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Abstract

We prove new local and global well-posedness results for the cubic one-dimensional
nonlinear Schrodinger equation in modulation spaces. Local results are obtained via
multilinear interpolation. Global results are proven using conserved quantities based on
the complete integrability of the equation, persistence of regularity, and by separating
off the time evolution of finitely many Picard iterates.
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1 Introduction

The last years have brought a great amount of interest towards the dynamics of the
cubic nonlinear Schrodinger equation (NLS)

ius + Uxy =:|:2|u|2u, )
u(0) = uo,
with initial data u( either decaying very slowly or not decaying at all. There are several
ways to tackle this problem. In this paper we investigate the behavior of solutions to
(1) when the initial data is in a modulation space M 1‘7 q (R) in one dimension.
Modulation spaces M), , were introduced by Feichtinger [18] and have by now
been used in the study of various different PDE, see also [28, 34]. One of the reasons
why they serve as an interesting space of initial data is because the decay of functions
in modulation spaces M, , is comparable to the one of functions in L”. In particular,
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the spaces with p = oo include non-decaying initial data and provide them with an
elegant function space framework. In contrast to L? and Besov spaces, the Schrodinger
propagator is bounded on any modulation space M ‘;’ 4> and dispersive L*° blow-up
phenomena as constructed in [10] can be ruled out. A major open problem in this
context is whether global in time existence in Mg, , can be guaranteed for certain
s, g. Just to name one of the many consequences an affirmative answer would have,

this would solve the question whether a local solution to
ug(x) = cos(x) + cos(ﬁx),

can be continued globally. A unique local solution exists, e.g., by the work [16] in a
space of analytic functions, or by Picard iteration in the space M, 1. While we are
not able to give an answer to this question, we are able to prove global results with
arbitrarily large p < co. Among other results (see Theorem 1) we will show: In the
defocusing case, if 1 < p < 00,1 <q <ooandif s > 0is large enough, there is a
unique global solution of (1) in M;,q(R).

Local wellposedness results for nonlinear Schrodinger equations with initial data
in modulation spaces have first been proven in [1, 5, 9, 33]. These results rely on
boundedness of the Schrodinger propagator and an algebra property which holds
either when s > 0, = 1, or when s > 1 — 1/q. Later, the works [13, 20, 27]
increased the range of admissible p, ¢ for s = 0 using refined trilinear estimates for
p = 2,2 < g < oo and an infinite normal form reduction technique for 1 < g <
2,2 < p <104q’/(q’ +6), respectively. Using complete integrability of the cubic one-
dimensional NLS, Oh—Wang [26] showed the solutions of [20] to be global. Global
solutions for initial datain M, ,» with p sufficiently close to 2 were constructed in [12],
though we note that these solutions were allowed take value in a different space M ;
for ¢t > 0. Using decoupling techniques, Schippa [29] recently proved L? smoothing
estimates and extended the range of local wellposedness results for p € {4, 6} and
also, inspired by the work [17], gave global results forg = 2,2 < p < oo, s > 3/2.
Finally we want to mention the work [30] in which Schippa very recently considered
the energy-critical NLS with initial data in modulation spaces.

The goal of this work is twofold: On the one hand we want to give an overview of
local well-posedness results and to unify the local results for s = 0. This is done by a
Banach fixed point argument using multilinear interpolation on the estimates obtained
in [20] and the trivial estimates for ¢ = 1. From this we obtain local well-posedness in
arange of (p, g), comprising all of the aforementioned range for s = 0 for which local
well-posedness results were shown, except for the point (p, ¢) = (4, 2) from [29]. The
regularity s = O is sharp if we aim for analytic well-posedness by the considerations
we provide in Sect. 6.

On the other hand, we aim to extend the range of (p, ¢) with global results, possibly
assuming higher regularity of the initial data. To this end we first extend the almost
conserved energies constructed in [26] to the range p = 2,1 < g < 2. This gives a
positive answer to the long-standing open problem of large data global wellposedness
in Mp raised in [28, Question 7.2]. Then we use the principle of persistence of
regularity to see that for a restricted range of 1 < p,q < 2, the newly constructed
local solutions are also global. Finally, we prove as in [17, 29] that in the defocusing
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Fig 1 Wellposedness results for (1) with initial data in modulation spaces M D.q (R). The global results in
(R) for 2 < p < oo are restricted to the defocusing case. Blue: Global wellposedness, Cyan: Local
wellposedness A dashed line means that the boundary is not included. (Color figure online)

case when we take s > 1, we obtain global solutions in M 117’1 forany 2 < p < o0. In
fact, the same technique shows global well-posedness in M ;) g forany 2 < p < ooif
s > 2 — 1/q is large enough.

An overview of the wellposedness results achieved is given in Fig. 1 and formulated
in the following Theorem, also including the results described in Remarks 2 and 3:

Theorem 1 For the cubic one-dimensional NLS (1) with initial data in a modulation

space M;’q(R), s eR, 1 < p,qg < oo we obtain:

1. Local wellposedness in the sense of Definition 4 if s > 0 and at least one of the
following condition holds:

e s=0,1/qg>1|1-2/p|,
e s=0,p>4d4and1/q>1-2/p,
es>1—-1/q.

2. Global wellposedness in the sense that the local solution exists for all times if s > 0
and at least one of the following condition holds:

s=0,p=2,1<¢qg <00,

s=0,1/g=1/p,1<p=2,

s>1-1/g.1<p=2,

s=1,g=1,2 < p < o0, and (1) has a defocusing nonlinearity,
s>2—1/q,2 < p < oo, and (1) has a defocusing nonlinearity.

3. Illposedness in the sense that the flow map cannot be C at the origin if s < 0.

Indeed, for s = 0, Theorem 16 and Remark 2 give the range of local wellposed-
ness whereas global wellposedness is deduced from Theorem 21 and Lemma 24. If
s > 1 —1/q, local wellposedness in M), , follows from the Banach algebra prop-
erty of the space (see Theorem 3) and boundedness of the Schrédinger propagator
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(Lemma 12). Global wellposedness under the additional hypothesis 1 < p < 2 then
follows from Lemma 23, Theorem 3 and the almost conservation of the M> | norm
proven in Theorem 21. In the case of a defocusing nonlinearity Theorem 28 and
Remark 3 give the remaining global wellposedness results. Illposedness is shown in
Theorem 29.

The paper is structured as follows: In Sect. 2 we state basic facts on modulation
spaces, in Sect. 3 we introduce the notion of quantitative well-posedness which gives
the analytical framework to obtain our local well-posedness results in Sect. 4. In
Sect. 5 we prove the global results first for p = 2, then for 1 < p < 2 and finally for
2 < p < oo. The well-posedness results are complemented by an illposedness result
for s < 0 shown in Sect. 6, and

2 Modulation Spaces

In this section we recall the definition of modulation spaces and state some results
we need in later sections. Modulation spaces were introduced by Feichtinger [18] in
1983 and have found growing interest in recent years. They can be introduced either
via the short-time Fourier transform or equivalently via isometric decomposition on
the Fourier side which also shows their close connection to Besov spaces. Modern
introductions to modulation spaces are given in the books [19, 34], and we also want
to mention the PhD thesis [11]. We refer to these for proofs of the following statements.

Definition 1 The short-time Fourier transform of a function f with respect to the
window function g € S(R), g # 0, is defined as

Vof(x,&) = fR e F(0g(y — x)dy.

The modulation space norm of a function f is defined as

105, = ([ ([ Vereol ax) e ae) .

With the usual modifications, this definition also includes p, g = co. We define the
modulation space M ; q as those distributions in S’(R) which have finite modulation
space norm. The modulation space norms for different window functions are equiva-
lent, hence the space My, , is independent of the window function.

There is an equivalent norm on modulation spaces. Let p € S(R) be a smooth,
symmetric bump function, thatis 0 < p < 1, p(§) = 1 if |§] < 1/2, p(§) = 0 if
€] > 1. Let

pk(§) = p —k), kel

Birkhauser



Journal of Fourier Analysis and Applications (2023) 29:9 Page 5 of 37 9

Define Qg = [—1/2,1/2) and Qx = k 4+ Q. Define

—1
@@r=m@(§)ma> . kel

keZ

Then, for some ¢ > 0, the functions oy satisfy

lok(§)| = ¢, V& € Ok,

supp(ox) C {|§ — k[ < 1},
Ykezok(E) =1, VEER,
|D%0x(§)] = Cuy VE €R, |a| < m.

2

Definition 2 Given a sequence of functions oy, satisfying (2), the sequence of operators
Dsz_lgkf, keZv

is called a family of isometric decomposition operators.

Definition 3 Given p, ¢ € [1, o0], s € R and (), a family of isometric decompo-
sition operators. The modulation space norm with respect to (U )y is defined as

1 Wz, = |6 N0k f e ey “ZZ(Z)'

It can be shown that for any family of isometric decomposition operators, M), , can be
equivalently characterized as those distributions in S’ (R) which have finite modulation
space norm || - || M, and the norms || - || M, and || - ”7"1;.{] are equivalent. Moreover, the
space of Schwartz functions S(R) is dense in M, | forany p, g € [1, 00). If p = o0,
density fails. For instance we have continuous embeddings Cﬁ(R) C Mx,1 C C,‘} (R).

As a consequence of Holder’s and Young’s convolutional inequalities, we obtain
bilinear bounds. These imply in particular that the spaces M, 1 as wellas M, ; N Mo 1
are algebras under multiplication for all p, g € [1, oo].

Lemma 2 The following inequalities hold true: If% = Z;":l % andm — 1 + é =
h % then
m m
e @)
i=1 pa =1

; 1_ 1, 1 1_ 1,1 _ 1,1
andlfszo’p_m+pz’1+q_q1+qz_r1+r2then
17glbas, S UMy, 1800y g + 1 Nat, s, g lars, - “

Birkhauser



9 Page6of37 Journal of Fourier Analysis and Applications (2023) 29:9

Proof We give a short proof since [11, Theorem 4.3] only proves a similar statement.
If we use the notation [} + [, &~ k forly +1; = k + {—1,0, 1}, then

De(fO) =0 [ YO0 f | [ DOng | =0 D @ HOpe).
I

I L +h=~k

The operators [; are bounded uniformly in £ on L?:. Hence

IOcfDlze S Y 1T Flee 10ngllLe.
I+ ~k

Consequently, (3) with m = 2 is obtained from Young’s convolutional inequality. The
case of general m follows by induction. For (4) we use Peetre’s inequality to see

N0 (fO e S Z N0, Al O fllez + 10, fllee ()10, fllLe2,
L1 +h=~k

and we conclude using Young’s inequality. O

The bilinear bound allows to handle algebraic nonlinearities in nonlinear PDE. More
complicated nonlinearities on the other hand can cause problems. In [28] Ruzhansky—
Sugimoto—Wang raised the question whether an inequality of the form

o a+1
N1 F bty S 115

holds if & € (0, 00) \ 2N. This was answered negatively by Bhimani—-Ratnakumar in
[9]. In fact, they proved the stronger result that if a function F : R> — C operates in
M1 for some 1 < p < oo, then F' must be real analytic on R2. This also shows that
in general, neither implication between f € M 1 and | f| € M, 1 holds.

The following theorem shows how modulation spaces are nested. The first inclusion
is a consequence of Bernstein’s inequality and the embedding of ¢ spaces, whereas
the second is a consequence of Holder’s inequality (see e.g. [34, Proposition 6.3]).

Theorem 3 (Embeddings) The following embeddings hold true:

s1 $2 .
© My g1 CMp, g if pr=pnq1 =q,s51 =52,

S1 52 . 1 1
o My, CMpyif q1>q2,51> 52,51 +q_1 > S2+q—2.

The latter shows that we can trade regularity for /¢ summability. In one dimension,
this gives for example H'/> ¢ M?!* respectively H'/?* < M?*!. This is sharp since
M?! ¢ L™ whereas H'/> ¢ L. On the other hand, /¢ summability does not gain
regularity (see [33]):

Lemma4 We have that My, 4, ¢ B;’r U Bgo’ooforanyo <ekl,1<p,q,r <oo.
Here ny 4 denotes the Besov space of regularity s with indices p, g which is defined

similar to the modulation spaces as in Definition 3 but with a dyadic decomposition
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on the Fourier side. In particular an embedding of the form M> | C H* can never hold
for positive regularity s > 0. The obstruction for thisis /! ¢ lf for s > 0. Indeed, one
can just consider the sequence a, = 1/k? if n = 2% and a, = 0 else, i.e. spreading
out mass in /2 can be done without any problems - in contrast to 13.

We recall some of the relations between modulation spaces, Besov spaces and L?
spaces:

Theorem 5 The following embeddings hold true:

M; 5, = H*(R), with equivalence of norms,
My C CJR)NLPR), if 1<p<oo,
M, CLP(R),if 2<p<=<oo

o e 1 _ 1
MPJI - BPJ]’ lfU = max (O’ min(p, p’) q)’

. _ 1 1
° B;,q C Mp,q: lf‘L’ = max (0, E — W)

1
For example we see that By | C Ma1 C L™ N L2,

We will make use of the following result on complex interpolation of modulation
spaces.

Theorem 6 Let pg, p1 € [1, o0] and qo, q1 € [1, 00] such that gy # o0 or q| # o0.
Let 5o, 51 € Rand 6 € (0, 1). Define

= (1 —0)so + 0s1,
1-6 6 1 1—-6 6

po P g 9 @ q

b

s
1
p
with the usual convention in the extreme case p;, q;i = 00. Then,

(M50 B0, M3, BO] = M, ). 5)

in the sense of equality of spaces and equivalence of norms.

Finally, since the decomposition on the Fourier side is uniform, there is no neat
scaling relation for modulation spaces. Estimates still hold (see Theorem 3.2. in [15])
and we shall use the ones for p = 2:

Lemma 7 We have the scaling inequalities

A2, i 1<g<2

. <
||1//()L ))”Mz.q ~ {)&l/q_IHWHMz_q’ lf 256] < o0

and

Ayl if 1<g<2

e, 2 i f 550
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forall . <1 and € My 4. Similarly,

M2 ON Iy, if 1<g<2

<
1Vl = {M*/’iuw»))nmq, if 2<q <00

and

MYy sy, if 1<q=<2

1V, Z {AI/ZW(M)IIMW if 2<qg<o0

Sforall . > 1 and € M> .

If u is a solution of cubic NLS, then so is u; (x,t) = Ay (A_lx, A‘2t) for all
A € (0, 00). Choosing A > 1 we find that

1
A2 ux, Dy, if 1<g<2,
lur G 220w, S 171 o
Aodllu(x, O)lim,,, i 2<g =<o0,

and

1
Adllu(x, Dlmy,, if 1<qg=2,

lurCe 20D sy 237 4 ,
A2 uCx, Dl if 2<q<oo.

In particular as long as ¢ < oo we are in a subcritical range with respect to scaling.

3 Quantitative Wellposedness

Following [2] we quickly introduce the notion of quantitative wellposedness. While
it is just a reformulation of the standard Picard iteration for homogeneous algebraic
nonlinearities in a more quantitative fashion, it gives us the means to simply show
linear and multilinear estimates and immediately obtain well-posedness. Our focus of
application lies on the cubic NLS (1) on the real line,

Uy + Uyy = :I:2|u|2u,

u) = f,

though the notion applies basically to any semilinear evolution equation with multi-
linear nonlinearity.

Definition 4 Let L be a linear and Ny be a k-multilinear operator. The equation
u=Lf+ Ne(u,...,u)
is called quantitatively wellposed in the spaces D, X if the two estimates

ILflIx = Cillflp, (6)

Birkhauser
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k
INe@i, . ullx < Co[ ] lluillx )
i=1

hold for some constants Cy, C» > 0.

As aconsequence of polarization identities for real symmetric multilinear operators
[32], in order to show an estimate of the form (7), or more generally for some Banach
space Y,

k
Nkt S T ] il
i=1
it is enough to show the estimate
k
[Nk, ..., wlix < llully.

Indeed it is not hard to see via polarization that this implies

k

k

[Nk, .. up)llx S E luilly.
i=1

and now putting u; = s;i; with []s; = 1 and minimizing over s; proves the claim.
This shows that for symmetric multilinear nonlinearities and norms that are invariant
under complex conjugation, the contraction property of the corresponding operator
in the Banach fixed point argument usually follows from being a self-mapping. In a
similar manner one proves that the estimate

k
NG o lx S Ty,
i=1
implies the estimate
k
INeGrs - uollx S0 T [ o v,

oesyi=1
where Sy denotes the permutation group of order k.

Denote by BX(R) the ball of radius R in the space X. The reason for Definition 4
is the following:

Theorem 8 Let the equation
u=0Lf+ Ni(u,...,u (8

Birkhauser
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be quantitatively wellposed. Then there exist € > 0 and Cy > 0 such that for all
f e BP(e) there is a unique solution u[ f] € BX(Cpe) to (8). In particular, u can be
written as an X -convergent power series for f € BP (¢),

ulf1=Y_ Au(f), ©)
n=1

where A, is defined recursively by

Al =L, A= D Ne(An (), os An (),

ni+etng=n

and satisfies for some C1, Co > 0,

An()‘*f) = )‘«nAn(f)
140 (f) = An(@llx < CTILf = gllip(l fllp + llglp)"",
1ALH)lx < CRIFIS.

We will work in modulation spaces which do not admit homogeneous scaling, and
are also above the scaling critical exponent for NLS. As a result, the bounds (6) and (7)
will depend on the time variable 7. This will show that a solution exists with guaranteed
time of existence depending on || f || p, and will result in a blow-up alternative later.

Lemma9 Let (8) be quantitatively wellposed in D, X = Xr, and assume that the
constants in (6) respectively (7) are

Ci=ci(T)*, Cy=cT"(T)*.
Then we may choose

B k-1 gy kol
(k= Daj+or+az’ 2T Ty

T ~ min (s_ﬁ‘,s_ﬂz), B1
as a guaranteed time of existence.
Proof If ®(u) = Lf + Ni(u, ..., u), then (6) and (7) give

I®@)lx < Cie+ Ca(Cot)t,

which has to be smaller than Coe for a contraction on BX (Cpe). Taking Co = 2C| we
need that

20,(2C ) < 1,
which amounts to

Taz(T>(x3+<x1(k—l)8k—l <1.

Birkhauser
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When ¢ is small, we can make 7 large and T ~ (T') so that B is the relevant exponent
for T. When ¢ is large, (T') ~ 1 and we arrive at 8,. It is not hard to see that this also
guarantees the Lipschitz bound to hold, and we obtain a contraction. O

We apply this general setting to cubic NLS and obtain:

Definition 5 Let D a Banach space of functions and let S(¢) = e'’ 97 We call a function

ueXrcC CO([O, T1, D) a(mild) solution of NLS if it solves the fixed point equation

t
u =S(t)uo:|:2i/ St — o) (lulu)(r) dt (10)
0
in X7. The supremum of all such 7 is called maximal time of existence and denoted
by T*.

In the following we use the notation

t
N, uz, u3) = NaGui, ua, u3) =2i/ S(t = ) (ufiaus) () d,
0

and note that all local results we prove hold for both the focusing (minus sign in (1))
and the defocusing (plus sign in (1)) equation.

Corollary 10 Consider the Cauchy problem (1) with initial data f = uq in a Banach
space D. If the bounds

IS@Wuollx, < AT)* lluolip, (11)

t 3
| [ s¢-owmm@ar| <reme [, a2
! i=1

hold for some o1, ar, a3 > 0, then for all R > 0 and ug € BP(R) there exists T > 0
such that for all T' < T there exists a unique solution u € Xy to (10). Moreover; the
blowup-alternative

T" <oo = limsup|lu(-,t)|p =00 (13)
t AT*

holds.

Proof The existence and uniqueness follow from Theorem 8. Assuming that
lu(T)||p < C < ocowith T arbitrarily close to T*, the assumptions from Lemma 9 are
satisfied, hence there exists a small § > 0 such that (1) can be solved on [T*, T* +§),
which contradicts the maximality. O
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4 Local Wellposedness via Multilinear Interpolation
4.1 The Triangle 1/q > max(1/p’, 1/p)

We recall the Strichartz estimates which lead to local wellposedness of (1) in L?(RR)
(see e.g. [31]).

Lemma 11 (Strichartz estimates) Let p > 2. The following hold true:

IS@ fllee S 1M Y2N £, (14)
IS@ fllz2 = 1f1 2. (15)

Moreover, call (q, p) admissible if2/q = 1/2 —1/p, 2 < p,q < oo Forall (q, p)
and (¢, p) admissible we have

IS@fllapr SN2 (16)

SIFI
LIt

a7)

P/
iy

t
H/ S(t —s)F(s,-)ds
0

Recall how this allows to prove local (and due to L? conservation also global) well-
posedness of cubic NLS in L2(R) by a fixed point argument: Let X7 = L L)zc ([0, T1x
R) N LIL([0, T1 x R). Then from Hélder’s inequality,

t
IN @y, uz, u3)llx, = H/O St — s)(uruauz)(s)ds

Xt
3
- 1/2
S lwdausl s o < TV [T luilxy
i=1

Corollary 10 together with L?-conservation then gives global wellposedness in
L%(R). The space L®L2([0, T] x R) N L¥L([0, T] x R) would have been enough
for the iteration of the trilinear term, too.

The following estimates for the Schrodinger propagator in modulation spaces hold
and are optimal with respect to the time dependence of the constant. A first version of
them are proven in [1] in the case p = 2 which [4] then extended for p, g € [1, co].
Sharpness of the exponent for p € [1, 2] was provenin [14] and extendedto p € [1, o]
in [11, Theorem 3.4].

Lemma12 Let 1 < p,q < ooands € R. The following hold true:

IS@ Fllm, S A+ 1D f g, (18)
ISO g, S A+ 1D~ 2ZV20 fllygs, o for p =2, (19)
IS@) fllaag, = 11 llasg, (20)
1S@) fllars, S A+ 1D 27PN £l - 1)
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Note that (21) is obtained by interpolating between (18) with p = 1, co and (20),
and the case s € R follows from s = 0 since Fourier multipliers commute with S(z).

By Corollary 10 we obtain local wellposedness in M, 1 for all 1 < p < oo with
Xr = COMpJ ([0, T x R) due to the trivial estimate

t
IN (uy, uz, u3)llx,; S II/O S(t — ) (Jul*u)(s)ds | x;

STA+ D)2 %,

which follows from the Banach algebra property of M, ;.

Starting from the estimates for M, 1 and L? = M; > we use multilinear interpolation
to obtain new local wellposedness results. The range of p, ¢ that can be reached as line
segments between points (1/p, 1) and (1/2, 1/2) is exactly the triangle 1 < g < 2,
1/q > max(1/p’, 1/p), and this is where this simple multilinear interpolation works.

Recall that a pair of Banach spaces (Ag, A1) is called compatible if there is a
Hausdorff topological space 2 such that Ag, A; C 2 are subspaces.

Theorem 13 [6,4.4.1] Let (Ay, AY)(v=1,....n) and (By, B1) be compatible Banach cou-
ples. Let N : Z%vin Ay N AY — By N By be multilinear such that

IN @1 ...oan)llgy < Mo Ty lavllag -
n
IN @1.....an)llp, < Mi [Ty llaylay -

Then for all 6 € [0,1], T can be uniquely extended to a multilinear mapping
@ [Ag. Alle — [Bo, B1lg with norm at most M&ng?.

1<v<n

Theorem 14 Let 1 < p < ocoand 1 < g <2 suchthat 1/q > max(1/p’, 1/p). Then
for any initial data uy € MP4, there is a T > 0 and a unique solution u to (1) in

XD = LM, ([0, TI x B) N LY’ [M; 1, L*16(10, T] x R). (22)

Here, the numbers 0 € [0, 1]and p € [1, oo] are determinedby1/p = (1—0)/p+6/2
and 1/q = 1 —0/2. Moreover; either the solution u exists globally in time, or there is
T* < oo such that

lim sup ”u(t)”Mpq = 0.
t—T*

Remark 1 Note that due to M5 | C L°° we have that (M1, L*p c L*?. This shows
that the constructed solutions are also distributional.
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Proof of Theorem 14 Without loss of generality we assume 7 < 1. The assumptions

on 6 and p imply that M), , = [Mj 1, L?]g. We interpolate! the linear estimates

1S@uoll e 2rpsre S ol e,

IS@uoliLeem;, < lluollmy,

to obtain
IS@uollxra S ol

Moreover, the nonlinear estimates

3

12
INGers uz us)ll oo pongsps ST / l_[ lluillpsza
i=1

3
IN @, uz, us)lien,, ST [T uillooas,
i=1

give, by Theorem 13,

3
1-6/2
IN Gz, uz)llgps S T2 T T luillpo.
i=1

The result now follows from Corollary 10.

4.2 TheTriangle 1/g > |1 — 2/p|

(23)

(24)

Using Bourgain space techniques, Guo showed local wellposedness of cubic NLS in
M3 4,2 < g < oo [20]. Since his results were also derived from a trilinear estimate of
the form (7), we can use interpolation to get more wellposedness results in modulation
spaces. The triangle 1/g > |1 — 2/p]| is strictly larger than the triangle from the first
section and can be obtained by means of interpolating between the three endpoints
Mxso.1, M1 and M> . Since the latter space contains the Dirac delta distribution
and there is no local wellposedness theory for it, we have to exclude it and obtain

wellposedness in a half-open triangle.

We introduce the U? and V7 spaces in which wellposedness was achieved.

Definition 6 A U/ L2((a, b) x R) atom is a function A : (a, b) — L? of the form

K
A= Z X[tkfl,lk)(ﬁkv

k=1

1 Strictly speaking, instead of interpolating with the intersection we interpolate first on both spaces and then
take the intersection. Interpolation of mixed-norm L” spaces was shown to work in [3]. Since we can apply
this to Oy f for each k the same works if we consider mixed-norm combinations of L” and modulation

spaces.
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wherea =19 < -+ < tx = band (¢1, ..., ¢x) € (L?)X which has unit norm in 7,
ie. ) ; ¢ ||i2 = 1. The space U,p L)ZC is defined as the space of elements of the form

Z?‘;l AjAj, where (4;) € I'. Tt is equipped with the norm

o0
lullyr = inf{|(A )|y :u =Y A;A;j for Aj UP atoms). (25)
j=1

The space U g is defined as S (-)U,p Lﬁ with norm
lullyr = IS(=Du®llyr L2 (26)

The spaces U,2 and its close cousin V,2 can be seen as refinements of Bourgain spaces
in the case of b = 1/2, which satisfy U” C L® forall 1 < p < oco. Indeed, the
X*? space would be defined by the norm el xs.0 = ||S(—t)u(t)||thH5. The usual

Strichartz spaces are connected to the U g spaces via
ollzrrs S Mvllye-

A proof of this can be found in [24, Chapter 4] and we refer to this book as a reference
for an introduction to these spaces.

Theorem 15 [20] Let 2 < g < o0 and let X‘; denote the space of all tempered
distributions u such that the norm ||u| xe = ||||U5,u ”Uﬁ([O,T]) Iz is finite. Then,

3
+
IN G, uz,uz)llgg S (T2 4TV V) [T il g - 27
i=1

This estimate gives local wellposedness in X‘% C LM 24 ([0, T] x R). Indeed, for
the linear part the definition of U gives

IS@uollx, = MBxS@Ouoliyz llie = MEnuolly2,2 llis 28)
S MGnuollz2 llie = lluollprza

Since this result was only shown for 2 < g < oo for the sake of simplicity let us
define X‘% = X%’q if 1 < g <2, where X?’q is as in Theorem 14. Then we arrive at
the following theorem which is proven analogous to Theorem 14:

Theorem 16 Let 1/q > |1 — 2/p|. Then for any initial data uy € M, 4, there is a

T > 0 and a unique solution u to (1) in

[LMy 1, X9y, ifl <p<2,
uweypt=1x4, ifp=2, (29)
[L®Mwo.1, X9, if2 < p <00
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Here, q is chosen such that

1 1-9¢ 2
Loypq 8 Lo)m2 o=z (30)
q P 7 ifp=>2

Moreover, either the solution u exists globally in time, or there is T* < oo such that

hm Sup ”M(t)”Mp,q = o0.
t—>T*

Remark 2 Taking into account the well-posedness in M4 » from [29], these results can

be slightly strengthened to include the line 1/g = 1 —2/p, 4 < p < co. Indeed, in
[29] the estimate

IS@) fll 4o, 11xr) S I by

E
is shown to hold, which gives rise to an iteration in LX° M4 2N L,’ Li. Interpolating the
linear and the corresponding trilinear estimate with the estimates forg = 1, p = oo
puts us into the setting of Corollary 10.

5 Global Wellposedness

5.1 Global Wellposedness if p = 2

If p = 2and g > 2, Oh—Wang [26] showed the existence of almost conserved
quantities that are equivalent to the norms in the spaces M, ;. To this end they used
the complete integrability of cubic NLS via techniques from Killip—Visan—Zhang [21]
in combination with the Galilei transform. In this subsection, we extend these almost
conserved quantities to the case g € (1, 2) by using a weight with more decay, as it
was done in [21] for Besov spaces Bi .

First we state the necessary preliminaries from [21]. Given an operator A with
continuous integral kernel K (x, y), we define the trace

tr (A) = / K(x,x)dx,
R
whenever it exists, and the Hilbert—Schmidt norm
1All3, = / K (x, y)|* dxdy.
RZ
It can then be shown that for all n > 2,

[tr (A1 Al < 1AL, - - - 1Anl3,-
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We consider both focusing and defocusing cubic NLS in the form
—iu; =—uxx:l:2|u|2u. 31

Depending on the sign we have the following definition.

Definition 7 Let u € S(R) and x > 0. The perturbation determinant «(«, u) and its
coefficients o, (k, u) are

_ ZOO Fn"! —172 —1- —1/2n
a(k,u) =Re —tr ([(K — ) u(k +0) ulk —9) ] )
n
=1

n=

o0
=Yk, u),
n=1

where @z, (i, M) = Az, (i, u) for all A € R.

Absolute convergence of this series holds provided we can control norms sligthly
stronger than H~'/>(R). Definea ~ b asa < b and a > b. Then:

Lemma 17 (Lemma 4.1 in [21]) Given u € S(R) and k > 0, we have

52) HGIE

12 —1/2)2 S W LA B
e — ) Pute +0)7V213, /Rlog (4+ GEwr e

K2
In particular for all § > 0,

) "
lozn (e, )| S (fR W)

In particular the definition of @ (x, u) can be extended to functions u € H —124(R).
Even though we need H~!/?*(R) regularity to control the series, the first coefficient
in the expansion behaves similar to an H ~(R) norm:

(33)

Lemma 18 (Lemma 4.2 in [21]) Given u € S(R) and k > 0, we have

~ 2
ar(ic,u) = Retr (K — ) 'ule + ) ') = % dE. (34)
R

Most importantly, «(«, u) is a conserved quantity for all k > 0 whenever it is
defined.

Proposition 19 (Proposition 4.3 in [21]) Given u(t, x) a Schwartz-space solution of
(31) and k > 0 large enough, we have

i( () =0
dlouc,u =0.
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In [26] the construction of the almost conserved quantity on the level of M , for
2 < g < oo worked as follows: Combining Lemma 18, Proposition 19 and invariance
of (31) under Galilean transformations, we obtain almost conservation of

/ ) g
E—n24+1

—1/2—

uniformly inn € Z.

Moreover, considering (£) instead of a compactly supported bump function
for the uniform decomposition on the Fourier side in the definition of the modulation
space norm gives an equivalent norm for 2 < g < co. More precisely, if one defines

1

||f||MHeq=(Z|| —n) i@ ) :

nez

then for < —1/2 and 2 < g < oo one has

I f armoa ~ I f aga -

We follow quickly the proof (see Lemma 1.2 in [26]) to motivate our next definition.
The estimate “2” is trivial since for o as in Definition 2 we have o (§) < (& y¢ . For
the converse estimate, write I = [k — 1/2, k 4+ 1/2). Then,

1f pgoa = (Z (/R@ —n>29|f(5)|2dé) )

nez
29 2
~HZ —n) /If(é)l o
< 20‘1/2
~ q/2
S F e,

We see that both the restriction ¢ > 2 and & < —1/2 enter in the third line when
Young’s convolution inequality is used. If we have more decay available,i.e.if0 < —1,
we can also use the triangle inequality to get the full range of ¢.

Lemma20 If0 < —1and 1 < g < oo, we have

I f Warmoa ~ 1 f may -

Proof Again“>" follows immediately from o, < (-)¢. Now for the converse statement
write
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1

(/}R«s—n>2“)|f(s>|2da:)é ~(/Zo, @0 -n¥If©Lrds)’

leZ
1
<Z(f oF 1 —m*|f @) dg)"
leZ
1
=Y u-n( [ Ferfere).
leZ R
Thus,
1
letllpg 0.0 = (Z e —m?F©N? )
nez
S =m0 2l
leZ
< 1) llgy el g2
by Young’s inequality in the last step. Since 6 < —1, Il (n)? ”431 < o0. O
From the form of «; in Lemma 18 we see that we will get & = —1. By recombining

oy for different values of k, we get more decay (see also Lemma 3.4 in [21]).

Definition 8 Define the weight function w (&, «) as

& ) = 3t (35)
vEO = E @ Ty
A short calculation reveals that
L (k/2)? K2
w(EVK)_4$2+K2 - §2+4K2’
and hence
can(§.0) = Santeo = [wie ol e (36)

Correspondingly we define FOuu) &) = w(E —n, DV24(E) and
el g = 115wl g2ls-
With these preparations we can prove:
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Theorem 21 Let g € [1, 00). There exists a constant C = C(q) such that

2_
_Jea+1u© i, e

) llagy,, < @l i Ta=2 (3

CA+ 14O I, ) 4O llasy,,, i 2<g <00
for all u € S(R) solutions to the cubic NLS on R.

Proof The case 2 < g < oo was treated in [26]. In what follows we slightly modify
its argument when 1 < ¢ < 2. Consider the case of small initial data in M , first and
assume

lu(O)llp,, =& < 1.

For n € 7, define u,(x, 1) = e "™+"’1y(x — 2nt,¢) which satisfies |ii, (€, )| =
lit(§ + n, 1)| and is a solution to cubic NLS as well.
By Lemma 17 for any § > 0

@50 000) ~ s (5. 00))| £ é ( o g‘(f’;;';)l/z_s dé)J .

Now for any g € (1, oo) if 6 is small enough,

(. 0)> N 1 o
T - &~ LT a s | vice.oras

S a1y,

uniformly in n € Z. Indeed, if 2 < g < oo we can employ Holder’s inequality with
exponent g /2 if § > 0 is small enough. The case 1 < g < 2 follows from g = 2
because of the embedding M> 4, C L?. This shows that at time ¢ = 0 the series for o
is convergent. By continuity in time we can then choose a small time interval 0 € /
such that the series stays convergent, and

‘a(%,uﬂt)) —az(%,bm(ﬂ)‘ S ( A 22(5’221/2_8 d&)z,

forall ¢+ € 1. The same argument works for « = 1 instead of x = 1/2.

We calculate the difference of « and «» by first making use of the above estimate,
then localizing in Fourier space and then using Young’s convolution inequality, with
Iy =k, k+ 1),
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- 2 1
/ (1 _|_|u(§’_t)n|)26)lls/2—5>q)q
~ H Z 1+25/ |u($)|2d§”

1426
s||<k> Pl luliyg, -

I\)
Q\._.

(Zle(z ) ~ea(:m) ) =

nez

2
~ ”u”szq,

provided § > 0 is small enough such that we can choose ¢ < 2g—, and g > 1.
We use the definition of M 4, the subadditivity of the square root, Minkowski’s
inequality, Proposition 19 and the above estimate to find

e lz,,, = @2 ] g = | (4a2( una))—%az(l,un(r)))%

n

< |42 - oe)( ()~ 5

+](s0(5m®) - 300, )’

n

< 4] - a)( (1))

4+l

) -

=< lu(Olly,  +4 > [[(a2 — ) (x, u,,(s))||7%

se{0,t}),ke{1/2,1} 4y

_ 2 2
< 1), + € (IO, + 1%, ).
for some constant C > 0. Using a continuity argument gives

@ llasz, S Nu(O)lany,, (38)

if lu(0)llam,, < e with e sufficiently small.

For general initial data, we apply Lemma 7 and the discussion thereafter. Consider
up(x, 1) = 27w (A7'x, A721), which is a solution to NLS for all A > 1. Then for
1 < g <2, we have

_1
lux Oy, S 2721 O)llar, < & < 1

if A ~ (1 + u(0)||m,,)*. On the other hand,

1
lu @l S A0

1, 0210) H
M
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and so

2_
ql

1_1
M latsy S 302Ny, ~ 1+ 14O, 14Ol

which finishes the proof if 1 < g < 2.

This proof does not extend yet to ¢ = 1 because the estimate of the tail does not
have enough decay in n. The problem here is the coefficient o4 since for the tail of
order homogeneity 6 and more we can estimate with Young’s inequality

_ _ 12 < i, ) d§ 5
3 lere, ) — aali 0y) — ey (i, )| N%</R(l+(<§—n)2)l/2—5>

nez
<t m [ aerae
keZ Tk

3
—1428p2 403 3
Sk~ IIE% lullzs < Nullya,

3

2
3

02

~ L2
as long as ¢ stays small enough. To handle the sum

> lealie, un)| V2,

nez

we need to take a closer look at its structure. In [23, Chapter 8.1] Koch-Tataru prove
a formula for T4 which is related to a4 via oy = Re T4(i«) and reads

Foli) = l_/ Re (4(81)0(£2)1(53)ii(64)) dE1dE3dEs
27 Je ey ——g=0 ik +ED)Qik + &) (2ik +&4) ’

This implies

_ L 2(€15 + E15a + E382) — 83
27 Jever—gs-g=0 (A2 +ED @K + 6 (42 + £))
x Re (#(51)(52)(53)ii (64)).

oy

We concentrate on the part where there are frequencies in the numerator because the
other part is more easily estimated. Now for example,

fg e G 42‘31?'532) e O
bii ol i
T a2+ gl & M+ &7 L
o A P L
— lax2 + 22l a2 4 2l " E

) Birkhiuser
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L2

i 2
Sl W
dic? + €2

Here we used Young’s convolution inequality and the fact that

| tieias —Z/ @1 < 3 il g = el -

keZ keZ

u .

Thus to bound ), loa(k, uy)] 172 we estimate

2
Z(”un”MZ,l Iun(é)l E/ Iun(é)sl2 S)

nez

1 Sy Nl de Jlalds \?
% Il (Xk: 4K2 + (k — n)? ; 4k? + (I —n)?
[y, 101> dg : i, a1 dg :
' ;4K2+(k—n)2 21:4/<2+(l—n)2

1 1
LI P L Ny Y
< Ny, (181223 35 ) (1l 2 g
k l

-1
Sl lull gz,

1
< llulljy,,

% e

In the first line we estimated with the inequality from above, then we discretized in
Fourier space, then we estimated via Holder and Young’s convolution inequality, and
finally we used again that the L' norm of the Fourier transform is bounded by the
M> 1 norm and that the scaling behavior of the sums is k12,

Arguing as before, we also obtain the case ¢ = 1. O

5.2 Global Wellposedness if p < 2

If p < 2, the spaces M, , are contained in M> , and we expect an upgrade to a global
result with the use of the principle of persistence of regularity (see e.g. [31]). We use
the following version of Gronwall’s inequality:

Lemma22 Letu,«, B : [a, b] — R be continuous with > 0. Assume that for all
t €la,b),

t
u(t) < a(t) +/ B(s)u(s)ds.
Then also

t . ) ,
M(I) fﬂl(l)—i-/ C((S),B(S)ef: B(s") ds ds.

a
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The following blow-up alternative is easily obtained:

Lemma 23 Ifforall T > O,

sup [u(@)lImy, < 00,
t€l0,T]

and if cubic NLS is locally well-posed in M;’q(R) for some 1 < p,qg < 00,5 >0,
then it is also globally wellposed in this space.

Proof By Corollary 10 we have to show that the M3, , (R) norm cannot blow up. Now
u solves

t
u(t) = SHuo + Zi/ St — )|ul*u(s)ds, (39)
0

and hence if 0 < ¢ < T, estimating with (4) and Lemma 12,

t
2
lu () llags,, <1 ol + 3o, 71000 1) /O lu()lary  ds. (40)
Using the assumption ||u ||%Do([0 T1.My ) = € We can use Gronwall’s inequality and
conclude. 1 O

Lemma 23 tells us that the M, 1 norm is a controlling norm in this setting. This
shows thatwhen 1 < p <2,1 < g < oo and s is high enough, not only the question of
local but also of global well-posedness becomes trivial: From the embedding H'/>* ¢
M1 and the construction of conserved quantities adapted to H* for any s > —1/2
[21, 23] we find global in time bounds in M« if we just embed into H 172+ In the
spaces M 1 with 1 < p < 2 we also find global well-posedness due to Theorem 21.
The case p > 2 is more complicated and treated below.

For s = 0 and general 1 < g < oo, we obtained the local well-posedness via
interpolation. In the upper triangle 1/¢ > max(1/p’, 1/p) the Picard iteration space
was

8
x0T =L®M, (0, T1 x R)NL{ M1, L*1o([0, T] x R).
Note that we could equally well have iterated in
- 4
XPT=LPM, (10, TI x R)NL{ [Mj1, L]5([0, T] x R),

because the Strichartz estimates holds true up to L} L in one dimension. With this
at hand, we can prove:

Lemma 24 Cubic NLS is globally wellposed in M, ,(R), 1 < p <2,1/q > 1/p.
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Proof We interpolate the multilinear estimates

luriousllmg, , < i lime, luzllmg luslinvg,

luriousllp2 < lullzoe luzllzoe luslly2
to obtain
luriiouzlim,,, S Nutllipg, . Loon lu2llimy, Loy 13l a, , 41)

where p, g, 6 are exactly as in Theorem 14. This shows

t t
_ 2 < 2
| [ sa—ombuds],, < [ 1, bl ds.

and we can conclude as in Lemma 23 if we know that ||| 210, 77.[ M., . L],) TEMAins
finite. Now with continuous inclusion with T-dependent constants,

, Ma.1), L*([0, T1, L®)]g € [L*([0, T1, Ma,1), L*([0, T1, L)1
= L([0, T1, [M2,1, L)
C L*([0, T1, [Mso1, L=p).

Since we could have chosen the left-hand side as the iteration space in Theorem 14
we conclude that the solution has locally bounded norm in this space with estimate

el o0 10,11, M5,0). L4 0. 11,L)15 S N0llas -

Notethat p < 2,hence M, ;, C M3 4. The M, 4, normdoes notblow up by Theorem 21,
hence the norm on the left-hand side does not blow up even if we replace [0, 1] by a
time interval [0, T'] as we can just glue together solutions. O

5.3 Global Wellposedness if p > 2

In the case ug € M1 with2 < p < 0o, we want to use techniques inspired by [17].
Similar results were obtained for p = 4 and p = 6 in [29]. Note though that the spaces
M j , and Mg , withs > 3/2 embed into M, i , and Mé , in which we will prove global
Wellposedness The goal is to make use of the fact that there is a number N such that

forn > N, the nth Picard iterates will be in an L? based space. Indeed, if we keep the
notation from Theorem 8, then by the multilinear estimate (3),

A3 o)l 0.11.012.1) S NS@uol*S@uoll L 0.11.802,1) S ||M0||M61,
and similarly for each natural number of the form 4n + 2, n € Ny, we have
2n+1
142041 @0) oo (10,11,M5,1) S lollg |- 42)
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More generally, we find:

Lemma 25 Given odd natural numbers ki, ky, k3 € N and 2m + 1 = ki + ky + k3,
and n € N withm > n, the following estimates hold:

2 1
IN (Aky s Aty Ak Lo, 11m,0) S T (" T2 uoll3 ) (43)
2n+1
1A2n+1lLoe o710 1) S T T 2 o375 (44)
2n+1 2(m—
| Amg 1 L0710 1) S T ()" T2 ol L) ol " (45)

Proof We use the estimate forO <t < T

t
IN i, A Al = [ [ 8¢ =940 A A as ],

p.1
1/2
ST 2N Ak, AR b, 1| Ak 1

provided ) ; 1/p; = 1/ p. Plugging in the definition of Ay, from Theorem 8 iteratively
shows that after m iterations we arrive at

I Ags1 @)lla, , + IN(Akys Akys Ak llag, y So T"(T) 2 || Lug) 2!
p,1 1 2 3 p,1

Mominyp,1°
if k; + k2 + k3 = 2m + 1. Together with
ISOuoly! ST o3t
(43) and (44) follow. To prove (45) we additionally use
luvwlipy, o S Nl mog 10 M 1w M40 15
once we reached p = 4n + 2 in the iteration. O

As is shown for the usual Picard iteration (see for example Theorem 3 in [2]), and
because there is no loss in the constant from Holder’s inequality (3), the constant in
(42) grows at most exponentially in » meaning that we are able to sum the remainder
term. This motivates that we will be able to construct a solution of NLS of the form

2n—1
u(t) =Y Aclwo) +v=ii+v. (46)
k=1
where

ii € C%[0, T], Mapya,1) and v e CO([0, T], Ma)).
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If u has the form (46) and solves NLS then v will solve the difference NLS

{iv, o =uPu—Ga), “n

v(0) =0

where G(¢) is given by

2n—1

GU) =il +ie =y, Y Ak uo)Ag, (uo)Ax, (uo).

k=3 ki1+ko+k3=k

As a fixed point equation this equation reads

k=1

2n—1 2n—1 2n—1 2n—1
v(t) =N <v + ) Acwo). v+ Y Acluo). v+ Y Ak(”O)) — Y Axuo).
k=1 k=1 k=3

(48)

The existence and uniqueness issue for v is covered in the following lemma.
Lemma26 Let n € N, ug € Myy42,1. There exists T > 0 and a solution v €

co(o, 71, M>.1) of (48). The solution is unique in L*° ([0, T, Man42.1). If T* denotes
its maximal time of existence, then either T* = o0 or

lim sup [[v(?) | Myp 40, = 0O
t—T*

Proof We ignore permutations of the arguments of N and rewrite (48) as

2n—1 2n—1 2n—1 2n—1
v(t) =N (v + Y Arwo) v+ Y Ac(wo) v+ Y Ak(uo)) — Y Axuo)
k=1 k=1 k=3

k=1

2n—1 2n—1 2n—1
= N(v,v,v) + N (v, v, Y Ak(uo)> +N (v, > Arwo). Y Ak(u0)>
k=1 k=1

k=1
2n—1 2n—1 2n—1 2n—1
+N (Z Aruo), D Axuo). Y Ak(“o)) — Y Axluo).
k=1 k=1 k=1 k=3
If we define the function in the last line to be F'(z, x), then we can show
IF oo my S T2 uol3gt L, + TV T P luol 2, - (49)
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Indeed, we rewrite

2n—1 2n—1 2n—1
N< > Alwo), Y Ax(uo), Y Ak(uo>)
k=1 k=1 k=1

2n—1

=D Y N(AK o), Ak (o), Ak (o) + F (1, x)
m=1 ki+ky+kz=m
2n—1

= Y A(uo) + F(t,x),

k=3

and use Lemma 25 to estimate. In the same fashion, we find

-
< (172 n—1,p\n—1/2 2n—1
H Z_jAk(u())HLm([O’T]’MM ()20t + T 1T ol 3L

This shows that if ®(v) is the right-hand side in (48), and if |[v|[L~(0,7),M51) < R,
we have

1P @)Lq0.71.m00) S TR + TR(T) uollyy,, ., , + T2 RTY* Huollyy 2

Mapi2,1
n n+1/2 2n+1 3n—2 3n—-3/2 6n—3
+T(T) luollyy,, ., + 17" (T) luollpy, s -

Choosing 7" S min(1, IluoII,TZm+2 )and R ~ [luollmy,,,, makes ® into a mapping

@ {llvllLeoqo.71,M01) = RY = {llvllLooqo.71,m,) < R}

Since we can obtain a similar estimate on ® (v;) — ®(vp) via polarization, this shows
that we can employ the Banach fixed point argument to get a unique solution v €
L°°([0, T], M2 1) of (48). Since we could have iterated in CO([O, T1, M3 1) as well,
we obtain continuity of v.

To prove the stronger blow-up criterion, if ||v(T)| py,,,, Stays bounded close to
T*, then we canuse i(T') +v(T) € Man42,1 as new initial data for NLS. But then we
transform this into an equation for v again and obtain a small § > 0 such that we can
solve (48) on [T, T 4+ 8] with T 4+ 8 > T*, yielding a contradiction to the maximality.

For the stronger uniqueness statement we note that we can also construct a unique
solution u of NLS in L*°([0, T'], M4n+2,1) directly due to its algebra property. Since
u and v only differ by finitely many terms which do not blow up in M4,42,1, the
uniqueness from u transfers too. O

To go from local to global we need to bound a controlling norm for large times. Our
controlling norm will we the H' norm and the way to bound it will be via estimating
the derivative of the time-dependent Hamiltonian and using a Gronwall argument.
Since we need the Hamiltonian to control the energy, the method only applies in the
defocusing case. This method has also been used in [29] as well as in [22] to prove
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global wellposedness of NLS equations in H ' (R)+ H*(T), and it proves to be valuable
here as well. More precisely, the difference NLS equation (47) is Hamiltonian with
respect to

H(t,v) = / %valz + %(Iv +ia@®)[* = la@®)|* — 4Re(@G(1))) dx.

From the embedding H e M> 1 C M4u42,1 and Lemma 26 we see that a bound on
the H' norm suffices to upgrade our local to a global result. Arguing as in Lemma 23,
we find that if we start with one more derivative, i.e. take ug € M i then the same
holds for the solution u.

We first show that when adding an L? norm, the Hamiltonian is strong enough to
control the H' norm:

n+2,1°

Lemma27 Forall T > 0and ug € Man42.1 there exists a constant C > 0 such that
E@) + vl7, SHE )+ [vl7. +1 S EQ@) + vl + 1, (50)

where
1 1
E(v) = / 5|u,c|2 + Z|v|4arx.

The constant depends on n, ||uo||pmy,,,, and T.

Proof For0 <t < T,

/ lv+al* — |v|* — la|*—4 Re(|i|?av) dx

sc/wﬂmuw+mnw

=2 2 ~ 3
< c(lullpeellvliz> + lalizeelivilys)

2 2 ~ 2
< c(llullzeelivlizs 4 llalizellvliz2lvli7a)

< (L4 (CEDllil<lvli: +eEQ).

This term is fine due to the estimate |||z St [luollay,,, - Knowing that

fx

/mﬁwscwmmMyn,
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it remains to show that |ii|2i — G(¢) can be estimated in L? if ug € Myp42.1. Indeed,
we rewrite it as

2n—1
l@lPi= Y A (0)Ar, (1t0) Ak (0)
ki,ky,kz=1
2n—1 _
=Y Y Ak o)Ak o)Ak (o) + R() = G(1) + R(1),

k=1 ki+ky+kz=k

where R(t) has only terms of homogeneity 2n + 1 < k < 6n — 3. Thus as in the proof
of Lemma 26, forall T > 0,

2n+1 6n—3
IR oo o,77,02) ST ||MO||M4H+2’] +lluollp,, ., -

Hence

/ Re((|iii — G()v)dx St vl 2 (luol3et! + luol§r 2 )

Map42,1 Man12.1

2
S ”U”LZ + C(||u0||M4n+2,1)9

which implies (50). O

Theorem 28 Let 2 < p < 0o and assume that ug € Mll;,l' Then the local solution
from Lemma 26 exists for all times. In particular, there exists a unique global solution
u e CO([O, 00), M}z,l) to the defocusing cubic NLS with initial data u(0) = uy.

Proof Via scaling (see e.g. Theorem 3.2. in [15]) we reduce to consider small initial
data. Moreover, there exists an n € Ny such that p < 4n 4 2, hence Lemma 26 is
applicable and without loss of generality we may assume p = 4n+2. Fixsome 7" > 0.

We look at the time derivatives of the L2 norm and H and aim to use Gronwall.
Now with the notation

(1.9 = [ Re(sp)ax.
we calculate that for0 < < T,
Lo, = _ 20 4 i) —
O30l = (v,vn) = (v, [v+il* (v + i) — G))

< / l2(Jvl? + @) + [vl(li*d — G (1)) dx

S E®) + il Zeoqo. 710 10172 + M0l 2P0 = GOl Lo, 77, 12)
SEQ A+ vll7, + 1.

The last inequality was proven in the proof of (50) and its constant depends both on
T and ||uo|| pmy4,, , - For the Hamiltonian, we argue as in [22, Theorem 4.1] to see that
only time derivatives on terms with & and G prevail,

Birkhauser



Journal of Fourier Analysis and Applications (2023) 29:9 Page 31 of 37 9

O H = (ily, [v|*v + [v]?i + 2Re(B)v) + (v, & (|ii|* i — G)). (51)

Indeed, for the bilinear part of H we calculate 2

1 . .
Bti(vx, Vy) = (U, —Vxx) = — (v, v +u|(v+u) — G),

and for the remaining part,

1
o / Z(|v +ii|* — |i]*) — Re(8G) dx
= (v, v+ a? (v + i) — G) + (@, v+ > + @) — |al?i) — (v, G,),

from which (51) follows. We recall i, = —iG(t) + iy, and plug this into the first
summand. The worst term is

~ 2 ~ 2 ~ 2
(ixx, [0[70) = =(iix, (WI70)x) S llixllpge vllallvelle S E),

since we are able to bound i, in L> because uq € Mﬁ{n+2 , € ML ,.Since G, ii, and
ii, can be bounded in L*° uniformly in time, the other terms in the first summand of
(51) are estimated more easily. It remains to estimate

(v, 8 (@i — G)) = (v, &R),

where with the notation from the proof of (50) we have

2n—1

R= > Ak (140) A, (1) Ags (o).
k,‘ ,k] +k2+k3 z2n+l

Now for each &,
i0; Ax (uo) + 97 Ax (o) = Z Ay (0) Ak, (u0) Ay (1)

ki+ko+kz=k

Again the worst term comes from the two derivatives. From partial integration,

(v, (02 Ag,) Ary Agy)
= —(0y, O Ak Aty Aky) — (U, (Bx Ak,) (Bx Aky) Ary) — (0, (9x Ary) Ary 0y Aky).-

In order to use Cauchy—Schwartz we have to be sure that the functions that are inte-
grated against v or v, are in L?. But this holds true since k| + ky + k3 > 2n + 1 and

since gy € Min+2’1. All in all we find

2 Strictly speaking this is only formal, the term (vs, —vyxy) is not well-defined because both factors are
only distributional. One can make this rigorous by going to the interaction picture in the calculation, see
[22, Theorem 4.1] for details.
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% (H+Clvll3,) SH+Clvl;,+1 forall 0<¢<T,
and hence by Gronwall’s lemma

sup H(t,v) + Cllv]|7, < oo,
te[0,T]

which proves the theorem. O

Remark 3 The same method applies to M, for 2<p<ooands > 2—1/q.Inthis

case by Theorem 3 an embedding M, , C M ! | holds so that the local wellposedness
becomes trivial by the algebra property See also [29] for p = 4 and p = 6, and the
remark therein for general p and g = 2. This shows that for all spaces M}, , with
2 < p <o00,1 <g < oo one has global wellposedness if s is large enough. Using
Lemma 23 and Theorem 21 the same holds true for 1 < p < 2. It remains open
whether a global result can be achieved in a space M), , with p = 00

6 lllposedness for Negative Regularity

We complement the wellposedness results and show that the cubic NLS is not quan-
titatively well-posed in M}, , if s < 0. This includes the cases p, ¢ = oo and extends
considerations from the introduction of [29] where illposedness was shown using
Galilean invariance. We want to remark that results on norm-inflation for nonlinear
Schrodinger equations in modulation spaces have been proven in [7], though some
of them rule out the cubic case due to the complete integrability. Norm inflation and
infinite loss of regularity for fractional Hartree and cubic NLS equations have been
investigated in [8]. The proof of our result is inspired by [25]. More precisely, we show
that:

Theorem29 Let 1 < p,q < co. When s < O, there is no function space Xt which is
continuously embedded into C([0, T], M ;) q (R)) such that there exists a C > 0 with

1S@) Fllxy < ClLf Nl (52)

and

t
Hf St — s)|ulPu(s) ds
0

< Clul, (53)
X7

In particular, there is no T > 0 such that the flow map f +— u(t) mapping f to a
unique local solution on the interval [T, T]is C3 at f = 0 from M, g 10 Mls,,q
Proof We first prove that the failure of the above estimates implies that the data-to-
solution map cannot be C3. Indeed, we consider f = yug where ug € M IS, q 18 fixed,
and denote by u(y, t, x) the unique solution of (10). Then
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u = S(t)yuo F 2i fo 'St — $)(lulPu) ds,
dyu = S(t)uo F 2i /Ot S(t — ) 2lul*d,u 4 u*d, i) ds,
Su = F2i /Ot S(t = $)Qlul*9 u + w0 + 41y ul*u + 2(3,u)’it) ds,
Hu = F2i /Ot S(t — )Qlul*0)u + w05 + 60, udy, uit + 637 udy iiu + 63,0y uu
+ 613y ul*dyu) ds.
Putting y = 0 will give u = 0, then 9,u = S(¢)uo, then Bgu =0 and,

t

Hu(0, 1, x) = :FIZi/ St — 5)(|S(s)uo|>S(s)uo) ds.
0
If the flow is C3 , then this implies for any ¢ € [0, T'] the bound

3
S luollyyy - (54)
Mg

1
H/ S(t = 5)(IS(s)uol*S(s)uo) ds
0

We will show below that (54) fails, which then gives the claim.

To show that there is no quantitative wellposedness, we show failure of (54) as well.
Indeed, using the linear bound in the nonlinear bound would exactly imply (54).

To prove failure of (54), we look for a lower bound in M;’ q of

t
g(t, x) =/0 S(t — $)(IS(s)uol*S(s)uo) ds.

Denote by g(t, &) the Fourier transform x — & of g. We rewrite

~ t i 2 3 2_£2 2y A - N
§.8) = /0 o198 /S o D it 6 derdsds
1—62+63=

ell)( _

d&dé&s,

i X

_ it / fio(E1)fio (E2)ii0(E3)
&1 =& +E3=¢

where y = £ — 512 + 522 - 532. We choose io(§) = ¢n .o a positive bump function
compactly supported around N of width «, where N > 1, o <« 1. Then, g can only
be nonzero when & € [N — %(x, N + %a]. Moreover, when & = &1 — & 4 &3, we have
the factorization

x =26 —&)E - &), (55)

Birkhauser



9 Page340f37 Journal of Fourier Analysis and Applications (2023) 29:9

which is of size o2. In particular,

6”X -1

: =1+ 0(%a?).
Lx

Now the modulation space norm in M, , of ug is
s s 1-1
luollary, = N*lluolle ~ Na' 77,

which can be seen from shifting and scaling on the Fourier side. Consider the case
1 < p < 2 first. From the pointwise bound

1g(t, &) 2 |t] io(EDio(&2)i0(53)dé1dE
E1—&r+85=¢

if |t|a? < 1, we infer

p.q =

S5 > A7S —Lis s, 3
g, i, = g Hlarg, ~ NNgE, 2 2 Na 2 g, )l ~ Nta2.
Here we used Holder’s inequality in the second last inequality and explicitly calculated

the convolution [|g(z, )| 1 ~ o3 for the last equality. This shows that in order for
(54) to hold, we need to have

5 _3
N¥|tle2 < N¥a 77,

Since ¢, « are fixed this gives a contradiction if s < 0 by letting N — oo.
We turn to the case p € (2, oo]. Write

§(1.86) =511, 6) + &2(1,8),

where
21(t.8) = te € f Ao (&1 (E2)iig (&3) dEdEs,
E1—Er+E3=¢
. e e e (it
1, 8) = 1 / EDioEioE) 1 ggags.
* ‘ g ST TS TR

Write 81 (¢, £) = te~6” G(&), where G = |ug|?uo. Now, &1(t, &) is still supported on
an interval of size 3« around N, and
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lg1(t, Mller = sup (gi(t,),h) = sup fR te~E G (E)h(E) dE

Al =1 ([

>t/ 6@ P L
T IR IF T EEE) ISOGI

by choosing an LP' normalized version of F ! (e’i’ézé(é )) for h. By Fourier local-
ization of G and from Lemma 12 we see

ISOGI, < 2 IG,y < O luolPs, ~ (1)2a>T
Ly~ Ly = uolly 3 o )

. H

and hence, with ||G||;2 ~ a2,
s, —1 3-1
lgr(t, Hlus, 2 Nty "2 7.

On the other hand we can estimate g> (¢, -) by Lemma 12, the Hausdorft-Young inequal-
ity, the triangle inequality and | x| ~ 2, and Young’s convolution inequality,

(it x)*
lg2(e, e < It Z [swF / o &0t it (€)= A
—&+&3=¢ + D!
Lot
< Il |/ doEnio)ioE)x* deidss |
kX:; (k+ D! §1—6r+63=¢ Lé’
0 k 2\k
1 |7]% (ca®) . . A
<t Y] dofEnio)io(Es) dirdss |
kZ:‘: (k+ 1! §1—6r+86=¢ Ly
© k 2\k
1 7" (ca™)" 3_1
<t )2y ————
<|rl(n)2 ) T
k=1
1
= c(t)2 127 (1 + O(ta?))
In particular assuming || < 1 and o < | we see that
lig2(t, Ilarg,, < Ng1(, llagg, -
Hence the bound (54) would imply
Nt 27 < llg(e. iy, S N
which as before leads to a contradiction if s < 0. O
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