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Abstract

Convolutional neural networks (CNNs) have achieved astonishing performance on various image classification tasks, but it
is difficult for humans to understand how a classification comes about. Recent literature proposes methods to explain the
classification process to humans. These focus mostly on visualizing feature maps and filter weights, which are not very
intuitive for non-experts. In this paper, we propose F1lTag, an approach to effectively explain CNNs even to non-experts. The
idea is that if images of a class frequently activate a convolutional filter, that filter will be tagged with that class. Based on the
tagging, individual image classifications can then be intuitively explained using the tags of the filters that the input image
activates. Finally, we show that the tags are useful in analyzing classification errors caused by noisy input images and that

the tags can be further processed by machines.
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1. Introduction

Deep convolutional neural networks (CNNs) are the state-
of-the-art machine learning technique for image classifi-
cation [1, 2]. In contrast to traditional feed-forward neu-
ral networks, CNNs have layers that perform a convolu-
tional step (see Figure 2 for the relations in a convolution).
Filters are used in a convolutional step which outputs a
feature map in which activated neurons highlight certain
patterns of the input image. Although CNNs achieve
high accuracy on many classification tasks, these models
do not provide an explanation (i.e., decisive information)
of the classifications. Thus, researchers recently focused
on methods to explain how CNNs classify images.

Related Work. Some of the earliest works on explaining
CNN s focus on visualizing the activations of individual
neurons [3, 4]. However, these methods cannot explain
more complex relationships between multiple neurons,
as no human-understandable explanation is used. Olah
et al. [5] defined a semantic dictionary by pairing every
neuron activation with its abstract visualization using a
channel attribution, determining how much each channel
contributes to the classification result. This may explain
the role of a channel in the classification of an individual
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Figure 1: Explanations of Convolutional Filters. The upper
part shows a visual explanation. The lower part contains an
example of our tagging approach FilTag.

image, but it does not explain the role of that channel
across all possible input images. Hohman et al. [6] try to
overcome this problem by aggregating particularly im-
portant neurons and identifying relations between them.
Other approaches focus on filters, the discerning feature
of CNNs. For example, Zeiler and Fergus [7] visualize the
filter weights to illustrate the patterns these filters detect.
However, these visualizations are based on the inputs
of the layers to which the respective filter belongs to.
Thus, only the filter patterns of the first layer can be di-
rectly associated with patterns on the input image of the
network. To overcome this, the method Net2Vec [8] quan-
tifies how concepts are encoded by filters by examining
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filter embeddings. Alternatively, Network Dissection [9]
uses human-labeled visual concepts to bring semantics
to the convolutional layers. However, visualizations and
embedding filters only explain the outcome of a model
implicitly, whereas we assign explicit tags to filters which
can be understood by non-experts. Most visualizations
used for explaining CNNs are similar to the upper ex-
ample in Figure 1, which visualizes the most activated
convolutional filters. Clearly, such visualizations are dif-
ficult to understand on their own. Adding an explicit
explanation such as a semantic tag (e.g. “dog,” “parrot,”
“cat,” or “toucan”) as shown in the bottom example would
dramatically improve the explanation, including for non-
experts.

Contribution. Our contribution is threefold. First, we
introduce F1lTag, an automatic approach to explain the
role of each convolutional filter of a CNN to non-expert
humans. We use the fact that each filter is dedicated to
a specific set of classes [7, 10, 11, 12]. Indeed, the idea
of FilTag is to quantify how much a filter is dedicated
to a class, and then tag each convolutional filter with
a set of particularly important classes. The lower part
of Figure 1 shows an example of what a CNN tagged in
this way could look like. In that example, the rightmost
filter highlighted in red plays a role in classifying parrots,
whereas the filter in the middle only plays a role in clas-
sifying birds in general, as both, toucans and parrots are
both birds. This filter extracts features that are specific to
these classes (e.g. wings, feathers, etc.). Second, our ap-
proach can also be used to explain the classification of an
individual image. In the example in Figure 1, the classifi-
cation of the input image as a parrot would be explained
by the union of the tags of the activated filters, which
are all animals, particularly tagged with parrot. Third,
F1lTag is suitable to analyze classification errors. We ana-
lyze our approach with thorough experimentation using
multiple CNNs, including VGG16, as well as ImageNet
as a data set. All source code is available online.!

2. Approach

In Section 2.1, we propose a method to provide explana-
tions based on the role of each filter in a CNN (indepen-
dent from concrete input images) using our concept of
filter tags. Then, in Section 2.2, we explain how a partic-
ular input image can be explained, namely in terms of
the filters that it activates.

2.1. Explanations of Filters

Our explanation of filters works in two steps. In the first
step, we quantify how much each filter is activated by

!https://github.com/michaelfaerber/FilTag
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Figure 2: Terminology of a filter in a convolution.
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images of each class. In the second step, we use this
information to tag the filters.

Quantifying Filter Activations. Feature maps with
high activations can be used as an indication of the im-
portance of the preceding filter for the input image [6, 7].
Traditional explanation approaches focus on one image
and therefore use the most activated feature map while
our approach focuses on a set of images of the same class.
Given a pre-trained CNN with a set of convolutional lay-
ers M with its respective set of filters I,y and a labeled
data set D with labels ¢ € C from a set of labels C, let
d € D be an input image and m € M a convolutional
layer. First, we collect the activations in the feature map
to get the importance of the filters regarding an input
image, i.e. the output in the feature map for a given filter
(see terminology in Figure 2). Second, we scale these
activations per layer between [0, 1]. In scaling the ac-
tivations, we ensure that no image is overrepresented
with overall high activation values. We scale the activa-
tions per layer because each layer has its specific pattern
compositionality of filters. For example, the first convo-
lutional layers detect simple patterns such as lines and
edges whereas the layers, in the end, detect compositional
structures which match better to human-understandable
objects [7]. Let a(m,i,d, j) be such a scaled activation
in the jth element in the feature map calculated from
image d and filter i € I, in convolutional layer m. In
order to get a total activation value per feature map, we
define a(m,i,d) = ’—1127 a(m,i,d,j),0 < a(m,i,d) < 1, as
the arithmetic mean of the scaled activations in a feature
map where n is the number of activations in the feature
map. We do this for all filters i € I, and repeat these
steps for all layers m € M.

Next, we use the labels as the desired explanation. Let
d, be an input image with label c. We define z.(m,i) =

Elcl ch)c‘ a(m,i,d;), 0 < z.(m,i) < 1 as arithmetic mean
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of a(m, i, d.) over one class ¢ where |D,| is the number of
images in class ¢. This way, z.(m, i) is the averaged value
of all activations of the images in one class respective its
filter i in layer m. Thus, we can rank the classes according
to the highest averaged activation of the filter per layer
which will be the decisive criterion for the labeling. We,
therefore, compare the received values for each feature
map. We repeat these steps for all images in D per label
class.

Filter Tagging. We tag the filters according to their
corresponding values received in z.(m, i) with the label
of the input image class. We are interested in the feature
maps with high activations of a certain class because
they indicate important features associated with that
class [6]. We define two methods to select those feature
maps per class and per layer (because of the mentioned
complexity in different layers): (i) k-best-method (choose
the k feature maps with highest activation values) and
(ii) g-quantile-method (choose the g-quantile of feature
maps with highest activation values). These tags serve
as an explanation of what the filter does. For example, in
Figure 1, the leftmost activated filter has the three tags
dog, parrot and cat, which suggests that this filter plays
a role in recognizing animals.

2.2. Explanations of Individual
Classifications

While previous visual methods for explaining filters are
difficult for humans to understand, textual assignment
can lead to unambiguous explanations (as later seen in
our experiments in Figure 3). To get an explanation given
an input, we assume that the tags have a better informa-
tion value with the classification of the CNN if the tags
match with the classification output. Therefore, we want
to measure the hit of the prediction with the tags in the
most activated filters. To do this, we determine the most
frequently occurring labels for each image of a class ac-
cording to the previous mentioned method using the
metric Hits@n. Hits@n measures how many positive la-
bel tags are ranked in the top-n positions. For example, in
Figure 1, the classification of the input image as a parrot
is explained by its high activation of filters tagged with
parrot.

2.3. Analysis of Classification Errors

F1lTag can be used for error analysis using Hits@n. Tak-
ing misclassified input images, Hits@n indicates if the
most relevant filters were activated. If Hits@n is high, we
can assume that there are similar features of the misclas-
sified class and original image. Analyzing the tags, we
may find correlations in their semantics. Furthermore,
linking the tags and filters to knowledge graphs such

as ConceptNet [13] or FAIRnets [14] can bring more in-
sights. ConceptNet is a semantic network with meanings
of words and FAIRnets is a neural network graph with
metadata about the architecture. For example, in Figure 1,
if we input an image of a car but the most activated filters
have tags of animals, we can conclude that the wrong
filters were activated.

3. Experiment

3.1. Experimental Setup

Data Set. Following related work, we use ImageNet [16]
from ILSVRC 2014 to conduct experiments on the
introduced approach. This data set contains over one
million images and 1, 000 possible class labels including
animals, plants, and persons. Each class contains
approximately 1,200 images. We use a holdout split,
using 80% of the images to tag the filters, while ensuring
that there were at least 500 images from each class in
the set, and the remaining 20% to test the explanations.
Baseline. We compare our approach with two state-of-
the-art visualization methods in explaining neural net-
works. The selection of the methods was based on their
focus on feature visualization. One of the methods used
provided the fundamental basis of visualization of fea-
tures and uses minimal regularization [15], the other
method uses optimization objectives [4].
Implementation. We implemented our method in
Python3 and used TensorFlow as deep learning library.
The experiments were performed on a server with In-
tel(R) Xeon(R) Gold 6142 CPU@2.60 GHz, 16 physical
cores, 188GB RAM and GeForce GTX 1080 Ti. We used
pre-trained neural network models from Keras Appli-
cations. The filters of a VGG16 were explained in the
experiments using the introduced method. VGG16 was
used as CNN as it is frequently used in various computer
vision applications. We also evaluated on VGG19 and
InceptionNet but omit them due to page limitations.

3.2. Analysis of the Explanations

In this analysis, we want to study the explanations of
the filters using k-best-method, with k = 1, in order to
provide a better comparison with the state-of-the-art
methods since they frequently visualize the most acti-
vated feature map. Figure 3 shows exemplary the visual
explanations of the baseline methods, and the tags of our
approach F1lTag. As shown, the visual explanations of
the baseline methods [15, 4] do not provide satisfactory
comprehension. At first sight, there is not much to under-
stand. Considering our tags, one can imagine what the
visualizations display. We additionally include pictures
corresponding to our tags, to show the information value
compared to only visualizations of the filters. Filter 95
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Figure 3: Comparison of filter explanations of the last conv. layer of VGG16 [1]. The visualizations of the baseline methods
[15, 4] are ambiguous and difficult to interpret. Our approach FilTag allows a more precise understanding which features the
filters detect. Pictures corresponding to our tags were added to show the information value.

seems to recognize a lampshade especially a trapezoidal
shape. Filter 150 is only tagged with cannon, i.e. the filter
is specific for this class. Filter 288 detects a head of a
goldfinch especially with consideration of the yellow and
black pattern. Filter 437 and Filter 462 recognize ears of
brown dogs and the body of snakes, respectively. This
information would be hard to retrieve without the tags.
Even without considering the visualizations, one has a
good impression of what a filter detects. For example, it
is quite impressive that Filter 288 detects this black yel-
low pattern which we can follow from the tags goldfinch,
toucan, and european fire salamander. As well, Filter 95
detects the trapezoid in table lamp, yurt, and lampshade.

In addition to comparing our method to the state-of-
the-art methods in CNN explanations, we linked the tags
to concepts from ConceptNet [13] to achieve a coarsen-
ing of common tags. ConceptNet is a semantic network
with meanings of words. This comparison revealed that
many tags have both visual and semantic commonali-
ties (e.g., see Filter 437 in Figure 3, rhodesian ridgeback,
bloodhound and redbone are all of type dog). Following
this evaluation process, we manually reviewed 100 filters
in the context of common visual and semantic common-
alities. Here we found 88% conformance with common
tags in the filters.

3.3. Impact of Hyperparameters

In the following we evaluate which impact the hyperpa-
rameters k and g have on the correlation of Hits@n and
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Figure 4: Hits@n with different k and g on ImageNet

accuracy. If the labels, and thus Hits@n, do not correlate
with the output of the neural network, and thus with the
accuracy, then the filters have not been tagged sensibly
with our approach to gain an accurate explanation. We
will interpret Hits@n and accuracy with different hyper-
parameters k and g, respectively. In Figure 4, we compute
Hits@n with the test set from ImageNet depending on k
and q. We can see that Hits@n increases for increasing k,
q and n. For q = 25% and n = 50, we even get a hit rate of
80% over all 1,000 object classes. This result shows that
FilTag can be taken as a significant explanation for the
classification. For example, we have observed that the
class shoji gets the highest hit rate of 98.47% followed by
the classes slot, odometer and entertainment center with



also around 98%. This correlates with the likelihood of
the best classes, which are exactly the same classes: shoji
(81.22%), slot (92.30%), odometer (91.73%) and entertain-
ment center (82.89%). Likewise, Hits@n also correlates
with the accuracy of the worst classes, which are spatula,
schipperke, reel, bucket, and hatchet. These results fit to
the top-1 accuracy of VGG16 with 74, 4% for all classes.
The high correlation with Hits@n and accuracy shows
that the relevant features, labeled by our approach, are
in fact detected from the images, which confirms the hy-
pothesis that the tags are useful to generate explanations
by means of our approach. However, for larger values
of ¢ we observed that the interpretability decreases
because the number of tags increases for each filter. This
makes it harder to find similarities between the classes.
Thus, there is a trade-off between expressiveness for the
classification and interpretability for the filters.

3.4. Using the Explanations

F1lTag can be used for error analysis using Hits@n. Tak-
ing misclassified input images, Hits@n indicates if the
most relevant filters were activated. If Hits@n is high,
we can assume that there are similar features of the mis-
classified class and original image. Analyzing the tags,
we may find correlations in their semantics.

Figure 5 (a) shows an image of the class mortarboard
in ImageNet. Using VGG16, the class academic gown is
predicted with a confidence of 83.8%, while the actual
class mortarboard is predicted with a confidence of only
16.2%. Considering the image, we notice that both ob-
jects are part of this image, making this result reasonable.
Reviewing the activated filters, we observe that filters
tagged by FilTag with the tag mortarboard, as well as
with the tag academic gown, are usually activated. As
a result, we can verify that features are extracted from
these two classes and used for prediction. This allows to
give non-experts an understanding of the reason for the
misclassification, as often features of the other class are
extracted from this image. Likewise, we can use the in-
formation to increase the number of images in which the
mortarboard is the actual class but not in the main focus
of the image, in order to continue learning the network
to make the predictions more accurate.

Figure 5 (b) shows an image from the class computer.
This image is classified by VGG16 as cash machine with
a probability of 99%. Looking at the tagged filters, filters
of the tags cash machine are mostly activate, followed
by screen, CD player, and file. Considering Figure 5 (b)
and having knowledge about the other images of the
class computer in ImageNet, the reason this image is not
assigned to this class becomes clear. Generally, frontal
images of a computer were used for the computer class
for learning. However, this image does not correspond
to the same distribution. Thus, it is difficult for the

(a) Mortarboard
Figure 5: Example images from ImageNet

(b) Computer

neural network to assign it correctly. Moreover, it is
an old computer, whereas the other images in ImageNet
generally represent rather modern computers. In order
to classify this image correctly, further images showing
old computers from the side have to be included to
change the distribution and train the VGG16 to classify
this image correctly.

4. Conclusion

We have introduced FilTag, an approach to provide
human-understandable explanations of convolutional fil-
ters and individual image classifications. These tags can
be used to query and identify specific filters that are
relevant for feature detection. In contrast to state-of-
the-art explanations, our approach allows for explicit,
non-visual explanations which are more understandable
for non-experts.

A limitation of our approach is the use of the class
labels as tags to describe the filters. As a result, filters
are not described in terms of specific objects such as ears,
wings, or legs. We would like to address this limitation
in the future by using ConceptNet and other knowledge
bases to identify commonalities of the tags and thus add
specific object descriptions to the filters.
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