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The evaluation of the interaction between objects arranged on a lattice requires the computation
of lattice sums. A scenario frequently encountered are systems governed by the Helmholtz equa-
tion in the context of electromagnetic scattering in an array of particles forming a metamaterial, a
metasurface, or a photonic crystal. While the convergence of direct lattice sums for such translation
coefficients is notoriously slow, the application of Ewald’s method converts the direct sums into
exponentially convergent series. We present a derivation of such series for the 2D and 3D solutions
of the Helmholtz equation, namely spherical and cylindrical solutions. When compared to prior
research, our novel expressions are especially aimed at computing the lattice sums for several in-
teracting sublattices in 1D lattices (chains), 2D lattices (gratings), and 3D lattices. We verify our
results by comparison with the direct computation of the lattice sums.

The calculation of lattice sums for solutions of the
Helmholtz equation appears regularly in various fields
of physics, such as electrodynamics, solid-state physics,
or acoustics [1, 2]. A particularly useful tool to treat
those sums is Ewald’s method [3] with it various applica-
tions [4–18]. There, the slowly converging series is split
into two parts. One of these parts converges rapidly in
real space, and the other one converges rapidly after a
transition into reciprocal space. In-depth discussions on
this method applied to the Helmholtz equations can be
found in several reviews [19, 20], and there exist various
derivations for special cases [21–29].

However, what has not yet been fully considered are
lattices with multiple sublattices. Typical systems with
multiple sublattices in different dimensions are chains
with alternating distances between particles [30], zigzag
chains [31], helical structures [32], or structures based
on the honeycomb lattice [33]. Also, having many parti-
cles in one unit cell may require such lattice sums [34].
Photonic materials with multiple sublattices emerge in
the context of many contemporary photonic materials.
Examples are Su-Schrieffer-Heeger chains found in topo-
logical photonics [35], structures with an asymmetry in
their unit cell to support bound states in the contin-
uum [36], dolmen structures to observe plasmonically in-
duced transparency [37], or Moiré lattices [38]. Concep-
tional illustrations showing such contemporary artificial
photonic materials are presented in Fig. 1. We highlight
the multiple sublattices by using red, blue, and green
colors for the associated particles. To efficiently describe
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the optical response from such photonic materials, we de-
velop here novel approaches for Ewald’s summations for
lattices that contain multiple sublattices with arbitrary
relative positions with respect to each other. That holds
particularly for sublattices that have a relative displace-
ment perpendicular to the lattice. Our sums are also
useful to compute, e.g., the electromagnetic field at an
arbitrary position within the unit cell, because this es-
sentially is equivalent to a relative shift with respect to
the objects in the lattice [39].

The goal of this article is two-fold: first, we present a
way of deriving exponentially convergent expressions by
extending an existing approach [40] that, second, is ap-
plicable to many of these problem of arbitrary positions
in the unit cell of the lattice. Our novel approach repro-
duces known results for 2D lattices and spherical wave
solutions [41, 42], but it is also able to derive expressions
for multiple sublattices in the 2D case of cylindrical wave
solutions and for 1D lattices.

The outline of the article is as follows. In Sec. I, we
give a definition of the lattice sum and the notation used.
In Sec. II, we treat the real space sum and, in Sec. III,
the reciprocal space sum. For the reciprocal space sum,
we derive closed form expressions for all cases individ-
ually. We conclude with a comparison of the presented
expressions with results obtained from the direct sum-
mation approach in Sec. IV and an example application
of the lattice sums to the T-matrix method [43, 44] in
Sec. V. These numerical examples clearly demonstrate
the usefulness and forte of our novel expressions.

The main results needed for an implementation are
Eqs. (9) and (10) for the real space sum of cylindrical
and spherical solutions, respectively, one of the Eqs. (20),
(25), (30), and (35) for the reciprocal space sum depend-
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FIG. 1. Illustrations for contemporary photonic materials featuring multiple sublattices. From panels (a) to (d) these are
zigzag chains that mimick the Su-Schrieffer-Heeger model, metasurfaces where bound states in continuum can be observed,
plasmonically induced transparency in dolmen structures, and Moiré lattices.

ing on the spatial dimension and the lattice dimension,
and Eq. (14) as correction term for the origin contribu-
tion.

I. PROBLEM STATEMENT AND NOTATION

We define the lattice sum as

Dd,ν(Λd′ , k,k‖, r) =
∑′

R∈Λd′

fd,ν(k,−r −R)eik‖R (1)

and derive expressions for the spatial dimensions d ∈
{2, 3}. The second index ν is a placeholder for the pa-
rameters of the function fd,ν . The lattice Λd′ is a set
containing the d′ ≤ d dimensional lattice vectors defined
by

Λd′ =


d′∑
i=1

niai | ni ∈ Z

 , (2)

where ai are the basis vectors of the lattice. We use k for
the wave number and k‖ for the wave vector components
in the d′ dimensional reciprocal space. Later, we use
the notation Λ∗d′ for the reciprocal space lattice defined
analogously to Eq. (2) with basis vectors bj satisfying
aibj = 2πδij . The vector r ∈ Rd describes the shift
between sublattices, and it can be decomposed into a

tangential component r‖ ∈ Rd′ and a normal component

r⊥ ∈ Rd−d′ with respect to the vectors of the lattice Λd′ .
On the right hand side of Eq. (1), the sum includes

all lattice points with the exception that in the case of
r + R = 0, i.e., if r coincides with a lattice point we
omit that specific contribution. We use the prime next
to the summation sign as a reminder of this ommission.
Each term of the sum contains a phase factor and the
scalar solutions of the Helmholtz equation for the chosen
dimension d, namely

f2,ν(k, r) = H(1)
m (k|r|)eimϕr (3)

and

f3,ν(k, r) = h
(1)
l (k|r|)Ylm(θr, ϕr) . (4)

Thus, the index ν stands for m ∈ Z, if d = 2, and for l ∈
N0 and m ∈ {−l,−l + 1, · · · , l}, if d = 3. The functions

H
(1)
m (x) are the Hankel functions of the first kind, h

(1)
l (x)

are the spherical Hankel functions of the first kind, and
Ylm(θ, ϕ) are the spherical harmonics. See appendix A
for the used normalization convention. We also use the
notation Ylm(r) = Ylm(θr, ϕr), where cos θr = z

|r| and

tanϕr = y
x are the polar and azimuthal angle of the

vector r.
These definitions lead to five different possible cases

shown in Fig. 2. For d = 3, the lattice can have d′ ∈
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FIG. 2. Layout of the geometry in the lattice summations. In all cases, we show two different sublattices in red and blue. The
shift between these sublattices is described by r. The dotted lines indicate the decomposition of that shift into r⊥ and r‖. In
panels (a), (b), and (d), the different sublattices are not required to be in the same plane or line. The vector R is a lattice
vector. The first row with panels (a) to (c) shows the case of spatial dimension d = 3 and d′ ∈ {1, 2, 3}, respectively. In all
three cases we use the coordinate system indicated on the left. The second row with pannels (d) and (e) shows the cases for
d = 2, again, with coordinates as shown on the left. The orange color shows the spatial domain of the lattice summation. The
parallel component of the wave vector k‖ must lie in this domain.

{1, 2, 3} as shown in panels (a) to (c). For d = 2 the
lattice can have d′ ∈ {1, 2}.

The starting point for the evaluation of the sum ex-
pressed in Eq. (1) are the representations [45]

H
(1)
l (x) =

(−1)
l−|l|

2 2

iπ
x|l|

∞∫
(0)

dt t2|l|−1e−
x2t2

2 + 1
2t2 , l ∈ Z

(5)
and

h
(1)
l (x) = −i

√
2

π
xl
∞∫

(0)

dt t2le−
x2t2

2 + 1
2t2 , l ∈ N0 , (6)

where we exchanged the azimuthal order index m for the
case d = 2 with the letter l to highlight the similarity
between the expressions for both cases. To ensure con-
vergence, the integration contour has to be chosen such
that |=(t)| > |<(t)| for t→ 0 at the lower boundary. The
brackets around the lower boundary’s value are used as
a reminder for that choice of integration contour. Insert-
ing these representations into the expression for Dd,ν in

Eq. (1), we arrive at

Dd,ν(Λd′ , k,k‖, r) =
∑′

R∈Λd′

2eik‖R

iπ
(k|r + R|)|l|

·
∞∫

(0)

dt t2|l|−3+de−
(k|r+R|t)2

2 + 1
2t2

·

{
(−1)

l−|l|
2 eilϕ−r−R d = 2√

π
2Ylm(−r −R) d = 3

.

(7)

Now, the integration can be separated at some value η,
which divides the sum into a long range (t > η) and a
short range (t < η) contribution, each of which can be
solved separately. Indeed, this separation converts the
short range contribution into a quickly convergent se-
ries in real space and the long range contribution into a
quickly convergent series after a transformation into re-
ciprocal space. The following two sections are dedicated
to these spaces individually.

II. REAL SPACE SUM

The short range part can be readily summed in real
space. The only change to the expression in Eq. (7) is
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that the required integration changes to

In(x, η) =

∞∫
η

dt tne−
x2t2

2 + 1
2t2 , (8)

where n ≥ −1. For a numerical implementation, this
integral can be evaluated by recurrence (see appendix C).
However, the lattice sum is evaluated in general with the
expressions

D
(2)
2,l (Λd′ , k,k‖, r) =

(−1)
l−|l|

2 2

iπ

∑′

R∈Λd′

(
(k|r + R|)|l|

·I2|l|−1(k|r + R|, η)eilϕ−r−R+ik‖R
) (9)

and

D
(2)
3,lm(Λd′ , k,k‖, r) = −i

√
2

π

∑′

R∈Λd′

(
eik‖R(k|r + R|)|l|

·I2|l|(k|r + R|, η)Ylm(−r −R)
)
,

(10)

where the total sum of Eq. (7) has been conventionally
written in three terms as

Dd,ν = D
(0)
d,ν +D

(1)
d,ν +D

(2)
d,ν . (11)

Here, we omitted the arguments of the different sums.
The first two terms are related to the reciprocal space
sum discussed in the next chapter. For an increasing
length of the lattice vectors R, the summands quickly
decrease due to the exponential factor in Eq. (8). There-
fore, the lattice series can be truncated after including
few lattice vectors. The expressions here make no as-
sumptions on the orientation of the lattice for the cases
when d′ < d, but we will require the specific orientations
shown in Fig. 2 for the reciprocal lattice sum. In the
special case of r⊥ = 0, the symmetry of the solution sets
together with the orientation of the lattices can lead to
simplifications (appendix F) that can be used to repro-
duce the results for this special case [20].

III. RECIPROCAL SPACE SUM

The long range contribution is summed in reciprocal
space. For the transformation into reciprocal space, a

fully periodic lattice is necessary, so the inclusion of the
potentially missing summand at r + R = 0 in Eq. (7)
needs to be compensated. This compensation contribu-
tion is independent of the lattice dimension and can be
written as

D
(0)
dν (Λd′ , k,k‖, r) = −δl0δr0

iπ

η∫
(0)

dt e
1

2t2

{
2
t d = 2
1√
2

d = 3
,

(12)
where we assume that r is in the Wigner-Seitz cell of the
lattice, such that r + R = 0 implies r = 0 = R, and
we use that all contributions except for l = 0 vanish due
to the factor (k|r + R|)|l| in Eq. (7). We substitute the
integration variable t = −i√

2u
and obtain the expression

D
(0)
d,ν(Λd′ , k,k‖, r) = δl0δr0

∞∫
− 1

2η2

du e−u
{

i
u d = 2

1

4u
3
2

d = 3

(13)
that can be readily evaluated using the upper incomplete
gamma function

D
(0)
d,ν(Λd′ , k,k‖, r) = δl0δr0


i
πΓ
(

0,− 1
2η2

)
d = 2

1
4πΓ

(
− 1

2 ,−
1

2η2

)
d = 3

.

(14)
Note that the conditions on the lower boundary with the
particular choice of substitution implies that the upper
boundary becomes ∞. Special care has to be taken also
for the branch choice in the incomplete gamma function
due to its negative argument. The substitution that was
necessary for the integral transformation implies that one
has to take the value for − 1

2η2 − iε for ε → 0+, i.e., the

value below the real axis.

Having dealt with the origin contribution, we now con-
tinue with the main part of the long range summation by
the transformation to reciprocal space using the Poisson
summation formula
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D
(1)
d,ν(Λd′ , k,k‖, r) =

2k|l|

iπVd′

∑
G∈Λ∗

d′

e−i(k‖+G)r‖

η∫
(0)

dt t2|l|−3+de
1

2t2

·
∫
Rd′

dd
′
r′|r′ − r⊥||l| exp

(
− (k|r′ − r⊥|t)2

2

)
e−i(k‖+G)r′

{
(−1)

l−|l|
2 eilϕr′−r⊥ d = 2√

π
2Ylm(r′ − r⊥) d = 3

(15)

where we also performed a shift of the newly introduced
integral over r′ to absorb the component r‖ in the inte-
gral expression. We observe that components tangential
to the lattice enter the expression now only with a phase
factor e−i(k‖+G)r‖ . Perpendicular shifts with respect to
the lattice are considerably more difficult due to the way
they appear in Eq. (15). The d′ dimensional volume of
the unit cell is Vd′ .

At this point, it is necessary to individually treat the
different cases of d and d′. First, we consider full lat-
tices, i.e., lattices where d = d′. There, no perpendicular
component exists, and the integrals are straightforwardly
solved. However, the cases where d > d′ are each solved
separately. All possible cases are discussed in following
sections.

A. Case: d = d′

The two cases, d = 2 = d′, and d = 3 = d′, are among
the most commonly found ones in literature, and the re-
sults are known [45]. However, we will rederive them
here, since it is instructive to follow the different steps
before applying them to the derivation of the more diffi-
cult expressions in the other cases.

We focus first on the integration∫
Rd

ddr′ r′|l|e−
(kr′t)2

2 e−i(k‖+G)r′

{
eilϕr′ d = 2

Ylm(r′) d = 3
(16)

over r′. We remark that in those cases, a perpendic-
ular component to the lattice cannot exist, and we set
r⊥ = 0 in Eq. (15). Using the expansions of the plane

wave e−i(k‖+G)r′ suitable for the cases d = 2 and d = 3
(appendix B), we can perform the angular integration
trivially due to the orthogonality of the angular func-
tions. The remaining radial integration for the case d = 2
is

(−i)|l|eilϕk‖+G

∞∫
0

dr′ r′|l|+1e−
(kr′t)2

2 J|l|(βkr
′) (17)

and

4π(−i)lYlm(k‖ + G)

∞∫
0

dr′ r′|l|+2e−
(kr′t)2

2 jl(βkr
′) (18)

for the case d = 3, where we introduced β =
|k‖+G|

k . The
integral is in both cases essentially the same and can be
found in literature [46, Eq. 6.631 4.]. Thus, we’re now
left with

D
(1)
d,ν(Λd, k,k‖, r) =

4(−i)l

iVdkd

∑
G∈Λ∗d

e−i(k‖+G)rβ|l|

·
η∫

(0)

dt

t3
e
γ2

2t2

{
eilϕk+G d = 2

πYlm(k‖ + G) d = 3
,

(19)

where we use γ =
√

1− β2 with the square root chosen
such, that it has a non-negative imaginary part. The
remaining integral over t can be substituted to a simple
exponential, that we write here as the incomplete gamma
function

D
(1)
d,ν(Λd, k,k‖, r) =

4(−i)l−1

Vdkd

∑
G∈Λ∗d

e−i(k‖+G)rβ|l|

·γ−2Γ

(
1,− γ2

2η2

){
eilϕk+G d = 2

πYlm(k‖ + G) d = 3

(20)

to highlight the similarities to the following cases. For the
case of d = d′, this calculation was quite straightforward
compared to the other cases, especially since r⊥ 6= 0 is
not possible. However, the basic idea of the calculation
– expanding the plane wave suitably and then using a
direct evaluation of the integral – remains the same for
d 6= d′, although the details become more involved. They
will be discussed in the following.

B. Case: d = 3, d′ = 2

This case has been treated in-depth by Kambe [42],
and a direct approach to the solution of this series ex-
ists for the case when r⊥ = 0 [40]. We now generalize
that derivation to the case when r⊥ 6= 0. We start with
the expression in Eq. (15). Conventionally, we place the
lattice in the z = 0 plane. By inserting r⊥ = zẑ we
obtain
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D
(1)
3,lm(Λ2, k,k‖, r) =

√
2

π

kl

iV2

∑
G∈Λ∗2

e−i(k‖+G)r‖

η∫
(0)

dt t2le
1

2t2

·
∫
R2

d2r′(r′2 + z2)
l
2 e−

k2(r′2+z2)t2

2 e−i(k‖+G)r′Nl|m|e
imϕr′ (−1)

m−|m|
2 P

|m|
l

(
−z√
r′2 + z2

)
,

(21)

where we have replaced the spherical harmonics with a
more explicit expression (Eq. (A1)).

Now, we replace the plane wave e−i(k‖+G)r′ by a suit-
able expansion for the evaluation of the spatial integral.
The integration domain covers the d′ = 2 dimensional
space and, therefore, the plane wave is expanded in cylin-
drical coordinates (Eq. (B1)). Now, the azimuthal angle
integral can be solved trivially, because the phase fac-
tors involving ϕr match exactly. The remaining radial
integral is

∞∫
0

dr′ r′(r′2+z2)
l
2 J|m|(βkr

′)e−
(kr′t)2

2 P
|m|
l

(
−z√
r′2 + z2

)
.

(22)
We insert a suitable representation of the Legendre poly-

nomials (Eq. (A12)) to eliminate the factor (r′2 + z2)
l
2 .

Up to a sum over s ∈ {0, 1, · · · , b l−|m|2 c} and the pre-
factors coming from the Legendre polynomial represen-
tation.

The integral in Eq. (22) can now be evaluated as

∞∫
0

dr′ r′1+|m|+2sJ|m|(βkr
′)e−

(kr′t)2
2

=
(s+ |m|)!

|m|!βk
(
k2t2

2

) 1+|m|
2 +s

e−
β2

4t2M 1+|m|
2 +s,

|m|
2

(
β2

2t2

)

=
(s+ |m|)!

βk

(
β

kt2

)1+|m|+2s

(−1)se−
β2

2t2

·
s∑

n=0

(
s

n

) (
− β2

2t2

)−n
(s+ |m| − n)!

,

(23)

where we use the known result of the integral [46, Eq.

6.631 1.] and use that M 1+|m|
2 +s,

|m|
2

( β
2

2t2 ) is a special case

of the Whittaker function that can be expressed as a
finite sum of elementary functions (Eq. (E3)). Combining
Eqs. (21), (23), and (A12), we obtain

D
(1)
3,lm(Λ2, k,k‖, r) =

√
2(2l + 1)(l −m)!(l +m)!

im−1

V2k2

∑
G∈Λ∗2

e−i(k‖+G)r‖e
imϕk‖+G

η∫
(0)

dt e
γ2

2t2
− k2z2t22

·
b l−|m|2 c∑
s=0

s∑
n=0

t2l−2−2|m|−4s+2n β|m|+2s−2n(−kz)l−|m|−2s(−1)n

22s+|m|−n(s+ |m| − n)!n!(s− n)!(l − |m| − 2s)!
.

(24)

The final step is now to simplify the expressions, espe-
cially the exponent of t, by making it only dependent
on the outer sum index to improve the practicality for a
software implementation. Lengthy, but straightforward
manipulations of the two nested series (Eq. (D1)) lead to
the expression

D
(1)
3,lm(Λ2, k,k‖, r) =

∑
G∈Λ∗2

e−i(k‖+G)re
imϕk‖+G

l−|m|∑
n=0

S3,lmn,2(k, β, z)γ2n−1

∞∫
− γ2

2η2

du

u
u

1
2−ne−u+

(γkz)2

4u

(25)

with

S3,lmn,2(k, β, z) =

√
(2l + 1)(l −m)!(l +m)!(−i)m

(−2)lV2k2

min(l−|m|,2n)∑
s=n

(−kz)2n−sβl−s

(2n− s)!(s− n)!( l+m−s2 )!( l−m−s2 )!
.

(26)

For this final expression, we also substitute t = −iγ√
2u

which, again, transforms the lower boundary to an in-
tegration to infinity. We emphasize that the sum over s
runs only over either all even or all odd values, such that
the factorials only take integer values. Thus, s takes on
only values with the same parity as l + m. The sum
S3,lmn,2 simplifies significantly if z = 0, where one gets
the simpler expressions from Eq. (F1). Now, only the in-
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tegral for u has to be solved. If z = 0, the integral is the

upper incomplete gamma function Γ( 1
2−n,−

γ2

2η2 ), other-

wise it can be transformed to an integral Il (appendix C)
that we defined already for the real space sum. The ap-
pearance of the incomplete gamma function with half
integer values is typical for the case d − d′ = 1 and will
later also appear for d = 2 and d′ = 1. When |r⊥| = 0,
our result is equivalent to Kambe’s expressions [42].

With our approach working for previously know cases,

we now apply it to 1D lattices where a derivation of an
equivalent result is not known to us.

C. Case: d = 3, d′ = 1

Here, we treat the one dimensional lattice in 3D space.
We place the lattice along the z-axis of our coordinate
systems (Fig. 2(c)). Then, starting from Eq. (15), we
can obtain

D
(1)
3,lm(Λ1, k, k‖, r) =

√
2kl

i
√
πV1

∑
G∈Λ∗1

e−i(k‖+G)r‖

η∫
(0)

dt t2le
1

2t2

·
∞∫
−∞

dr′(r′2 + ρ2)
l
2 e−

k2(r′2+ρ2)t2

2 e−i(k‖+G)r′Nl|m|(−1)
m−|m|

2 eimϕ−r⊥P
|m|
l

(
r′√

r′2 + ρ2

)
,

(27)

where we used |r⊥| = ρ. Also, we can now use simple
scalars k‖ = k‖êz and G = Gêz instead of vectors for the
parallel wave vector component and the reciprocal lattice
vectors. For lattices with d′ = 1, there is no angular
integration to do. We can reuse the expansion of the
Legendre polynomials (Eq. (A12)) to remove the factor

(r′2+ρ2)
l
2 , trading it instead for an additional sum. After

inserting the expansion, we integrate over r′ which is,
again, an integral that can be found in literature [46,

3.462 2.]

∞∫
−∞

dr′e−
k2r′2t2

2 e−i(k‖+G)r′r′l−|m|−2s

=
(l −m− 2s)!

√
2π

kt
e−

β2

2t2

(
− iβ

kt2

)l−|m|−2s

·
b l−|m|2 −sc∑

n=0

(
− t2

2β2

)n
(l − |m| − 2s− 2n)!n!

(28)

and results in a finite series. Now, we are ready to as-
semble the full expression

D
(1)
3,lm(Λ1, k, k‖, r) =

√
2l+1
π (l −m)!(l +m)!

ikV1
(−i)l+m

∑
G∈Λ∗1

e−i(k‖+G)r‖

η∫
(0)

dt e
γ2

2t2
− k2ρ2t22 eimϕ−r⊥

b l−|m|2 c∑
s=0

b l−|m|2 −sc∑
n=0

(kρ)2s+|m|

22s+|m|+n(s+ |m|)!s!
t4s+2|m|+2n−1βl−|m|−2s−2n (−1)n

(l − |m| − 2s− 2n)!n!

(29)

from Eqs. (27), (28), and (A12). Here, we use β =
k‖
k ,

where k‖ is the (signed) scalar value of the parallel wave
vector component. We can perform manipulations on
the two nested finite series (Eq. (D2)) to finally get the

expression

D
(1)
3,lm(Λ1, k, k‖, r) = eimϕ−r⊥

∑
G∈Λ∗1

e−i(k‖+G)r‖

l∑
n=|m|

S3,lmn,1(k, β, ρ)
γ2n

4n

∞∫
− γ2

2η2

du

u
u−ne−u+

(γkρ)2

4u

(30)
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with

S3,lmn,1(k, β, ρ) =
(−i)l+1im

2V1k

√
2l + 1

π
(l −m)!(l +m)!

min(2n−|m|,l)∑
s=n

(kρ)2n−sβl−s(
n− s+m

2

)
!
(
n− s−m

2

)
!(l − s)!(s− n)!

.

(31)

Again, the summation for s only takes values, such that
the factorials have an integer argument, namely s must
have the same parity as m.

As in the previous case, the expression can be simpli-

fied significantly (Eq. (F2)) if ρ = 0, where the remaining
integral transforms to the incomplete gamma function

Γ(−n,− γ2

2η2 ). If ρ 6= 0 the integral can, again, be com-

puted by recurrence (appendix C).

D. Case: d = 2, d′ = 1

The last case left, treats the lattice sum on a 1D lattice
for cylindrical solutions, which we place along the x-axis
of our coordinate system (Fig. 2(e)). Then, Eq. (15)
becomes

D
(1)
2,l (Λ1, k, k‖, r) =

2k|l|(−1)
l−|l|

2

iπV1

∑
G∈Λ∗1

e−i(k‖+G)r‖

η∫
(0)

dt t2|l|−1e
1

2t2

∞∫
−∞

dr′(r′2 + y2)
|l|
2 e−

k2(r′2+y2)t2

2 −i(k‖+G)r′

(
r′ − i sgn(l)y√

r′2 + y2

)|l|
.

(32)

Here we used r⊥ = yêy. The term in brackets to the right

corresponds to eilϕr′−r⊥ and its denominator cancels the

factor (r′2 +y2)
|l|
2 exactly. We can expand its numerator

using the binomial theorem, which replaces it with a sum
over s ∈ {0, 1, · · · , |l|}. The spatial integral over r′ for
each term in the expansion of the binomial is essentially
the same as Eq. (28)

∞∫
−∞

dr′ r′se−
kr′2t2

2 e−i(k‖+G)r′

=
s!
√

2π

kt
e−

β2

2t2

(
− iβ

kt2

)s b s2c∑
n=0

(
− t2

2β2

)n
(s− 2n)!n!

(33)

and can be solved accordingly [46, 3.462 2.]. Combining
these results, we get

D
(1)
2,l (Λ1, k, k‖, r) =

2il
√

2

i
√
πkV1

∑
G∈Λ∗1

e−i(k‖+G)r‖

η∫
(0)

dt e
γ2

2t2
− k2y2t22

|l|∑
s=0

b s2c∑
n=0

t2(|l|−1−s+n)(−1)s+n

|l|!(− sgn(l)ky)|l|−sβs−2n

(s− 2n)!n!2n(|l| − s)!
.

(34)

Similarly to the previous cases, we have two finite series,
that can be rearranged to simplify the exponent of the

integration variable t (Eq. (D3)), finally arrive at

D
(1)
2,l (Λ1, k, k‖, r) =

∑
G∈Λ∗1

e−i(k‖+G)r‖

|l|∑
n=0

S2,ln,1(k, β, y)γ2n−1

∞∫
− γ2

2η2

du

u
u

1
2−ne−u+

(γky)2

4u

(35)

with

S2,ln,1(k, β, y) =
(−i)l2√
πV1k

min(2n,|l|)∑
s=n

(− sgn(l)ky)2n−sβ|l|−s

2s(2n− s)!(|l| − s)!(s− n)!

(36)

again after substituting t = −iγ√
2u

. Here, the sum in s takes

every value in its range in contrast to the other cases.
Major simplifications are possible when considering ρ = 0
(Eq. (F3)), where the integral becomes, analogously to
the d = 3, d′ = 2 case, the incomplete gamma function

Γ( 1
2 − n,−

γ2

2η2 ).

IV. COMPARISON WITH THE DIRECT SUM

We verify and compare our results by evaluating the
sum directly with an increasing number of lattice points
and by using the novel expressions derived in this work.

In the first example, we use the values l = 2 and m = 0
in case of d = 3 and for m = 2 in case of d = 2. The shift
vector is r = (0.2, 0.1, 0.3) for d = 3 and r = (0.1, 0.3)
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FIG. 3. Comparison of the direct evaluation of the series and the value for the exponentially convergent expressions. Each panel
shows the real part (solid line) and imaginary part (dashed line) of the value for the direct summation (blue), the exponentially
convergent ones (orange), and the relative deviation of the direct summation (green). The x-axis shows the number of included
layers. These layers have a square and cubic shape for 2D and 3D lattices, respectively. Panels (a), (b), and (c) show the values
for the 1D lattice (chain), 2D lattice (grating), and 3D lattice examples for the spherical solution of the Helmholtz equation,
respectively. Panels (d) and (e) show the values for the 1D lattice and 2D lattice for the cylindrical solution, respectively. Panel
(f) shows an example of an application of the lattice sums for a chain of spheres on two sublattices. The lattice sums are used
to calculate the coupling of the spheres within the T-matrix framework and also to compute the electric field whose intensity
is shown here.

for d = 2. The parallel component of the wave vector is
k‖ = 0.3, k‖ = (−0.1, 0.2), and k‖ = (0.3,−0.1, 0.2) for
the 1D, 2D, and 3D lattices, respectively. In all cases, we
use k = 3 and a lattice pitch a = 1.9. The 2D and 3D
lattice are square or, suitably, cubic.

For the chain there is mostly only one way to include
lattice points in the direct summation, namely taking the
origin unit cell and then expanding outwards on both
sides. This summation scheme can be generalized to
higher dimensions in a spherical or cubic fashion. This
means that all points within a region defined by either
a fixed Euclidean distance or a fixed Chebyshev distance
from the reference unit cell are considered in the sum. We
opt for the latter because of its better convergence behav-
ior [20] and express the number of points considered by
the number of layers n, i.e., all points with ‖R‖∞ ≤ na.

The first row in Fig. 3 shows the results for d = 3
and d′ ∈ {1, 2, 3} in panels (a), (b), and (c), respec-

tively. The second row shows the results for d = 2 and
d′ ∈ {1, 2}. We observe in all five cases presented in
Fig. 3(a)-(e) very fast oscillations of the direct sum, de-
pending on the number of layers. For panels (a) and (d),
corresponding to the chain, we included up to 105 lay-
ers, such that the fast oscillations are not resolved and
appear as a blue area. Although converging fairly rapid
initially, the direct summation needs more than 105 lay-
ers to deviate only by 10−4 from the Ewald’s method
result for d = 3 and d′ = 1. For d = 2 and d′ = 1 the
convergence is even slower by up to two orders of magni-
tude. The exponentially fast converging result obtained
with Eqs. (9) and (10) for the real part and Eqs. (20),
(25), (30), and (35) for the reciprocal part is shown as a
orange line.

Panel (b) shows the results for d = 3 and d′ = 2. Here,
we included up to 1000 layers. In comparison to d′ = 1,
the convergence of the direct sum is more time consum-
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FIG. 4. Comparison of the direct summation and the value of exponentially fast converging series for large shifts r⊥ perpen-
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l = 2 and m = 1 are chosen, which in case of r⊥ = 0 must vanish. Panel (c) shows the case d = 2 and d′ = 1.

ing. To reach a relative accuracy of roughly 10−2, the
contributions of over 4 million lattice points have to be
evaluated. Such a deteriorating convergence behavior as
d′ gets closer to d is commonly found for direct summa-
tions. This is even more pronounced in panels (c) and
(e), which show the results for the full lattices. Here, for
the number of layers included, no convergence is visible
at all but only oscillations

In summary, we find that the formulas derived con-
verge quickly to a precise value suitable for numerical
evaluations. While it is possible to improve the conver-
gence of the direct summation by averaging over one or
multiple oscillations (see appendix G), it is clear that the
exponentially fast converging series are a major improve-
ment.

Additionally to our first example, we also look into
larger shifts |r⊥| away from the lattice and mainly the
components that are not present for r⊥ = 0. For this,
we choose the parameters l = 2 and m = 1 for d = 3
and m = 2 for d = 2. For d = 3 and d′ = 2 we set
r = (1.5, 1.1, 0.3), for d = 3 and d′ = 1 we set r =
(0.2, 0.1, 1.3), and for d = 2 and d′ = 1 we set r =
(0.1, 1.3). The values of k, a, and k‖ remain unchanged.
The entries with l = 2 and m = 1 for d = 3 that are
shown in panels (a) and (b) in Fig. 4 would be zero in case
of r⊥ = 0, but it becomes non-zero when r⊥ 6= 0. The
direct summation in those cases converges comparably
fast, and we can confirm that the derived formulas are
correct. Panel (c) shows the result for d = 2 and d′ = 1
with large r⊥. Also, in that case, the result of the derived
exponentially convergent formula is approached by the
direct summation with an increasing number of layers.
However, the convergence is quite slow.

V. EXEMPLARY APPLICATION

A typical field of application for the lattice sum is
in summing translation coefficients for vector spherical
waves like they appear as part of the T-matrix method.
Here, we apply the summation for a 1D lattice for vec-
tor spherical waves. The example system corresponds
roughly to the sketch shown in Fig. 2(a). It consists
of two spheres per unit cell with radii 40 nm and 60 nm
and relative permittivity ε = 9 with a relative shift
r = (70, 0, 80)T nm from the larger to the smaller sphere.
The chain has a lattice constant of 200 nm and is illu-
minated with a plane wave of wavelength 500 nm under
oblique incidence with a π

6 angle with respect to the x-
axis.

Figure 3(f) shows the field intensity in one unit cell.
Using the T-matrix method together with the lattice
sums, we can efficiently compute the electric field in the
entire space outside the spheres. This example makes
not only use of the lattice sums to translate the scat-
tered fields between the two sublattices associated with
each type of sphere for computing the mutual interac-
tion but also uses them to translate the scattered field
to each point in the sampled space to obtain the electric
field within the unit cell.

VI. CONCLUSION

We presented a derivation of exponentially fast con-
verging series for quasi-periodic Helmholtz equation sums
in d = 2 and d = 3 spatial dimensions. Our approach is
suitable to derive exponentially convergent series for ar-
bitrary lattice dimensions d′ ≤ d. A special emphasis is
placed on the applicability of the lattice sums to the case
when there is a relative shift between multiple sublat-
tices. This enables us to apply the sums to a wide range
of applications.
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For an implementation of the exponentially fast lattice
sum, the formulas in Eqs. (9), (10), (14), (20), (25), (30),
and (35) can be directly used with the integrals evaluated
by recursion.
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Appendix A: Spherical harmonics and associated
Legendre polynomials

The spherical harmonics we use are defined by

Ylm(θ, ϕ) =

√
2l − 1

4π

(l −m)!

(l +m)!︸ ︷︷ ︸
Nlm

Pml (cos θ)eimϕ , (A1)

where Pml (x) are the Legendre polynomials

Pml (x) =(−1)m
(
1− x2

)m
2

dm

dxm
Pl(x) (A2)

=
(−1)m

2ll!

(
1− x2

)m
2

dl+m

dxl+m
(
x2 − 1

)l
, (A3)

where Eq. (A2) defines the associated Legendre polyno-
mials, in principle, only for m ≥ 0. After using using
Rodrigues’ formula for the Legendre polynomials,yy to
arrive at Eq. (A3), the expression can be used for all
|m| ≤ l.

To derive the closed form expression for the associated
Legendre polynomials in the main text, we begin with

P
|m|
l (cos θr) = P

|m|
l

(
z√

ρ2 + z2

)

=

b l−|m|2 c∑
j=0

(−1)j+|m|(l − 2j)!

2l(l − |m| − 2j)!

(
l

j

)(
2l − 2j

l

)
zl−|m|−2jρ|m|√
ρ2 + z2

l−2j

(A4)

where r = (x, y, z)T and ρ =
√
x2 + y2, for the asso-

ciated Legendre polynomials, which can be derived by
evaluating Eq. (A2) and using the closed expression

Pl(x) =
1

2l

b l2 c∑
j=0

(−1)j
(
l

j

)(
2l − 2j

l

)
xl−2j (A5)

for the Legendre polynomials [46, Eq. 8.911 1.]. We
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expand
√
ρ2 + z2

2j
to arrive at

Pml

(
z√

ρ2 + z2

)

=
(−1)|m|ρ|m|

2l
√
ρ2 + z2

l

b l−|m|2 c∑
j=0

(−1)j(l − 2j)!

(l − |m| − 2j)!

(
l

j

)(
2l − 2j

l

)

·
j∑
s=0

(
j

s

)
ρ2szl−|m|−2s . (A6)

Now, we can rearrange the series to

Pml

(
z√

ρ2 + z2

)

=
(−1)|m|ρ|m|

2l
√
ρ2 + z2

l

b l−|m|2 c∑
s=0

ρ2szl−|m|−2s

s!

·
b l−|m|2 c∑
j=s

(−1)j(2l − 2j)!

(l − |m| − 2j)!(l − j)!(j − s)!
(A7)

where the last sum fulfills

f(l,m, s) =

b l−|m|2 c∑
j=s

(−1)j(2l − 2j)!

(l − |m| − 2j)!(l − j)!(j − s)!
(A8)

=
(−1)s(l +m)!2l−m−2s

(l −m− 2s)!(s+m)!
, (A9)

which can be shown by using the recursion formula

f(l+1,m, s) = 2(f(l,m, s)+(l+m)f(l,m−1, s) (A10)

and the initial condition

f(l,−l, s) = δls(−1)l . (A11)

Thus, combining Eq. (A7) and Eq. (A8), we arrive at

Pml

(
z√

ρ2 + z2

)

=
(−1)

|m|+m
2√

ρ2 + z2
l

b l−|m|2 c∑
s=0

ρ2s+|m|zl−|m|−2s

· (−1)s(l +m)!

22s+|m|(l − |m| − 2s)!(s+ |m|)!s!
(A12)

as our final expression for the associated Legendre poly-
nomials, which we have generalized to negative values of
m with

P−ml (x) = (−1)m
(l −m)!

(l +m)!
Pml (x) . (A13)

Appendix B: Plane wave expansion

We use the expressions [47]

e−ikr =

∞∑
l=−∞

(−i)|l|J|l|(kr)e
il(ϕk−ϕr) (B1)

if k, r ∈ R2 and

e−ikr =4π

∞∑
l=0

l∑
m=−l

(−i)ljl(kr)Ylm(θk, ϕk)Y ∗lm(θr, ϕr)

(B2)

if k, r ∈ R3 to expand the plane waves using cylindrical
and spherical coordinates.

Appendix C: Real and reciprocal space integral

The integral

In(x, α) =

∞∫
α

dt tne−
z2t2

2 + 1
2t2 (C1)

used for the real space part of the sum fulfils the recursion
relation [41]

In(z, α) = (n+ 3)In+2(z, α)− z2In+4(z, α)

+αn+3e−
z2α2

2 + 1
2α2 , (C2)

which can also be rearranged for increasing values of n
instead of decreasing values. As initial values, two inte-
grals have to be known for odd and even values of n,
so in total 4 integrals. We evaluate the integrals for
n ∈ {−3,−2,−1, 0} directly. For n = −2 and n = 0,
we construct the new integral

zI0(z, α)± iI−2(z, α) =

∞∫
α

dt

(
z ± i

t2

)
e−

(zt∓ i
t
)2

2 ∓iz

= e∓iz
√

2

∞∫
1√
2

(αz∓ i
α )

du e−u
2

=

√
π

2
e∓iz erfc

(
αz ∓ i

α√
2

)
.

(C3)

With this result, the required initial integrals for the re-
cursion over even numbers is
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I0(z, α) =

√
π

2
√

2z

(
e−iz erfc

(
αz − i

α√
2

)
+ eiz erfc

(
αz + i

α√
2

))
(C4)

I−2(z, α) =
−i
√
π

2
√

2z

(
e−iz erfc

(
αz − i

α√
2

)
− eiz erfc

(
αz + i

α√
2

))
. (C5)

In the case n = −1, the integral becomes after a substi-

tution u = z2t2

2

I−1(z, α) =
1

2

∞∫
z2t2

2

du

u
e−ue

z2

4u (C6a)

=
1

2

∞∑
n=0

1

n!

(
z2

4

)n ∞∫
z2t2

2

duu−n−1e−u (C6b)

=
1

2

∞∑
n=0

1

n!

(
z2

4

)n
Γ

(
−n, z

2t2

2

)
. (C6c)

This summation converges quite fast and can be trun-
cated for a numerical evaluation. Similarly, we derive

I−3(z, α) =

∞∑
n=0

1

n!

(
z2

4

)n+1

Γ

(
−n− 1,

z2t2

2

)
. (C7)

With these four starting values we can use the recursion
formula for positive and negative values of n.

The reciprocal space integral reads

∞∫
− γ2

2η2

du

u
une−u+

(γkz)2

4u (C8)

for n either integer or half integer numbers. This integral
can be transformed to the integral Il. For this, we take

the substitution t =
√

2u
kγz resulting in

2

(
k2γ2z2

2

)n ∞∫
− i
kzη

dt t2n−1e−
(kγzt)2

2 + 1
2t2

= 2

(
k2γ2z2

2

)n
I2n−1

(
kγz,− i

kzη

)
, (C9)

which has the exact same form as the real space inte-
gral. Therefore, it can be calculated with Eq. (C2) in
combination with the previously derived initial values.

Appendix D: Sum manipulations

In the main text, the following manipulations of the
summation indices are used.

1. d = 3, d′ = 2

b l−|m|2 c∑
s=0

s∑
n=0

as,n =

b l−|m|2 c∑
s=0

l−|m|−s∑
w=l−|m|−2s

as,w−l+|m|+2s

=

l−|m|∑
w=0

min(l−|m|,b l−|m|2 c)∑
s=d l−|m|−n2 e

as,w−l+|m|+2s

=

l−|m|∑
w=0

min(l−|m|,2w)∑
v=w

a l−|m|−2w+v
2 ,v−w

(D1)

where v in the last line only takes values with the same
parity as l − |m|.

2. d = 3, d′ = 1

b l−|m|2 c∑
s=0

b l−|m|2 c−s∑
n=0

as,n =

b l−|m|2 c∑
s=0

b l+|m|2 c+s∑
w=|m|+2s

as,w−|m|−2s

=

l∑
w=|m|

bw−|m|2 c∑
s=max(0,n−b l+|m|2 c)

as,w−|m|−2s

=

l∑
w=|m|

min(2n−|m|,l)∑
v=w

a
w− v+|m|2 ,v−w

(D2)

where v in the last line only takes values with the same
parity as |m|.
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3. d = 2, d′ = 1

|l|∑
s=0

b s2c∑
n=0

as,n =

|l|∑
s=0

|l|−d s2e∑
w=|l|−s

as,w+s−|l|

=

|l|∑
w=0

min(|l|,2|l|−2w)∑
s=|l|−w

as,w+s−|l|

=

|l|∑
w=0

min(2w,|l|)∑
v=w

av+|l|−2w,v−w

(D3)

Appendix E: Whittaker function

It holds that

M 1+|m|
2 +s,

|m|
2

(z) =
e
z
2 z

1−|m|
2 |m|!

(|m|+ s)!

ds

dzs
(e−zz|m|+s) (E1)

for n ∈ N and m ∈ Z [48, sec. 7.2.4]. With the general-
ized product rule for derivatives

ds

dzs
(f(z)g(z)) =

s∑
n=0

(
s

n

)(
ds−n

dzs−n
f(z)

)(
dn

dzn
g(z)

)
,

(E2)

we obtain the expression

M 1+|m|
2 +s,

|m|
2

(z) = e−
z
2 |m|!

s∑
n=0

(
s

n

)
z

1+|m|
2 (−z)s−n

(|m|+ s− n)!
.

(E3)

Appendix F: Simplifications for r⊥ = 0

The following simplifications in the reciprocal space
sum can be obtained for a vanishing shift perpendicular
to the lattice

S3,lmn,2(k, β, 0) =


√

(2l+1)(l−m)!(l+m)!

(−2)lV2k2
βl−2n

n!( l−m2 −n)( l+m2 −n)
n ≤

⌊
l−|m|

2

⌋
and l −m even

0 otherwise
(F1)

S3,lmn,1(k, β, 0) =

{
(−i)l+1l!

2V1k

√
2l+1
π

βl−2n

n!(l−2n)! n ≤
⌊
l
2

⌋
and m = 0

0 otherwise
(F2)

S2,ln,1(k, β, 0) =

{
2(−i)l√
πV1k

β|l|−2n

4nn!(|l|−2n)! n ≤
⌊
|l|
2

⌋
0 otherwise

(F3)

which reproduce equivalent expressions as those in [20].
Due to the properties of the spherical harmonics and

the complex exponential function, there can also be some
simplifications for the real space sum if there is no per-
pendicular component of the shift r⊥ = 0, and the lattice
is placed along certain high symmetry directions, which
is done for the derivation of the reciprocal space integral
anyhow. These simplifications are listed in Table I.

Appendix G: Direct computation with averaging
over oscillations

To improve the convergence of the direct summation,
it is possible to average over oscillations. The results
shown in Fig. 5 are obtained from the data in Fig. 3.
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TABLE I. Possible simplifications in the case r⊥ = 0 for different lattices

Space dim. d Lattice dim. d′ Lattice position Simplification

3 2 z = 0

Ylm(θ−r‖−R, ϕ−r‖−R) = Ylm
(
π
2
, ϕ−r‖−R

)
=


√

2l+1
4π

(l−m)!(l+m)!(−1)
l+m

2

2l( l+m2 )!( l−m2 )!
e
imϕ−r‖−R l +m even

0 l +m odd

3 1 x = 0 = y Ylm(θ−r‖−R, ϕ−r‖−R) =
√

2l+1
4π

(sgn((−r‖ −R)ẑ))l

2 1 y = 0 e
imϕ−r‖−R = (sgn((−r‖ −R)x̂))l
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FIG. 5. The same parameters as in Fig. 3 are used but here we use a convolution to average over the oscillations to obtain a
faster convergence of the direct summation. Still, the direct approach needs significantly longer.


