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Abstract

Two component systems (TCS) are one of the main signal transduction pathways in

bacteria. Through these systems bacterias sense their environment and regulate their

cellular activities. Histidine kinases (HK) are a vital component of TCS. Though TCS are

employed by some eukaryotes, they are especially missing from the animal kingdom. For

this particular reason and because of their importance in the bacterial life cycle, histidine

kinases are a promising target for developing drugs to combat bacterial activities. They

are also structurally conserved and exhibit some common inter-molecular events in every

TCS, which are autokinase, phosphotransfer, and phosphatase activities. These events are

highly fascinating for bio-chemists to understand bacterial activities.

The main goal of this thesis is to analyze histidine-phosphorylation, a vital event

in TCS. We have studied the chemical steps of auto-phosphorylation in an extensive

QM/MM hybrid enhanced sampling simulation and unveiled the detailed mechanism. The

subsequent auto-phosphorylation inside the DHp domain proceeds via a penta-coordinated

transition state to a protonated phosphohistidine intermediate. Then, this intermediate

is consequently deprotonated by a suitable nearby base. The reaction energetics are

controlled by the final proton acceptor and presence of a magnesium cation.

We re-parameterised the DFTB3 parameters for the phosphorus-nitrogen interaction

and benchmarked it on a cancer drug hydrolysis reaction. Afterwards, we applied these

parameters to our main goal, studying the reaction in histidine kinase in a QM/MM

simulation. We further used an artificial neural network on the same drug hydrolysis

reaction to improve DFTB energies quantitatively as an alternative method.

In addition, we also re-parameterised the sulfur-sulfur repulsive parameters to improve

the disulfide-thiol exchange reaction and reproduced the DFT(B3LYP) level potential

energy using DFTB. This was then applied to the disulfide-thiol exchange reaction in

QM/MM simulations of proteins.
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Zusammenfassung

Zweikomponentensysteme (Two Component Systems, TCS) sind einer der wichtigsten

Signaltransduktionswege in Bakterien. Durch dieses System nehmen Bakterien ihre Um-

gebung wahr und regulieren ihre zellulären Aktivitäten. Histidinkinasen (HK) sind ein

wichtiger Bestandteil von TCS. Obwohl TCS von einigen Eukaryoten genutzt werden,

fehlen sie insbesondere im Tierreich. Aus diesem Grund und wegen ihrer Bedeutung für

den bakteriellen Lebenszyklus sind Histidinkinasen ein vielversprechendes Ziel für die Ent-

wicklung von Medikamenten zur Bekämpfung bakterieller Aktivitäten. Sie sind außerdem

strukturell konserviert und weisen einige gemeinsame intermolekulare Funktionalitäten

in jedem TCS auf, nämlich Autokinase-, Phosphotransfer- und Phosphatase-Aktivitäten.

Diese Vorgänge sind für Biochemiker äußerst faszinierend, um bakterielle Aktivitäten zu

verstehen.

Das Hauptziel dieser Arbeit ist die Analyse der Histidin-Phosphorylierung, einem

wichtigen Vorgang in TCS. Wir haben die chemischen Schritte der Autophosphorylierung

in einer umfassenden QM/MM Hybrid Enhanced Sampling Simulation untersucht und

den detaillierten Mechanismus aufgedeckt. Die darauffolgende Autophosphorylierung

innerhalb der DHp-Domäne verläuft über einen pentakoordinierten Übergangszustand zu

einem protonierten Phosphohistidin-Intermediat. Dieses wird anschließend durch eine

geeignete benachbarte Base deprotoniert. Die Energetik der Reaktion wird durch den

endgültigen Protonenakzeptor und die Anwesenheit eines Magnesiumkations gesteuert.

Wir haben die DFTB3-Parameter für die Phosphor-Stickstoff-Wechselwirkung neu para-

metrisiert und an einer Krebsmedikamenten-Hydrolysereaktion gemessen. Anschließend

wendeten wir diese Parameter auf unser Hauptziel, die Untersuchung der Reaktion in

der Histidin-Kinase in einer QM/MM-Simulation, an. Des Weiteren haben wir ein künst-

liches neuronales Netz auf dieselbe Arzneimittelhydrolysereaktion angewendet, um die

DFTB-Energien als alternative Methode quantitativ zu verbessern.

Darüber hinaus haben wir auch die Schwefel-Schwefel-Abstoßungsparameter neu para-

metrisiert, um die Disulfid-Thiol-Austauschreaktion zu verbessern, und die potenzielle

Energie des DFT(B3LYP)-Niveaus mit DFTB reproduziert. Dies wurde anschließend auf

die Disulfid-Thiol-Austauschreaktion in QM/MM-Simulationen von Proteinen angewandt.
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1. Introduction

Histidine Kinases are part of two component systems [31], which are involved in bacterial

signal transduction [30]. Signal transduction is an information-processing pathway by

which a chemical or physical signal is transmitted through a cell through a series of

molecular events, most commonly protein phosphorylation, assisted by various kinases,

which ultimately results in a cellular response [6, 172].

The two-component system (TCS) is one of the most abundant mechanisms used by

bacteria to adapt to their environment. They are involved in regulation of responses to a

variety of environmental factors or cellular signals [174]. The individual components are

consists of several parts, periplasmic domain sits in the transmembrane location receives

the signal, passes through to histidine kinase (HK) and the response regulator (RR) protein

that coordinates the response, most commonly by acting as a transcription factor (see

Fig. 1.1). The two proteins communicate via histidine to aspartate phosphoryl-group

transfer. Based on domain architectures, evolutionary origin and activities there are

numerous variations of TCS [94, 189].

Due to their prevalence and the associated wealth of genomic data, TCS are also a

common target of bioinformatics studies to, e.g., investigate TCS complex formation [146],

predict [37] or investigate [127] conformational transitions, or redesign protein signalling

[31]. Other extensive studies and reviews highlight the range of TCSs and their activities

[85, 166, 23, 133, 41].

Most of these signalling pathways proceeds through protein phosphorylation, It is

involved in all of signal transduction system assisted by protein kinases, phosphorylate

themselves or other protein substrates at specific Ser, Thr, Tyr, His residues, thereby

regulating cellular activities[183]. While other kinases were known for long time histidine

kinase activity and histidine autophosphorylation were discovered 1980s [163].

Many HKs are bifunctional, acting as both the kinase and phosphatase for their RR;

the ratio of kinase to phosphatase activity, and thus the phosphorylation state of the RR,

is controlled by the input [162, 136, 11, 79, 107, 89]. For an example, two Bacteriophy-

tochromes DrBphP and Agp1 both possess HK effector domains with Agp1 acting as a

histidine kinase whereas DrBphP as a light-activated phosphatase [119].

Signalling networks in eukaryotes often exhibits extensive “crosstalk” with individual

kinases acting on large numbers of targets for example the kinase Cdk1, has hundreds

of substrates in yeast [173, 73]. Bacterial TCS networks show a remarkably different

mechanism, bacterial HKs usually act on a single target [124, 53, 155, 153, 101, 52]. Intensive

experimental studies over the past 10 years have showed that bio-chemical and biophysical

basis for this lack of promiscuity. In general, HKs demonstrate a strong “kinetic preference”

for their cognate substrates, preferentially phosphorylating them on short timescales. [156,

68, 154, 27, 52].
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1. Introduction

Figure 1.1.: Schematic diagram of a typical two component system in bacteria featuring

domains for signal recognition, transmission, and catalysis. A stimulus is first

detected at the periplasmic sensor domain (yellow) and this signal transmits

along the transmembrane helices (purple) and the linker domains (green) before

reaching the catalytic core at the C-terminus. The catalytic core comprises

the dimerization and histidine phosphotransfer (DHp, red) and catalytic ATP-

binding (CA, yellow) domains. Signal detection results in a phosphoryl transfer

reaction from ATP in the CA domain to a conserved histidine in the DHp

domain. This phosphoryl group is then transferred to an aspartic acid in the

response regulator (blue) protein, resulting in an appropriate cellular response

(Image created using BioRender.com)
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Figure 1.2.: Sensor domain (pdb id:3EZH) of histidine kinases illustrating two common

structural folds

While TCS are employed by some eukaryotes, they are notably absent from the animal

kingdom. That, together with their importance to bacteria makes these enzymes promising

targets for developing novel compounds [16] that selectively inhibit the growth of bacteria

or suppress virulence. For instance, waldiomycin [44, 137, 47, 88], an angucycline antibiotic,

inhibits the HK activity of WalK [83, 126] in Staphylococcus aureus, a human pathogen

responsible for a variety of acute and chronic diseases [182, 171, 139]. The molecular

signal of this system is still unknown but emanates from the bacterial cell wall [20]. In

general, the WalRK system has garnered significant experimental attention since it is

conserved across Gram-positive bacteria of the order Firmicutes where it has been shown

to be essential for viability in a variety of different species of bacteria.

There are a vast variety of TCS systems available in bacterial genome and even highly

similar TCS do not necessarily have the same function. Based on detection of different

stimuli at their sensor domain, there are several types of TCS, for example DesK detects

cold temperature [2], EnvZ senses and responds to osmotic stress [179], and CheAmediates

bacterial chemotaxis [67]. Even though sensor domains of these systems are functionally

different they possess structural similarity, which suggests that the signalling mechanism

is conserved [32]. These common structural similarities include two parallel alpha helices.

After the sensor domain, next conserved feature in TCS is one or more linker domains

involves in transmitting the N-terminal signal to the catalytic domains at the C-terminal.

The most widely studied of these linker domains is known as HAMP (histidine kinase,

adenylyl cyclase, methyl-accepting chemotaxis protein, and phosphatase) and is found in

30% of HK [5, 49, 189]. Other known linker domains include PAS (Per-Arnt-Sim) [116], and

GAF (GMP-specific phosphodiesterases, adenylyl cyclases and FhlA). Structural overview

of these linker domains are shown in fig 1.3

After the linker domain, the part of Histidine Kinase core starts. The kinase core consists

of the dimerisation and histidine phosphotransfer (DHp) and catalytic ATP–binding (CA)

domains (see Fig. 1.4). These two domains are highly conserved across all HKs [43]. Similar
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1. Introduction

Figure 1.3.: Structures of HAMP (PDB ID: 2L7H) and PAS (PDB ID: 4I5S) domains

to the HAMP domain, the DHp domain is typically homodimeric with each protomer

comprising two α-helices that form an antiparallel coiled-coil. The CA domain, on the

other hand, has an α/β sandwich fold made up of a five-stranded β-sheet flanked by three

α-helices. The nucleotide binds between two α-helices and is held by a highly mobile loop

known as the ATP lid. Well conserved nucleotide-binding sequence motifs known as the

N, G1, F, and G2 boxes comprise the binding site [91, 159, 128, 112].

HK exhibits kinase activity through a interplay of conformational change and reaction

in a cyclic manner 1.5). Once signal detected at the extra-cellular part in the sensor domain,

The signal transmits through a series of allosteric changes within the transmembrane

domains to the conserved kinase core. It triggers a change in the kinase conformation to a

typical asymmetric structure in such a way that one of the two subunits of the homodimer

(Dhp and CA) comes closer to each other (Kinase Active conformation) while the other

remains inactive (cf. Fig. 1.5). In the kinase inactive conformation, ATP can enter to the

CA domain and the binding site of the DHp domain. Here, the gamma-phosphoryl group

of the bound ATP of one CA is positioned in close proximity to a specific conserved

phosphorylatable histidine of DHp.

Through this activation, Kinase triggers a series of reactions known as biochemical

cascade, a very common feature of for Signal transduction pathways[147, 103, 21, 18,

40]. A very popular example will be mitogen-activated protein (MAP) kinase and cyclic

nucleotide cascades in mammal signal transduction systems.

In WALK TCS it starts with acceptance of stimuli, which brings the driving force

(energy) of the whole cascade. This begins with association of ATP with histidine kinase

core, ATP known as highly energetic compound initiates series of reaction, first with

the auto-phosphorylation to conserved histidine, forming unstable phosphohistidine as

a final product. Phosphohistidine, still carries residual energy from ATP, serves as only

intermediate in the cascade and initiates the next reaction to response regulator (RR),

which is phosphoryl transfer reaction from histidine to aspartate residue of RR. Thus this

cascade continues until it forms a sable product. This particular cascade reaction is known

as His-Asp phosphorelay. RRs typically have autophosphatase activity that limits the
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Figure 1.4.: A typical structure of histidine kinase (pdb id: 2c2a) featuring conserved

histidine phosphotransfer (DHp) and catalytic ATP-binding (CA) domains,

ATP is shown in red spheres, Histidine is shown blue spheres.

lifetime of the phosphorylated state, yielding half-lives in the range of seconds to hours.

Both phosphotransfer and phosphatase activities of HKs are found to be regulated either

directly by stimuli or indirectly through interaction with auxiliary proteins (in the case of

cytoplasmic HKs). There are over 100 examples of such His-Asp phosphorelay systems in

bacteria and 17 of them has been identified in E. coli [176].

Two different auto-phosphorylation mechanisms are exhibited in individual HKs, cis-

and trans-phosphorylation 1.6. In cis-phosphorylation, the ATP from the CA domain phos-

phorylates its own DHp domain within the homodimer, while in trans-phosphorylation

the DHp domain on the other monomer within the homodimer is phosphorylated [7]. It

appears that the difference in phosphorylation mechanism is merely structural, based on a

left handed versus right handed orientation of the dimeric four-helix bundle that forms

the DHp domain. As soon as the histidine is phosphorylated, transfer of this phosphoryl

group to an aspartate of a bound RR for communication between the two proteins is

possible. Mechanism of cis-phosphorylation in WALK histidine kinase has been studied

and discussed in chapter 9 in detail.

Observing enzymatic reactions in its native biological environment (in vivo) are ex-

treamly difficult. The only way to study these reactions is possible through computer

simulations. QM/MM methods are very powerful tool to study biochemical reactions [108,

106, 160, 148, 161]. There are many previous successful studies has been carried out using

QM/MM method to investigate phosphoryl transfer reaction in different enzymes and

proteins. [98, 76, 142, 158, 117, 144]
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Figure 1.5.: Schematic diagram of cyclic interplay of Inactive (symmetrical) to active (asym-

metrical) conformations of histidine kinase, Red dot on green ATP represents

𝛾 phosphate (image created using biorender.com)

Figure 1.6.: Typical representation of Cis and Trans Phosphorylation in Histidine Kinase.

Cis structure is based on pdb id: 4u7o, Trans structure is based on pdb id: 5lfk.

(image is created using biorender.com)
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The goal of this thesis is to study autophosphorylation reaction in Histidine Kinase

applying QM/MM simulation using DFTB3 as QM level of theory. From the initial ob-

servation of the study, it turns out that product minimum and penta-valent phosphate

transition state is not detectable in our simulation. After looking it closer it appeared

that parameters (3OB) of DFTB3 is not good enough to study the reaction. So for part

of achieve our goal, as part of the thesis we also re-parametrised required parameters of

DFTB3 and applied it to study autophosphorylation of histidine kinase.

With DFTB3, the 3OB set of parameters are most commonly used for organic and

biological systems. However, a few transferability problems were found for some complex

chemical reactions, which led to incorrect reaction energetics and structures. Histidine

autophosphorylation is one of those cases, which we studied in this thesis. Another such

case is found in disulfide-thiol exchange reaction, one of the important steps in the folding

process of many proteins that has to form structural disulfide bonds. In such nontrivial

cases Semi-empirical (SE) methods come up with special reaction parameter (SRP) [122] as

a quick solution. In this thesis we re-parametrised both phosphorus-nitrogen, sulfur-sulfur

interaction to make new SRPs in DFTB3 specifically for studying these mentioned reaction.

In chapter 8 and chapter 10, improvements of DFTB3 energies are discussed in detail.

In chapter 8 repulsive potential for P-N interaction has been reparameterised and bench-

marked on different molecules and as an example of the benchmark reaction we have

simulated hydrolysis of a Cancer drug called TEPA and compared with previous studies.

Also these parameters are used in chapter 9 for simulating the reaction in Histidine Kinase.

In chapter 10we used Neural Network to improve DFTB3 energies. Specifically, we took

the example of durg hydrolysis reaction of TEPA and compared energies of re-parametrised

DFTB3 and Neural-Network corrected energies of the same reaction.

In chapter 11 the accuracy of the density-functional tight binding method (DFTB3)

regarding thiol-disulfide exchange reactions is evaluated. In DFTB, the S–S bonds in the

transition states are too long and the transition state is a local minimum on the free energy

surface instead of a saddle point. We have corrected these errors by reparameterising the

S–S repulsive potentials and tested them in QMMM Simulation of disulfide-thiol exchange

reaction.
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2. Overview

The field "computational chemistry" has got its roots from theoretical chemistry, defined

as the mathematical description of chemistry. Computational chemistry takes the role

when a mathematical method is sufficiently well developed that it can be automated for

implementation on a computer. Though it is still considered as approximation of the

real chemical properties, it can give useful insight into chemistry and can potentially

solve chemical problems. Understanding mechanism of a reaction and predicting a new

mechanism is domain where computational chemistry is highly regarded. Nowadays It is

vastly used in pharmaceutical industry, for predicting potential drug candidate, predicting

protein structures. From Biochemistry to Material Chemistry this field has got its branches

spread in improving predicting power of chemistry[50].

Computer simulations act as a bridge between microscopic length and time scales and

the macroscopic world of the laboratory [3, 55]. It provides a guess of the interactions

between molecules and obtain an ‘exact’ predictions of bulk properties. The predictions are

‘exact’ in the sense that they can be made as accurate as we like, subject to the limitations

imposed by our computational cost 2.1. Simulations act as a bridge in different sense:

between theory and experiment. We may test a theory by conducting a simulation using

the same model. We may test the model by comparing with experimental results also we

can carry out simulations on the computer that are difficult or impossible in the laboratory

(for example, working at extremes of temperature or pressure or in vivo biochemical

reactions).

Ultimately, we may want to make direct comparisons with experimental measurements

made on specific materials, in which case a good model of molecular interactions is

essential. For example, the aim of so-called ab-initio molecular dynamics is to reduce the

amount of fitting and guessing in this process to a optimum level. On the other side, this is

also interesting that we may want to differentiate between good and better theories. When

it comes to aims of this kind, it is not necessary to have a perfectly realistic molecular

model; one that contains the essential physics may be quite suitable.

All the methods used in computational chemistry can be divided based on their accuracy

and computational speed. Ab-initio and DFT are most accurate methods but larger systems

and processes greater than pico-seconds are difficult to treat in these methods. On the

other hand, with MM and CG see 2.1 methods one can study bigger systems and longer

timescale processes but accuracy goes down.
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Figure 2.1.: Hierarchy of computational chemistrymethods computational chemistry based

on simulation time-scale and size of system (number of atoms)
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3. Electronic Structure Methods

3.1. Hartree Fock

3.1.1. The Born–Oppenheimer Approximation

After the solution of Hydrogen Atom problem. The next puzzle in the quantum chemistry

appears to be solving the Schrodinger wave equation for Many electron system. The

Hamiltonian of the system for ’N’ no of electrons is the following (equation is in the atomic

units).

𝐻 𝑓 𝑢𝑙𝑙 =

𝑁∑︁
𝑖=1

−1
2

∇2

𝑖 +
𝑀∑︁
𝐴=1

−1
2

∇2

𝐴 +
𝑀∑︁
𝐴=1

𝑍𝐴

𝑟𝑖𝐴
+

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗>𝑖

1

𝑟𝑖 𝑗
+

𝑀∑︁
𝐴=1

𝑀∑︁
𝐵=1

𝑍𝐴𝑍𝐵

𝑟𝐴𝐵

(3.1)

The first term represents kinetic energy of single electron, second term is the kinetic

energy of the nuclei, third term represents the electron-neutron interaction, fourth term is

two electron repulsion and the last term is repulsion between the nuclei.

Now due to the fact that the Nuclei are much heavier than electron, wave functions of

nuclei and electron in a molecule can be treated separately. This assumption was first pro-

posed by Max Born and J. Robert Oppenheimer in 1927 known as ’The Born–Oppenheimer

Approximation’. This approximation is widely used in quantum chemistry to accelerate

computational speed of molecular wave function optimisation and calculation of other

properties.

Now under the boundary of Born–Oppenheimer Approximation we can treat the elec-

tronic hamiltonian separately. After neglecting the nuclear interactions which is the

second and the last term in equation 3.1, we get solely electron dependent hamiltionian in

equation 3.2.

𝐻𝑒𝑙𝑒𝑐 =

𝑁∑︁
𝑖=1

(
−1
2

∇2

𝑖 +
𝑀∑︁
𝐴=1

𝑍𝐴

𝑟𝑖𝐴

)
+

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗>𝑖

1

𝑟𝑖 𝑗

=

𝑁∑︁
𝑖=1

ℎ1(𝑖) +
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗>𝑖

ℎ2(𝑖, 𝑗) (3.2)

3.1.2. Wave Function

From the solution of hydrogen atom problem we get set of exponential functions, known

as orbitals, which can be considered as wave functions to describe a single electron. An
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3.1. Hartree Fock

electronic orbital, denoted as𝜓 (r) which is a function of position vector describes spatial

distribution of an electron and the probability of finding the electron inside a volume dr

will be

∫
𝜓 )2 𝑑𝑟 .

Hartree Product:
After learning about single electron wave function, we now need to construct the wave

function of N number of electrons. Under the Hartree product assumption total wave

function of N electron is simply the product of N independent single electron wavefunction

given in equation 3.3. Such a wavefunction is termed as Hartree product, where each

electron being described in distiguishable orbitals. Hartree product is an independent

wave function, which means position of electron-one is independent of electron-two. But

in reality they will repel each other [165, 51].

Ψ𝐻𝑃 (𝑟1, 𝑟2, 𝑟3...𝑟𝑁 ) = 𝜓1(𝑟1)𝜓2(𝑟2)𝜓3(𝑟3).....𝜓𝑁 (𝑟𝑁 ) (3.3)

Slater Determinant:
Hartree product doesn’t obey antisymmetry principle but however such wave functions

can be antisymmetrised using slater determinant. The purpose is the wave function must

have opposite sign when two electrons are interchange their coordinate [Ψ(r1,r2) = –

Ψ(r2,r1)], which means if two electron occupy same orbital they must have opposite sign

in other meaning Pauli exclusion principle maintained. Slater determinant for N electrons

can be written as:

Ψ𝑆𝐷 (𝑟1, 𝑟2, ..., 𝑟𝑁 ) =
1

√
𝑁 !

���������
𝜓1(𝑟1) 𝜓2(𝑟1) . . . 𝜓𝑁 (𝑟1)
𝜓1(𝑟2) 𝜓2(𝑟2) . . . 𝜓𝑁 (𝑟2)
...

...
...

𝜓1(𝑟𝑁 ) 𝜓2(𝑟𝑁 ) . . . 𝜓𝑁 (𝑟𝑁 )

��������� (3.4)

3.1.3. Variation principle

The variation theorem allows us to calculate an upper bound for the system’s ground-state

energy.

3.1.4. Fock Operator

Now we have ortho-normal wave function using Slater determinant. The total energy of

the N electron wave function using Slater determinant using Hamiltonian of equation

from 3.2 is given in equation 3.5.

𝐸 = Ψ𝑆𝐷𝐻Ψ𝑆𝐷 (3.5)

Now according to variation principle best orbitals are those which minimise the elec-

tronic energy. Which means if we apply variation principle on equation 3.5 we get

minimum energy 𝐸0 and best possible orbitals Ψ0
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3. Electronic Structure Methods

𝐸0 = Ψ0𝐻Ψ0 (3.6)

Now we apply variation principle on two electron system and obtained 𝐸0 and Ψ0 given

in equation 3.5 for single electron. After solving equation 3.6 we get the following eigen

value equation for ith electron, known as Hartree-Fock equation, where E(i) is the energy

of the ith electron.

𝑓 (𝑖)𝜓 (𝑟𝑖) = 𝐸 (𝑖)𝜓 (𝑟𝑖) (3.7)

𝑓 (𝑖) = −1
2

∇2

𝑖 −
𝑀∑︁
𝐴=1

𝑍𝐴

𝑟𝑖𝐴
+ 𝜈𝐻𝐹 (𝑖) (3.8)

Looking at equation 3.8 first two terms represent simply one-electron Schrodinger wave

equation for orbital state and s single electron in the field of nuclei. where 𝜈𝐻𝐹 (i) represents

average potential experience by ith electron [109, 157].

ℎ(𝑖) = −1
2

∇2

𝑖 −
𝑀∑︁
𝐴=1

𝑍𝐴

𝑟𝑖𝐴
(3.9)

𝜈𝐻𝐹 (𝑖) = J (𝑖) + K(𝑖) (3.10)

𝑓 (𝑖) = ℎ(𝑖) + J (𝑖) + K(𝑖) (3.11)

Rearranging equation 3.8 using equation 3.9 and 3.10, we get equation 3.11, where h(i)

represents one electron operator J (𝑖) and K(𝑖) are respectively coulomb and exchange

operators. The Coulomb operator J (𝑖) represents the electron-electron interaction while

exchange operatorK(𝑖) has no classical interpretation, arising out from the antisymmetric

nature of the Slater determinant.

3.1.5. Self Consistent Field

Once we have seen the fock operator, by making simple guess of the orbitals we can

calculate average field (𝜈𝐻𝐹 ) seen by each electron (ith) and solve the eigen value equation

of equation 3.7 using equation 3.8 for new set of orbitals. Now with new set of orbitals

we can again construct average field (𝜈𝐻𝐹 ) and a new fock operator (eqn 3.8) repeat the

procedure until the average field (𝜈𝐻𝐹 ) no longer changes to construct new fock operator

thus we can say self-consistency is achieved [80]. In practice if the field attains a particular

tolerance value set by the user, then we can say SCF is converged.

3.1.6. Basis Set

Electronic wave functions or atomic orbitals are expressed in terms of set of functions

in HF and as well as in all electronic structure methods. These functions are called basis
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3.1. Hartree Fock

functions[39]. Generally these functions are atom centered gaussian type function or

exponential function.

𝜓 , Molecular orbitals is expressed as a linear combination of n basis functions 𝜙𝜇 .

Coefficients 𝑐𝜇 are called molecular orbital expansion coefficients.

𝜓 (𝑖) =
𝑛∑︁
𝜇=1

𝑐𝜇𝜙𝜇 (3.12)

Slater type orbitals (STOs)

STOs are the direct solution coming from Hydrogen atom problem.STOs are constructed

from a radial part describing the radial extend of the orbital and an angular part describing

the shape of the orbital.

𝜙𝑆𝑇𝑂𝜇 = 𝑁𝑟𝑛−1𝑒𝑥𝑝 (−𝜁𝑟 )𝑌𝑙𝑚 (3.13)

r is the distance from the origin of the basis function (usually the location of the nucleus),

the orbital exponent ζ, n is the principal quantum number. The spherical part 𝑌𝑙𝑚 depends

on the angular quantum number l and the magnetic quantum number m.

Gaussian type orbitals (GTOs)

GTOs are also constructed from a radial and a spherical part, but the radial part is now a

Gaussian type function [81].

𝜙𝐺𝑇𝑂𝜇 = 𝑁𝑒𝑥𝑝 (−𝛼𝑟 2)𝑋𝑎𝑌𝑏𝑍𝑐 (3.14)

The radial part is proportional to 𝑒𝑥𝑝 (−𝑎𝑟 2), α is the gaussian exponent. The normal-

ization factor N serves the same purpose as in STOs. The spherical part is now expressed

through the Cartesian coordinates x,y, and z in powers of a, b, and c, respectively.

The accuracy of the HF method improves when the basis set size is increased. Even

though with very large basis sets the HF method can only account for 99% due to the mean

field approximation where every electron is treated independently, i.e., moving under the

influence of an averaged electrostatic field induced by all other electrons. This leads to

the neglect of electron correlation which often is very important for the description of

chemical phenomena accounting for the remaining 1% of the total energy.

There are a choice of a large variety of basis sets including Poples’ basis sets [39],

dunning type basis sets [42], Karlsruhe basis sets. [188]
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3. Electronic Structure Methods

3.2. Density Functional Theory

3.2.1. Electron Density

Density Functional theory [129, 74] is developed over density of electrons rather than

wave-function of electron in ab-initio methods (Hartree Fock). Electron density 𝜌(r) is

defined as a multiple integral over the spin coordinates of all electrons and the spatial

variables of all electrons. N electrons within a volume element r1 is N times the probability

for one particular electron. So at given volume element total number of electron, N can be

defined as follows:

𝜌 (𝑟 ) = 𝑁
∫

...

∫
Ψ(𝑟1, 𝑟2, 𝑟3...𝑟𝑁 )2𝑑𝑟1𝑑𝑟2...𝑑𝑟𝑁 (3.15)

𝑁 =

∫
𝜌 (𝑟 )𝑑𝑟1 (3.16)

3.2.2. Thomas–Fermi model

This model is the predecessor to density functional theory [167], one of the first few

approaches to derive energy of the electronic system using electron density. In this

approach energy of an atom is approximated by a kinetic-energy functional combined

with the classical expressions for the nucleus–electron and electron–electron interactions

(density). This model’s accuracy was limited because it did not estimate exchange energy

(Pauli’s Principle). After that Paul Dirac reformulated this model using exchange-energy

functional. However this model remain inaccurate for most chemical systems.

𝑇W [𝑛] = ℏ2

8𝑚

∫ |∇𝑛(r) |2
𝑛(r) d

3r (3.17)

3.2.3. Hohenberg-Kohn Theorems

Hohenberg-Kohn theorem [64] layed the founding stone of density functional theory.

Theorems formulates energy of a system of electrons moving under the influence of an

external potential. Theorem states:

1. The external potential𝑉𝑒𝑥𝑡 (𝑟 ) is a unique functional of density 𝜌 (r), i.e., there cannot

be two different𝑉𝑒𝑥𝑡 (𝑟 ) that yield the same ground state electron density 𝜌0 (r). Since

𝑉𝑒𝑥𝑡 (𝑟 ) fixes the Hamiltonian, the ground state energy (and all other properties) are

a functional of the ground state electron density 𝜌0 (r)

𝐸0 [𝜌 (𝑟 )] = 𝑇𝑆 [𝜌 (𝑟 )] + 𝐸𝑛𝑒 [𝜌 (𝑟 )] + 𝐸𝑒𝑒 [𝜌 (𝑟 )] (3.18)

2. The functional that delivers the ground-state energy of the system, also gives the

lowest energy if and only if the input density is the true ground-state density 𝜌0 (r).

To rephrase it, the energy content of the Hamiltonian reaches its absolute minimum

(ground state) when the charge density is that of the ground state.

𝐸 [𝜌 (𝑟 )] ≥ 𝐸 [𝜌0(𝑟 )] (3.19)
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3.2.4. Kohn-Sham Approach

Kohn and Sham (KS) suggested to split the kinetic energy functional, 𝐸𝑒𝑒 [𝜌 (𝑟 )] into two

parts: (i) the kinetic energy 𝑇𝑆 of a reference system of non-interacting electrons with the

same electron density as the real system, for which orbitals have to be re-introduced; (ii)

the exchange-correlation energy 𝐸𝑋𝐶 which is the remainder of the exact kinetic energy

that has to be treated approximately [92]. The essential idea of exchange correlation is an

artifact of Hartree-Fock method. The general DFT energy expression can be re-written as

follows:

𝐸𝐷𝐹𝑇 [𝜌] = 𝑇𝑆 [𝜌] + 𝐸𝑛𝑒 [𝜌] + 𝐽 [𝜌] + 𝐸𝑥𝑐 [𝜌] (3.20)

𝐸𝑛𝑒 [𝜌] =
𝑁𝑛𝑢𝑐𝑙𝑒𝑖∑︁
𝑎

∫
𝑍𝑎 (𝑅𝑎)𝜌 (𝑟 )��𝑅𝑎 − 𝑟 �� 𝑑𝑟 (3.21)

𝐽 [𝜌] = 1

2

∫ ∫
𝜌 (𝑟 )𝜌 (𝑟 ′)��𝑟 − 𝑟 ′�� 𝑑𝑟𝑑𝑟 ′ (3.22)

𝑇𝑠 [𝜌] =
𝑁∑︁
𝑖=1

∫
𝑑r𝜓 ∗

𝑖 (r)
(
− ℏ2

2𝑚
∇2

)
𝜓𝑖 (r) (3.23)

where 𝑇𝑆 [𝜌] is the kinetic energy of non-interacting electrons, 𝐽 [𝑟 (𝑟 )] the Coulomb

interaction, 𝐸𝑋𝐶 [𝑟 (𝑟 )] the exchange-correlation energy, and 𝐸𝑛𝑒 [𝑟 (𝑟 )] the attractive nuclei–
electron energy. 𝐸𝑋𝐶 [𝑟 (𝑟 )] is the only term without an explicit form and physical inter-

pretation, it depends on an external field exerted by the electric field by the rest of the

electron, 𝑣𝑒𝑥𝑡 .

𝐸𝑥𝑐 [𝜌] =
∫

𝑑𝑟 𝑣ext(𝑟 )𝜌 (𝑟 ) (3.24)

𝑣eff(𝑟 ) = 𝑣ext(𝑟 ) + 𝑒2
∫

𝜌 (𝑟 ′)
|𝑟 − 𝑟 ′| 𝑑𝑟

′ + 𝛿𝐸xc [𝜌]
𝛿𝜌 (𝑟 ) (3.25)

𝑣xc(𝑟 ) ≡
𝛿𝐸xc [𝜌]
𝛿𝜌 (𝑟 ) (3.26)

If both exchange-correlation termswere known, the Kohn-Sham approachwould provide

the exact energy. However, it is not possible, they have to be approximated in different

ways, which is the key development in DFT. Many functionals have been proposed, such

as the local density approximation (LDA), the generalized gradient approximation (GGA)

and hybrid functionals.

Local Density Approximation

Local-density approximations (LDA) [130] are a class of approximations to the exchange–correlation

(XC) energy functional in density functional theory (DFT) only depends on the value of

the electronic density at each point in space. 𝐸𝑋𝐶 is the exchange-correlation energy per
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3. Electronic Structure Methods

particle that can be split into exchange and correlation contributions. The exchange part

𝐸𝑋 of an electron is considered in a uniform (homogeneous electron gas model) distribution

of electrons.

𝐸𝐿𝐷𝐴𝑥𝑐 [𝜌] =
∫

𝜌 (𝑟 )𝐸𝑥𝑐 (𝜌 (𝑟 ))𝑑𝑟 (3.27)

𝐸𝑥𝑐 = 𝐸𝑥 + 𝐸𝑐 (3.28)

Generalized Gradient Approximation

Generalized Gradient Approximation (GGA) [100] includes the first derivative of the

density ∇𝜌 (𝑟 ) as a variable in 𝑣𝑒𝑥𝑡 .

𝐸𝐺𝐺𝐴𝑋𝐶 =

∫
𝜌 (𝑟 )𝐸𝑋𝐶 [𝜌 (𝑟 ),∇𝜌 (𝑟 )]𝑑𝑟 (3.29)

GGA functionals add correction terms on top of the LDA functional, such as the B88
functional by Becke [138] or the LYP functional [65] by Lee, Yang and Parr. For this,

parameters have to be determined by fitting to reference data. Another possibility is

to derive the parameters from certain conditions, which has be done for the popular

Perdew-Burke-Ernzerhof (PBE)[131] functional.

Hybrid Functionals

The GGA functionals are further improved by including HF exchange. In the famous

B3LYP [65] hybrid functional, the exchange-correlation energy is given as a combination

of density-functional exchange and correlation and HF exchange.

𝐸B3LYP
xc

= (1 − 𝑎)𝐸LSDA
x

+ 𝑎𝐸HF
x

+ 𝑏 △ 𝐸B
x
+ (1 − 𝑐)𝐸LSDA

c
+ 𝑐𝐸LYP

c
(3.30)

with a = 0.20, b = 0.72 and c = 0.81, which are determined by fitting to experimental

data; LSDA stands for Linear Spin Density Approximation.
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3.3. Density Functional Tight Binding

3.3. Density Functional Tight Binding

Density functional tight binding method (DFTB) [45, 58] is a semi-empirical method,

obtained from the DFT total energy functional expanding the exchange correlation energy

in a Taylor series. The starting point is the use of a reference density ρ0 , which is

calculated from a superposition of precalculated neutral atomic densities. In DFTB only

valence electrons are considered using a minimal atomic basis set explicitly; chemical cores

are treated in an effective manner via additive two-center potentials. To further reduce

computational cost crystal field and three-center integrals are neglected. The remaining

two-center Hamilton and overlap matrix elements are precalculated for a dense mesh of

interatomic distances in an atomic orbital (AO) basis. The remaining contributions to the

total energy are then approximated and thus, no further computational cost arises beyond

the dominant step, which is the diagonalisation of the Hamilton matrix. This and the

use of the minimal valence basis set leads to huge computational savings (2–3 orders of

magnitude) compared to full DFT.

Energy equations of DFTB can be derived from Taylor series expansion of the Kohn–

Sham total energy with respect to charge density fluctuations Δ𝜌 = 𝜌 − 𝜌0, here follows:

𝐸 [𝜌0 + Δ𝜌] =
∑︁
𝑖

𝑛𝑖

∫
𝜓 ∗
𝑖

(
−1
2

∇2 +𝑉 𝑛𝑒 +
∫

𝜌0′ + Δ𝜌′
|𝑟 − 𝑟 ′| +𝑉 𝑥𝑐 [𝜌0 + Δ𝜌]

)
𝜓𝑖

−1
2

∫ ∫ ′ (𝜌0′ + Δ𝜌) (𝜌0 + Δ𝜌)
|𝑟 − 𝑟 ′| −

∫
𝑉 𝑥𝑐 [𝜌0 + Δ𝜌] (𝜌0 + Δ𝜌)

𝐸𝑥𝑐 [𝜌0 + Δ𝜌] + 𝐸𝑛𝑛 ...............

𝐸 [𝜌] = 𝐸0 [𝜌0] + 𝐸1 [𝜌0,Δ𝜌] + 𝐸2 [𝜌0, (Δ𝜌)2] + 𝐸3 [𝜌0, (Δ𝜌)3] + . . . (3.31)

The above equation is a shortened version of the taylor series expansion of DFT Kohn–

Sham equation. The series is considered up to third order. First two term represents DFTB1,

taking another term will introduce DFTB2 and taking the third order term will give us the

equation of DFTB3.

Using of the LCAO representation, using a minimal basis leads to an approximated

function for the total energy:

𝐸 =

MO∑︁
𝑖

𝑛𝑖

atoms∑︁
𝐴,𝐵

∑︁
𝜇∈𝐴

∑︁
𝜈∈𝐵

𝑐𝜇𝑖𝑐𝜈𝑖𝐻
0

𝜇𝜈 +
1

2

atoms∑︁
𝐴,𝐵

Δ𝑞𝐴Δ𝑞𝐵𝛾𝐴𝐵 +
1

3

atoms∑︁
𝐴,𝐵

Δ𝑞2𝐴Δ𝑞𝐵Γ𝐴𝐵 +
1

2

atoms∑︁
𝐴,𝐵

𝑉
𝑟𝑒𝑝

𝐴𝐵

(3.32)

where 𝑛𝑖 is the occupation of the 𝑖-th molecular orbital (MO), 𝑐𝜇𝑖 is the expansion

coefficient of atomic orbital (AO) 𝜇 in MO 𝑖 , 𝐻 0
is the charge-independent Hamiltonian

matrix in the AO basis, 𝛾𝐴𝐵 is an analytical function that describes the interaction of charge

monopoles, and Γ𝐴𝐵 is its derivative with respect to Δ𝑞𝐴. 𝑉
𝑟𝑒𝑝

𝐴𝐵
corresponds to the repulsive

energy parameters, an approximation of short-term pairwise interactions [59].
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DFTB1

𝐸 (𝐷𝐹𝑇𝐵1) = 𝐸0 [𝜌0] + 𝐸1 [𝜌0,Δ𝜌] =
MO∑︁
𝑖

𝑛𝑖

atoms∑︁
𝐴,𝐵

∑︁
𝜇∈𝐴

∑︁
𝜈∈𝐵

𝑐𝜇𝑖𝑐𝜈𝑖𝐻
0

𝜇𝜈 +
1

2

atoms∑︁
𝐴,𝐵

𝑉
𝑟𝑒𝑝

𝐴𝐵

DFTB1 [134] is only consist of first and zeroth order term. The diagonal matrix elements

𝐻 0

𝜇𝜇 are approximated as the orbital energies 𝜖𝜇 of individual atoms, which are calculated

from PBE functional. For off-diagonal elements a two-center approximation is applied, i.e.,

three and four center integrals are neglected. All matrix elements are precomputed and

tabulated for each pair of orbitals and interpolated for a given geometry during a DFTB

calculation [93]. DFTB1 performs well for systems with no charge transfer or a complete

charge transfer. For systems that are sensitive to charge fluctuations higher order terms

have to be included.

DFTB2

𝐸 (𝐷𝐹𝑇𝐵2) = 𝐸0 [𝜌0] + 𝐸1 [𝜌0,Δ𝜌] + 𝐸2 [𝜌0, (Δ𝜌)2] =
MO∑︁
𝑖

𝑛𝑖

atoms∑︁
𝐴,𝐵

∑︁
𝜇∈𝐴

∑︁
𝜈∈𝐵

𝑐𝜇𝑖𝑐𝜈𝑖𝐻
0

𝜇𝜈

+1
2

atoms∑︁
𝐴,𝐵

Δ𝑞𝐴Δ𝑞𝐵𝛾𝐴𝐵 +
1

2

atoms∑︁
𝐴,𝐵

𝑉
𝑟𝑒𝑝

𝐴𝐵

Considering the second order term gives the expression of DFTB2. where 𝛾𝐴𝐵 is an

analytical function. For large distances between atoms A and B the 𝛾𝐴𝐵-function serve

as Coulombic interaction, for short distances it describes an on-site electron-electron

interaction of same atom A as 𝛾𝐴𝐴 =𝑈𝐴. 𝑈𝐴 is called the Hubbard parameter, obtained as

second derivative of the total energy with respect to the charge density of an isolated atom

from DFT level. 𝑈𝐴 is also an indicator of chemical hardness which defines how the energy

of an atom changes when an electron is added or removed. The 𝛾-function assumes that

the width of the atomic charge density is proportional to the chemical hardness which

works well for many elements except hydrogen, hence a modified 𝛾-function for hydrogen

was introduced.

DFTB3

𝐸 (𝐷𝐹𝑇𝐵3) = 𝐸0 [𝜌0] + 𝐸1 [𝜌0,Δ𝜌] + 𝐸2 [𝜌0, (Δ𝜌)2] + 𝐸3 [𝜌0, (Δ𝜌)3] =
MO∑︁
𝑖

𝑛𝑖

atoms∑︁
𝐴,𝐵

∑︁
𝜇∈𝐴

∑︁
𝜈∈𝐵

𝑐𝜇𝑖𝑐𝜈𝑖𝐻
0

𝜇𝜈

+1
2

atoms∑︁
𝐴,𝐵

Δ𝑞𝐴Δ𝑞𝐵𝛾𝐴𝐵 +
1

3

atoms∑︁
𝐴,𝐵

Δ𝑞2𝐴Δ𝑞𝐵Γ𝐴𝐵 +
1

2

atoms∑︁
𝐴,𝐵

𝑉
𝑟𝑒𝑝

𝐴𝐵

Considering the last third order term gives the complete energy expression of DFTB3 [59,

57]. The third-order term introduces the Γ𝐴𝐵-function consisting derivative of Hubbard

derivative 𝑈𝐴 with respect to charge. In other words, chemical hardness of atom is now

dependent on charge which is a vital energy contribution for charged species.
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Repulsive Potential

𝐸𝑟𝑒𝑝 =
1

2

atoms∑︁
𝐴,𝐵

𝑉
𝑟𝑒𝑝

𝐴𝐵
(3.33)

Zeroth order term only depend on reference density and therefore independent of

electronic contribution, termed as repulsive potential. It is a function of interatomic

distances and doesn’t depend on atomic charges.
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4.1. Forcefields

If we want to study the dynamics for large biological System like Protein. cell-membrane,

Nucleic Acids, quantum mechanical effects are too negligible for such big biological

processes rather classical Newtonian mechanics plays a vital role in those processes.

In order to study those processes we need another less expensive computational way.

Chemical force fields gave us the promising approach. In this approach the whole system

is treated as "ball and spring" model and every tiny motion such as stretching, bending,

rotation of such "ball and spring" model is parametrised. Therefore we can say the system

is guided through a empirical potential energy surface (also called force field) where tiny

motions of the system is well defined.

A force field is defined in mathematical expression describing the dependence of the

energy of a system based on the coordinates of its particles. It is composed of an analytical

form of the interatomic potential energy, and a set of parameters entering into this form.

The parameters are typically obtained from ab initio, DFT or semi-empirical quantum

mechanical calculations or by fitting to experimental data such as neutron, X-ray and

electron diffraction, NMR, infrared, Raman and neutron spectroscopy. Molecules are

simply defined as a set of spheres that is held together by simple elastic (harmonic) forces.

Generally it must be simple enough to be evaluated quickly, but sufficiently detailed to

reproduce the properties of interest of the system. There are many force fields available in

the literature, having different degrees of complexity, and oriented to treat different kinds

of systems.

However a typical energy expression for a force field may look like this:

𝐸𝐹𝐹 =

𝑏𝑜𝑛𝑑𝑒𝑑︷                         ︸︸                         ︷
𝐸𝑠𝑡𝑟𝑒𝑡𝑐ℎ + 𝐸𝑏𝑒𝑛𝑑 + 𝐸𝑡𝑜𝑟𝑠𝑖𝑜𝑛 +

𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑︷      ︸︸      ︷
𝐸𝐿𝐽 + 𝐸𝑐𝑜𝑢𝑙 (4.1)

The whole equation can be classified into nonded and nonbonded terms based on

connectivity.
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Figure 4.1.: Schematic diagram of forcefield parameters

𝐸𝐹𝐹 =
1

2

∑︁
𝑖

𝑘𝑖 (𝑟𝑖 − 𝑟 0𝑖 )2︸               ︷︷               ︸
𝐸𝑠𝑡𝑟𝑒𝑡𝑐ℎ

+ 1

2

∑︁
𝑗

𝑘𝜃𝑗 (𝜃 𝑗 − 𝜃 0𝑗 )2︸                 ︷︷                 ︸
𝐸𝑏𝑒𝑛𝑑

+ 1

2

∑︁
𝑛

𝑉𝑛𝑐𝑜𝑠 [𝑛𝜔 − 𝛾𝑛]︸                     ︷︷                     ︸
𝐸𝑡𝑜𝑟𝑠𝑖𝑜𝑛

+
𝑁∑︁
𝑖

𝑁∑︁
𝑗>1


4𝜀𝑖 𝑗

((
𝜎𝑖 𝑗

𝑟𝑖 𝑗

)
12

−
(
𝜎𝑖 𝑗

𝑟𝑖 𝑗

)
6

)
︸                       ︷︷                       ︸

𝐸𝐿𝐽

+ 1

4𝜋𝜀0

𝑞𝑖𝑞 𝑗

𝑟𝑖 𝑗︸     ︷︷     ︸
𝐸𝑐𝑜𝑢𝑙


(4.2)

4.1.1. Bonded interactions

𝐸𝑏𝑜𝑛𝑑𝑒𝑑 = 𝐸𝑠𝑡𝑟𝑒𝑡𝑐ℎ + 𝐸𝑏𝑒𝑛𝑑 + 𝐸𝑡𝑜𝑟𝑠𝑖𝑜𝑛 (4.3)

The bonding terms help to define the covalent energy of a molecule. Here all parameters

are defined in a form of harmonic potential. This included bond-stretching 4.1(A), bond-

bending 4.1(B), bond-rotation 4.1(C).

Bond Stretching

𝐸𝑠𝑡𝑟𝑒𝑡𝑐ℎ =
1

2

∑︁
𝑖

𝑘𝑖 (𝑟𝑖 − 𝑟 0𝑖 )2
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Bond stretching is very often represented with a simple harmonic function that con-

trols the length of covalent bonds. Reasonable values for r0 can be obtained from X-ray

diffraction experiments or optimised geometry from ab-initio calculations while the spring

constant may be estimated from infrared or Raman spectra. The harmonic potential is a

poor approximation for bond displacements. Additionally the use of the harmonic function

implies that the bond cannot be broken, so no chemical processes can be studied.

Bond Bending

𝐸𝑏𝑒𝑛𝑑 =
1

2

∑︁
𝑗

𝑘 𝑗𝜃 (𝜃 𝑗−𝜃 0𝑗 )2

Bending energy potentials are usually treated very similar to stretching potentials; the

energy is assumed to behave quadratically with displacement of the bond angle from

equilibrium. Only unusual thing happens when 𝜃 becomes 180°: the derivative of the

potential is enforced to go to zero.

Bond Rotation

𝐸𝑡𝑜𝑟𝑠𝑖𝑜𝑛 =
1

2

∑︁
𝑛

𝑉𝑛𝑐𝑜𝑠 [𝑛𝜔-𝛾𝑛]

The third type of bonding term is the term that describes how the energy of a molecule

changes as it undergoes a rotation about one of its bonds, i.e. the dihedral or torsion

energy for the system. In contrast to the bond and angle terms a harmonic form for the

dihedral energy is not usually appropriate. This is because, for many dihedral angles in

molecules, the whole range of angles from 0 to 360 can be accessible with not too large

differences in energy.
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4.1.2. Nonbonded interactions

The non-bonding terms describe the interactions between the atoms of different molecules

or between atoms that are not directly bonded together in the same molecule. These

interactions help to determine the overall conformation of a molecular system. The

non-bonding interactions arise from the interactions between the electronic distributions

surrounding different atoms. The theory of intermolecular interactions is well established,

at short range the interactions are primarily repulsive due to the interactions between

the electron clouds attributed to quantum mechanical effect of exchange repulsion, which

arises when the two clouds are pushed together. At long ranges there are several important

classes of interactions. The first are the electrostatic interactions that arise from the

interaction of the charge distributions about each molecule or portion of a molecule.

Second are the dispersion interactions that are produced by correlated fluctuations in

the charge distributions of the two groups. Finally, there are induced or polarization

interactions that are caused by the distortion of the charge distribution of a molecule as it

interacts with neighbouring groups.

𝐸𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑 = 𝐸𝐿𝐽 + 𝐸𝑐𝑜𝑢𝑙 (4.4)

Lennard-Jones potential

𝐸LJ(𝑟 ) = 4𝜖𝑖 𝑗 [(
𝜎𝑖 𝑗

𝑟𝑖 𝑗
)12 − (

𝜎𝑖 𝑗

𝑟𝑖 𝑗
)6]

Lennard-Jones term estimates long-range dispersion interactions and the short-range

repulsive interactions. The energy expression has two terms, first term ( 𝜎𝑖 𝑗
𝑟𝑖 𝑗
)12 represents

repulsive interaction between two atoms (can be realised as repulsion of electron clouds of

two atoms) this interaction is only effective within r0 distance. On the other hand ( 𝜎𝑖 𝑗
𝑟𝑖 𝑗
)6

represents attractive interaction in between them (can be considered as dipolar interaction

between atoms), it is only effective beyond r0 distance cut-off. Magnitude of the attractive

force decreases in the order of 6 with distance which means at longer distance the effect

of this potential becomes negligible.

Electrostatic Interactions

𝐸coul =
1

4𝜋𝜀0

𝑞𝑖𝑞 𝑗

𝑟𝑖 𝑗
The electrostatic energy is defined as coulomb interaction between two atoms with

point charges 𝑞𝑖 and 𝑞 𝑗 is described in the above equation, where 𝑟𝑖 𝑗 is the distance between

them. Charge distributions and the electrostatic energies are essentially arising out from

quantum chemical methods. The goal of the force fields though is slightly different. Charge

models (𝑞𝑖 , 𝑞 𝑗 ) for the charge distribution in the atoms are simple enough to allow fast

calculation of the electrostatic energy but sufficiently accurate enough that the effects

due to these interactions can be reproduced. The simplest representation of a charge

distribution (charge models) is one in which a fractional charge is assigned to each atom.

This is the total net charge of the atom obtained as the sum of the nuclear charge and the

charge in the part of the electron cloud that surrounds it.
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4. Molecular Mechanics

Figure 4.2.: Schematic diagram of Lennard-Jones Potential

Particle Mesh Ewald

Now it is clear that non-bonded interactions are vital part of force fields and at the same

time most computationally expensive part of the whole calculation, especially the long

range interactions. To reduce the computational cost, these longer-range interactions

are typically approximated by using a scheme with more favourable scaling properties,

such as Particle Mesh Ewald algorithm. Goal of this algorithm is simple, it just re-scales

the long range interactions (which are the function of 𝑁 2
) to 𝑁 log𝑁 order. Once these

calculations can be done in a linear format, they can be easily parallelized and hence MD

will be much faster.
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4.2. Molecular Dynamics

4.2. Molecular Dynamics

Molecular dynamics (MD) is a method in which we can analyse the physical movements of

atoms and molecules by solving Newton’s equations of motion for a system of interacting

particles, where forces these particles are computed from their potential energies designed

by the force fields, discussed above. The atoms and molecules are allowed to interact for

a fixed period of time, giving a view of the dynamic evolution of the system. For such

systems under the ergodic hypothesis, the evolution of one molecular dynamics simulation

is used to determine macroscopic thermodynamic properties of the system.

The essential elements for a molecular dynamics simulation are the interaction potential

(potential energy function) for the particles, from which the forces can be calculated, and

the initial coordinates of the particles, consisting the system. With these two, we can solve

the equation of motion using Newton’s law.

𝐹 = −𝑑 (𝑉 )
𝑑𝑟

𝑎 =
𝐹

𝑚
=
𝑑2𝑟

𝑑𝑡2

The above equation is second order differential equation, solving that we get

𝑟 (𝑡) = 𝑟0 + 𝑣0𝑡 + 1

2
𝑎𝑡2

The above equation is the simplest form of the integrator, where r(t) is the displacement

at time t, 𝑟0 is the initial coordinate, 𝑣0 is the initial velocity, a is initial acceleration. 𝑣0
comes from Maxwell-Boltzmann’s velocity distribution of that temperature, a comes from

the forcefield.

Verlet Method

The standard Verlet method is derived from the above equation. If, at a time t, the positions

of the atoms in the system are at R(t), then the positions of the atoms at a time t + Δt can
be obtained from a Taylor expansion in terms of the timestep, Δt and the positions and

their derivatives at time t. After expansion and rearrangements we get the simplest form

of numerical integrator, Verlet equation. The final expression looks like this:

𝑟 (𝑡 + Δ𝑡) = 2𝑟 (𝑡) − 𝑟 (𝑡 − Δ𝑡) + 𝑎(𝑡)Δ𝑡2 + O(Δ𝑡4)

Velocity verlet

Velocity verlet is another computationally less expensive approach than verlet equation,

the advantage is, it requires less computer memory, because only one set of positions,

forces and velocities are needed to be carried at any point of time. Final expressions are

given below
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4. Molecular Mechanics

𝑟 (𝑡 + Δ𝑡) = 𝑟 (𝑡) + 𝑣 (𝑡) Δ𝑡 + 1

2

𝑎(𝑡)Δ𝑡2

𝑣 (𝑡 + Δ𝑡) = 𝑣 (𝑡) + 𝑎(𝑡) + 𝑎(𝑡 + Δ𝑡)
2

Δ𝑡

leapfrog integrator

Another approach is leapfrog, it is very similar to the velocity Verlet method. Here velocity,

position, acceleration gets update in every 𝑡 − 1

2
Δ𝑡 time.

v(t + 1/2 Δ𝑡) = 𝑣 (𝑡 − 1

2
Δ𝑡) + 𝑎Δ𝑡

r(t + Δ𝑡) = 𝑟 (𝑡) + 𝑣Δ𝑡 (𝑡 + 1

2
Δ𝑡)

Thermostat

The described MD scheme only generates microcanonical ensemble (NVE ensemble). But

to mimic the experimental conditions for the simulation we need to add the information of

temperature into the system. The easy answer to that is to generate NVT ensemble for the

simulation. The way to do it is, the system is kept weakly coupling with a heat bath with

some temperature. Then thermostat suppresses the fluctuations of the kinetic energy of the

system and therefore cannot produce trajectories consistent with the canonical ensemble

(NVT). The temperature of the system is corrected such that the deviation exponentially

decays with some time constant 𝜏 . Simplest example of thermostat, known as Berendsen’s

thermostat [145], expression looks like the following:

𝑑𝑇

𝑑𝑡
=
𝑇0 −𝑇
𝜏

The velocity rescaling (v-rescaling) thermostat [24] is an extension of the Berendsen

thermostat for producing a correct ensemble. This is done by adding a random force to

ensure the correct distribution of the kinetic energy. In this approach, the velocities are

multiplied by a factor K0/K, for forcing the total kinetic energy K towards the average

kinetic energy at the target temperature, K0. The rescaling is eventually done by using an

auxiliary dynamics as in the following equation.

d𝐾 = (𝐾0 − 𝐾)
d𝑡

𝜏𝑇
+ 2

√︄
𝐾𝐾0

𝑁 𝑓

d𝑊
√
𝜏𝑇

Although this particular thermostat does not generate a correct canonical ensemble,

there are better choice available for us, namely Nosé–Hoover thermostat, V-rescaling

thermostat. We have used V-rescaling for our simulations.
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4.2. Molecular Dynamics

Figure 4.3.: Schematic representation of Periodic Boundary Condition

Barostat

For mimicking the experimental condition for pressure, similar to thermostat, simulation

system is coupled with a suitable pressure coupling to generate NPT ensemble. Simplest

example is known as Berendsen’s barostat.

𝑑𝑃

𝑑𝑡
=
𝑃0 − 𝑃
𝜏𝑃

Peridic Boundary Condition

Periodic boundary conditions (PBCs) is a technique in which a complete condensed phase

system is modelled as an infinitely and periodically repeated series of copies of a small,

but representative part of the full system (see figure 4.3). The assumption of periodicity

immediately makes the simulation of such a system tractable because equivalent atoms in

each of the copies behave identically and so do not need to be treated distinctly during a

simulation.
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5. QM/MM

Though forcefields are capable enough to simulate large systems and calculate properties,

a major drawback for forcefields is its inability to simulate bond breaking/making. In

a biochemical reaction where reaction has to be described in QM level to achieve full

description of bond breaking/making/charge transfer. To solve this problem Hybrid

QMMM method was introduced by A. Warshel and M. Levitt who were studying the

mechanism of the chemical reaction catalysed by the enzyme lysozyme. In hybrid QMMM

scheme, the reactive region where the chemical bond formation and breaking events are

occurring is treated by QM potential, while the remaining part of the system which is not

actively participating in the chemical reaction, is taken care by MM potential; see Figure

5.1. Total energy of the system is divided in the following equation.

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑄𝑀 + 𝐸𝑀𝑀 + 𝐸𝑄𝑀/𝑀𝑀 (5.1)

𝐸𝑄𝑀𝑀𝑀 can be further devided into three contributions.

𝐸𝑄𝑀/𝑀𝑀 = 𝐸
𝑏𝑜𝑛𝑑𝑖𝑛𝑔

𝑄𝑀/𝑀𝑀 + 𝐸𝑣𝑑𝑊
𝑄𝑀/𝑀𝑀 + 𝐸𝑒𝑙

𝑄𝑀/𝑀𝑀 (5.2)

The bonding interactions between QM and MM subsystem, 𝐸
𝑏𝑜𝑛𝑑𝑖𝑛𝑔

𝑄𝑀/𝑀𝑀 is computed from

the MM level of theory when the QM/MM partition cuts across a covalent bond. 𝐸𝑣𝑑𝑊
𝑄𝑀/𝑀𝑀

is the van der Waals dispersion interactions between QM and MM atoms, which is also

computed using the force–field. The last term 𝐸𝑒𝑙
𝑄𝑀/𝑀𝑀 represents the electrostatic interac-

tions between QM and MM. The calculation of 𝐸𝑒𝑙
𝑄𝑀/𝑀𝑀 is technically non-trivial. Based on

the interactions in 𝐸𝑄𝑀/𝑀𝑀 , QM/MM scheme can be further divided into Three subclasses:

namely mechanical embedding, electrostatic embedding, polarisable embedding.

Mechanical Embedding

In mechanical embedding scheme both QM charge densities and MM charges are con-

sidered as point charges and evaluated simply by coulomb law. QM charges doesn’t get

polarised by MM charges, so the effect of the MM environment to the is only a little. For a

charged QM region the results could be misleading.

𝐸𝑄𝑀/𝑀𝑀 =

𝑄𝑀−𝑎𝑡𝑜𝑚𝑠∑︁
𝑖

𝑀𝑀−𝑎𝑡𝑜𝑚𝑠∑︁
𝑚

(
𝑞𝑖𝑞𝑚

𝑟𝑖𝑚
+ 4𝜀𝑖𝑚

(
𝜎12𝑖𝑚

𝑟 12
𝑖𝑚

−
𝜎6𝑖𝑚

𝑟 6
𝑖𝑚

))
(5.3)
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Figure 5.1.: A typical QMMM steup: Participating reagents are considered in QM (orange

cloud) rest of the system is treated in classical mechanics(MM)

Electrostatic Embedding

The drawbacks of mechanical embedding scheme is rectified in electrostatic embedding

scheme, where QM charge density gets polarised by MM point charges. In this scheme

effect of MM environment is well considered into the QM/MM calculations. With DFTB

as QM method, the electrostatic potential induced by all MM atoms enters the DFTB3

Hamiltonian matrix elements and affects the QM charge distribution. From the equation

the new rescaled QM charge is 𝑍𝑖𝑞𝑖 , 𝑍𝑖 is the rescaling factor.

𝐸′
𝑄𝑀/𝑀𝑀 =

𝑄𝑀−𝑎𝑡𝑜𝑚𝑠∑︁
𝑖

𝑀𝑀−𝑎𝑡𝑜𝑚𝑠∑︁
𝑚

(
𝑍𝑖𝑞𝑖𝑞𝑚

𝑟𝑖𝑚
+ 4𝜀𝑖𝑚

(
𝜎12𝑖𝑚

𝑟 12
𝑖𝑚

−
𝜎6𝑖𝑚

𝑟 6
𝑖𝑚

))
(5.4)

Polarisable Embedding

In this scheme both MM and QM charge get polarised by each other and the new rescaled

charges are 𝑍𝑖𝑞𝑖 for QM charge density and 𝑍𝑚𝑞𝑚 for MM charges. Polarisable embedding

is important to consider when both MM environment and QM region is highly charged.

Simulations of systems like photoswitches, fluorescent proteins, chromophores especially

in excited state dynamics this embedding scheme becomes important.

𝐸′
𝑄𝑀/𝑀𝑀 =

𝑄𝑀−𝑎𝑡𝑜𝑚𝑠∑︁
𝑖

𝑀𝑀−𝑎𝑡𝑜𝑚𝑠∑︁
𝑚

(
𝑍𝑖𝑞𝑖𝑍𝑚𝑞𝑚

𝑟𝑖𝑚
+ 4𝜀𝑖𝑚

(
𝜎12𝑖𝑚

𝑟 12
𝑖𝑚

−
𝜎6𝑖𝑚

𝑟 6
𝑖𝑚

))
(5.5)
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6. Enhanced Sampling Techniques and free
energy computation

6.1. Enhanced Sampling Methods

Free Energy

To calculate the free energy of the system, we first need to understand the concept of

probability in simulation. According to ergodic hypothesis ensemble average property

is equivalent to time average property of the system. Under this circumstance partition

function can be regard as probability and according to Boltzmann distribution, probability

can be written as:

𝑃 (𝑟, 𝑝) ∝ 𝑒𝑥𝑝 (−𝐸 (𝑟, 𝑝)
𝑘𝐵𝑇

)

Where E is energy of the system, 𝑘𝐵 is Boltzmann constant and T the absolute tem-

perature. Now using this probability we can calculate various properties of the system

including free energy (Gibbs’ and Helmholtz free energy):

𝐹 = −𝑘𝐵𝑇 ln(𝑃 (𝑟, 𝑝))

Collective Variable

Collective variables (CVs) are predefined reaction coordinates which are used to describe

pathway of a physical process or mechanism of a reaction or It can be any function S(r)

of atomic coordinates such as a distance between two atoms, an angle between three

atoms or a dihedral angle between four atoms. An ideal CV should distinguish each of the

important states in the mechanism of the process of interest in a identifiable manner. For

complex biological processes even more complex CVs are used which include many or

even all atoms, such as a normal mode from a harmonic vibrational analysis or a RMSD to

a reference structure.

Potential of Mean Force

Free energy along a specific reaction coordinate S is referred to as the potential of Mean

force (PMF). Probability of finding state A (𝑃 (𝑆𝐴)) and state B (𝑃 (𝑆𝐵) along reaction

coordinate S can be evaluated using histogrammethod. Then relative free energy difference

could be obtained using the following equation
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6.1. Enhanced Sampling Methods

Figure 6.1.: Schematic diagram of two minima seperated by a bariier: sampling bottleneck

Δ𝐹 = 𝐹 (𝑆𝐴) − 𝐹 (𝑆𝐵) = −𝑘𝐵𝑇 ln

𝑃 (𝑆𝐵)
𝑃 (𝑆𝐴)

Sampling Bottleneck

In real world chemical or biochemical problems are often associated with very slow ki-

netics, indicates such processes have high free energy barrier. The typical timescale that

can be accessed by MD simulation is restricted to few hundred of nanoseconds, whereas

the enzymatic reactions occur in the order of milliseconds to seconds. These processes

are termed as "Rare events". In our context examples of rare events are typically chem-

ical reaction, transition state searching, protein folding etc. To simulate such processes

associated with large free energy barrier in a phase space (S) we face a sampling problem,

where ergodicity is hindered by the form of the system’s energy landscape of the system.

To understand this problem in detail lets consider the schematic diagram in 6.1(I) and (II),

where a complex phase space (S) is shown. In normal molecular dynamics the sampler (red

dot) can only sample a tiny part of the phase space thus the probability and the free energy

obtained, could not capture the whole process. This phenomenon is called "Sampling

Bottleneck". Now to solve this problem either one need a high powerful computing power

or the other way to solve this problem is enhanced sampling method.

In simple words enhance sampling methods are the ways to increase the probability

of visiting a configurational state by modifying the potential energy by adding biased

potential or increasing the simulation temperature. To understand this, lets go back to

the 6.1(III) and (IV). If enhanced sampling method is applied in the direction of S (R to P)
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6. Enhanced Sampling Techniques and free energy computation

Figure 6.2.: Schematic diagram of Metadynamics: showing how "Gaussian potential" bias

is getting filled in a certain CV space (S) with the information of previously

deposited bias

the sampler (red dot) can visit all the important configurations and thus the probability of

state R and P could be estimates and thus the free energy could be obtained.

There are various enhanced sampling methods available, largely classified into two

catagories: 1) CV basedmethods (Metadynamics, Umbrella Sampling, BlueMoon Sampling)

2) Non-CV methods (REMD,REST2).

6.2. Metadynamics

Metadynamics proposed by Laio and Parrinello (in 2002) [99] , is one of the CV based

enhanced sampling methods that relies on modifying the potential energy by supple-

menting biased potential. For more than a decade, metadynamics has been proven to be

successful method in the fields of chemistry, biology, physics and material science citations

Herein this work all the chemical reactions and bio-chemical reactions are employed with

metadynamics within framework of NVT QM/MM MD simulations.

In this approach, one or a set of collective variables (S) the system are chosen and

accelerated by slowly augmenting the bias potentials along the CV–trajectory; see Figure

6.2. The trail of bias potential essentially prevents the system to revisit the previously

explored region of CV–space, thus the bias is history dependent and thereby accelerating

the sampling.

Equation of the bias potential (𝑉 𝑏 (𝑠, 𝑡)) is given below, shaped like a Gaussian curve.𝑊0

is the initial Gaussian height, 𝜎 is the Gaussian width, 𝜏 is the interval of deposition each

Gaussian bias. These parameters could be tuned to optimise for a suitable bias potential
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6.2. Metadynamics

for a specific system. When the time–dependent bias potential completely compensates

the underlying free energy surface, the system will escape from the current free energy

basin to the next in self–guided manner 6.2 .

𝑉 𝑏 (𝑠, 𝑡) =
∑︁
𝜏<𝑡

𝑊0(𝜏) exp
(
− [𝑠 − 𝑠 (0) (𝜏)]2

2𝜎2

)
After getting the information of the complete bias deposition one can obtain the free

energy of the system using reweighing the total bias potential, in this case the negative

sum of augmented bias potentials simply provides the estimation of the underlying free

energy surface.

𝐹 (𝑆) = − lim

𝑡→∞
𝑉 𝑏 (𝑆) = −

∑︁
𝑖<𝑛(𝑡)

𝑊0𝑒
− [𝑆−𝑆𝑖 ]2

2𝜎2
𝑖

6.2.1. Well-tempered Metadynamics

In standard metadynamics, Gaussian bias with constant heights are added for the entire

course of a simulation. As a result, when the simulation reaches eventually at high free-

energy regions and the estimation of the free energy calculated from the bias potential

will give a higher bound of the real value. This error is an artifact introduced by Gaussian

bias height. As a result, diffusive free energy surface appears to be rough. In other words,

it is difficult to get a converged free energy surface (free energy doesn’t change after

that) in case of standard metadynamics. As an alternative to resolve this requirement

computationally more expensive Well-tempered metadynamics was proposed.

In well-tempered metadynamics, in order to get smooth free energy surface it is neces-

sary to re-scale Gaussian bias height with respect to progression of sampling. Gaussian

heights are expected to decrease slowly with time and increase of the energy hill. For this

purpose one extra term is added in the equation called "bias factor" which determines the

rescaling of the bias heights.

𝑊 (𝑘𝜏) =𝑊0 exp

(
−𝑉 (®𝑠 (𝑞(𝑘𝜏)), 𝑘𝜏)

𝑘𝐵Δ𝑇

)
𝛾 =

𝑇 + Δ𝑇

𝑇

Looking at the above equation, gaussian bias height term is replaced by height rescaling

term W(kt) which depends on initial gaussian height𝑊0 and bias-factor 𝛾 . Bias-factor

𝛾 is the rescaling factor. when 𝛾 is zero the whole simulation becomes free molecular

dynamics independent of bias, when 𝛾 is infinity the simulation turns back to standard

metadynamics. So 𝛾 factor should be optimised for each system for a better convergence.
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6. Enhanced Sampling Techniques and free energy computation

Figure 6.3.: Schematic diagram of well-tempered metadynamics: showing scaled down

biases could produce much smoother energy surface (right side) than the

normal metadynamics (left side) and thus introduce less error in the calculation
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7. Machine Learning and Neural Networks

7.1. Artificial Neural Network

Artificial neural networks (ANNs) or simply neural networks (NNs), are statistical com-

puting systems inspired from the biological neural networks that constitute animal brains.

First ever artificial neurons were proposed as early as 1943 as mathematical tools to under-

stand signal processing in the human brains. ANN is based on a collection of connected

units or nodes called artificial neurons or Perceptron, which loosely model the neurons in

animal brain. Each connection, like the synapses in an animal brain, can transmit a signal

to other neurons.

The "signal" at a connection is a real number, and the output of each neuron is computed

by some non-linear function of the sum of its inputs. The connections are called edges.

Neurons and edges typically have a set of weights that is adjusted, the process is called

learning proceeds. The weight increases or decreases the strength of the signal at a

connection.

7.1.1. Perceptron

Perceptrons (single neuron) are fundamental building blocks of neural network. It takes

values as inputs multiply them with statistical weights and added all together then a bias

is added using a suitable nonlinear function. The final value is then the output of the

perceptron. Looking at the equation below and fig at 7.1, 𝑥 𝑗 represents individual inputs,

𝑤 𝑗 represents corresponding weights,𝑤0 represents bias, 𝜑 is the activation function. The

output of the whole function is given by y. tuning 𝑤 𝑗 values and 𝑤0 we can obtain our

desired output value.

𝑦 = 𝜑

(
𝑚∑︁
𝑗=0

𝑤 𝑗𝑥 𝑗 +𝑤0

)

7.1.2. Neural Network Architecture

Now for Big data sets input layers will be highly multidimensional, for such kind of

situation only one perceptron will not be enough rather a set of perceptron is needed to

maintain statistical stability of the model. Figure 7.3 represents a typical neural network

architecture. Hidden layers essentially seperate the data sets nonlinearly for better decision

making. More than one hidden layer could be added, as a results we will left with two

many weights and biases to tune in order to get correct output.
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7. Machine Learning and Neural Networks

Figure 7.1.: Schematic diagram of single perceptron

Figure 7.2.: Schematic diagram of Artificial Neural Network: Each circle represents single

perceptron except the input layer. A simple connectivity network among

perceptrons is shown here.
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7.1. Artificial Neural Network

7.1.3. Activation function

Activation functions are essential part of ANN, weighted sum of its inputs has to pass

through an activation function. The primary role of the Activation Function is to transform

the summed weighted input from the node into an output value to be fed to the next hidden

layer or as output and also it decides whether or not a neuron will be activated or not to

the next layer. This simply means that it will decide whether the neuron’s input to the

network is relevant or not in the process of prediction. For this reason, it is also referred

to as threshold or transformation for the neurons which can converge the whole network.

Depending on the data set and desired output different types of activation functions are

there. Linear function is the most basic activation function most commonly used activation

function is sigmoid function and Rectified linear unit function. For each hidden layer

different activation function can be employed.

7.1.4. Training

After we constructed our desired neural network model based on our data set, the next

step is tuning the weights and biases. The process is called training of Neural Network.

The training method is basically a trial and error method to assign new weights and biases,

error is estimated by a suitable loss function, the goal is to get weights and biases in such

a way that the error is minimum.

Loss function

Simple two examples of loss functions are shown here. First one is "Binary Cross Entropy

Loss Function" (BCE) and the second one is called "Mean squared error loss function"

(MSE) both of the expressions are given below. Using such function the error between

actual(y) and the predicted (x) values are estimated. Minimising this function will generate

new sets of weights(W) which will again be applied in the neural network to obtain new

predicted value. This process will continue until the loss function attains a minimum

threshold value and hence the final weights (𝑊 ∗
).

𝐽𝐵𝐶𝐸 (𝑊 ) = −1

𝑛

𝑛∑︁
𝑖=1

( 𝑦𝑖︸︷︷︸
𝑎𝑐𝑡𝑢𝑎𝑙

log(𝜑 (𝑥𝑖 ;𝑊 ))︸     ︷︷     ︸
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

+(1 − 𝑦𝑖︸︷︷︸
𝑎𝑐𝑡𝑢𝑎𝑙

) log(1 − 𝜑 (𝑥𝑖 ;𝑊 ))︸     ︷︷     ︸
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝐽𝑀𝑆𝐸 (𝑊 ) = −1

𝑛

𝑛∑︁
𝑖=1

( 𝑦𝑖︸︷︷︸
𝑎𝑐𝑡𝑢𝑎𝑙

log(𝜑 (𝑥𝑖 ;𝑊 ))︸     ︷︷     ︸
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

2

Optimising loss function

The holy grail of this optimisation problem is to get𝑊 ∗
which can give us most accurate

prediction from the neural network model. Popular optimiser algorithms include gradient

descent, adam optimiser etc.
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7. Machine Learning and Neural Networks

Figure 7.3.: Schematic diagram of backpropagation

𝐽 (𝑊 ∗) = 𝑎𝑟𝑔𝑚𝑖𝑛(−1

𝑛

𝑛∑︁
𝑖=1

(𝜑 (𝑥𝑖 ;𝑊 )), 𝑦𝑖
)

Gradient descent is the simplest optimiser, basic process is simple, first we need to

initial arbitrary random weights for the neural network, then estimate the error using loss

function and then compute the gradient of the loss function to get new sets of weights.

This process continues till convergence is achieved.

∇𝐽 (𝑊 ) =
𝑑 𝐽 (𝑊 )
𝑑𝑊

𝑊𝑛𝑒𝑤 ⇐𝑊𝑜𝑙𝑑 − 𝜂
𝑑 𝐽 (𝑊 )
𝑑𝑊

Backpropagation

The backpropagation is a algorithm that computes the gradient of the loss function with

respect to each weight by the chain rule, computing the gradient one layer at a time,

iterating backward from the last layer to avoid redundant calculations of intermediate

terms in the chain rule.

𝑑 𝐽 (𝑊 )
𝑑𝑊 2

=
𝑑 𝐽 (𝑊 )
𝑑𝑦

∗ 𝑑𝑦

𝑑𝑊 2

𝑑 𝐽 (𝑊 )
𝑑𝑊 1

=
𝑑 𝐽 (𝑊 )
𝑑𝑦

∗ 𝑑𝑦

𝑑𝑧1
∗ 𝑑𝑧1

𝑑𝑊 1

Learning Rate

Learning rate determines the step size in the optimisation denoted by 𝜂 in the above

equation. Learning rate has to optimised for the system, lower learning steps will make the

optimiser for ever to converge and bigger learning rate can skip the actual global minima

of the optimisation.
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Hyperparameters

Hyperparameters in neural network are the parameters that defines the structure and

function of a particular neural network model such as number of hidden layers, number of

neurons in hidden layers, activation function, weight initialisation, Number of iterations

for training (epochs), learning rate, batch size, choice of optimiser. Hyperparameters can

be optimised in a automated manner using different algorithms.

Symmetry Functions

For low-dimensional PESs, e.g., for small molecules, the number of degrees of freedom are

typically fixed. For high-dimensional systems we need a NN potential that is applicable

to large numbers of atoms. However, the number of neighbouring atoms in the local

chemical environments cannot be fixed, since in the course of a MD simulation atoms

can enter or leave the cut-off sphere. This represents an additional requirement for the

symmetry functions. Their number must be fixed, i.e., it must be independent of the actual

number of neighbours in the local environment. Otherwise it would be necessary to train

different NNs for each possible number of atoms, which is not practical. This problem can

be solved by constructing many-body symmetry functions simultaneously depending on

the positions of all atoms inside the cut-off sphere.

Because of the requirement that the atomic NNs have a fixed number of input nodes,

the number of symmetry functions in the Gi vectors must not change with the number of

atoms in the cut-off sphere, even if this number increases or decreases, for example, in

molecular dynamics simulations. This can be achieved by using the “radial” symmetry

function defined by equation 𝐺2
below. This is a sum of products of a Gaussian function

of the interatomic distance and the cut-off function, which allows for a physical interpre-

tation as the effective coordination number of the central atom. The typical use of 5–6

radial functions with different Gaussian exponents h provides a radial fingerprint of the

neighbouring atoms. The parameter 𝑅𝑠 can be used to shift the centers of the Gaussians to

specific interatomic distances. In the case of multicomponent systems, one set of radial

functions is used for every neighbouring element in the system. Since the radial functions

alone are unable to distinguish different angular arrangements of neighbours, a set of

“angular functions” should be used, depends on the angles qijk centered at atom i and

formed with neighbours j and k, which both need to be within Rc. The use of a set of

functions with different exponents z allows a fingerprint of the angular distribution to be

obtained, while l =: 1 can be used to adjust the positions of the maxima and minima of

these functions.

𝐺2

𝑖 =
∑︁
𝑗

𝑒𝑥𝑝 [−𝜂 (𝑅𝑖 𝑗 − 𝑅𝑠)2] 𝑓𝑐 (𝑅𝑖 𝑗 )

𝐺4

𝑖 = 2
1−𝜁

𝑎𝑙𝑙∑︁
𝑗,𝑘≠𝑖

(1 + 𝜆 cos𝜃𝑖 𝑗𝑘)𝑒𝑥𝑝 [−𝜁 (𝑅2𝑖 𝑗 + 𝑅2𝑖𝑘 + 𝑅
2

𝑗𝑘
)] 𝑓𝑐 (𝑅𝑖 𝑗 ) 𝑓𝑐 (𝑅𝑖𝑘) 𝑓𝑐 (𝑅 𝑗𝑘)
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𝑓𝑐 (𝑅𝑖 𝑗 ) =

0.5[cos(𝜋

𝑅𝑖 𝑗

𝑅𝑐
) + 1] 𝑅𝑖 𝑗 ≤ 𝑅𝑐

0 𝑅𝑖 𝑗 > 𝑅𝑐

7.2. Behler-Parrinello Neural Network

Neural Network has made its way into computational chemistry when there is a demand

of making fast and accurate calculations. DFT is a method that gives very accurate results

but computational cost limits the size of the chemical system and even time-scale of the

MD simulation of small systems using DFT potential. To bridge this gap there were several

attempts by using training a neural network using DFT level energy to make calculations

faster by prediction, such kind of trained potential is known as neural network potential

(NNP).

A very popular NNP method, which can be applicable into high-dimensional systems

containing thousands of atoms was proposed by Behler and Parrinello in 2007 [15]. In

this approach a separate NN is used for each atom in the system. Each of these “atomic

NNs” or subnets provides the energy contribution each atom as a function of the chemical

environment, symmetry function. The total energy of the system is then obtained as the

sum over all atomic energies. For a given element, the atomic NNs are constrained to have

the same architecture—specifying the number of hidden layers and neurons. The structure

of the resulting high dimensional NNP (HDNNP) is shown in figure 7.4. from the figure

it can be seen that the input of each atomic NN is a vector of atom-centered symmetry

functions [13] describing the local chemical environments of the atoms. These are defined

by a cut-off radius Rc, which has values between 6 and 10 c, is a convergence parameter

that needs to be increased until all the energetically relevant interactions are included,

since atoms outside Rc do not enter the energy contribution of the respective central atom.

There are now four generations of this kind of neural networks [14]
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Figure 7.4.: Schematic diagram of Behler–Parrinello Neural Network exhibiting important

features
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8. Re-parameterisation of
Phosphorus-Nitrogen Pair Potential in
DFTB3

8.1. Introduction

Phosphorus is one of the very important elements in the world of bio-molecules and

medicines. From genetic materials like DNA, RNA to other bio-molecules like ATP, phos-

pholipids to cancer drug such as TEPA,ThioTEPA phosphorus can be found in a large

spectrum of molecules. Phosphorus containing bio-molecules play key roles in essential

biological functions involved in tiny microscopic species to large animals and plants. Such

commonly occurring process is phosphoryl transfer reaction, for example, arguably the

most important chemical process in biology. It can be found in the process of photosyn-

thesis, Krebs cycle etc. Perturbations in phosphoryl transfer enzymes are involved in

many serious human diseases such as cancer. Protein kinases and phosphatases are among

the most important drug targets there are 2000 protein kinases and 1000 phosphatases

in the human genome, and these enzymes are essential to key cellular processes such

as the control of cell cycles and division. Besides human body phosphorus key element

in bacterial cell, involves in phosphorylation which is essential for bacterial life cycles.

Identifying such phosphorylated intermediate could help us design a potential drug in

resistance to bacterial infection. Famous example of such phenomenon is histidine kinase,

a key part of in bacterial signal transaction system involves in histidine phosphorylation.

Such histidine kinases predominantly present in a large group of bacteria involve in the

same process they are notably absent from the human body, and that makes these enzymes

are suitable targets for developing drug in bacterial resistance.

This takes us to our main focus of the paper which is simulating and predicting mech-

anism of histidine phosphorylation. Phosphohistidine (product of histidine phospho-

rylation) is considered as highly unstable compound mostly serve as intermediate in a

long sequence of bio-chemical reactions and therefore it is extremely difficult to detect

in the experiments. This experimental bottleneck makes way for computational studies

to investigate possible mechanism of this reaction. In this connection, here it is worth

mentioning about QM/MM, one of the important methods to study reactions in theoretical

chemistry/bio-chemistry. Thanks to the development of powerful computer hardware

traditional QM/MM simulations are useful but it remained computationally demanding

and only allows us to study 50-100ps time scale which can be sufficient for a simple single

step reaction for small molecules. But for large enzymes and multiple step reactions this
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methods are still remained challenging. This bottleneck keeps the door open for less

expensive semi-empirical QM methods.

DFTB3 brings a promising approach to this bottleneck. As mentioned above DFTB3

is an approximate Density Functional Theory (DFT) and is derived by expanding the

DFT total energy functional up to third order around a reference charge density. The

resulting perturbative series is further approximated by applying a minimal basis LCAO

expansion of the KohnSham orbitals. The resulting approximate total energy terms have

to be parametrised, and two classes of parameters can be distinguished: (i) the electronic

parameters, which determine the atomic minimal basis set and the atomic reference

densities as well as the chemical hardness values of the involved atoms the determination

of these parameters is quite straightforward; (ii) the repulsive energy parameters, which are

necessary to determine the atomic pair potentials modelling the zero-th order contributions

in the density expansion. Although these terms can in principle be computed based on DFT

calculations, to achieve good general accuracy and partially compensate for approximations

made in the other terms, an empirical fit to larger test sets is necessary, and therefore their

determination is usually more involved.

In DFTB3, the 3OB set of parameters is most commonly used for organic and biological

systems. However, there are a few cases where a limited transferability was found for

some complex chemical reactions. This led to incorrect reaction energetics, e.g. phosphate

hydrolysis reactions, thiol-disulfide exchange reaction. In the past Phosphate hydrolysis

reaction was fixed with a SRP, in this thesis we also fixed thiol-disulfide reaction with

another SRP. Here we have focused on the process of autophophorylation of histidine,

a key reaction in bacterial two component signal transaction system where also 3OB

failed to reproduce correct geometries and reaction energies. Thus, we reparamterised the

phosphorus–nitrogen pair potential as described in detail in Methods section.
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Figure 8.1.: The Model reaction we considered for QM/MM

8.2. Methodology

8.2.1. Reference Free energy calculations for benchmark

Two dimensional QM/MMmetadynamics was performed on below mentioned reaction 8.1

(using P-N and P-O distances), where only the reactive molecules were considered in the

QM region and explicit water was treated in MM. The PMF obtained from the calculation

gave us the estimation of reaction barrier and reaction enthalpy for our parameterisation.

We used DFT functional B3LYP and dunning type bass set aug-cc-pVTZ as QM level of

theory. QM/MM ran for 372 ps. Free Energy surface obtained from this calculation is

discussed in the result section. The details of the metadynamics and Molecular dynamics

parameters can be found in appendix.

8.2.2. Reparametarisation

Here we discuss the method we follow for DFTB. To start with we need to again go back

to the equation of DFTB3.

The total energy of DFTB3 is given as follows, we discussed in the Method chapter in

details:

𝐸 = 𝐸 (1) + 𝐸 (2) + 𝐸 (3) + 𝐸rep

=

MO∑︁
𝑖

𝑛𝑖

atoms∑︁
𝑎,𝑏

AO∑︁
𝜇∈𝑎

AO∑︁
𝜈∈𝑏

𝑐𝜇𝑖𝑐𝜈𝑖𝐻
0

𝜇𝜈 +
1

2

atoms∑︁
𝑎,𝑏

𝛾𝑎𝑏Δ𝑞𝑎Δ𝑞𝑏 +
1

3

atoms∑︁
𝑎,𝑏

Γ𝑎𝑏Δ𝑞
2

𝑎Δ𝑞𝑏 +
atoms∑︁
𝑎≠𝑏

𝑉
rep

𝑎𝑏

This equation consists of two parts: electronic part 𝐸 (1) + 𝐸 (2) + 𝐸 (3)
, involving so-called

electronic parameters, which in this work are taken from the general-use 3OB parameter

set [59, 62]. The repulsive part represents repulsive potential expressed in terms of pair

potentials 𝑉
rep

𝑎𝑏
, which are specific to respective pairs of chemical elements and depend on

interatomic distance but not on atomic charges. Their parametrisation is done by fitting

to a selected set of reference atomization energies, molecular geometries, and barrier or

reaction energies. Procedure is carried out according to a partially automatized procedure

[61], discussed briefly in the next segment.

50



8.2. Methodology

Figure 8.2.: A schemetic diagram of repulsive potential in a form of a spline, where 𝑉 𝑟𝑒𝑝

axis represents repulsive potential and 𝑟 axis represents interatomic distances

Representaion of Repulsive Potential

Fig 8.2 represents a typical repulsive spline with respect to interatomic distance of two

atoms. In 3OB parameter scheme repulsive parameter is defined as fourth order spline. At

any point of the curve represents energy of the point and slope of that point represents

force (second derivative). Now for distance between atom type A and B interatomic

distance is divided into several intervals namely I0,I1... using a set of division points (also

called grid points) (r1,r2,r3...). Now for each intervals (except for first interval I0) fourth

order polynomial is defined as shown below.

𝑆𝑖 (𝑟 ) =
4∑︁
𝑘=0

𝑠𝑖𝑘 (𝑟 − 𝑟𝑖)𝑘 (8.1)

In the above equation 8.1 the polynomial is written in terms of interatomic distance,

𝑠𝑖𝑘 are the coefficients (unknown quantity), in this case (fourth order polynomial) there

are 5 coefficients, to be determined. For solving the equation first three derivatives of

the equation 8.1 are required to be equal to be same for the next interval (𝐼 (𝑛 + 1)) and
therefore last division point can be considered a cut-off after which the potential goes to

zero. The solution of the equation has to be considered under boundary condition of the

continuity equation mentioned later.

However for the first interval (I0) it is essential that the function S0 has to be an

exponential function:

𝑆0(𝑟 ) =𝛼 exp(𝛽 r + 𝛾 )

Values of three parameters 𝛼 𝛽 𝛾 has to be chosen in such a way that it should match

the value of S1 at r=r1 division point.
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8. Re-parameterisation of Phosphorus-Nitrogen Pair Potential in DFTB3

The requirement of the spline function should be continuously differentiable up to the

second derivative in the interval (r(n), r(n+1)). Thus it can be written as:

𝑆𝑖 (𝑟 (𝑖 + 1)) − 𝑆𝑖+1(𝑟 (𝑖 + 1)) = 0

𝑆
′
𝑖 (𝑟 (𝑖 + 1)) − 𝑆 ′

𝑖+1(𝑟 (𝑖 + 1)) = 0

𝑆
′′
𝑖 (𝑟 (𝑖 + 1)) − 𝑆 ′′

𝑖+1(𝑟 (𝑖 + 1)) = 0

𝑆
′′′
𝑖 (𝑟 (𝑖 + 1)) − 𝑆 ′′′

𝑖+1(𝑟 (𝑖 + 1)) = 0

Atomisation energy is simply the difference between energy of the molecular potential

energy and the sum of the individual atomic energies of the same molecule. This quantity

is one of the essential reference data for parameterisation. For 3OB sets of parameters,

generally the atomisation energies were taken from G3B3 level of theory.

𝐸𝑎𝑡 = 𝐸𝑚𝑜𝑙 −
∑︁

𝑎=𝑎𝑡𝑜𝑚𝑠

𝐸𝑒𝑙𝑎 (8.2)

Overbinding or underbinding is a key concept, used in parameterisation to reproduce

correct relative energies (generally to match B3LYP relative energies). All 3OB Special

Reaction parameters such as OP-hydrade [62] has some overbinding energy for better

reproduction of energy barriers and reaction energies comparable to B3LYP level. Concept

is increasing the atomisation energy (overbinding) or decreasing the atomisation energy

(underbinding) to make the repulsive curve smoother, which can reproduce our desired

relative energetics and structures. We will use this concept later. For instance lets take

the case of 8.1 using OP-hydrade SRP, in the reactant there are four P–O bonds and in

product there are three P–O bonds, each bond carries 10kcal/mol overbinding energies,

which means reactant minimum is shifted down by 40kcal/mol and product minimum

30kcal/mol. In this situation in order to make the synergy in between the reaction energy

P–N bond has to have some overbinding energy. Goal of this re-parameterisation is to fix

both structure, reaction energy and reaction barrier of the specific reaction. 8.1.

New repulsive potentials for P–N and N–P were created in this work, by means of a fit

for Phosphorus–Nitrogen bond containing molecules (including all electronic parameters).

In this case there are two specific molecules were taken: namely Imid-Phos-ester-3H,

Imid-Phosphate-2H (structures are shown in figure 8.3). Though both of the molecules

have no real chemical existence they reproduce very similar chemical environment of the

real molecule. Generally charged molecules are protonated to make a neutral species in

order to optimise the geometry in gas-phase environment. In parameterisation scheme

this is very commonly used technique, because we need to use optimised structures as

reference from a better method (e.g. B3LYP) in order to achieve correct geometry of the

molecule. In this case molecule Imid-Phos-ester-3H mimics the real transition state of the

reaction 8.1 and molecule Imid-Phosphate-2H mimics the real product of the reaction 8.1.

For the solution of the linear equation system set for determining the repulsive pair

potential spline, suitable division points are chosen. Further, additional equations were

introduced to make the repulsive potential convex at the P–N distance where the spline
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Figure 8.3.: molecules considered for re-parameterisation

starts. The geometries are optimised using B3LYP/aug-cc-pVTZ level of theory, and

the atomization energies 𝐸at are obtained with G3B3 [8] calculations following standard

procedure [60] (already described above in brief). An overview of all reference systems

and values that lead to the repulsive potentials related to P–N is provided in Tab. 8.1.

The resulting repulsive potential still could not produce correct energy barrier. This

could be due to the fact that other SRP already have some overbinding which makes the

relative energies quite obviously show a discrepancy in the reaction energy and barrier. so

we decided to overbind the P–N bond in the molecule of Imid-Phosphate-2H by increasing

the atomization energy by 25 kcal/mol. The resulting repulsive pair potential reproduces

reaction barrier and reaction enthalpy in accordance with the B3LYP/aug-cc-pVTZQM/MM

with an error of ca. 2 kcal/mol 8.5. New repulsive potential and the old 3OB repulsive

potential is shown in 8.4.

Molecule Charge 𝐸at (kcal/mol)

Imid-Phosphate-2H 0 1505

Imid-Phos-ester-3H 0 1947

Potential Division points (a.u.) Additional equations

P–N 2.7, 3.5, 4, 4.5, 5 𝑉 ′′(1.487Å) = 0.84 a.u.

Table 8.1.: Data used to fit the P-N pair potential spline
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Figure 8.4.: comparison of old 3OB repulsive potential and new modified P-N repulsive

potential

From figure 8.4 we can see that the new repulsive potential curve is overbound by

20Kcal/mol. we can also say that in the new repulsive potential P-N interaction is more

stronger than previous case. P-N bond is located at 1.8 angstrom and vanishes faster than

the old repulsive curve.

8.3. Results

8.3.1. Free Energy plots in QM/MM

Here are the 2D representations of the free energy plots obtained from different QM/MM

calculations. From the fig 8.5(A) it is observed that there is no product minimum, only

a broad higher energy region appears near 2.3 P-N distance which indicates P-N bond

in the final structure is longer than a normal P-N bond, which is expected 1.8 A and the

reaction energy therefore is also not trustable. This phenomenon correlates with the

behaviour of the DFT-LDA and DFT-GGA approaches. Being based on the PBE functional,

3OB parameters seems to reproduce some DFT-PBE errors. This takes us to reproduce a

reference calculation to compare it with, fig 8.5(B) is the QM/MM calculation results from
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B3LYP/aug-cc-pVTZ method. It appears product minima appears at P-N distance 1.8 A

and P-O distance 3.5. There is also an indication of five-fold phosphorus transition state

pathway (SN2 like transition state) in the mechanism which was missing before. From fig

8.5(B) it is estimated that the reaction enthalpy of this particular model reaction is around

40Kcal/mol and the reaction barrier is around 34 Kcal/mol.

Figure 8.5.: Free Energy Surfaces obtained from different QM/MM calculations
are shown here:A)FES from QM(DFTB)MM using old 3OB parameter,

B)FES from QM(DFT)/MM using B3LYP/aug-cc-pVTZ, C) FES obtained from

reparametrised P-N pair potential. Each contour line represents 2Kcal/mol,P-N,

P-O distances are given in Angstrom, Energy bar is in Kcal/mol

After the reparameterisation we applied the new parameters to the same reaction.

fig 8.5(C) represents the FES plot from the new parameter and it turns out product

minima appears in accordance with our reference B3LYP QM/MM reaction enthalpy is

now around 32 Kcal/mol and the reaction barrier now becomes 38 Kcal. We can say the

re-parameterisation is able to reproduce B3LYP accuracy with an error of 2Kcal/mol.
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Figure 8.6.: Benchmark reaction with imidazole Nitrogen species as nucleophile, R is

different leaving group based on varying electron donating power

8.4. Benchmark

For benchmarking our new SRP, we chose two different reactions 8.6, 8.7, mimics the same

chemical environment of Phosphorus. These reactions are also SN2 like and proceeds

through penta-coordinated phosphate, hence make suitable choice to assess accuracy of

our new parameter. Two reactions has two different nucleophile, 8.7 has SP
3
nitrogen

species as nucleophile, thus stronger one and 8.6 imidazole nitrogen as nucleophile, thus

weaker one. Now it is fair to declare that, we don’t know whether this reaction occurs in

actual experimental condition or not, but reactants and products are fairly stable species

in vacuum. Thus computing single point energies are easier.

The idea is substituting -R (leaving group) with different electron donating andwithdraw-

ing groups, such that it will change the local electron density on phosphorus (electrophilic

center) will change for every reaction. Therefore, chemical environment of the reaction

will be slightly different every time and thus the reaction energy. We want to compare

this reaction energies (reactant energy - product energy) with B3LYP and DFTB (using

3OB + new PN SRP + OP-hyd SRP).

Leaving Group (R-) RE in DFTB (kcal/mol) RE in B3LYP (kcal/mol)

R = C(CH3)3 56.90 76.30

R = CH3 61.78 82.51

R = Ph 34.82 44.33

R = COOH 20.15 35.78

R = CN 18.95 41.77

Table 8.2.: Reaction energies (RE) shown in both DFTB and B3LYP with different leaving

group for the first reaction 8.6

Overall trends in both of the reaction schemes are same. Reaction energetics are same in

both DFTB and B3LYP, which is RE (Reaction Energy) is negative. With stronger electron

donating group (EDG) RE is more and with stronger electron withdrawing group (EWG)

is less. DFTB seems to favour the products more than B3LYP systematically in both
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Figure 8.7.: Benchmark reaction with SP
3
Nitrogen species as nucleophile, R is different

leaving group based on varying electron donating power

Leaving Group (R-) RE in DFTB (kcal/mol) RE in B3LYP (kcal/mol)

R = C(CH3)3 74.59 101.25

R = CH3 79.26 86.64

R = Ph 52.72 76.33

R = COOH 38.45 71.24

R = CN 36.44 51.05

Table 8.3.: Reaction energies (RE) shown in both DFTB and B3LYP with different leaving

group for the second reaction 8.7

benchmark system, however the difference ranges from 10 to 23 kcal/mol. This could be a

consequence of the introduced overbinding.
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Figure 8.8.: Structure of Thio-TEPA and TEPA, serve as pro-drug of azidirinium ion

Hydrolysis of TEPA

N,N,N-triethylenethiophosphoramide (Thiotepa)[175, 186, 75] and its oxo analogue (Tepa)[86]

(its major metabolite) are common drugs to exhibit antitumor activity. It is one of the

oldest chemotherapeutic drugs with continuing clinical utility, often used in high dose

combination regimens for breast, ovarian, bladder cancers and other solid tumors. Al-

though the fact is known that it alkylates DNA (Guanine) mechanism is still not very

clear. Metabolic studies of Thiotepa reveals its oxo analogue (Tepa) as its major metabolite,

formed after oxidative desulfuration of Thiotepa in the liver by cytochrome P450[175].

Thiotepa and Tepa have been classified as trifunctional alkylating agents (contains three

aziridinyl functionalities) that are proposed to induce cancer cell death by formation of

cross-links within DNA [125, 19, 121].

We are interested on the particular hydrolysis because the reaction resembles the very

similar chemical environment of reaction (histidine phosphorylation) we want to study

in chapter 9 for which we made the special reaction parameter in this work. This makes

TEPA hydrolysis a very good case study to estimate the performance of the new P-N

repulsive potential. This study will also give us an idea of transferability of the SRP to

other similar reactions.

Thiotepa and Tepa are the prodrugs for aziridine or aziridinium ion, which act as

actual alkylating agent. In vivo and vitro studies unveils alkylation of DNA (Guanine)

by this drug indicates several pathways [111, 110, 175], but it still remains unanswered

which pathway is effective. The first step of any alkylating drug activity is regarded to be

interaction with DNA, either directly (ThioTEPA) or after metabolic activation (TEPA).
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Figure 8.9.: Two different possibility: P1 or P2 which one attacks DNA?

According to with Miller’s theory, sites, which potentially could interact with electrophilic

species are the DNA nucleophilic centers: nitrogen and oxygen atoms of pyrimidine and

purine bases [17]. From these two information we can identify potential electrophile could

be azidirine molecule or aziridinium ion extracted after hydrolysis of TEPA/ThioTEPA

molecule. Therefore here in this study we focused on the pathway which generates

independent azidirine molecule and aziridinium ion, which later alkylate N7 of Guanine

of cancer DNA [70].

Experimental studies shows that free aziridine as a weak base. The reactant becomes

more stable because of hydrogen bonding between protons on the aziridinuim ion with

oxygen and nitrogen atoms in Guanine. We investigated both possibilities 8.9, which

could result a stable reaction with Guanine molecule. Earlier computational studies [169,

168, 90] on this particular hydrolysis reaction identified several features of the reaction,

structure of the transition state, reaction enthalpy etc. but the complete mechanism of the

hydrolysis is still not shown. In this study, we tried to explore the mechanism.
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Figure 8.10.: Water attackes on the Phosphorus of TEPA molecule to form an unstable

product, reaction is shown both in gas-phase and in explicit water

First we tried to simulate the first step of the reaction 8.9 leading to produce aziridine

molecule (P1). We used 2Dmetdaynamics using P-N distance and P-O distance as collective

variable with very small bias height (0.2Kj/mol) in gas-phase (only QM MD) using our

new P-N repulsive potential and O-P hydrade SRP along with other 3OB parameters. PMF

of the simulation is shown in fig 8.10(A). P-N bond appears to be at 1.8 Angstrom make a

broad minimum. The final product (aziridine molecule) comes out to be highly unstable.

After that we repeat the same simulation in explicit water environment (QM/MM). PMF

is shown in fig 8.10(B), but the conclusion did not change product region remained in

higher energy suggesting the reaction is highly unfavourable.

Now we simulated the whole reaction 8.9 step1 + step2 leading to aziridinium ion

(P2) as final product. We performed again 2D Metadynamics using 2CVs 1. P–N bond

hydrolysis = P-N distance - P–O distance (which means when this CV is negative P-N bond

exist and when its is positive P–N bond is broken P–o bond forms) and 2. N–H distance to

describe proton transfer to aziridine ring. Metadynamics is carried out in explicit water

environment (QM/MM simulation). PMF is shown in fig 8.11.

From the PMF 8.11 we can observe all the important structures. We can see aziridinium

ion (P in 8.11) is now the global minimum of the reaction more stable than the TEPA (R)
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Figure 8.11.: Free energy surface of the complete mechanism of releasing final Aziridinium

ion
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itself. The previous product aziridine (I) is highly unstable. Reaction energy of (R-P) is -30

Kcal/mol (reaction enthalpy is negative).

8.5. Conclusion

In this chapter we have demonstrated the reparameterisation procedure for repulsive

potential in DFTB3. This is the traditional way to improve DFTB3 energies and struc-

tures for a specific reaction, called SRP. Current DFTB3 has limited transferability for

complex phosphorus chemistry at the level of accuracy in energetics, which is required

for detailed mechanistic investigations. The SRP we developed in this chapter to improve

P-N interactions in imidazole specific phosphorylation reactions, which is important step

in Histidine Kinases (Histidine Phosphorylation). These SRPs are used along with other

3OB parameters in QM/MM simulations. This new re-parametrised P–N parameter is able

to reproduce reaction energy and reaction enthalpy pf B3LYP accuracy with an error of

2Kcal/mol. Although these SRPs are clearly not a satisfactory and long term solution, this

makes people to develop various automated way to reparametrise specific parameters

[104]. Also, it makes room for various Neural-Network algorithms to serve in this problem

[66]. Although this parameter is made specifically for the purpose of Histidine phosphory-

lation, we further tested it on other similar gas-phase reactions to evaluate accuracy and

performance. We further extended our study investigate cancer drug (TEPA) hydrolysis

using the new parameter and demonstrated the full mechanism of the hydrolysis for the

first time.
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9. Mechanism of Autophosphorylation in
Cis-Activated WALK Histidine Kinase

The work in Chapter 9 was done in collaboration with Fathia Idiris and Alexander Schug [82]

9.1. Introduction

Histidine Kinases (HK) are necessary part of Two component systems (TCS), one of the

major signal transduction pathways exist in bacteria. They are involved to regulate the

bacterial response to a variety of environmental factors like temperature changes, changes

in pH, change in pressure or cellular signals [174]. The individual components are the

sensor histidine kinase (HK) that detects the signal and the response regulator (RR) protein

that coordinates the response, most commonly by acting as a transcription factor (see

Fig. 1.1). These two proteins communicate each other via histidine to aspartate phosphoryl-

group transfer. Based on domain architectures, evolutionary origin and activities there

are numerous variations of TCS [94, 189]. While TCS are employed by some eukaryotes,

they are notably absent from the animal kingdom. That, paired with their importance to

bacteria makes these enzymes promising targets for developing novel compounds that

selectively inhibit the growth of bacteria or suppress virulence. For instance, waldiomycin,

an angucycline antibiotic, inhibits the HK activity of WalK [83, 126] in Staphylococcus
aureus, a human pathogen responsible for a variety of acute and chronic diseases [182,

171, 139]. The molecular signal of this system is still unknown but emanates from the

bacterial cell wall [20]. In general, theWalRK system has garnered significant experimental

attention since it is conserved acroos Gram-positive bacteria of the order Firmicutes where

it has been shown to be essential for viability in a variety of different species of bacteria.

The structural properties of HKs differ, they all have at the C-terminus as a conserved

kinase core (∼450 amino acids) consisting of the homodimeric dimerization histidine

phosphotransfer (DHp) domain and the ATP-binding catalytic domain (CA).

HK exhibits kinase activity through a interplay of conformational change and reaction

in a cyclic manner (discueesd in the Introduction 1.5). Upon signal detection at the trans-

membrane part, the conserved core adopts an asymmetric conformation such that one

of the two subunits of the homodimer is kinase active while the other remains inactive.

In the kinase inactive conformation, ATP can enter the CA domain and the binding site

of the DHp domain is accessible to a RR for phosphoryl-group transfer. In the kinase

active conformation, the RR cannot bind the DHp domain. Here, the gamma-phosphoryl

group of the bound ATP of one CA is positioned in close proximity to a specific conserved

phosphorylatable histidine of DHp. Two different auto-phosphorylation mechanisms

are observed in individual HKs: cis- and trans-phosphorylation, already discussed in

Introduction chapter 1.6.
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9. Mechanism of Autophosphorylation in Cis-Activated WALK Histidine Kinase

In this chapter we focused in cis-phosphorylation where the ATP from the CA domain

phosphorylates its own DHp domain within the homodimer. As soon as the histidine is

phosphorylated, transfer of this phosphoryl group to an aspartate of a bound RR (Response

Rehulator) for communication between the two proteins is possible. Bifunctional HK (e.g.,

EnvZ) also function as phosphatase for the RR and therefore catalyse the hydrolysis of the

phosphoryl group [84]. The activation and inactivation mechanisms of the protein are

reviewed in detail in Ref. wang2013mechanistic.

Once the protein gets activated it triggers a phosphoryl transfer reaction. Reaction takes

place in two steps first the gamma phosphate transfers from ATP to a conserved histidine

residue in the DHp domain and followed by proton transfer from histidine to suitable

proton acceptor 9.1. Previous computational studies tried to explore the mechanism of

the phosphoryl transfer reaction in WalK kinase [127] CpxA kinase [151] [113] reported

different barriers (mostly upper bound) and in-depth exploration of the two-step mecha-

nism was not possible due to limited sampling. Moreover most of these studies have been

carried out in Physiological pH. Patricia et. al. [28] has shown in their study that there is

a conserved Glutamate which could act as a potential proton acceptor in the reaction on

the other hand an older experimental study in 2003 [34] had shown the optimum pH of

this reaction in 8.5 which raises the question of the mystery of potential proton acceptor.

This brings us to our discussion of phosphorylated-histidine product of the considered

phosphoryltransfer reaction. The molecule is also known as phosphohistidine, an unstable

compound mostly found as intermediate species in a long cascade of biochemical pro-

cesses[181, 102, 118, 120]. The phosphate transfer potential of phosphohistidine Δ𝐺◦
is

also quite low, −12 to −14 kcal/mol [164]. First histidine phosphorylation was carried

out by Severin and Yudelovich (1947)[149]. First phosphohistidine was extracted from

mitochondria involved in ATP synthesis in citric acid cycle [54]. Boyer and coworkers

prepared and characterized 3-phosphohistidine (phosphorylation at 𝜖 nitrogen of histi-

dine) and 1-phosphohistidine (phosphorylation at 𝛿 nitrogen of histidine) [78] in different

pH conditions and examined the stability; it turned out that both of the compounds are

fairly stable in basic medium rather in acidic medium (at higher pH). Moreover it was

shown in the same study that 3-phosphohistidine is thermodynamically more stable than

1-phosphohistidine by the estimation of half life.

Goal of this study is to explore the Phosphorylation reaction using state-of-the-art

extended-sampling QM/MM simulations on a microsecond scale, provides sufficiently

precise energetics of the reaction [36] to distinguish if the phosphoryl transfer takes place

first, followed by the proton transfer, or the other way around. A crucial part of this

reaction is a magnesium cation as a cofactor, found close to the reaction site in all HK

proteins [185, 28, 29]. The simulations also allow us to understand role of Mg
2+

in this

reaction.
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9.2. Methodology

Figure 9.1.: Proposed Reaction occurs in two steps, 1) first step is the phosphoryl transfer

from ATP to histidine 2) Second step is the proton transfer from phosphohisti-

dine to suitable base

9.2. Methodology

Preparation and MM Equilibration

We started from crystal structure PDB ID 4U7O[26], which is activated WalK histidine

kinase. The structure contains a non-hydrolysable ATP analogue AN2 and no magnesium

present. We modelled non-terminal missing loops, and modified AN2 to ATP using UCSF

Chimera [132] interfaced with MODELLER [180]. An Mg
2+

ion was placed carefully

in between the γ- and β-phosphate groups. After that, the other ATP-binding domain

which, located far away from the DHp domain, was truncated to reduce the size of

the system. Finally, the biomolecular complex was enclosed in a periodic box sized ca.

8 × 8 × 8 nm
3
, which was filled with water and electro-neutralized by the addition of nine

sodium counterions. The density of the system was 1014 kg m
−3
.

The AMBER99SB-ILDN force field was used to describe the protein [105], while the

parametrisation of ATP from Ref. meagher2003development was employed. The solvent

was represented with the TIP3P water model [87] and Åqvist’s parameters for the coun-

terions [4]. The electrostatic interactions were treated with PME [38, 46], where the

short-range contribution was cut-off at 1 nm. The Lennard-Jones interactions were cut-off

at 1 nm. All of the QM/MM MD simulations used the leap-frog integrator [35] with a time

step of 1 fs, while all bonds involving hydrogen atoms were constrained with LINCS [72].
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9. Mechanism of Autophosphorylation in Cis-Activated WALK Histidine Kinase

First, the system in the entirely MM representation was energy minimised with steepest

descents. Then, it was equilibrated for 10 ns maintaining the temperature of 300 K by

means of the Bussi thermostat [24].

QM/MM Preparation

Two different QM/MM setups were prepared Using the final structure from the MM

equilibration. The QM region was introduced, consisting of the reaction center and its

nearest neighbourhood:

• System 1 – Glu392 considered as the final proton acceptor: The QM region

contains the side chains of His391, Glu392 and Asn541, the ATP molecule, the Mg
2+

ion and 5 water molecules (70 atoms in total).

• System 2 – a hydroxyl ion considered as the final proton acceptor: The QM
region contains the side chains of His391 and Asn541, the ATP molecule, Mg

2+
ion,

5 water molecules, and an OH
−
ion created by removing a proton from a water

molecule (56 atoms in total).

The QM region was treated with the semi-empirical density-functional method DFTB3

[59] employing the 3OB parameter set [60] augmented with a special parametrisations for

the pair interactions P–O and P–N [62]. The QM–MM interactions were treated by means

of electronic embedding, which involved our PME implementation [97]. The MM region

was described with the same force fields as employed in the preceding MM equilibration,

as specified above. All of the MD simulation parameters were kept also, and the prepared

QM/MM system were equilibrated at 300 K for 1 ns. The QM/MM simulations were

performed using a local version of GROMACS [71, 1, 96] interfaced with PLUMED [170]

and a local version of DFTB+ [77, 95].

QM/MM Free Energy Calculations

Potentials of the mean force were generated by means of multiple walker [140] two-

dimensional metadynamics [25] employing 96 individual simulations (walkers). An initial

phase of 47 ns was run with a constant Gaussian height. The second phase involved a

well-tempered metadynamics protocol [10].

Collective Variables

Two collective variables were employed in the metadynamics simulations as follows, see

also Fig. 6 in the main text.

• Phosphoryl transfer: O–P–N antisymmetric stretch, which is the difference of

the distances: P(γ-phosphate of ATP)–Nε(His391) − P(γ-phosphate of ATP)–O(β-

phosphate of ATP)

• Proton Transfer: N–H–O antisymmetric stretch, which is the difference of the

distances Nδ(His391)–Hδ(His391) − Hδ(His391)–O(OH
−
/Glu392)
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Metadynamics

In the normal metadynamics phase, the height of the biasing Gaussians deposited was

1.2 kJ mol
−1
, and their width was 0.02 nm in both dimensions. In the consective well-

tempered metadynamics phase, a bias factor of 80 and 70 was considered in the simulations

conseridering Glu392 and a hydroxyl ion, respectively, as the final proton acceptor. In

all cases, the period of bias deposition was 500 steps, and the biases were communicated

between the individual walkers every 1000 steps.

Forcefield parameterisation of phosphorylated histidine residue

After the reaction take place, we get phosphohistidine and ADP as final products. Though

we have forcefield parameters available for ADP [114] but for phosphohistidine there is

no parametrs. Further in future if we want to investigate the next chemical step the the

phospho-relay cascade, which is phosphoryl transfer from HIS of HK to ASP of RR 1.1, or

step II to III in auto-kinase cycle 1.5, forcefield parameters of phosphohistidine will be

essential for classical MD and enhanced sampling. The very reason why we parametrised

the forcefield parameters of phsphohistidine utilizing antechamber tool [178] using RESP

charge fitting method [12].

Results

Figure 9.2.: PMF from 2D metadynamics using N-H-O stretch in Angstrom X axis (for

proton transfer) and distance of Mg with sixth water molecule in Y axis in

Angstrom, other five coordinate bonds of Mg is restrained

.
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9. Mechanism of Autophosphorylation in Cis-Activated WALK Histidine Kinase

Phosphoryl Transfer from ATP to His391

As soon as the active state is established, an autophosphorylation reaction takes place,

consisting of a transfer of the γ-phosphate group from ATP to the Nε atom of His391

in the DHp domain, followed by a deprotonation of His391. The mechanism of this

complex chemical reaction cannot be studied by experimental means in any feasible

way, while it poses a serious challenge for a computational investigation, requiring an

approach that is both, sufficiently accurate and efficient. The choice taken in this work is a

QM/MMmultiple-walker metadynamics simulation employing the semi-empirical density-

functional approach DFTB as the quantum chemical method. This easily parallelizable

protocol makes it possible to reach microsecond sampling, while the accuracy approaches

1 kcal/mol due to a reparametrization of the P–N repulsive potential of DFTB. The QM

region consisted of the side chains of His391 and Asn541, the ATP molecule with the

coordinated Mg
2+

ion, five nearby water molecules and a suitable proton acceptor, see

Fig. 9.3A & B. Two different simulations were performed, differing in the identity of the

proton acceptor: the side chain of Glu392 in system 1, or an OH
−
ion as proton acceptor

in system 2. The metadynamics simulations involved two collective variables (CV) to

describe the progress of the chemical reactions and express the potentials of the mean

force (PMF): The O–P–N antisymmetric stretch [i.e., difference of the distances Pγ(ATP)–

Oβ(ATP) and Pγ(ATP)–Nε(His391)] describes the transfer of the phosphoryl group, while

the N–H–O antisymmetric stretch, [i.e., the difference of distances Nδ(His391)–Nδ(His391)

and Hδ(His391)–O(proton acceptor] describes the transfer of the proton to the acceptor,

see Fig. 9.3B. For illustration, a negative O–P–N means that the γ-phosphate group has

transferred fromATP to His391, and a positive N–H–O denotes a completed proton transfer

to the acceptor.

Position of the Magnesium Cation

The action of kinases generally requires the presence of a magnesium cation as a cofactor

[187, 185]. Since the crystal structure used here as the initial structure included a non-

hydrolyzable ATP analog and no magnesium, it was necessary to proceed with care and

find the right position of Mg
2+
. In order to do so, the PDB was searched for both active

and inactive structures of wild-type and mutant kinases that do have a coordinated Mg
2+

cation. The cation was always found in a very similar position in the ATP binding domain

in the structures of different HK proteins, assuming a coordination to an oxygen atom of

the γ-phosphate group of the bound ATP. Therefore, to complete the preparation of the

initial structure for QM/MM simulations, several structural models were created, featuring

an Mg
2+

cation in slightly different positions close to the γ-phosphate of ATP. Importantly,

during an equilibration period of QM/MM simulations, the Mg
2+

cation was always found

coordinating with the same six oxygen atoms (one each in the side chain of Asn541, in the

γ-phosphate, β-phosphate and α-phosphate of ATP as well as in two water molecules), see

Fig. 9.3C. That eventually provided a suitable initial structure to start the metadynamics

simulation.

Both the reactant state and the final product of the reaction feature the Mg
2+

ion with

a stable coordination sphere containing six ligands. In the course of the metadynamics
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Figure 9.3.: Model of WalK used as the initial structure for QM/MM metadynamics sim-

ulations of autophosphorylation. A) The active structure adopted from PDB

ID 4U7O with the non-reacting ATP-binding domain truncated; location of

the reaction center highlighted in pink. B) The QM region covering the re-

action center; the antisymmetric stretch CVs presented in blue and pink. C)

Coordination sphere of the magnesium cation in the reactant structure.

simulation, the coordination sphere of Mg
2+

oscillates between five and six ligands. Water

molecules were found to engage in strong hydrogen bonding with the β-phosphate group

of ATP and the phosphohistidine, and that is why they showed the propensity to at times

decordinate from Mg
2+
. We further investigated the coordination sphere of Mg

2+
using an

additional QM/MM metadynamics simulation, which included additional water molecules

in the QM region to ensure that any nearby water molecule is able to fill up the vacancy in

the coordination sphere. The resulting PMF in Fig. S2 shows a negligible energy difference

between the coordination numbers of five and six, as well as a very low barrier of 2 kcal/mol

to the un- and re-binding of the sixth ligand (a water molecule).

Nature of the Transition State

The nature of the transition state of the phosphoryl transfer reaction was also analysed. To

this end, we ran another QM/MM metadynamics simulation using a pair of CVs designed

to describe the phosphoryl transfer: the distances Pγ(ATP)–Nε(His391) and Pγ(ATP)–

Oβ(ATP). The resulting PMF is shown in Fig. S3. The transition state, which lies 8 kcal/mol

above the reactant exhibits a five-fold hypervalent state of the phosphorus atom, shown
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9. Mechanism of Autophosphorylation in Cis-Activated WALK Histidine Kinase

Figure 9.4.: Results from 2D QM/MM metadynamics simulation using the distances P–N

and P–O as CV. Contour lines are at 2Kcal/mol, energy units are in Kcal.Top:

Resulting potentials of the mean force. Bottom: Representative transition state

structure from that simulation; highlighted are P–N and P–O distances (thick

solid line) and the six coordination bonds to the Mg2+ ion (thin dashed lines)

.
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in Fig. S3 also. Interestingly, the bonding to the phosphorus atom is asymmetric, with the

P–O distance of 2.17 Å being markedly shorter than the P–N distance of 2.53 Å.

The Chemical Step Is Exergonic And Base-Dependent

Wemodelled the reaction considering the conserved Glu392, which is in a close contact with

His391, as the proton acceptor. A good convergence of the resulting free energy surface

(FES) shown in Fig. 9.5 (left) is indicated by the analysis presented in Fig. S4. Passing over

a barrier of 8 kcal/mol, the phosphoryl transfer leads to a protonated phosphohistidine

intermediate, lying 20 kcal/mol below the reactant. Then, a nearly barrierless proton

transfer from His391 to Glu392 leads to a final product that lies 13 kcal/mol above the

protonated intermediate. This indicates that a stronger base is needed as the final proton

acceptor to make the reaction sequence exergonic.

On the other side, an OH
−
ion was placed near the Hδ atom of His391, which is the

proton to be transferred. A new QM/MM metadynamics simulation was performed, see

Fig. 9.5 (right) for the resulting free energy surface, and see Fig. S5 for the analysis of

convergence. The final product lies less than 1 kcal/mol below the intermediate, and is

a global minimum of free energy now. The energy barrier to the reaction sequence of

8 kcal/mol is identical to the previous case where considering a glutamate as the proton

acceptor. The reason for this is that the higher barrier applies to the phosphoryl group

transfer from ATP to histidine, which is exactly the same process in both cases. The

subsequent proton transfer passes over a much lower barrier of 4 kcal/mol.

Stability of the final product

After the reaction took place, we were curious about the stability of the final product,

which is protein with phosphohistidine residue. Since it is a non-standard residue we

parameterised the forcefield parameters for phosphohistidine, as we discussed above.

According to [177] after the autophosphorylation happens, histidine kinase again moves

back to kinase inactive state and the ADP leaves from the CA domain. In order investigate

the hypothesis we ran two classical simulations, one with ADP and𝑀𝑔2+ ion and other

one without ADP and 𝑀𝑔2+ ion. RMSD of both simulations after 100ns is shown in 9.7.

Protein without ADP and𝑀𝑔2+ ion has got two RMSD states indicating conformational

rearrangement might be a reason. On the other hand the structure with ADP and𝑀𝑔2+ ion
has single RMSD state, indicating final product with ADP and𝑀𝑔2+ ion is quite stable. The

simulation with ADP and𝑀𝑔2+ shows𝑀𝑔2+ ion still coordinating with the phosphate of

phosphohistidine and full filled all six coordinations. Overall we can say our parameterised

forcefield parameters for phsphohistidie is quite successful and can be used in future

simulations.

9.3. Discussion

Regarding the chemical step of histidine phosphorylation, we performed two different

QM/MM metadynamics simulations of the process combining the phosphoryl transfer
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Glu392 is proton acceptor OH– is proton acceptor

Figure 9.5.: Results from the 2D QM/MM metadynamics simulations of autophosphory-

lation of WalK, using the antisymmetric stretches N–H–O and O–P–N as

CVs. There are two different simulations: one involving the side chain of

Glu392 as the proton acceptor, and the other with an OH
−
ion playing that

role. Top: Potentials of the mean force for the phosphorylation reaction. Bot-

tom: Representative structures from the : R – reactant, R’ – intermediate

(His391 is deprotonated before its phosphorylation takes place), I – interme-

diate (protonated phosphorylated His391), P – final product (deprotonated

phosphohistidine). The free energy is color-coded, and the spacing of contour

lines is 3 kcal/mol

.

from ATP to His391 and the proton transfer from His391 either to the initially deproto-

nated Glu392 or to an OH
−
anion placed near His391. The resulting free energy surfaces

converged after simulations were extended to 1 µs. We observe a free energy barrier to

the chemical reaction of 8 kcal/mol, independent of the identity of the proton acceptor,

leading to a stable intermediate represented by protonated phosphorylated His391.

This value should be added to the free energy change accompanying the conformational

transition obtained from classical simulations (work done by Fathia Idris [82]), which

is however most likely overestimated. The experimentally reported catalytic rate of

0.027 min
−1

[34] corresponds, using the transition state theory expression for rate =

𝑘𝑇 /ℎ · exp [−𝐸A/𝑘𝑇 ], to an activation energy (barrier) of 22 kcal/mol. Apparently, the

energy barrier of the chemical step (8 kcal/mol) represents just a small part of the overall

barrier. Therefore, the conformational transition appears to be the rate limiting step of
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Figure 9.6.: RMSD plot of the protein shown above after the autophosphorylation reaction,

obtained from a 100ns free classical MD simulation. One is ADP bound struc-

ture and other one is without ADP

.
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the whole catalytic activity. Note that this corresponds to the situation in an in vitro
experiment, whereas the genuine in vivo process is being triggered by an energy input

from the sensory domain reacting to a stimulus, and this also effectively reduces the

barrier.

When terminating the reaction with the protonated Glu392, the product lies above

the protonated pHis intermediate in free energy. This suggests that a stronger base has

to be present as a real final proton acceptor, and this situation was considered in the

second QM/MM metadynamics simulation, which had an OH
−
anion located near His391.

With this setup, the deprotonated phosphorylated His391 is a stable product, the species

lying the lowest in free energy, 20 kcal/mol below the initial reactant. Therefore, for the

phosphorylation to occur more readily, there has to be a strong base present as a final

proton acceptor somewhere in the system. It is not necessary for it to be directly near

the histidine, as long as a proton transfer pathway between the histidine and the proton

acceptor is available. No matter what the pathway is like, the reaction energy will likely

be similar; note that proton transfer may occur along rather long “water wires” exhibiting

low energy barriers [143].

We like to emphasize that the two simulations performed with different proton acceptors

serve different purposes: The simulation with Glu392 as the acceptor shows the phospho-

rylation followed by proton transfer to Glu, which is likely the first step of the potentially

complex deprotonation of the histidine. The other simulation with OH
−
representing a

general strong base aims to estimate the reaction energy of the entire process, involving

a real final proton acceptor. We do not claim that an OH
−
ion is genuinely present in

close proximity to His391; most likely, it is not. The former simulation rules out the

deprotonated unphosphorylated His391 (R’) as a viable intermediate, as it was suggested

earlier to be an “activated” phosphoacceptor [28], because it lies too high in energy in the

realistic pathway proceeding via a protonated Glu392. The latter simulation in turn reveals

that the chemical step of the autophosphorylation is in fact a down-the-hill process.

Clausen et al. showed that the rate of autophosphorylation in WalK increases with

increasing pH, indicating the need for a strong base present as a proton acceptor [34]. In

agreement with that, our simulation performed with and without an OH
−
present provide

a means to quantify the effect of a generic strong base available in the system, on the

energetics and kinetics of the reaction. Prior computational studies of WalK and CpxA

involved computationally considerably more costly DFT methods, which limited these

studies to (sub-nanosecond) time scales insufficient for treating complex proton transfers

and making the resulting free energy surfaces undersampled [127, 113]. The main finding

on WalK was the “tight coupling” of the chemical step with the preceding conformational

transition, whereby the protonation of His391 is prevented, which would otherwise hinder

phosphorylation. Our vastly increased sampling in the current study unveils quantitative

free energies surfaces covering the reaction mechanism in great detail.

Comparing with previous studies, study of oliveri et. al over-estimated the reaction

barrier [127], this could be due to use of poor basis set (speeding up QM/MM simulation)

and less sampling. We also argue that short simulations (less than 1 ns) [127, 113] for such

complex multistep reaction could introduce large error in computing free energy reaction

barrier and reaction energy. In our study, the free energy of the simulation converged in

1 µs in which it is eventually revealed that the intermediate and product minima are deeper
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than reactant minimum the fact no other previous studies could simulate because of their

expensive computational cost of DFT QM/MM. Here it is worth mentioning that, DFTB

parameters used for this reaction were parameterised in chapter 8 specifically for this

reaction as a SRP using DFT(B3LYP) as reference therefore we expect the PMF obtained in

this work will have same accuracy as B3LYP QM/MM dynamics.

What we have learnt about the autophosphorylation, consisting of the phosphoryl-

group transfer from ATP to His391 followed (at some point) by the deprotonation of pHis,

leaves us with two possible scenarios of the whole process: One possibility is that pHis

deprotonates immediately after the phosphoryl transfer has taken place. The first proton

acceptor, Glu392 acts like a proton relay before the proton eventually is transferred to a

sufficiently strong base (here represented by an OH
−
anion), which need not be located

directly next to pHis. In vivo, that strong base might be, for instance, a suitable titratable

molecule present in the solution, or an area of local basic environment in the cytosol. The

other conceivable scenario is that the base does not act in this step, and pHis does not

deprotonate. Then, the next phosphorylation reaction, which is the phosphoryl transfer

from pHis to the conserved Asp residue on the RR WalR, would have to proceed from

the protonated pHis. Future work will need to answer whether this process would run

spontaneously and if so, whether the energy barrier would be low enough to allow for

reasonably favourable kinetics of the process.

Looking at the big picture of the phosphorylation cascade in TCS, the step subsequent

to histidine autophosphorylation will be transfer of the phosphoryl group from His391

to the conserved aspartate residue on the WalR RR. The final product of the reaction

sequence in this study, the WalK protein in an active state containing a deprotonated

phosphorylated His391, represents a quite stable minimum on the free energy surface,

yet still phosphohistidine is a relatively unstable, high-energetic species. This means that

the energy of ATP hydrolysis has not been fully released, and is still available to drive

consecutive processes, of which the first is a phosphoryl group transfer to the conserved

Asp in RR.

It appears likely that the dynamics and energetics of WalK autophosphorylation found

here are valid not only for a single HK, rather, broadly representative of the HK autophos-

phorylation mechanism. We base this on the fact that direct coupling analysis of vast

sequence alignments of HK proteins identified highly correlated residue pairings between

DHp and CA domains, that later were identified to be in close proximity in individual

structural examples of either inactive or active conformation of the HK protein [37]. Thus,

the vast majority in sequence alignments included in this study have to have similar active

and inactive conformations, in which these contacts can be realized. By extension, we also

anticipate similar dynamics in the transition between active and inactive conformations.

9.4. Conclusion

The initial processes in the signalling cascade of the WalK HK have been explored by

means of a multi-scale simulation approach. The structure of the activated state of WalK

HK served as a basis for an investigation of the autophosphorylation reaction, in which the

γ-phosphate group of an ATPmolecule bound to the CA domain is transferred to the His391
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9. Mechanism of Autophosphorylation in Cis-Activated WALK Histidine Kinase

Figure 9.7.: A) Trans HK structure with the region of QM region, based CpxA Histidine

Kinase obtained and modelled from pdb id:5lfk. B) Reaction center (QM region)

is shown separately

.

residue of the DHp domain. The applied QM/MM MD multiple-walker metadynamics

made it possible to achieve microsecond sampling and draw a more reliable picture of

the mechanism and energetics of the process. The reaction was shown to proceed via a

penta-coordinated transition state to a protonated phosphohistidine intermediate, which

is consequently deprotonated in favour of a suitable nearby base. The role of the basicity

of the final proton acceptor was also described quantitatively.

Accordingly, the obtained potential of the mean force of the conformational transition

indicated an energy barrier of 27 kcal/mol [82]; this estimate however represents an

upper bound of the real value due to the properties of the computational method. The

phosphorylation step, on the other hand, exhibits down-the-hill energetics, with the exact

shape being dependent on the nature of the final proton acceptor. Taken together with

the high energy expense of the prior conformational transition, that draws a picture with

isoenergetic or slightly exergonic process accompanied by a high energy barrier, being in

agreement with and extending the current state of knowledge of the reaction.

9.5. Trans HK and future work

CpxA histidine kinase is an envelope stress sensor protein found in Escherichia coli.

Protein misfolding in the periplasm is regulated by this two-component system for the

kinase action of CpxA HK and a response regulator protein, CpxR. Here we have modelled

a suitable structure based on pdb id 5lfk and identified the reaction center. Future work is

to apply the same approach we have developed for WalK Cis histidine kinase.
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10. Improving P-N pair Potential in DFTB3
using Neural Network

10.1. Inroduction

In this chapter we present another method to improve DFTB3 energies. In this approach

we use Neural Network to improve DFTB energies (DFTB-NN), like the previous work [66],

done on di-sulfide exchange reaction. Goal is simple, we calculate the DFTB energy and

DFT(B3LYP) energy of the same system/molecule and then compute the difference between

them and feed the difference in a neural network. Therefore the output of the neural

network will give difference corrected energies which will be the same as DFT(B3LYP)

level. Comparing the computational cost of DFT-hybrid functional (B3LYP) level QM/MM

simulations, which is only accessible up to 100 picoseconds atmax, DFTB-NN level QM/MM

Simulations are faster, which can be accessible up to few hundreds of nanoseconds and

gives the same results as DFT QM/MM. Thus this approach is very reliable for simulations

of large biochemical system. The first such ML potential was introduced by Doren et al. in

1995, who fitted a DFT PES with the help of an Artificial Neural Network (ANN). However,

the model was limited to a few atoms, and it would take 12 more years before larger atomic

systems could be described. Here we use Behler–Parrinello method for constructing neural

network.

Semi empirical(SE) methods can also be combined with ML algorithms, which are

designed correct the energy difference between the SE method and a high level QM

method one of such algorithm is called Δ-ML approach [141]. First ever implementation

Δ-ML in a QM/MM framework was done by Shen and Yang in 2018 with an ANN to correct

the PES of peptide building blocks [150]. Since then, similar approaches have been further

developed. Some notable examples are by Böselt et al. [22],Gastegger et al.[56],etc

Being based on the PBE functional, 3OB parameters inherits DFT-PBE differences and

sometimes complex reactions, which often needs to be described by better exchange

correlation interactions lacks behind to give accurate estimation of reaction energy and

reaction barrier. The reason why there are several SRP (special reaction parameters) were

developed for some non-trivial reactions. Two of those SRP has been discussed in detail in

chapter 8 and chapter 11. Uses of these SRPs also make the usage of DFTB3 more complex.

This is where Δ-ML could help DFTB3 to give a practical solution. In this work, we aim to

develop a Δ-ML based approach for the description of TEPA hydrolysis reaction within a

QM/MM framework, where unlike in chapter 8 (using SRP) DFTB3 energies can be trained

only using 3OB parameters without using any SRP and can be corrected to B3LYP level of

energy. Later we also aim to extend this framework to implement a general phosphate

reaction DFTB-NN model where no longer SRPs are required.
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10. Improving P-N pair Potential in DFTB3 using Neural Network

Figure 10.1.: Schematic diagram of Δ Machine Learning

10.2. Methodology

Δ-Machine

Concept of Δ-Machine is trivial, It is a ANN model that learns only the difference of a

high level quantum energy (usually B3LYP or CC) and a low level quantum energy (in

this case DFTB3/3OB) of a the same system (set of the same structures) and after training

it takes low level energy as a input and predicts the higher level energy corresponding

to the same structure, see figure 10.1. Therefore using this DFTB+Δ we can precisely

reconstruct higher QM level potential energy surface.

Data generation

For the training of the ANN only gas-phase energies are required. In order to get the

structures and the corresponding energies we took gas-phase metadynamics of the TEPA

hydrolysis reaction we already computed for chapter 8 (see fig 8.10) and let the metady-

namics run till it fill all the local minima and reach at the diffusive region, over-converged.

Now structures are extracted from the trajectory after every 10ps. By this process we

ended up making a total numbers of 16000 structures.

After obtaining structures, single point calculations are performed on every structure

both in DFTB/3OB parameter using DFTB+ and in B3LYP/aug-cc-pVTZ. On the other hand

we take another molecule of TEPA and scanned through the potential energy surface along

P-N distance and P-O distance from 1.9 Å to 4 Å and used every structure to generate a

2ps MD trajectory which again generated 10000 structures. We then performed single

point calculations on these structures both in DFTB/3OB parameter using DFTB+ and in

B3LYP/aug-cc-pVTZ. Now in total we have 26000 structures for the training process. For

comparison how good P-N SRP is for this particular reaction we also make a separate list

of DFTB single point energies using both P–N and P–O SRPs.

Neural Network

In this work we have used a Behler-Parrinello ANN [15] for Δ-Machine. In Behler-

Parrinello formalism, the quantity of a molecular system is expressed as the sum of

78



10.3. Results

Figure 10.2.: PMF of gas-phase TEPA- hydrolysis reaction both in A)DFTB/3OB+PN+PO

B) B3LYP/aug-cc-pVTZ

atomic contributions, Δ𝐸𝑖 . Each of the quantities Δ𝐸𝑖 has to be obtained from atomic

neural network (also called subnet). In order to build the subnet molecular structure has

to be converted from Cartesian coordinate to atomic symmetry functions (ACSF) (already

discussed in detail in chapter 7). The implemented feed-forward neural network consists

of a three-layer subnets for each atom with the tanh activation function. The descriptors

are defined in terms of radial and angular symmetry functions as the input parameter.

Each hidden layer consists of 34 neurons whose weights have been initialized by the

NguyenWidrow initialization procedure.

10.3. Results

In figure 8.5 PMF shown in both DFTB and B3LYP, though B3LYP–PMF is not converged

it can give a clear idea about the positions of the minima. In this plot DFTB is equipped

with both P-N repulsive SRP and P-O repulsive SRP along with other 3OB parameters.

In spite of that it can be observed from P–O bond, which is the "Int" minimum is quite

displaced (2.5 Å) from the reference PMF (B3LYP) (2.0 Å),(P–O bonds are longer than it

should be) indicates P-O repulsive underestimated P-O
+
bond. This makes room for the

role of the Δ–machine to improve the P–O
+
interactions.
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10. Improving P-N pair Potential in DFTB3 using Neural Network

Figure 10.3.: Distribution of data points in data-set 1(A) and 2(B)

Training

In total we used four data sets 1)structures from metadynamics only (16000 data points)

using DFTB/3OB energies as lower level, 2)structures from metadynamics only (16000

data points) using DFTB/3OB and SRP energies as lower level 3) structures from scanned

structures(10000 data points) using DFTB/3OB energies as lower level 3) structures from

both metadynamics and scanned structures (26000 points) using DFTB/3OB energies as

lower level. In each data-sets 10% of the total data points were taken for test-set for test

prediction. In all data sets B3LYP energies were kept as higher level. Symmetry functions

(ACSF) are chosen with radial cut-off 5 Å and angular cut-off 4 Å for all data sets. Learning

rate was set at 5 × 10
3
.

At first we look at data-sets 1 (3OB) and 2 (3OB + SRP) 10.3, data-set 1 looks more

scattered, which means energy range of the difference between DFTB/3ob–B3LYP energies

are bigger, MAE (Mean Absolute Error) for data-set 1 is 20.72 kcal/mol on the other hand

data-set 2 is less scattered indicating that re-parametrisation helped to reduce the difference

between DFTB and B3LYP, where MAE is 9.43 kcal/mol.

After training (looking at 10.4) this difference reduced down drastically, for data-set 1

MAE appears to be 0.53 kcal/mol and for data-set 2 0.54 kcal/mol corresponding RMSEs are

0.69 kcal/mol and 0.70 kcal/mol. We can say the training worked really well for data-set 1

and 2.

Now in order to get more possibly diverse structure close to potential energy surface we

include the scanned structures as well, which is data-set 3 and data-set 4. looking at 10.6

A and B it is evident that there are some potentially high energy structures which were

80



10.3. Results

Figure 10.4.: test-set prediction for data-set 1 (A) and 2 (B)

left out in the previous data-sets, which could be essential for training the whole chemical

space. For data-set 3 MAE turns out to be 34.10 kcal/mol and for data-set 4 32.06 kcal/mol.

In both of these data-sets only 3OB parameters were used with DFTB3 to generate low

level energy.

After Training with the same hyper parameters and 800 epochs, MAE comes down to

0.87 kcal/mol and 0.8879 kcal/mol respectively for data-set 3 and 4. In other word trained

model now can take DFTB energy and predict the corresponding B3LYP energy of the

same structure with a negligible difference of less than 1kcal/mol. This tiny difference will

be irrelevant for QM/MM simulation of big biochemical systems.
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10. Improving P-N pair Potential in DFTB3 using Neural Network

Figure 10.5.: Distribution of data points in data-set 3(A) and 4(B)

Figure 10.6.: test-set predictions for data-set 3 (A) and 4 (B)
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10.4. Conclusion

10.4. Conclusion

In this chapter a neural network model has been demonstrated following the steps of

our previous work [66]. We have shown that the method is very functional and efficient

for gas-phase reactions. Now the goal is to study the hydrolysis reaction using QM/MM

simulation equipped with the trained model. We have drawn a contrast between old

reparameterisation method (SRP) and NN prediction. Although the use SRPs qualitatively

improve DFTB energies compared to 3OB, there are still some differences exist w.r.t the

higher level method (B3LYP) but with NN models this differences are drastically reduced

down to less than 1 kcal/mol, which makes it more reliable for accuracy in the QM/MM

simulations. Thus we can say, for future DFTB problems NN models will be an acceptable

solution.
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11. Re-parameterisation of Sulfur-Sulfur
repulsive Potential for disulfide -thiol
exchange reaction in DFTB3

Chapter 11 is reproduced in parts from Ref [66]:

Author Contributions:

This work was done in cooperation with Claudia Leticia Goméz-Flores and Denis Maag.

Claudia Leticia Goméz-Flores optimized and trained the neural network. Denis Maag per-

formed QM/MM simulations. Mayukh Kansari reparametrised the sulfur-sulfur parameters.

Tomáš Kubař implemented the neural network in DFTB+.

11.1. Introduction

With DFTB3, the 3OB set of parameters are most commonly used for organic and biological

systems. However, a few transferability issues were found for some complex chemical

reactions. This led to incorrect reaction energetics, we already discussed such a case

in Phosphorus-Nitrogen in chapter 8. Here we discuss another such problem for thiol–

disulfide exchange reaction. In this chapter we propose another SRP to improve the

performance of DFTB3/3OB.

The thiol–disulfide exchange reaction is one of the few special cases where the general

3OB parameter set exhibits considerable errors. Disulfide bonds are essential for the

structure and functionality of many proteins, they are formed between two intra- or

intermolecular cysteines and thus act as cross-links connecting secondary/tertiary protein

structures. Moreover, they direct protein folding, stabilize proteins, catalyse and regulate

enzymatic reactions, protect against oxidative damage and participate in electron transfer

processes across membranes and in the secretory pathway of proteins. In the recent years,

it has become more and more evident that disulfide bonds in proteins are not only static

and stable but can also be dynamic and labile, able to rearrange by intra- or intermolecular

thiol–disulfide exchange reactions.[115, 33] A thiol–disulfide exchange is an SN2 reaction

between a thiolate R1–S
−
and a disulfide bond R2–S–S–R3 which results in the formation

of a new disulfide bond, either R1–S–S–R2 or R1–S–S–R3.[69] The attacking sulfur will be

referred to as Snuc, the attacked sulfur as Sctr and the leaving sulfur as Slg and the transition

state appears to be tri-sulfide like complex. This type of reaction is of great importance

for many chemical and biological applications, motivating a variety of experimental and

theoretical studies aiming to uncover the mechanistic details.[63, 184, 48] To improve the

performance, we reparamterised the sulfur–sulfur pair repulsive parameter.
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11.2. Methodology

As for other SN2 reactions, a hydrophobic environment is catalytic because the charge of

the sulfurs is more delocalised.[152] In the gas phase, the charge is completely delocalised

along the three sulfurs when the molecules are symmetric (R1=R2=R3) and form a nearly

linear trisulfide complex.[9, 48] In a polar environment, e.g. in water and/or a protein, the

charge is more localized. Consequently, the thiolate and the disulfide states are stabilized

whereas the trisulfide state is the transition state.

11.2. Methodology

Here we again follow the same procedure, explained in chapter 8.

11.2.1. Re-parameterisation scheme

We begin with the total energy of DFTB3:

𝐸 = 𝐸 (1) + 𝐸 (2) + 𝐸 (3) + 𝐸rep (11.1)

=
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(11.2)

The repulsive part representing the repulsive potential expressed in terms of pair

potentials 𝑉
rep

𝑎𝑏
which are specific to respective pairs of chemical elements and depend

on interatomic distance but not on atomic charges. The 𝑉
rep

𝑎𝑏
are determined by fitting

the repulsive potentials as spline functions to a selected set of reference atomization

energies, molecular geometries. The parameterisation procedure is carried out according

to a standard, partially automatized protocol [61].

New repulsive potential for S–S interaction is created in this work, by means of a fit for

Sulfur-Sulfur bond containing molecules (including all electronic parameters). In this case

disulfide and trisulfide, since it is very specific for di-sulfide exchange reaction. Molecules

considered were, a dimethyl-disulfide molecule (10 atoms) and a trimethyl-trisulfide anion

(15 atoms). For both molecules geometries were optimized at B3LYP/aug-cc-pVTZ level of

theory, molecules shown in 11.1.The atomization energies for both of them were obtained

from G3B3 [8] single point calculations.

Now following the standard protocol described in Ref. [60] (also discussed in chapter 8)

linear equation set were created and solved for determining the repulsive pair potential

spline using suitable division points (grid points). The exponential form of the spline is

maintained by so-called additional equation 𝑉 ′
, introduced at the beginning. An overview

of all reference systems and values that lead to the repulsive potential related to S–S is

provided in Tab. 11.1. However since all 3OB parameters has some overbinding, new s-s

parameter could not reproduce the topography of the PES 11.3(A), so it was evident that

S–S also needs some overbinding. Thus, the atomisation energy of the obtained potential

was shifted by -28 kcal/mol, i.e., we overbinded the S–S bond. The final S–S repulsive pair

potential is able to reproduce the B3LYP/def2-TZVPP PES with an error of ca. 1 kcal/mol,
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11. Re-parameterisation of Sulfur-Sulfur repulsive Potential for disulfide -thiol exchange reaction in DFTB3

Figure 11.1.: Molecules taken for parameterisation

11.3(D). A comparison of the old 3OB S–S repulsive potential and the new S–S repulsive

potential can be found in 11.2

Table 11.1.: Parameters defining the repulsive potential. Atomization energies of a dimethyl

disulfide and a trimethyl trisulfide anion, used to reparametrise the S–S repul-

sive potential using 4 spline division points and an additional equation

Molecule Charge (e) 𝐸at (kcal/mol)

H3CS–SCH3 0 856.4

H3CS–S(CH3)–SCH3 −1 1292.6

Potential Division points (au) Additional equations (au)

S–S 3.7, 4.1, 5.5, 6.5 𝑉 ′′(1.958Å) = 0.21 a.u.

11.3. Results

For compare the performance of the SRP in this work, we chose the B3LYP/def2-TZVPP

potential energy surface (PES) scan calculations preformed along two S-S distances in

trisulfide anion molecule 11.3B from Putzu et al. [135] as reference. Scanned PES is shown

in fig. 11.3A. The energy of the two molecules at infinite distances, i.e., the sum of energies

of isolated methylthiolate and isolated dimethyl disulfide, was set to zero. We took these

structures and repeat single point calculations in DFTB+ using old 3OB parameter 11.3 C

and with new S–S repulsive potential 11.3 D.

It is important to notice here that in gasphase, the potential energy profile is inverted

because the charge is delocalised between the sulfur atoms. Thus, the linear “trisulfide”

complex is no longer a transition state but a minimum.

Comparing Three surfaces it is noticeable that new SRP almost reproduce the reference

B3LYP scan. With 3OB parameters T1 minimum used to be more deeper and appeared in a

wrong position, indicates longer S–S bonds. This phenomenon correlates with the behavior

of the DFT-LDA and DFT-GGA approaches [123]. Being based on the PBE functional,

DFTB thus seems to reproduce the DFT-PBE errors. DFT-PBE not only fails to give an

accurate description of structures, but also exhibits an error in energies of ca. 7 kcal/mol.
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11.3. Results

Figure 11.2.: Comparison of old 3OB and New S-S repulsive potential

Therefore, it seems that DFTB/3OB very much inherits the DFT-PBE problems. B3LYP

performs much better but still slightly overestimates the bond lengths in the minimum,

with an error of 3 kcal/mol. The largest qualitative difference are apparent for high-energy

structures, which are hardly relevant in typical applications.

As discussed above, the PES of thiol–disulfide exchange for a solvated system differs

significantly from a gas-phase system, and a transition state appears where there is a

minimum in the gas phase. To investigate the performance of the the new repulsive spline

for solvated systems, we performed QM/MM metadynamics simulations of a dimethyl

disulfide–methylthiolate system immersed in water that was described by an MM force

field. The metadynamics setup was designed to sample all three disulfide bond patterns, i.e.

S1–S2, S1–S3, and S2–S3 with the respective third sulfur in a deprotonated anionic state.

The free energy profile of the exchange reactions is completely symmetric and therefore

ideally suited for comparing the different levels of theory. The 2D representations of the

three-dimensional free energy landscape, expressed as a function of the S1–S2 and S1–S3

distances with the S2–S3 distance integrated out, are shown in Fig. 11.4 together with

exemplary molecular structures and pathways. All PMFs are symmetrical and show the

three expected minima of equal depth. Moreover, the transition states within the respective

PMFs have the same energy, which illustrates the good convergence of the simulations.

The PMF obtained with uncorrected DFTB/3OB (Fig. 11.4A) shows two significant

problems: (i) the bonds S1–S2 and S1–S3 in the transition state geometries are too long

with ca. 2.8 Å, and (ii) the transition state geometries exhibit shallow minima on the free

energy landscape, rather than saddle points[135].
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11. Re-parameterisation of Sulfur-Sulfur repulsive Potential for disulfide -thiol exchange reaction in DFTB3

Figure 11.3.: Gas-phase potential energy surfaces, representing the total energy as a func-

tion of B) S1–S2 and S1–S3 bond length in a linear configuration exhibited

using different level of theories A) BLYP/aug-cc-pVTZ, C) DFTB/3OB, D)

DFTB/3OB+ new S–S SRP
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11.4. Conclusion

Both problems are resolved by reparametrising the S–S repulsive potentials 11.4B The

transition states now appear as saddle points at shorter bond lengths This correlates with

the B3LYP potential energy scan in vacuum.

Figure 11.4.: PMF obtained from QM/MM simulation in MM water A) Using 3OB sets of

parameters B) Using newly created S-S modified parameter

11.4. Conclusion

Disulfide bonds have an important role for the function of many proteins, therefore,

being able to address these reactions using accurate computational approaches is of great

importance. These reactionswere shown to be quite challenging for DFTmethods requiring

costly computational approaches to be applied. Sampling, however, is then out of reach,

which poses a further restriction on the accuracy of the results. DFTB is 3–4 orders of

faster than DFT-GGA using moderately sized basis sets, however, they may run into even

greater difficulties for challenging reactions. Reparameterisation of sulfur-sulfur repulsive

potential has solved the problem and reduce the error qualitatively.
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12. Summary

We have developed new SRP for better describing Phosphorus-Nitrogen interaction in

Histidine phosphorylation in chapter 8. We performed QM/MM simulation on model

imidazole-phosphate reaction using new SRP and showed that our SRP can reproduce

B3LYP level reaction energies and barrier only with a tiny difference ( ca 2kcal/mol). Which

is sufficient for reactions for large biological systems like histidine kinase. Though this

SRP is made specifically for the purpose of Histidine phosphorylation, we further tested it

on other similar gas-phase reactions to evaluate accuracy and performance. After that we

extended our study further to investigate cancer drug (TEPA) hydrolysis using the new

parameter and demonstrated the full mechanism of the hydrolysis for the first time using

QM/MM multiple-walker well-tempered metadynamics.

We studied the whole mechanism of Histidine autophosphorylation by using new

parameter developed in chapter 8. We applied QM/MMMDmultiple-walker well-tempered

metadynamics made it possible to achieve microsecond scale sampling and to draw a

reliable picture of the mechanism and energetics of the process. The reaction was found

to proceed via a penta-coordinated transition state to a protonated phosphohistidine

intermediate, which then gets deprotonated in favour of a suitable nearby base. The role

of the basicity of the final proton acceptor was also described quantitatively. Further we

investigated the role of Magnesium ion in the simulation. We compared our study with

available experiment and we found substantial agreement of our observation with the

outcomes of the experimental observation. Though it is difficult to relate experimental (in

vitro) biochemical reactions with the same reaction in biological (in vivo) condition, this

makes computer simulation, only way to investigate such mechanism in great detail. We

also developed forcefield parameters for phosphorylated histidine residue (non-standard

residue) in this work. These parameters will help studying next step of the phospho-relay

cascade of WalK/R Two component system.

In chapter 11we developed SRP for disulfide-thiol exchange reaction by reparameterising

sulfur-sulfur repulsive potential. Earlier with 3OB sulfur-sulfur bonds were unusually

long in trisulfide ion which led wrong minima instead of transition state in free energy

simulation. This made difficult to assess reaction barriers. With new SRP the problem is

resolved, transition state appeared in its position. The new SRP can reproduce the same

energy profile as B3LYP (with ca 1kcal/mol error).

In the chapter 10 we tried to use Artificial Neural Network to improve DFTB energies

without using any SRP. We used gas-phase structures of TEPA hydrolysis reaction for

training and applied Δ–machine algorithm equipped with Behler-Parrinello Neural Net-

work to construct the model. After training the error (MAE) drastically reduce under 1

kcal/mol. To give a comparison, this error (MAE) was 9 kcal/mol using new SRP. Thus,

we can conclude that, though SRP could reduce the qualitative error of DFTB3 Neural

Network can improve this error much more efficiently.
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A. Appendix

A.1. Chapter 8

Metadynamics parameters for model reactions

• CV used: P–N and P–O Distances

• Gaussian height 0.2 kj/mol, Gaussian width 0.02

• 16 Walkers used, walker stride: 500

• bias frequency: 100

Restraints

• P–N Distance was restrained to values lower than 3.5 Å

• P–O Distance was restrained to values lower than 3.5 Å

• N–P–O Angle P–N Distance was restrained to values at 178°

Metadynamics parameters for TEPA reaction

• CV used: 1) phos-nitro_hyd[P–N distance – P–O distance], 2) N–H distance

• initial Gaussian height 2.8 kj/mol, Gaussian width 0.02, bias factor 65

• 24 Walkers used, using walker stride: 800

• bias frequency: 500

Restraints

• P–N Distance was restrained to values lower than 5.0 Å

• P–O Distance was restrained to values lower than 5.0 Å

• N–H Distance was restrained to values lower than 3.0 Å

• All other Nitrogens in the TEPA ring was restricted with protonations from water
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A. Appendix

Figure A.1.: P-N bond formation in gasphase, shown for one of the benchmark reaction,

transition state is visible

.

A.2. Chapter 9

Restraints

The following additional harmonic restrains were applied in the QM/MM simulation:

• All O–H bonds of QM water molecules were restrained to 0.1 nm length with a force

constant of 15,000 kJ mol
−1

nm
−2
.

• The angle Nδ(His391)–P(γ-phosphate of ATP)–O(β-phosphate of ATP) was restrained

to values higher than 172° with a force constant of 1500 kJ mol
−1

rad
−2

(‘lower wall’

of PLUMED).

• The distance P(γ-phosphate of ATP)–Nε(His391) was restrained to values lower than

0.35 nm (‘upper wall’ of PLUMED) with a force constant of 15,000 kJ mol
−1

nm
−2
.

• The distance P(γ-phosphate of ATP)–O(β-phosphate of ATP) was restrained to values

lower than 0.40 nm (‘upper wall’) with a force constant of 15,000 kJ mol
−1

nm
−2
.

• In the simulation of System 1: the proton transfer CV (N–H–O antisymmetric stretch)

was restrained to the interval between −0.2 and 0.7 nm (‘lower’ and ‘upper walls’)

with a force constant of 1500 kJ mol
−1

nm
−2
.

• In the simulation of System 2: the proton transfer CV (N–H–O antisymmetric stretch)

was restrained to the interval between −0.2 and 0.2 nm (‘lower’ and ‘upper walls’)

with a force constant of 1500 kJ mol
−1

nm
−2
.
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A.2. Chapter 9

Figure A.2.: Convergence of the potentials of the mean force in the QM/MMmetadynamics

simulation of the chemical step of the autophosphorylation, considering a

hydroxyl ion as the proton acceptor. Distances in nm, free energies color-coded

in kcal/mol.H

.
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A. Appendix

Figure A.3.: Convergence of the potentials of the mean force in the QM/MMmetadynamics

simulation of the chemical step of the autophosphorylation, considering the

side chain of Glu392 as the proton acceptor. Distances in nm, free energies

color-coded in kcal/mol

.

108



A.2. Chapter 9

Figure A.4.: 1 Microsecond RMSD of autophosphorylated cis-kinase bound with ADP

.
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A. Appendix

Figure A.5.: RMSD of trans histidine kinase

.
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A.2. Chapter 9

Figure A.6.: P-N-O angle(reaction angle), shown for both OH- and Glu assisted proton

transfer simulation in first few walkers

.
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A. Appendix

Figure A.7.: Potential energy plot, obtained from the repulsive spline where no overbinding

enrgy used

.
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