Tension Simulation Model 

The input, the aspects considered in the model itself and the 
output is illustrated. The input consists of properties of the 
electrode material. These are the young’s modulus, the cross-
sectional area of the electrode web and the longitudinal weight 
of the electrode material. Other input parameters are the 
required sheet length, the web speed of the electrode material 
as well as the setpoint for web tension. These variables are then 
processed in the simulation model. In the simulation model 
itself, the entire control architecture is modelled and the PLC-
generated motion sequences are used to control the drive 
models. Furthermore, drive models are created in which the 
start-up and delay behavior is considered. The entire roller 
system of the production machine is represented. Here, mainly 
the aspects of bearing friction, friction between sheet and roller 
and the inertial behavior are considered. Furthermore, the 
geometry of the gripper as a part of the handling system is 
considered. The handling system is modelled as a non-circular 
roller element. The different aspects of the simulation model 
are based on time-dependent differential equations. In the 
simulation model, these differential equations, which describe 
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investigated using a digital twin. The use of a cloud-based 
digital twin to describe battery behavior in electric vehicles is 
presented in [9]. 

Overall, it can be seen that the use of digital twins relates 
predominantly to the battery cell itself, or the overarching 
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respective production machines has only taken place to a 
limited extend to date. In this paper, a digital twin of a 
production machine for cell stack formation is developed to 
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the physical effects of the different machine parts, have to be 
solved numerically. This is associated with a high 
computational processing effort. Finally, this model is 
comparatively transformed into a reduced order model. Here, a 
data-based connection is set between the input and output 
parameters. This should minimize the processing time and thus 
enable near-real-time runability. The reduced order model is 
generated by an artificial neural network. This consists of three 
hidden layers with ten cells each. The activation function is 
tangens hyperbolicus. 

Experimental Setup 

The models are validated by tests on the real machine. Fig. 5 
shows the experimental setup. Here, calendered anode material 
is processed and the web tension is measured.  

Fig. 5. Experimental Setup at the Coil2Stack Demonstrator 

For the experiments, different sheet lengths and web speeds 
are selected. Three experimental setups were created in which 
the machine parameters were varied stepwise. The variation of 
the parameter values is oriented on a production scenario with 
the requirement of a specific output of electrode-sheets per 
second. The longer the required sheet length, the higher the web 
speed to be set. In order to enable controlled web guiding at 
increasing web speeds, the setpoint of the web tension was also 
increased with each step. Regarding the material parameters, 
the young’s modulus of copper has been used for the 
simulation. The other values were determined on an 
experimental basis. Table 1 shows the considered input 
parameters. 

Table 1. Input Parameters 

 Material Parameters Machine Parameters 

No. 
Yong’s 
Modulus 

Cross 
Section 

Long. 
Weight 

Req. 
Sheet 
Length 

Web 
Speed 

Web 
Tension 
Setpoint 

1 100 GPa 16.46 mm² 358.85 g/m 160 mm 8 mm/s 8 N 

2 100 GPa 16.46 mm² 358.85 g/m 210 mm 10 mm/s 10 N 

3 100 GPa 16.46 mm² 358.85 g/m 260 mm 12 mm/s 12 N 

3. Results 

In this chapter, the results of the usage of the digital twin 
and the described experiments are shown and evaluated. First 
of all, the measured data sets of the web tension are compared 
to the simulated ones. From this, a conclusion about the quality 
of the web tension simulation model can be made. Then, the 
optimization of the processing time by the reduced order model 
is validated. For this purpose, the deviation of the reduced order 
model from the original simulation model is quantified. In 
order to determine the deviation, the Root Mean Square Error 
(RMSE) is used as a characteristic value. The calculation is 
based on the following equation: 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑛𝑛∑ (𝐹𝐹𝑖𝑖 − �̂�𝐹𝑖𝑖)2𝑛𝑛

𝑖𝑖=1             (1) 

 
For the validation of the simulation model 𝐹𝐹𝑖𝑖 describes the 

measured data points of the web tension while �̂�𝐹𝑖𝑖 describes the 
simulated data points. For the validation of the reduced order 
model and the simulation model, the factor 𝐹𝐹𝑖𝑖  describes the 
data points of the simulation model and �̂�𝐹𝑖𝑖  describes the 
generated data points with the reduced order model. The 
Factor 𝑛𝑛 represents the number of data points. 

In the following, the comparison of the simulation model 
with the measured data is shown. The raw data sets of the 
measurements were additionally processed and filtered. This is 
intended to fade out disturbances and to reveal and visualize 
characteristics and typical variations of the measured web 
tension over machine-operation-time in the different 
experimental setups. The Savatzky-Golay-smoothing-filter was 
used for this purpose. The results of the first setup (Table 1-
No. 1) are shown in Fig.6. The RMSE-value of the simulation 
model, compared to the unfiltered data set is 0.944 N. In 
comparison to the filtered data set, the value is 1.012 N. 

Fig. 6. Results: Setup No. 1 

The results of the second setup (Table 1-No. 2) are shown in 
Fig. 7. 
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Fig. 7. Results: Setup No. 2 

   Here the RMSE of the simulation, compared to the unfiltered 
data is 1.179 N. The RMSE of the simulation, compared to the 
filtered data is 1.098 N. 

Fig. 8. Results: Setup No. 3 

The results of the third setup (Table 1-No. 3) are shown in 
Fig.8. The RMSE of the simulation, compared to the unfiltered 
data set is 1.252 N. The RMSE, compared to the filtered Data 
is 1.078 N. Overall, the measured data sets show that the web 
tension setpoint cannot be completely achieved by the machine 
in the considered period. The reason for this is primarily the 
complex motion sequence of the handling element and the 
delay behavior of the whole control system. The simulation 
model also represents this behavior. However, deviations from 
reality can be noted. The deviations in the start-up phases can 
be explained by the manual set-up process of the machine. 
Here, the material is manually fixed to the handling system, 
which results in an uncontrolled measured web tension in the 
start-up phase. In the simulation model, it is primarily the start-
up behavior of the drives that leads to a characteristic web 
tension variation in the start up phase. The effect of manual 
fixation is not considered in the simulation model. The results 
of the conversion of the simulation model into the reduced 
order model are shown below. The reduced order model is an 
artificial neural network that has been generated using 
simulated data.  

Fig. 9. Results: Reduced Order Model Setup No. 2 

The comparison of the reduced order model with the simulated 
and measured data is shown in Fig. 9. Here the data of the web 
tension with the second setup is shown exemplarily. The 
simulation was carried out for 60 seconds of machine operation 
with a time step of 0.05 seconds. Thus, 1200 data points were 
simulated. The original simulation model takes total of 
33.69 seconds to provide this data. This results in a computing 
speed of 35.6 data-points per second. In comparison, the 
reduced order model generates the same amount of data within 
0.0067 seconds. This leads to a computing speed of 180,000 
data-points per seconds. Thus, the computing speed has been 
increased by 5.06 ∙ 105 %. This enables near-real-time 
runability. Furthermore, a deviation between the reduced order 
model and the simulation can be noted. Here the RMSE value 
is 1.470 N. 

4. Conclusion 

The occurring cause-effect relationships in battery cell 
production are not yet sufficiently understood. For this reason, 
the commissioning of machines and plants is difficult. Material 
scrap and increased production costs are the result. Digital 
twins enable processes to be mapped virtually. This allows a 
ramp-up of the plant to be done virtually and with low risk. 
Optimization approaches can be derived from this and 
implemented in reality. This paper presents the development 
process for a digital twin of a continuously working and 
flexible cell stacking machine. For this purpose, a kinematic 
process model was first developed, which visualizes the motion 
sequences of the system. These sequences can thus be verified 
in virtual space. Furthermore, a simulation model was 
developed to predict the occurring web tension. For this 
purpose, relevant machine components and the material 
behavior were modeled. The simulation model was validated 
by a series of tests. Here, the simulated web tension was 
compared with measured data. Compared to the raw 
measurement data a minimum RMSE of 0.944 N for the first 
experimental Setup and a maximum RMSE of 1.252 N for the 
third experimental Setup were determined. In order to 
minimize the computing time and enable near real-time 
runability, the simulation model was converted into a data-
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the physical effects of the different machine parts, have to be 
solved numerically. This is associated with a high 
computational processing effort. Finally, this model is 
comparatively transformed into a reduced order model. Here, a 
data-based connection is set between the input and output 
parameters. This should minimize the processing time and thus 
enable near-real-time runability. The reduced order model is 
generated by an artificial neural network. This consists of three 
hidden layers with ten cells each. The activation function is 
tangens hyperbolicus. 

Experimental Setup 

The models are validated by tests on the real machine. Fig. 5 
shows the experimental setup. Here, calendered anode material 
is processed and the web tension is measured.  

Fig. 5. Experimental Setup at the Coil2Stack Demonstrator 

For the experiments, different sheet lengths and web speeds 
are selected. Three experimental setups were created in which 
the machine parameters were varied stepwise. The variation of 
the parameter values is oriented on a production scenario with 
the requirement of a specific output of electrode-sheets per 
second. The longer the required sheet length, the higher the web 
speed to be set. In order to enable controlled web guiding at 
increasing web speeds, the setpoint of the web tension was also 
increased with each step. Regarding the material parameters, 
the young’s modulus of copper has been used for the 
simulation. The other values were determined on an 
experimental basis. Table 1 shows the considered input 
parameters. 

Table 1. Input Parameters 

 Material Parameters Machine Parameters 

No. 
Yong’s 
Modulus 

Cross 
Section 

Long. 
Weight 

Req. 
Sheet 
Length 

Web 
Speed 

Web 
Tension 
Setpoint 

1 100 GPa 16.46 mm² 358.85 g/m 160 mm 8 mm/s 8 N 

2 100 GPa 16.46 mm² 358.85 g/m 210 mm 10 mm/s 10 N 

3 100 GPa 16.46 mm² 358.85 g/m 260 mm 12 mm/s 12 N 

3. Results 

In this chapter, the results of the usage of the digital twin 
and the described experiments are shown and evaluated. First 
of all, the measured data sets of the web tension are compared 
to the simulated ones. From this, a conclusion about the quality 
of the web tension simulation model can be made. Then, the 
optimization of the processing time by the reduced order model 
is validated. For this purpose, the deviation of the reduced order 
model from the original simulation model is quantified. In 
order to determine the deviation, the Root Mean Square Error 
(RMSE) is used as a characteristic value. The calculation is 
based on the following equation: 
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For the validation of the simulation model 𝐹𝐹𝑖𝑖 describes the 

measured data points of the web tension while �̂�𝐹𝑖𝑖 describes the 
simulated data points. For the validation of the reduced order 
model and the simulation model, the factor 𝐹𝐹𝑖𝑖  describes the 
data points of the simulation model and �̂�𝐹𝑖𝑖  describes the 
generated data points with the reduced order model. The 
Factor 𝑛𝑛 represents the number of data points. 

In the following, the comparison of the simulation model 
with the measured data is shown. The raw data sets of the 
measurements were additionally processed and filtered. This is 
intended to fade out disturbances and to reveal and visualize 
characteristics and typical variations of the measured web 
tension over machine-operation-time in the different 
experimental setups. The Savatzky-Golay-smoothing-filter was 
used for this purpose. The results of the first setup (Table 1-
No. 1) are shown in Fig.6. The RMSE-value of the simulation 
model, compared to the unfiltered data set is 0.944 N. In 
comparison to the filtered data set, the value is 1.012 N. 

Fig. 6. Results: Setup No. 1 

The results of the second setup (Table 1-No. 2) are shown in 
Fig. 7. 
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Fig. 7. Results: Setup No. 2 

   Here the RMSE of the simulation, compared to the unfiltered 
data is 1.179 N. The RMSE of the simulation, compared to the 
filtered data is 1.098 N. 

Fig. 8. Results: Setup No. 3 

The results of the third setup (Table 1-No. 3) are shown in 
Fig.8. The RMSE of the simulation, compared to the unfiltered 
data set is 1.252 N. The RMSE, compared to the filtered Data 
is 1.078 N. Overall, the measured data sets show that the web 
tension setpoint cannot be completely achieved by the machine 
in the considered period. The reason for this is primarily the 
complex motion sequence of the handling element and the 
delay behavior of the whole control system. The simulation 
model also represents this behavior. However, deviations from 
reality can be noted. The deviations in the start-up phases can 
be explained by the manual set-up process of the machine. 
Here, the material is manually fixed to the handling system, 
which results in an uncontrolled measured web tension in the 
start-up phase. In the simulation model, it is primarily the start-
up behavior of the drives that leads to a characteristic web 
tension variation in the start up phase. The effect of manual 
fixation is not considered in the simulation model. The results 
of the conversion of the simulation model into the reduced 
order model are shown below. The reduced order model is an 
artificial neural network that has been generated using 
simulated data.  

Fig. 9. Results: Reduced Order Model Setup No. 2 

The comparison of the reduced order model with the simulated 
and measured data is shown in Fig. 9. Here the data of the web 
tension with the second setup is shown exemplarily. The 
simulation was carried out for 60 seconds of machine operation 
with a time step of 0.05 seconds. Thus, 1200 data points were 
simulated. The original simulation model takes total of 
33.69 seconds to provide this data. This results in a computing 
speed of 35.6 data-points per second. In comparison, the 
reduced order model generates the same amount of data within 
0.0067 seconds. This leads to a computing speed of 180,000 
data-points per seconds. Thus, the computing speed has been 
increased by 5.06 ∙ 105 %. This enables near-real-time 
runability. Furthermore, a deviation between the reduced order 
model and the simulation can be noted. Here the RMSE value 
is 1.470 N. 

4. Conclusion 

The occurring cause-effect relationships in battery cell 
production are not yet sufficiently understood. For this reason, 
the commissioning of machines and plants is difficult. Material 
scrap and increased production costs are the result. Digital 
twins enable processes to be mapped virtually. This allows a 
ramp-up of the plant to be done virtually and with low risk. 
Optimization approaches can be derived from this and 
implemented in reality. This paper presents the development 
process for a digital twin of a continuously working and 
flexible cell stacking machine. For this purpose, a kinematic 
process model was first developed, which visualizes the motion 
sequences of the system. These sequences can thus be verified 
in virtual space. Furthermore, a simulation model was 
developed to predict the occurring web tension. For this 
purpose, relevant machine components and the material 
behavior were modeled. The simulation model was validated 
by a series of tests. Here, the simulated web tension was 
compared with measured data. Compared to the raw 
measurement data a minimum RMSE of 0.944 N for the first 
experimental Setup and a maximum RMSE of 1.252 N for the 
third experimental Setup were determined. In order to 
minimize the computing time and enable near real-time 
runability, the simulation model was converted into a data-
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based reduced order model. For this, an artificial neuronal 
network was used. The computing speed could thus be 
increased by 5.06∙ 105%. The reduced order model has been 
compared to the simulation model. Here a RMSE value of 
1.470 N has been noted. The accuracy of the simulation model 
to the measured values and the accuracy of the reduced order 
model to the simulation model is sufficiently. Larger web 
tension fluctuations can be modeled and setting parameters can 
be checked virtually. The cycle time of the control system is 
2 milliseconds. To ensure a coupling of the reduced order 
model with the control system the model must provide at least 
one data point per cycle. The model supplies 360 data points 
per cycle. Using a higher model for the reduced order model 
would increase the accuracy to the simulation model as well as 
computation time. More detailed investigations are to be 
carried out.    A virtual controller controls the kinematic process 
model as well as the simulation model for the web tension. This 
makes it possible to carry out various commissioning scenarios 
in virtual space. Statements regarding the quality-critical web 
tension and kinematic process limits can be made and optimal 
parameters can be derived virtually. 

5. Outlook 

The outlook of this work includes first the detailed further 
development of the simulation model. All components and 
functional elements of the production machine are to be 
extensively modelled and digitized. This includes for example 
the consideration of other mechanical components, such as the 
ball screws, deformation effects in the handling system and the 
vacuum gripper suction effects. In addition, the material 
behavior is to be worked out in more detail. Wrinkles and 
damage effects are in the focus. Finally, a concrete conclusion 
on the quality of the intermediate product is to be made on the 
basis of the simulated web tension. This includes the 
dimensional accuracy of the cut electrode sheets and the 
deposition accuracy of the machine. Furthermore, a database is 
to be developed with the help of the simulation model. With 
this database an AI model is to be systematically developed. 
This AI model is able to predict any commissioning scenario 
fast and precisely. This method is intended to provide a 
practical way of optimizing the ramp-up of new production 
processes. This will generate an information and data base, 
which does not exist due to the limited production experience. 
Extending this model with real measured data enables a 
continuous optimization approach regarding prediction 
accuracy. Another overarching outlook represents the transfer 
of this method to the other processes of battery cell 
manufacturing. Process-wide optimization approaches can then 
be determined and tested virtually. 
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