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1. INTRODUCTION

The context and motivation for this thesis as well as the objectives, the scientific

questions and the outline are presented in this chapter.

1.1 Background and Motivation

The focus of this work is the modeling of the direct synthesis of Dimethyl ether from

CO2-enriched synthesis gas using different modeling approaches. Dimethyl ether (DME)

is of general interest due to its extensive range of applications. It has been widely used

as an environmentally friendly aerosol propellant [5], as a solvent [6], as feedstock for

the production of lower olefins [7], and other chemicals such as acetic acid [8], methyl

acetate [9], and aromatics [10]. It can also be used for power generation in gas turbines,

boilers, and fuel cells [6, 7, 11], or as an altermative to liquefied petroleum gas [7, 12]

and diesel [5, 7, 13]. In regards to emissions, the combustion of DME produces no par-

ticulate matter, half the NOx, and significantly less noise than diesel combustion [14].

Another attractive feature of DME is its multi-source nature. DME is derived from syn-

gas (CO/H2) produced from a variety of carbon-containing feedstocks including fossil

sources, but more importantly, also a variety of renewable resources such as wood and

biomass [6, 7]. Furthermore, DME can also be produced from captured CO2 using green

hydrogen obtained by electrolysis [15]. Considering theses aspects, implementing DME

as part of an industrial defossilisation strategy contributes to sustainability goals not only

by reducing emissions, but also by reducing the depletion of natural energy resources.

The commercially established process for DME production is the indirect synthesis.

In this process, the syngas is first transformed to methanol, which is subsequently de-

hydrated to DME. The state of the art for the initial process step is the low-pressure

methanol synthesis, which is typically performed with copper composite catalysts [16].

Among these, CuO/ZnO/Al2O3 (CZA) is most commonly used for industrial applica-

tions [17]. This process step is traditionally conducted at pressures up to 10 MPa, and

temperatures between 473 and 573 K [18]. The subsequent methanol dehydration to

DME is conducted in tube reactors at pressures above 1 MPa and temperatures between

523 and 673 K [19, 20], over solid acidic catalysts such as γ-Al2O3, silicium modified

γ-Al2O3 and zeolites [21]. Due to its low cost, high surface area, good thermal and me-

chanical stability, and high selectivity towards DME, the γ-Al2O3 catalyst is the most

widely used [15, 22].
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The alternative production route for DME is the direct synthesis over dual catalyst

systems. In this process, both steps are coupled to produce DME from syngas in one

step. Therefore, only one reactor is needed in the direct route. Additionally, the con-

sumption of methanol by the dehydration reaction leads to a shift of the thermodynamic

equilibrium of methanol synthesis towards the products. As a result, higher one-pass

conversions of the syngas can be achieved with the coupled process under comparable

conditions [6, 23]. The technical feasibility of the direct route has been demonstrated

at pilot scale [24–27]. However, this process is still under development [27], and further

reactor and process optimization are still necessary for commercial application at indus-

trial scale [6].

A powerful design and optimization tool are mathematical models. These act as

a representation of the real world and can be employed for the development of new

technologies, scale-up, technical and economic evaluation of novel process alternatives,

monitoring and control, and many others [28–30]. Hence, reliable predictive models are

essential, especially for a system at the development stage such as the direct DME syn-

thesis. However, the modeling of this process is challenging and the detailed reaction

mechanism has not yet been fully understood [31].

In the lack of mechanistic knowledge, the most common model type for the direct

DME synthesis is semi-mechanistic or lumped. I.e., models built based on mechanis-

tic assumptions and kinetic data, that enable a system representation within a specific

operating window [1, 2, 32–41]. Semi-mechanistic models provide some extrapolation ca-

pability within a reasonable range, and extrapolation is a common practice. However, the

range of validity of these models is strictly speaking limited by the operational window

in which the kinetic data were measured, and by the validity of the assumptions made.

Moreover, specifically for DME, dynamic structural changes of the metallic catalyst [42],

the variation of the dominant pathway of the methanol synthesis [43], and catalyst de-

activation [23, 44], make it almost impossible to correlate a vast array of experiments at

different working conditions using a single lumped model [45].

A promising modeling approach when the detailed reaction mechanism is unknown

is using machine learning to extract and predict input-output relationships in large data

sets. These methods have been used successfully in various areas of the chemical and

process industry, especially as predictive tools [46–48]. The most widespread machine

learning approach for modeling complex phenomena is the use of artificial neural net-

works (ANNs) [49]. Due to their simple formulation, flexibility and robustness, ANNs

have shown to be remarkable predictors for complex processes [50, 51]. Unlike semi-
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mechanistic models, ANNs can be easily adapted to large amounts of multidimensional

data in broad operational windows [48, 52]. One of the main drawbacks of ANNs is

that their predictions are only reliable in the range in which the training data were

measured, and extrapolation is only possible in a narrow range, under a high level of

uncertainty [52, 53]. In general, ANN applications are strictly system specific and the

characteristics of ANNs e.g., activation function, backpropagation algorithm, network

architecture, etc., have to be determined for the individual application [53].

Another promising alternative for the modeling the behavior of chemical reactors

are hybrid models that combine the features of both (semi-)mechanistic and data-based

approaches [54]. It has been stated that these models have a simpler mathematical struc-

ture, provide a higher accuracy than lumped models in a much wider range, and a better

extrapolation ability than data-based models [28, 53, 55]. Some studies on the individ-

ual steps of the DME synthesis have shown the potential of hybrid modeling for related

systems [56–58].

Even though machine learning approaches have proven to have a high potential for

modeling chemical reactors, recent works have highlighted that the adoption of these

methods is still limited in chemical synthesis [49, 59, 60]. This could be confirmed with

an extensive literature search on models for direct DME synthesis, that revealed that most

models for this system are semi-mechanistic, while only a few models are data-based, and

none of the models are hybrid in nature.

1.2 Objectives and Outline

The main objective of this work is the modeling of the direct DME synthesis from

CO2-enriched synthesis gas over the commercial CZA/γ-Al2O3 catalyst system at an in-

dustrially relevant pressure level using semi-mechanistic, data-based and hybrid modeling

approaches.

Three models, each expanding the scope of available models in their categories, are

derived and systematically evaluated with respect to the critical features of each model

type e.g., accuracy, computational burden, interpolation and extrapolation ability and

capability. Numerical simulations are conducted with the three models for the assess-

ment of each model type with regards to these aspects, and experiments are conducted

for the validation of simulation results. Under consideration of the mentioned challenges

and knowledge gaps for each modeling approach, the structure and outline of this work

is described in the following.
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• Chapter 2: In this chapter, a mechanistically sound lumped model is developed to

predict product gas concentrations in a larger range than already modelled in the

literature. As it was shown in a previous work [1], a mixed catalyst bed composition

with an increased CZA-to-γ-Al2O3 ratio intensifies the thermodynamic synergetic

effects of the direct DME synthesis and leads to a higher conversion and product

yield. However, most works investigating the influence of the catalyst bed compo-

sition are experimental in scope. Hence, in this work, catalyst beds with different

CZA-to-γ-Al2O3 ratios higher than one are evaluated and used for modeling. Addi-

tionally, a wide range of carbon oxide ratio (CO2/COx) is investigated to evaluate

the influence of high CO2 concentrations in the feed on the process performance. A

systematic model discrimination procedure is used to establish what is the most ap-

propriate model structure i.e., which mechanistic approach is most suitable for the

system description within the evaluated operating window. Furthermore, intrinsic

kinetic data is used to determine which model-specific parameters enable accurate

predictions in this range and the statistical and physico-chemical significance of the

parameters is analysed and discussed, along with the mechanistic insights obtained

with the model.

• Chapter 3: This chapter presents an ANN designed and trained to predict the

product gas composition measured during integral experiments of the direct DME

synthesis over the commercial CZA/γ-Al2O3 catalyst system at high pressure. First,

the questions regarding the ANN design such as what is a suitable activation func-

tion, backpropagation algorithm, network architecture, data division, and training

strategy? are addressed. Additionally, one of the most frequently asked questions

in the framework of data-based modeling is how much data is necessary to build a

reliable predictive model? This question is addressed by training ANNs with the

same set of data used for parameter estimation of a conventional lumped model [1]

to show whether or not relatively small data sets are sufficient to meet the data

requirements of a simple ANN. After having trained the two models to the same

data, the models’ predictions are compared, assessing their interpolation ability and

extrapolation capability. One of the main questions to answer thereby, is to what

extent, if at all, the data-based model can be extrapolated.

• Chapter 4: A hybrid model is derived an presented in this chapter. The first

question to be answered here is what is a suitable hybrid structure to integrate

available system knowledge with data-based approaches to fill knowledge gaps?.

Since this model is the first of this type for the direct DME synthesis, the perfor-

mance is evaluated in comparison to experimental values and to the predictions of
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the other model types. For the later, the hybrid model was designed to have the

same validity as the data-based and the lumped models evaluated in Chapter 3.

Therefore, the observed discrepancies between model predictions are only due to

the structural differences between the different model types, and the question what

are the advantages of a hybrid model over conventional semi-mechanistic and/or

data-based models in terms of computational burden, extrapolation capability, and

other critical properties of predictive models? is addressed quantitatively on the

example of the direct DME synthesis.

• Chapter 5: This chapter provides a comprehensive summary and discussion of the

results of this work in its entirety. It also highlights the answers to the questions

stated in this section, and it provides an overview of the limitations of this work,

as well as possible future challenges and potentials.
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2. SEMI-MECHANISTIC MODEL

The one-step synthesis of dimethyl ether over mechanical mixtures of Cu/ZnO/Al2O3

(CZA) and γ-Al2O3 was studied in a wide range of process conditions. Experiments were

performed at an industrially relevant pressure of 5 MPa varying the carbon oxide ratio in

the feed (CO2 in COx from 20 to 80 %), temperature (503 – 533 K), space-time (240 – 400

kgcat s/m3
gas), and the CZA-to-γ-Al2O3 weight ratio (from 1 to 5). Factors favoring the

DME production in the investigated range of conditions, are an elevated temperature, a

low CO2 content in the feed, and a CZA-to-γ-Al2O3 weight ratio of 2. A lumped kinetic

model was parametrized to fit the experimental data, resulting in one of the predictive

models with the broadest range of validity in the open literature for the CZA/γ-Al2O3

system.

2.1 Introduction

Dimethyl ether (DME) has many uses in industries. Applications include its use as

a coolant or a propellant, and as an important commodity for the production of lower

olefins. [61] Other potential applications include its use as a diesel substitute or fuel ad-

ditive. [62, 63] Compared with fossil diesel fuels, the combustion of DME produces less

NOx, CO, and particulate emissions, while still achieving a high performance with only

minor modifications of the fuel storage and supply. [21, 64] DME is produced from syn-

thesis gas, which originates from different sources such as coal, natural gas, and waste

materials like biomass. [21, 64, 65] Depending on the raw material and syngas production

process, the composition of the syngas may change in a wide range, resulting in a variable

feedstock for the DME synthesis.

The commercially established production route of DME involves two steps. The first

step is methanol synthesis from syngas, followed by the methanol dehydration step in a

second reactor. An alternative route is the direct or single-step synthesis, where DME

is produced directly from syngas in a single reactor. [21] Potential advantages of a sin-

gle reactor are reduced complexity and investment costs. Also, the direct synthesis is

thermodynamically advantageous compared to the conventional route. [23] The in situ

conversion of methanol by the dehydration reaction shifts the thermodynamic equilib-

rium of methanol synthesis towards the products. As a result, a higher conversion of the
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synthesis gas can be achieved under comparable conditions. [23]

Many dual catalyst systems have been proposed in the scientific literature for the

direct DME synthesis. [66–68] These combine the properties of metallic catalysts for

the methanol synthesis (typically copper-based) [18], and a solid acid catalyst for the

selective methanol dehydration to DME (such as γ-Al2O3, zeolites, and silica-modified

alumina) [17]. In this chapter, mechanical mixtures of the two commercial catalysts of

each step i.e., Cu/ZnO/Al2O3 (CZA) and γ-Al2O3 are considered.

Identifying and quantifying dependencies between process parameters and perfor-

mance is essential for efficient, economically viable and safe process design and operation.

Hence, numerous studies have been conducted investigating the influence of different vari-

ables on the performance of the direct DME synthesis from CO2 rich synthesis gas.

CO2 content in the synthesis gas. Ateka et al. [69] investigated the effect of CO2

content in the feed gas on the thermodynamics of the methanol and DME synthesis. Ng

et al. [41] studied the influence of CO2-to-COx ratios and catalyst bed compositions on

the kinetics of the DME synthesis at 523 K and 5 MPa. Peláez et al. [32] described

the effects of different feed gas compositions on the process performance at a pressure of

3 MPa. These and other works, [15, 23, 70–72] have shown that increasing CO2 content

in the feed decreases the process performance, and that water plays an important role,

not only affecting the reaction kinetics, but also the catalyst structure by deactivation of

the dehydration component γ-Al2O3.

Catalyst bed composition and configuration. With regard to the composition

of the catalyst bed, previous investigations [1, 37, 41, 73, 74] have shown on the basis of

simulated and experimental data that optimization can lead to significant enhancement

of the process performance. For instance, in the studies of Peláez et al. [32] and Peinado

et al. [75] the authors showed that for CO2 rich synthesis gas a significant increase in the

performance is achieved by increasing the CZA-to-γ-Al2O3 ratio. In a previous study [1],

applying a dynamic optimization scheme and experimental validation it has been shown

that these effects hold true also for high pressure (5 MPa) and different compositions of

CO2 rich syngas, including a hydrogen-lean feed. Other studies [1, 73, 76] on the loading

and arrangement of physical catalyst mixtures have shown that homogeneously mixed

catalyst beds achieve similarly good process performance compared to more complex

configurations.
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Quantification and prediction of system behavior. Reliable models able to

predict the process performance in different operating windows are necessary to enable

the optimal reactor and process design, especially if DME synthesis is to be conducted

at dynamic conditions or changing feed compositions. Therefore, several kinetic models

have been proposed in the open literature to quantitatively describe and predict the ef-

fects of process variables on process performance. A widely used modelling approach is

the combination of available models for the methanol synthesis, [77, 78] and its dehydra-

tion. [79] Models derived for the direct DME synthesis under mechanistic assumptions

include the works of Lu et al. [80], Aguayo et al. [39], Ereña et al. [33], and Peláez et

al. [32].

Although so many studies have been carried out for the direct DME synthesis from

CO2 rich synthesis gas, the detail reaction mechanism is still controversial. [31] Therefore,

reliable kinetic models valid in a wide range of conditions at industrially relevant process

conditions are still necessary. In this chapter, a reaction kinetic model is developed, that

is applicable for an extended range of catalyst bed compositions, and process parameters

(CO2 content in the synthesis gas, temperature and space time). Hence, the scope of

available reaction kinetic models is extended, and an useful tool for model-based reactor

and process design and optimization is provided.

2.2 Experimental Setup and Procedures

In this chapter the equipment and methodology for the experimental kinetic investi-

gations are described. First, the laboratory setup is described, then the materials used

are listed, followed by a brief description of the experimental procedures and conditions

at which the kinetic measurements were conducted.

2.2.1 Reactor and periphery

The reactor setup used in this work is presented in detail elsewhere. [71] It consists of

a laboratory tube reactor made of the stainless steel with an internal diameter of 12 mm,

and a total length of 460 mm. The reactor is divided in four independent heating zones,

each of which is surrounded by brass jaws equipped with heating cartridges (Horst GmbH)

to set the temperature at the reactor outer wall. The gas supply is regulated via mass

flow controller (Bronkhorst High-Tech B.V.) by using proportional integral derivative

control. The system pressure is set by using a mechanical pressure regulator (Emerson

Electric Co.). A gas chromatograph G1530A (Agilent Technologies) was used to analyse

the composition of the feed gas and product gas.
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2.2.2 Materials

Commercial catalysts, i.e., Cu/ZnO/Al2O3 (CZA) and γ-Al2O3 (Alfa Aesar) were

used as hydrogenation catalyst for the methanol synthesis and methanol dehydration to

DME, respectively. Relevant properties of the used catalysts are provided in Table 2.1.

The catalysts were ground and sieved to a particle size between 250 and 500 µm. To

avoid hot spot formation, the catalytic bed was diluted with silicon carbide (SiC, Hausen

Mineraliengroßhandel GmbH) of the same size distribution.

Table 2.1: Selected properties of the commercial catalysts.

Properties of the CZA Catalyst [68]
Metal Composition (Cu/Zn/Al) / wt.% 64/29/6
Specific surface area SBET / m2 g−1 98
Pore Volume / cm3 g−1 0.332
Maximum pore diameter / nm 11
Pore size range / nm 5-26

Properties of the γ-Al2O3 Catalyst [81]
Specific surface area SBET / m2 g−1 213
NH3 –TPD peak position in low and high
temperature regions / K

512 and 624

Total acidity / mmol NH3 / gcat

(desorbed NH3 in NH3-TPD)
0.37

Acidity in low and high temperature
regions / mmol NH3 / gcat

0.18 and 0.19

The feed gases, carbon monoxide (CO, 99.97 %), nitrogen (N2, 99.9999 %), hydrogen

(H2, 99.9999 %) and a mixture carbon dioxide/nitrogen (CO2/N2, 50:50 ± 1.0 %) were

purchased by Air Liquid Germany GmbH.

2.2.3 Kinetic measurements

Before performing the kinetic measurements, the CZA share of the catalytic bed was

reduced at atmospheric pressure (5% H2 in N2, at temperatures between 393 and 513 K).

Following the reduction procedure, the catalyst was conditioned until stable catalyst ac-

tivity was achieved, in order to decouple the kinetic measurements from deactivation

effects. The reduction and conditioning procedures are described in detail elsewhere [71]

and summarized in the electronic supplementary information (ESI). The kinetic mea-

surements were performed at a pressure of 5 MPa under variation of the CZA-to-γ-Al2O3

weight ratio (µ), temperature (T ), space time (τ), and carbon oxide ratio (COR),

COR = 100 %
yCO2,in

yCO2,in + yCO,in

. (2.1)
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The experimental conditions as summarized in Table 2.2 were chosen in order to measure

intrinsic kinetics i.e., by minimizing heat and mass transport limitations. The total

catalyst mass in all experiments was 2 g, while the mass of each catalyst was distributed

in different ratios (µ = mCZA/mγ−Al2O3). The mole fraction of H2 in the feed (yH2,in) was

set to 46.5 % to avoid a stoichiometric limitation in all cases. The mole fraction of carbon

oxides in the feed, i.e., yCOx,in = yCO2,in+yCO,in was at 15 %, and the fraction of N2 (yN2,in)

was set accordingly to 38.5 %. The concentrations used for the model parametrization

were determined from the mean value of at least 4 chromatograms per operating point.

Each set point was held for at least 3 hours enabling multiple readings, and confirmation

of stability.

Table 2.2: Conditions for kinetic measurements.

Variable Values
Temperature (T ), K 503, 513, 523, 533
Space-time* (τ), kgcat s m−3

gas 240, 300, 400
Carbon Oxide Ratio (COR), % 20, 40, 60, 80
Catalyst ratio (µ), gCZA/gγ−AL2O3 1, 2, 3, 5

*at standard conditions: p = 101325 Pa, T = 293.15 K

2.2.4 Estimation of model-specific parameters

The Matlab R© (Version R2019a) built-in solver ode45 was used to integrate the system

of differential equations (Section 2.3.1) along the reactor axial coordinate. The model-

specific parameters were fitted to experimental data using the nonlinear least-squares

solver lsqcurvefit and the algorithm trust-region-reflective. The model-specific parameters

were estimated such as to minimize the weighted sum of squared errors,

SSE =

No.Exps∑
n=1

wn [yn − f(xn, θ)]
2. (2.2)

Where yi represent the response values (measured quantities), f(xn, θ) the predicted val-

ues with the nonlinear model function, xn are the predictor values of observation n, θ the

model-specific parameters, and wn the estimated weight for observation n, which indi-

cates the specific contribution of the information contained in the associated observation

to the final parameter estimates.

The parameter estimation took place based on the measured mole fractions of the

components in the product gas, excluding water and methanol since it was not possible

to detect these species accurately over the wide range of conditions shown in Table 2.2.
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Reported values for water and methanol correspond to those calculated based on the

component balances (C, H and O balance). Additionally, experimental data for which

the component balances exhibited a relative error higher than 8 % were excluded from the

parameter estimation (wn = 0). Due to the strong influence of initial parameter values,

and in order to avoid local optimality, the fitting procedure was iteratively repeated until

the relative difference between the parameters obtained in two consecutive iterations was

lower than 5 %. The Matlab built-in function nlparci was used to calculate the 95 %

confidence intervals of the parameter estimates using the residuals and the Jacobian

matrix of the fitted model, which are both output arguments of lsqcurvefit. Additionally,

correlation coefficients were computed using Equation 2.3,[82]

ρi,j =
υi,j√
υi,i υj,j

. (2.3)

Here, υi,j represents the elements of the covariance matrix of the parameters of the fitted

model. The covariance matrix Vθ is calculated with the variance of the experimental

fluctuations s2 (assumed to be constant over all experiments) and the Jacobian matrix J

by,

Vθ = s2(JTJ)−1. (2.4)

Correlation coefficients |ρi,j| ≥ 0.95 are assessed to indicate a strong parameter correla-

tion. [83]

2.3 Mathematical model

In this section, the mathematical model consisting of the reactor model (balance

equations) and the reaction kinetic model (rate expressions) is presented.

2.3.1 Reactor model

The change of the mole fraction of the components along the reactor’s axial coordinate

can be described by the balance equation of an ideal plug flow reactor (Equation 2.5).

This simplified form of the general material balance of a fixed-bed reactor is admissible for

the characteristics of the lab-scale reactor, and the conditions at which it was operated.

Isothermal operation was achieved by diluting the catalyst bed with silicon carbide (SiC),

and diluting the feed gas with inert N2. Temperature gradients did not exceed 2 K in

any of the measurements. Hence, the assumption of isothermal operation applies and

the energy balance can be omitted. All measurements took place under steady state

conditions, which was verified experimentally. Furthermore, it was proven by the means

of a priori criteria, that no significant influence of mass or heat transport processes took

place, and that the assumption of plug flow applies. Finally, the pressure drop in the
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fixed bed was determined to be negligible by the means of correlations. Values to support

the mentioned assumptions are reported in Table A.1 in the ESI. It can be concluded

that the intrinsic reaction rates were measured in all experiments and that the reactor

can be described by the balance equations of an ideal plug flow reactor. Furthermore,

the volume contraction caused by reaction can be accounted for by Equation 2.6.

dyi
dz

=
RT Z

u p

(
Ri − yi

N∑
k

Rk

)
, (2.5)

du

dz
=
RT Z

p

N∑
i

Ri. (2.6)

In Equations 2.5 and 2.6, yi is the mole fraction of component i, z represents the po-

sition in the axial coordinate, R is the universal gas constant in J mol−1 K−1, T is the

temperature in K, p is the pressure in Pa, u is the gas velocity in m s−1, ϑi,j is the

stoichiometric coefficient of component i in reaction j, and N is the number of compo-

nents in the system. Z is the compressibility factor of the mixture, which takes into

account possible deviations from the ideal gas behavior at the high pressure (5 MPa)

considered in this investigation. The Peng-Robinson equation of state (PR-EoS) [84] was

chosen to calculate Z, since it has already been successfully applied to the system under

consideration, [1, 85] and it provides accurate calculations for light gases, alcohols and

hydrocarbons. [86] In addition, van der Waals mixing rules [84] were used to account for

inter-molecule interactions.The molar rate of depletion or formation of component i due

to chemical reaction (Ri in mol m−3 s−1) is defined by:

Ri =
J∑
j

ϑi,j r
ν
j , (2.7)

with

rνj = (1− εbed) ρcat,j ζcat,j r
m
j . (2.8)

In the above equations, rνj and rmj are the volume and mass specific rates of reaction j

in mol m−3 s−1 and mol kg−1 s−1, εbed is the porosity of the catalyst bed estimated to be

0.39, ρcat,j is the density of the catalyst that promotes reaction j, i.e., the densities of the

CZA and the γ-Al2O3 catalysts with the respective values of 1761.3 kg m−3 and 667.9 kg

m−3, and J is the number of reactions. Finally, ζcat,j stands for the volume fraction of

the catalyst that promotes reaction j calculated by,

ζCZA =
VCZA

VCZA + Vγ-AL2O3 + VSiC

, (2.9)

ζγ-AL2O3 =
Vγ-AL2O3

VCZA + Vγ-AL2O3 + VSiC

. (2.10)

Where VCZA, Vγ-AL2O3 and VSiC are the volumes of CZA, γ-Al2O3 and SiC respectively.
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2.3.2 Reaction kinetic model

For the initial model discrimination, the available experimental data were simulated

using eight different kinetic models from the open literature. [1, 32, 33, 36, 37, 39, 40, 87]

Subsequently, the five models with the lower residual squared sum were parametrized to

fit the data. The previous model [1] exhibited the best agreement with the experimental

data acquired for this contribution, which can be attributed to similar operating con-

ditions, and to the fact that in both contributions the same catalysts (same supplier),

and pre-treatment procedures were employed. The mechanistic assumptions and model

structure were chosen for fine-tuning, and the model structure that enabled the best fit

is presented in the following. Further information on the initial model discrimination

is presented in the ESI, along with a compilation of the rate expressions and specific

parameters of the tested models (Table A.2). The new estimated model parameters are

presented in Section 2.4.2.1 followed by the statistical evaluation of the estimates.

The reaction network considered in this model consists of the CO2 hydrogenation

(Reaction 1), the methanol dehydration to DME (Reaction 2), and the water gas shift

reaction (Reaction 3). Reactions 1 and 3 are assumed to be promoted by the CZA cata-

lyst, while reaction 2 is promoted by γ-Al2O3.

Reaction 1: CO2 + 3 H2 −−⇀↽−− CH3 OH + H2O

Reaction 2: 2 CH3OH −−⇀↽−− CH3OCH3 + H2O

Reaction 3: CO + H2O −−⇀↽−− CO2 + H2

The reaction rate expressions were postulated based on the general Hougen-Watson

formulation,

r =
(Kinetic Term)(Potential Term)

Adsorption Term
. (2.11)

The kinetic term equals the rate constant of each reaction j (kj). The potential

term, describing the driving force of the reaction i.e., the distance from thermodynamic

equilibrium, is defined for each reaction j as follows,

Potential Termj =
∏

i,j,ν<0

f
|νi,j |
i − 1

Kf.j

∏
i,j,ν>0

f
|νi,j |
i . (2.12)

The adsorption term is generally defined by,

Adsorption Term =

(
1 +

∑
i

Kads,i fi

)n

. (2.13)

It accounts for the inhibition caused by adsorbed species on the catalytically ac-

tive surface, and hence it must be defined for each component of the catalyst mixture.
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The postulated model includes the adsorption of CO2, CO and dissociated H2 on the

CZA (Equation 2.14), whereas no adsorption on the dehydration catalyst was consid-

ered (Equation 2.15). Furthermore, the adsorption term has a different influence on the

rates of the CO2 hydrogenation and the WGSR, with n=3 and 1 respectively. [1, 80] In

Equations 2.12 and 2.13, fi is the fugacity of component i in bar, Kf,j is the equilib-

rium constant of the same reaction, νi,j is the stoichiometric coefficient of component i

in reaction j, and Ki is the adsorption constant of component i.

Ads. TermCZA = 1 +
√
KH2 fH2 +KCO2 fCO2 +KCO fCO (2.14)

Ads. Termγ−Al2O3 = 1 (2.15)

The resulting rate expressions for the three reactions are presented in Equations 2.16 to

2.18.

rm1 =

k1

[
fCO2 f

3
H2
− 1

Kf,1
fMeOH fH2O

]
(1 +

√
KH2 fH2 +KCO2 fCO2 +KCO fCO)3

(2.16)

rm2 = k2

[
f 2

MeOH −
1

Kf,2

fDME fH2O

]
(2.17)

rm3 =

k3

[
fCO fH2O − 1

Kf,3
fCO2 fH2

]
(1 +

√
KH2 fH2 +KCO2 fCO2 +KCO fCO)

(2.18)

The reaction rate and adsorption constants (kj and Ki) are each calculated using modified

Arrhenius and the Van’t-Hoff equations (Equations 2.19 and 2.20). This re-parametrization

reduces the correlation between the frequency factor and the activation energy, as well as

between the sticking coefficients and the enthalpy of adsorption. [88] Other advantages

of using re-parametrized expressions are lower computational costs and higher robust-

ness in parameter estimation with the least squares algorithm. [89] These are particularly

relevant for the fitting of large data sets, as used in this work.

kj = exp

[
k∗0,j + E∗A,j

(
T − TR
T

)]
(2.19)

Ki = exp

[
K∗i + ∆H∗ads,i

(
T − TR
T

)]
(2.20)

The modified parameters are related to the parameters of the traditional Arrhenius equa-

tion according to Equation 2.21 and Equation 2.22. [82]

k∗0,j = ln(k0,j)−
EA,j
RTR

(2.21)

E∗A,j =
EA,j
RTR

(2.22)
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the same applies to the Van’t-Hoff equation as follows,

K∗i = ln(Ki)−
∆Hads,i

RTR
, (2.23)

∆H∗ads,i =
∆Hads,i

RTR
. (2.24)

The reference temperature (TR) was calculated with Equation 2.25 based on the temper-

ature of each experiment n. [90]

TR =

(
1

No.Exps

∑
n

1

Tn

)−1

(2.25)

The equilibrium constants Kf,j of each reaction j are calculated using Equation 2.26, [91]

the temperature T in K, and the parameters in Table 2.3.

Kf,j = 10

(
Aj
T
−Bj

)
(2.26)

Table 2.3: Parameters for the calculation equilibrium constants fitted to Equation 2.26 [1].

Parameter Reaction 1 Reaction 2 Reaction 3
A 3014.4029 1143.9494 2076.2131
B 10.3856 0.9925 2.0101

The equilibrium constants are dimensionless for reactions 2 and 3 (methanol dehydra-

tion to DME, and WGSR), while Kf,1 (the equilibrium constant of CO2 hydrogenation

to methanol) has the units bar−2, in accordance with the law of mass action.

For performance evaluation, the conversion of component i (Xi), and the carbon-

normalized yield and selectivity of component i from COx (Yi and Si) were computed

based using Equations 2.27 to 2.29, respectively.

Xi =
ṅi,in − ṅi,out

ṅi,in
(2.27)

Yi =
(ṅi,out − ṅi,in)ηc,i
(ṅCO + ṅCO2)in

(2.28)

Si =
(ṅi,out − ṅi,in)ηc,i

(ṅCO + ṅCO2)in − (ṅCO + ṅCO2)out

(2.29)

In these equations, ṅi is the molar flow of component i, ηc,i is the number of carbon

atoms in the same component, and the subscripts “in” and “out” refer to the respective

quantities at the reactor inlet and outlet.

15



2.4 Results and discussion

In this section, experimental results will be presented (Section 2.4.1), followed by the

modelling results and mechanistic analysis (Section 2.4.2). Since most of the studies

for the direct DME synthesis have been carried out with a catalyst weight ratio of one

(µ=1), this catalyst ratio is treated here as the reference composition for the evaluation of

experimental and simulations results. The results are presented for the highest space-time

(at which the effects are more pronounced) unless otherwise stated.

2.4.1 Experimental results

This section presents an overview of the effects observed experimentally. To deter-

mine causality and for a comprehensive understanding of the phenomena, the reactions

kinetics are studied and analyzed in Section 2.4.2 in the light of the derived kinetic model

and further kinetic studies from the literature.

For an initial qualitative analysis of the experimental results, the measured conversion

of COx (XCOx) and DME yield (YDME) are shown in Figure 2.1 and 2.2 as a function

of the temperature and the CZA-to-γ-Al2O3 ratio (µ) for the four investigated COR

levels (20, 40, 60 and 80 %). To create this graphical representation, the values between

the experiments were calculated using lowpass interpolation with the Matlab R© function

interp. The maximal conversion attained for the different inlet feed composition varies

from 19.8 % (COR=80 %, T=523 K, µ=2) to 42.6 % (COR=20 %, T=533 K, µ=2). In

general, low CORs, i.e., low CO2 contents in the feed, lead to higher conversions at all

temperatures. The highest conversions were reached in all cases with µ=2, whereas the

conversions attained with the reference catalyst bed composition (µ=1) are the lowest.

Even at high temperatures relatively low conversions are attained with the reference µ=1

in comparison to those reached with the other catalyst beds. It is obvious that the

temperature at which the maximal conversion was measured, decreases with increasing

CORs.

The DME yield, displayed in Figure 2.1, exhibits a strong temperature dependency.

The maximal YDME varies between 4.6 % (COR=80 %, T=533 K, µ=2) and 27.9 %

(COR=20 %, T=533 K, µ=2). Overall, lower CORs lead to higher yields of DME, and

analogous to the conversion of COx, the highest yields were attained with a CZA-to-γ-

Al2O3 ratio µ=2. The response surfaces are very similar for all CORs, however, it can be

observed that with increasing COR, the region at which the highest yields are reached

migrates towards the upper left corner i.e., towards high temperatures and low µ. At

533 K and 20 % COR for example, high yields are attained with all the catalyst beds,

whereas at 80 % COR, the yields reached at this temperature are high with µ up to two,
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Figure 2.1: Conversion of COx determined experimentally and plotted as a function of
the temperature (T ) and the CZA-to-γ-Al2O3 ratio (µ) for nominal CORs of
a) 20 % b) 40 % c) 60 % d) 80 %. Experimental conditions summarized in
Table 2.2.

and significantly lower with µ of three and higher.

To enable a quantitative analysis of the observed effects, representative results at the

minimal and maximal temperature are investigated more in detail in the following. The

COx conversion is depicted in Figure 2.3 for the investigated CORs as a function of the

CZA-to-γ-Al2O3 ratio, at the maximal and minimal temperature of 533 K and 503 K

(Figure 2.3a and 2.3b). At 533 K, the COx conversion increased for all measured feeds

when increasing µ up to a value of 2. This effect was most pronounced for a COR of 20 %

where the relative enhancement of the conversion was of 47 %. For a COR of 80 % the

relative enhancement amounted 19 %. A further increase of the CZA-to-γ-Al2O3-ratio

had a negative effect on the conversion compared to the conversion obtained with µ=2,

but in all cases, the attained values were still higher than in the reference case (µ=1). The

only exception to this observation was for COR=80 % and µ=5, where the conversion

decreases from 14 % (µ=1) to 13 % (µ=5).
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Figure 2.2: Yield of DME determined experimentally and plotted as a function of the
temperature (T ) and the CZA-to- γ-Al2O3 ratio (µ) for nominal CORs of a)
20 % b) 40 % c) 60 % d) 80 %. Experimental conditions summarized in
Table 2.2.

At a temperature of 503 K, the conversion of COx shown in Figure 2.3b for all bed

compositions and CORs is lower than for the corresponding values attained at 533 K,

which can attributed to the general dependency of the reaction rates on the temperature.

For all CORs, a maximum at µ=2 was detected. With this CZA-to-γ-Al2O3-ratio, a

relative conversion enhancement of 88 % and 52 % was obtained compared to µ=1 at

the minimal and maximal COR levels of 20 % and 80 % respectively. Comparable to the

observations made at 533 K, the effect of the catalyst bed composition on the conversion

is more pronounced at lower CORs. Furthermore, it can be observed that with the refer-

ence catalyst ratio µ=1, the attained COx conversion is at a close value of approx. 14 %

regardless of the CO2 content in the inlet feed, in contrast to the other experiments with

increasing COx conversion as the COR is decreased.

In general it was observed that decreasing amounts of CO2 in the feed gas (i.e.,

decreasing CORs) lead to higher conversions, and to more pronounced effects of the cat-
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alyst bed composition. The beneficial effect of low CO2 concentration in the synthesis

gas has been observed in other kinetic studies of both the methanol and the DME syn-

thesis. [32, 41, 44, 77, 92, 93] Regarding the surface chemistry, low CO2 concentration

prevents sintering of the CZA catalyst, and promotes catalyst morphology that enhances

the catalytic activity. [42, 44] From a thermodynamic perspective, high CO2 feed concen-

tration shifts the equilibrium of the WGSR towards the educts (H2O and CO), resulting

in increased water formation and subsequently in decrease of the methanol dehydration

rate. [32, 41] This explanation is in accordance with the findings in this work and is

further confirmed by increased methanol selectivity at high CORs discussed in the fol-

lowing. In Addition, this effect is explained on the basis of mechanistic considerations in

Section 2.4.2.2.
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Figure 2.3: COx conversion as a function of the CZA-to-γ-Al2O3 ratio (µ) for CORs from
20 % to 80 %. a) T=533 K b) T=503 K.

In Figure 2.4 the DME and methanol yields are shown for the minimal and maximal

CORs 20 % and 80 %, and for the minimal and maximal temperatures 503 K and 533 K.

Since the yield is calculated based on the reacted COx, and no other carbon-containing

compounds were detected in a significant amount during the experiments, the yield is

calculated only for methanol and DME. However, as discussed further in Section 2.4.2,

CO and CO2 formation was evidenced at some specific conditions.

At 533 K and a COR of 20 % (Figure 2.4a), the converted COx in the feed gas reacted

to form mainly DME. In general, at this temperature and COR, an increased amount of

the CZA catalyst led to a higher DME production than that attained with the reference

catalyst bed (µ=1). The highest relative enhancement of the DME yield was 30.3 % with

µ=2. A further increase of µ=3 and 5 also enhanced the yield of DME but to a lower
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extent (enhancement of 22.8 % and 13.2 % respectively compared to the yield attained

with the reference µ=1). At the same temperature and a COR of 80 % (Figure 4b),

the methanol yield was at least twice as high as that of DME. An increased µ did not

increase the DME yield which amounts 4.6 % at µ=1 and 2, and was lower otherwise.

Comparing the results shown in Figure 2.4a and 2.4b (and also Figures A.3a and A.3b),

a shift of the selectivity from DME to methanol is observed when increasing the COR

from 20 to 80 %. The water concentration is low at high CO contents in the feed (water

removal via WGSR), and high at a high level of CO2. [41] Obviously, presence of water

is thermodynamically unfavorable for the dehydration, explaining the observed methanol

concentration at high CORs. This conclusion is supported by the mechanistic analysis

provided in Section 2.4.2.2.

In Figure 2.4c and 2.4d it is observable that for a temperature of 503 K, the yield

of methanol is higher than that of DME for both COR levels. An enhancement of the

DME yield compared to the reference case is still observable at a COR of 20 % (38.2 %

and 4.3 % with µ=2 and 3), whereas at 80 % COR, an increase of the µ proved to be

disadvantageous for the DME yield. The lowest DME yields were observed at 503 K, a

COR of 80 % and µ=3 and 5.

The catalytic activity of the CZA/γ-Al2O3 system is a function of combined physic-

ochemical characteristics such as Cu surface area, dispersion, and acidity. [94–96] Fur-

thermore, the setup of reaction conditions have also shown to be a key factor. [75] While

the study of the catalysts properties was out of the scope of this work, a wide range of

conditions was covered during the experimental program. The improvement observed by

increasing the CZA-to-γ-Al2O3 ratio reveals that the number of required acid sites has

already been significantly exceeded when equivalent catalysts masses are used. [1, 32]

Therefore, an increase of the catalyst ratio leads to an overall enhancement of the syn-

ergetic effects of the direct DME synthesis i.e., the faster methanol formation due to an

increased amount of CZA catalyst has a positive effect on the methanol dehydration even

though the amount of the catalyst that promotes this reaction is reduced. Overall, it was

observed that the highest enhancement of the DME yield was attained at a CZA-to-γ-

Al2O3 ratio of µ=2, and that higher ratios lead to a minor improvement, or even to a

decrease of the DME production. Additionally, it was observed that the methanol yield

increased with increasing CZA-to-γ-Al2O3 ratio at all conditions (Figure 2.4a to 2.4d) as

also described in other kinetic studies. [32, 75, 94] Hence, the evidenced enhancement of

the DME yield is associated to the higher conversion, i.e., the conversion of COx increased

more than the DME selectivity decreased, leading to higher DME yields than with the

reference catalyst bed.
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2.4.2 Modeling Results

Predictive models able to make accurate predictions over a wide range of conditions

are of considerable importance as a basis for model-based optimization and for the design

of novel reactor concepts. The respective contribution of this chapter is a reaction kinetic

model for direct DME synthesis suitable these purposes. In Section 2.4.2.1., the results

of the parameter estimation are presented together with an analysis of the achieved

goodness of fit and statistical significance of the parameter estimates. In Section 2.4.2.2,

the phenomena experimentally observed (Section 2.4.1) are explained taking into account

the derived kinetic model. In addition, it is described to what extent these findings are

consistent with the results and new mechanistic insights of other studies.

2.4.2.1 Reaction kinetic model

In this section, the resulting kinetic model, i.e., the parameter estimates and model

evaluation are discussed. As mentioned briefly in Section 2.3.2, the presented model was

the one that enabled the best fit of the experimental data within the entire range of
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conditions investigated in this work. The derived model chosen after a discrimination

procedure agrees with the one derived from mechanistic assumptions by Lu et al. [80]

and used in a previous work. [1] It considers the linearly independent reactions CO2

hydrogenation and WGSR, along with the methanol dehydration to DME. In agreement

with the mentioned studies, including no adsorption term for the dehydration catalyst,

and the adsorption of CO, CO2 and dissociated H2 on the CZA catalyst led to the

best representation of the experimental data. Considering the adsorption of water and

methanol as done in other kinetic studies of the direct DME synthesis [32, 35, 39] worsen

the quality of fit, and was therefore discounted from the model structure. The goodness

of fit for CO, CO2, H2 and DME with the resulting model is represented by the parity

diagrams in Figure 2.5 with the measured quantities plotted against the numerically

predicted ones.

The model-specific parameters were estimated based on 186 experimental data points.

The mean relative error between the predicted and measured molar fractions over all data

amount to 2.7 % for CO2, 7.2 % for CO, 1.0 % for H2, and 22.3 % for DME. The deviation

of the DME predictions is mostly attributed to an over-prediction of the data measured

with µ=5. The data taken with this catalyst bed exhibits the lowest DME production

and low DME mole fractions in the product gas as shown in Figure 2.2. Hence, these

measurements have a high signal-to-noise ratio, and a lower measurement accuracy, to

which the larger deviations can be attributed to. Nonetheless, the deviation of the DME

predictions is considered acceptable, especially regarding the extensive range in which the

experiments were measured. Furthermore, the predictions lie with a clear tendency and a

weak scattering along the bisector (y = x), and no systematic deviations are identifiable

for any of the species.

The resulting parameter estimates are shown in Table 2.4 along with the respective

95 % confidence intervals. The adsorption parameters were fixed. Hence, no statistical in-

formation is available on these estimates. In regards to the rate constants, the confidence

intervals demonstrate that all re-parametrized pre-exponential factors and activation en-

ergies are statistically significant. Moreover, the width of the confidence intervals is less

than 13 % of the respective estimates for five out of six parameters. The widest confidence

interval was that of the re-parametrized activation energy of the CO2 hydrogenation, with

a width of 29 % of the estimated value, which underlines the high statistical significance

of the estimated kinetic parameters.

The reference temperature was calculated as TR= 517.43 K using Equation 2.25 for

the 186 experiments used for fitting.

According to Equations 2.22 and 2.24 E∗A,j and ∆H∗ads,i are dimensionless, and k∗0,j

is based on the mass of the catalyst that promotes each reaction, i.e., CZA for the CO2
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Figure 2.5: Parity plots for mole percent of CO, CO2, H2 and DME in the product
gas for all data (186 experiments) and simulations conducted with the semi-
mechanistic model.

hydrogenation and the WGSR, and γ-Al2O3 for the methanol dehydration to DME.

The adsorption constants Ki were calculated with Equation 2.20 at the different tem-

perature levels to determine the influence of the adsorption of each species on the adsorp-

tion term (the reported value for H2 corresponds to
√
KH2 according to Equation 2.14.

The calculated values are shown in Table 2.5. The CO adsorption has clearly the lowest

adsorption constant, in agreement with the studies of Lu et al. [80] and Delgado Otalvaro

et al. [1] where the same adsorption term was employed. The constant of CO2 adsorption

exhibited both in Delgado Otalvaro et al. [1] and in the present work the highest value.

This is also consistent with the investigations of Klier et al., [93] where a strong CO2

adsorption on the metallic catalyst was observed. All adsorption constants shown in Ta-

ble 2.5 decrease with increasing temperature due to the exothermal nature of adsorption.

Binary correlation coefficients (ρi,j) were computed to assess the correlation between

the parameter estimates (Table 2.6). The absolute values of all the non-trivial correlations

coefficients confirm that using the re-parametrized Arrhenius and Van’t-Hoff equations
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Table 2.4: Estimated parameters in re-parametrized form according to Equations 2.19 and
2.20, and 95 % confidence intervals. The non re-parametrized parameters are reported in
the appendix, in Table A.3.

Reaction k∗0,j E∗A,j
CO2 hydrogenation 3.19 (± 0.04) mol

kg s bar4
7.60 (± 2.20)

MeOH dehydration -5.72 (± 0.07) mol
kg s bar2

24.58 (± 3.22)

WGSR 1.74 (± 0.11) mol
kg s bar2

40.77 (± 4.96)

Adsorbate K∗i ∆H∗ads,i

CO2 4.68 bar−1 -1.25
CO -34.04 bar−1 -79.81
H2 7.13 bar−1 -5.04

Table 2.5: Adsorption constants at different temperatures.

T = 503 K T = 513 K T = 523 K T = 533 K
KCO2/bar−1 111.9 109.2 106.6 104.1
KCO/bar−1 1.6E-14 3.2E-15 6.9E-16 1.6E-16√
KH2/bar−0.5 37.9 36.0 34.3 32.8

(Equations 2.19 and 2.20) led successfully to a weak correlation between the parameter

estimates. In addition, the convergence time of the fitting was reduced by about 60 %

after applying re-parameterization.

Table 2.6: Binary correlation coefficients of parameter estimates.

ρi,j k∗0,1 E∗A,1 k∗0,2 E∗A,2 k∗0,3 E∗A,3
k∗0,1 1 -0,53 -0,83 0,40 -0,39 0,28
E∗A,1 1 0,38 -0,85 0,31 -0,36
k∗0,2 1 -0,44 -0,07 -0,11
E∗A,2 1 -0,11 -0,03
k∗0,3 1 -0,28
E∗A,3 1

2.4.2.2 Mechanistic analysis

Using the derived model, the proposed reaction mechanism is elucidated in the fol-

lowing based on representative results. The influence of the COR, the temperature, and

the CZA-to-γ-Al2O3 ratio on the reactions rates is discussed, as well as the observed CO

and CO2 formation during reaction.
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Effect of the COR. In Section 2.4.1 it has been shown that high conversions and

yields of DME are attained at the lowest COR levels. This was observed at all conditions

in the investigated operating range, although at differing extent. This is in accordance

with former kinetic studies of the methanol, [44, 77, 93] and DME synthesis [32, 41] which

have shown that an optimal CO2 feed concentration exists, at which both the methanol

formation and subsequently the DME formation are favored, while exceeding this con-

centration leads to reduced conversions and yields. Sintering of Cu crystallites in the

CZA catalyst takes place with CO/H2 and CO2/H2 feeds due to Cu segregation from

ZnO, and due to the presence of water respectively. However, sintering is prevented at

the optimal CO2 feed concentration. [44] Since no optimal value for the COR within the

investigated operating range was observed, it can be concluded, in agreement with other

studies, [32, 41, 44, 93] that the optimal value is probably less than or equal to 3 %,

which was the lowest CO2 concentration considered in this chapter (at 20 % COR).

To elucidate the effect of the COR on the reactions rates, these have been depicted

in Figure 2.6a to 2.6c at exemplary conditions for the minimal and maximal CORs of

20 % and 80 %. Additionally, the mole percentage profiles of water, methanol and DME

are displayed in Figure 2.6d (Figure S4 in the ESI includes the profiles of CO and CO2,

which were left out here for better visualisation). It is shown that the rates of the three

reactions, i.e., CO2 hydrogenation, methanol dehydration and WGSR, are higher at 20 %

COR than at 80 % COR. This effect is straight forward for the WGSR where CO2 is

a product, and an increased product concentration shifts the equilibrium towards the

educts according to the Le Chatelier’s principle. For the CO2 hydrogenation on the other

hand, it may appear contradictory that the rate is lower at higher CORs since CO2 is

a reactant in this reaction. This has been attributed to several factors in the literature

such as to the presence of water in high concentrations leading to sintering of the Cu

particles, [44] to thermodynamic limitation of the methanol formation, [6] or to strong

CO2 adsorption on the metallic catalyst. [93] CO2 adsorption is also believed to be im-

portant in this study, which is accounted for in the model by the strong influence of CO2

concentration on the adsorption term (Equation 2.14) and Section 2.4.2.1), and by the

considerable influence of the adsorption term on the CO2 hydrogenation (Equation 2.16).

The strong influence of the adsorption term leads to an overall decrease of the reaction

rate with increasing CO2 in the feed, even though the potential term of the forward re-

action is indeed higher at higher CORs.

The rate of the WGSR (Figure 6c) takes on negative values at the reactor entrance at

both CORs, indicating that the reverse water gas shift reaction (rWGSR) is faster than

the WGSR at the inlet conditions. At 80 % COR the rWGSR is particularly fast (high
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negative values, min. rv3=-3.7 mol m3 s−1 at z=0), which can be attributed to the high

concentrations of CO2 and H2 in the feed. Although a high hydrogen feed concentration

is necessary to avoid the stoichiometric limitation of CO2 hydrogenation to methanol, the

high feed concentration of both, CO2 and H2, accelerates the rWGSR instead of the CO2

hydrogenation as evidenced, leading to water and CO production. [70, 97] The simulations

show that the rWGSR prevails over the WGSR for the initial 10 % bed length, resulting

in a pronounced increase of water concentration (Figure 2.6d, blue dashed line). From a

bed length beyond 10 %, the water gas shift equilibrium (reaction 3) shifts to the right

side and rv3 takes on nearly constant positive values over the entire following bed length,

accompanied by reduced overall water formation as water is partially consumed by the

WGSR. The widely accepted mechanism of methanol formation by CO2 hydrogenation

over copper-based catalysts was disputed by Gaikwad et al. [43] It was shown by means

of space-resolved experiments that the main carbon source for methanol formation from

CO2 rich feeds depends on the reaction conditions, in particular on the temperature. The

authors concluded that at 533 K and CO2/H2 feeds, methanol formation takes place via

CO hydrogenation formed by the rWGSR at the reactor inlet. The simulation results

are in accordance with that conclusion. i.e., the rWGSR takes place at the reactor

inlet, followed by the CO hydrogenation, in the model described by the WGSR and the

subsequent CO2 hydrogenation. Which also explains the higher conversions and yields

at high CO feed concentration. At this COR, the rWGSR prevails only at the reactor

entrance (up to 0.8 % reactor length), and the rate does not reach such high negative

values (min. rv3=-2.2 mol m3 s−1 at z = 0). As a result, the water concentration at

the reactor entrance rises steeply, but does not reach such a high level as at 80 % COR.

Although water has shown to limit the catalyst deactivation by coke deposition [33,

98] high water concentration in is indisputably detrimental for direct DME synthesis,

especially when using γ-Al2O3 as the dehydration component. [64, 99] This underlines the

importance of water removal, e.g., by permselective membranes [100, 101] which could

also be axially tailored to counteract the observed steep water increase at the reactor

entrance shown here as well as in other kinetic studies. [102, 103]

Clearly, the methanol dehydration to DME is also affected strongly by the COR, as

shown in Figure 2.6b. At 20 % COR the concentration of methanol is higher than the

concentration of water for the largest portion of the reactor (solid lines in Figure 2.6d).

Conversely, at 80 % COR the water concentration is higher than the concentration of

methanol (dashed lines in Figure 2.6d). Reduced methanol dehydration rate at high

CORs has been explained in the literature by deactivation phenomena of the γ-Al2O3,

and by a strong adsorption of methanol and/or water on the surface of the dehydration

catalyst. [39, 41, 79, 80, 104] In the experiments in this work, no activity drop was ob-

served and, as mentioned in Section 2.3.1, the model that enabled the best fit to the
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Figure 2.6: Reaction rates a) CO2 hydrogenation, b) MeOH dehydration, c) WGSR and
d) mole percentage profiles of water, methanol and DME at T = 533 K,
µ = 2.
(—) Solid lines: 20 % COR, (- - -) Dashed lines: 80 % COR.

experimental data is based on the assumption that no adsorption on the dehydration

catalyst takes place. [1, 80, 99] Hence, the influence of the COR on the dehydration rate

is accounted for by thermodynamics only. I.e., considering the stoichiometry of the dehy-

dration reaction it is clear that high methanol and low water concentrations as evidenced

at 20 % COR are thermodynamically favorable for DME formation, while low methanol

and high water concentrations as exhibited at 80 % COR are disadvantageous. As a

result, the methanol dehydration is significantly slower at 80 % COR than at 20 % COR

explaining the decreasing DME formation with increasing CORs observed experimentally

(Figs. 2.2, 2.4a and 2.4b).

Effect of the temperature. The reaction rates, and the mole fractions of DME,

water and methanol are depicted in Figure 2.7 at the minimal and maximal evaluated

temperatures, i.e., at 503 K and 533 K for a COR of 20 %. Due to the general tem-

perature dependence of the reaction rate constants, all reactions proceed faster at 533 K
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than at 503 K (Figure 2.7a to 2.7c). In addition to the temperature dependence of the

rate constants, the dependence of the adsorption rates is also relevant when assessing the

influence of temperature based on the proposed model. Adsorption constants decrease

with increasing temperatures due to the exothermal nature of adsorption processes (Ta-

ble 2.5). Since the adsorption terms have an indirect proportional effect on the reaction

rates (Equation 2.11), the slower adsorption also contributes to the higher rates of the

CO2 hydrogenation and WGSR evidenced at higher temperatures.
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Figure 2.7: Reaction rates a) CO2 hydrogenation, b) MeOH dehydration, c) WGSR and
d) mole percentage profiles of water, methanol and DME at µ = 2 and
COR = 20 %.
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A factor not considered by the model but potentially favors methanol dehydration

at elevated temperature is enhanced water desorption from the dehydration catalyst

surface, [105] leading to an increased number of available active centres for the dehy-

dration reaction. The effect of the temperature on the concentrations profiles is shown

in Figure 2.7d. Compared to 503 K (solid lines), at 533 K (dashed lines) the methanol

concentration is higher for 55 % of the reactor length, while the water concentration is

lower for almost the entire reactor. Hence it is obvious that at 533 K, the driving force of
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the dehydration reaction is increased, leading to significantly higher DME concentrations

and DME yields, as also determined experimentally (Figs. 2.4a and 2.4c). Furthermore,

the concentration increase for DME is significantly higher than for methanol, confirming

that higher temperatures have a positive effect on DME selectivity [75] (Figures A.2 and

A.3).

In the study of Gaikwad et al., [43] for methanol synthesis at 453, 533 and 613 K, the

authors concluded that at 533 K the main reaction mechanism takes place via rWGSR and

CO hydrogenation, while at lower temperature, direct CO2 hydrogenation is the dominant

pathway. In Figure 2.8, simulation results at the highest COR considered (80 %) and at

503 and 533 K show that the developed lumped kinetic model is mechanistically sound

according to these new insights. The respective reaction rates of the WGSR (Figure 2.8c)

are of particular interest: at 533 K, the phenomenon described in Section 2.4.2.2 takes

place; i.e., the rWGSR dominates at the reactor inlet, followed by both, WGSR and CO2

hydrogenation, in combination representing a descriptor for CO hydrogenation; at 503 K,

the WGSR rate is nearly zero and shows a nearly constant profile along the reactor length.

This leads us to the conclusion that at 503 K, methanol formation takes place via direct

CO2 hydrogenation. From the findings of Gaikwad et al. [43], it cannot be concluded

exactly at which temperature the mechanism shifts, although from the findings in this

work it seems plausible that at 503 K, both reaction pathways are contributing.

Effect of the catalyst bed composition. There are several studies concerning

the catalyst bed composition for the direct DME synthesis. A literature overview recently

provided by Peinado et al. [75] summarizes that most studies have been performed for

CO2 lean feeds and, with high CZA proportions in the catalyst bed. Some of the studies

cited state that the optimal catalyst bed composition consists of 50 % CZA [75, 94, 106]

while other authors, like us, came to the conclusion that higher CZA-to-acid catalyst ra-

tios are advantageous for the DME productivity. [1, 32, 92] To demonstrate the influence

of higher CZA-to-γ-Al2O3 ratios on the reaction rates, these are depicted in Figure 2.9 for

the reference CZA-to-γ-Al2O3 weight ratio µ = 1, and for µ = 2, which exhibited the best

performance with regard to the DME yield in the experiments. The increased µ is clearly

advantageous for all the reactions rates, as assumed in Section 2.4.1. The effect of the

catalyst bed composition is less pronounced than that of the COR and the temperature,

and no significant changes on the shapes of the reaction rate profiles is observed. With

regard to the concentration profiles, an increased µ leads to higher methanol and DME

concentrations, whereas the concentration of water is virtually unchanged. Moreover, the

relative increase in methanol concentration is higher than the relative increase in DME,

indicating a decrease of the selectivity towards DME, consistent with experimental ob-
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Figure 2.8: Reaction rates a) CO2 hydrogenation, b) MeOH dehydration, c) WGSR and
d) mole percentage profiles of water, methanol and DME at µ = 2 and
COR = 80 %.
(—) Solid lines: T = 503 K, (- - -) Dashed lines: T = 533 K.

servations described in Section 2.4.1.

Table A.4 in Appendix A provides an overview on studies with different CZA-to-

γ-Al2O3 ratios. A direct comparison with other works regarding this variable is not

comprehensively possible, due to the wide range of process parameters evaluated in lit-

erature studies, [75] and also due to more or less widespread catalyst properties, reactor

types and configurations, and finally the respective methodology followed in each study.

Commonly drawn conclusions in accordance with this work are as follows: (1) DME

selectivity increases with decreasing CZA-to-γ-Al2O3 ratios when CO2 is present in the

feed. [75, 94] (2) However, decreasing CZA-to-γ-Al2O3 ratio especially below a value of

1, is detrimental for the DME production. [32, 75, 106] (3) Hence, increased DME yield

attained with increasing CZA-to-γ-Al2O3 ratios is attributed to a significant enhance-

ment of the COx conversion, that makes up for the selectivity loss. Higher amounts of

the CZA catalyst, evidently lead to higher rates of CO2 hydrogenation and water gas
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shift reaction (Figure 2.9a and 2.9c), which are both promoted by this catalyst. On the

other hand, increased methanol formation and water depletion rates are contributing to

methanol dehydration to DME. Hence, explaining the higher rate of the dehydration re-

action (Figure 2.9b), even though compared to the reference case (µ = 1), the fraction

of the dehydration catalyst at µ = 2 is reduced. It should also be noted that most of the

studies mentioned are experimental in scope. This emphasizes the general importance

and necessity of models valid for a broader range of catalyst bed compositions (espe-

cially also for a wide range of CO2/COx feed ratios) to enable model-based evaluation of

optimization strategies and/or reactor designs under consideration of this variables.
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Figure 2.9: Reaction rates a) CO2 hydrogenation, b) MeOH dehydration, c) WGSR and
d) mole percentage profiles of water, methanol and DME at T = 533 K,
COR = 20 %.
(—) Solid lines: µ = 1, (- - -) Dashed lines: µ = 2.

CO2 and CO formation during reaction. According to Equation 2.27, a nega-

tive conversion (Xi) indicates that the amount of the respective species i is higher at the

reactor outlet than at the reactor inlet i.e., that the species was formed during reaction.

Within the wide operational windows studied in this work, CO2 and CO formation was
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observed at specific conditions. As depicted in Figure 2.10a, CO2 formation was evi-

denced at high temperatures and low CORs. The highest CO2 formation, i.e., the lowest

CO2 conversion, was observed at 20 % COR and 533 K. At these conditions, the WGSR

is faster than the CO2 hydrogenation for most of the reactor length. Hence, more CO2 is

produced than consumed, explaining the negative CO2 conversions. Contrary to the re-

sults at higher temperatures, CO2 formation does not take place at 503 K. CO formation

on the other hand, was evidenced at low temperatures and high CORs (Figure 2.10b).

The minimal CO conversion took place at 80 % COR and 503 K, caused by a relatively

late shift of the rWGSR to WGSR. At these conditions, the rWGSR prevailed over the

WGSR for approx. half of the reactor length. The CO produced in the first half of the

reactor, is not completely consumed in the second half, leading to the slight overall CO

production shown in Figure 2.10b. In agreement with the mechanistic analysis presented

before, CO2 and CO conversion show opposite trends, with the CO conversion increasing

with temperature, as methanol formation takes place via CO hydrogenation. [43] CO

conversion is also increasing with decreasing COR, due to WGSR that is favored at high

CO feed concentration, and decreases respectively with increasing COR according to an

increased participation of the rWGSR.
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Figure 2.10: CO2 and CO conversion for all evaluated CORs and temperatures. µ = 2.

2.5 Summary and conclusions

The reaction kinetics of the direct DME synthesis over Cu/ZnO/Al2O3 (CZA) and

γ-Al2O3 were investigated at high pressure (5 MPa) in a temperature range between 503

and 533 K, CZA-to-γ-Al2O3 weight ratios from 1 to 5, space times from 240 to 400 kgcat

s/m3
gas, and carbon oxide ratios (CO2/COx) from 20 to 80 %. The successful fitting to

these data resulted in the main contribution of this paper: a mechanistically sound re-

32



action kinetic model with a particularly large range of validity. Due to its wide validity

range, the reaction kinetic model provided in this contribution is suitable aiming towards

optimal reactor and/or process design, and optimization of novel technologies for the

direct DME synthesis.

The influence of key process variables on reaction rates was examined in light of the

derived model, and representative results were presented with the goal of determining

causality and providing a comprehensive understanding of the observed phenomena. An

increased CZA-to-γ-Al2O3 ratio was found to be favorable in terms of DME yield, al-

though this reduced the amount of dehydrogenation catalyst. This is attributed to the

synergistic effects of direct DME synthesis, i.e., an increased methanol production rate

also accelerates the dehydration of methanol to DME. With regard to the composition

of the feed, a high CO content leads to an increased DME yield, since the water gas shift

reaction and thus the water consumption in the system are accelerated. Conversely, a

high CO2 content leads to a significantly increased water concentration. This is due to

a strong effect of reverse water gas shift at the reactor inlet, which increases with CO2

content. Moreover, it was shown that increasing temperatures lead to higher DME yield

and selectivity regardless of the feed composition. However, at high CO2 content in the

feed, the attainable enhancement by optimization of the reaction conditions might not

lead to sufficiently high DME yields for the process to be economically feasible. There-

fore, additional technical improvements are necessary to achieve a significant increase in

overall performance. Possible technical improvements include water removal, novel reac-

tor concepts such as membrane reactors or reactive distillation, as well as a customized

product separation.
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3. DATA-BASED MODEL

In this chapter, Artificial Neural Networks (ANNs) are designed and implemented to

model the direct DME synthesis from syngas over a commercial catalyst system. The

predictive power of the ANNs is assessed by comparison with the predictions of a lumped

model parameterized to fit the same data used for ANN training. The ANN training

converges much faster than the parameter estimation of the lumped model, and the

predictions show a higher degree of accuracy under all conditions. Furthermore, the

simulations show that the ANN predictions are also accurate even at some conditions

beyond the validity range.

3.1 Introduction

Using artificial neural networks (ANNs) is the most widespread machine learning

approach for modeling complex phenomena due to their simple formulation, flexibility

and robustness [50, 51, 107]. ANNs have proven to be suitable for creating predictive

models for chemical engineering processes. Hence, several applications have been subject

of research in the last decades, such as the evaluation and modeling of complex kinetic

data [48, 108, 109], catalyst design [110, 111], soft sensoring [50, 112], advanced process

control [113], and others [47]. Studies regarding the application of ANNs for the DME

synthesis have been reported e.g., for the screening of additives [110, 111], the optimiza-

tion of temperature profiles in a temperature gradient reactor [114], and the modeling

of the single process steps[115, 116]. Furthermore, ANNs have been used for predict-

ing the performance of the liquid phase direct synthesis of DME over CuO/ZnO/Al2O3

and H-ZSM-5 catalysts [112]. In this chapter, ANNs are used to model the direct syn-

thesis of DME from CO2 rich synthesis gas over a mixed catalyst bed of commercial

CuO/ZnO/Al2O3 (CZA) and γ-Al2O3 catalysts at high pressure. The ANNs applied

are fully connected multi-layer feedforward networks trained by supervised learning to

map the input-output relationships in intrinsic kinetic data. For the ANN design, sev-

eral back-propagation training algorithms as well as different activation functions and

network architectures have been tested. Additionally, a data partitioning scheme is pre-

sented, which enables the data division for training and testing in an automated fashion.

Simulations within and beyond the model’s validity range are conducted to shed light on

the ANN’s predictive ability in both operational windows, and to report on the ability of

simple ANNs in modeling this system in comparison to that of a lumped kinetic model

fitted to the same data.
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3.2 Artificial Neural Networks - Key Design Parameters and

Modeling

In this section, fundamentals for the ANN design are introduced. The theoretical

framework is intended to describe the general functionality of ANNs and the features

that are relevant here for modeling the direct DME synthesis.

3.2.1 Features and Functional Principles

ANNs are a mathematical portrayal of the human neural system. Similar to the

biological system, ANNs consist of interconnected neurons that are responsible for the

processing and forwarding of data. There is an extensive number of general ANN types

that can be classified based on their application, topology, connection pattern and the

applied learning method as depicted in Figure 3.1. The ANNs relevant for this contri-

bution are multilayer, feedforward networks used for function evaluation (i.e., nonlinear

regression) and trained by supervised learning method. These features are briefly dis-

cussed in the following.

ANN

Application Topology

Learning 

Method

Connection 
Type

• Feedback

• Feedforward

• Supervised

• Unsupervised

• Reinforcement

• Self-Organized

• Single-Layer

• Multi-Layer

• Classification

• Regression

• Clustering

Figure 3.1: Classification of ANNs (created from Sohrab Zendehboudi et al. [54]).

In multilayer feedforward networks, the elementary units (neurons) are organized into

layers, as depicted in Figure 3.2a. There is one input layer containing the input signals

and one output layer containing all output signals of the network. Additionally, they may

also have one or more hidden layers located between input and output. These networks

are known as “shallow” or “deep” ANNs respectively. Moreover, the “feedforward” con-

nection type between neurons indicates that information is transferred unidirectionally

from the input to the output layer.

The functional principle of an artificial neuron is shown in Figure 3.2b. The input

signals xi are multiplied with connections weights wi that define the influence of the re-
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spective input data on the neuron’s output signal. The net input n of the neuron is the

sum of all weighted input signals and the bias b, which represents the neuron’s threshold.

If this threshold is exceeded, the neuron will be activated, i.e., an output signal y will be

produced. The neural output signal is calculated using the activation function f(n) that

transforms the input of the neuron e.g., introducing nonlinearities. This output signal is

then transferred to the next artificial neuron.[52, 54]

(a) Multilayer feedforward ANN. (b) Functionality of an artificial neuron.

Figure 3.2: ANN structure and functionality of an artificial neuron.

The number of neurons in the input and output layers is constraint by the scenario

under consideration, while the number of hidden layers and hidden neurons must be deter-

mined by the designer based on trial-and-error or using rules-of-thumb [50, 52]. Clearly,

an increasing number of hidden layers would lead to an increasing number of parameters.

In some cases, a large network can be favorable for the model prediction accuracy. How-

ever, too many hidden layers can also lead to an excessive information processing capacity,

and thus to the memorization of the training samples (overfitting). On the other hand, an

insufficient number of parameters can result in poor forecasting abilities of the network.

One approach for choosing the network structure is provided by the universal approxi-

mation theorem[117, 118]. This theorem states that a network with at least one hidden

layer and nonlinear hidden neurons would be capable of approximating any continuous

function in a closed and bounded domain. Therefore, this type of network can be applied

universally for function approximation when theoretical models are not available [52, 119].

Furthermore, “supervised learning” refers to the learning method in which the avail-

able dataset contains information about the inputs (i.e., the composition of the partic-

ipating chemical species and the operating conditions) and the desired output data or

targets (i.e., the measured composition of the gaseous products). The network “learns”
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by systematically changing the network parameters in order to minimize the error be-

tween predictions and targets. The “training” of a multilayer network, i.e., the estimation

of the parameters (weights and biases) that adapt the predictions to the available data,

is conducted using numerical optimization algorithms. These may use the gradient of

the error function with respect to the network parameters or the Jacobian matrix of the

errors [120]. Both the gradients and the Jacobian matrix can be calculated using the

backpropagation algorithm as follows: First, the output signals of the network are calcu-

lated using the input data and the initial values of the network’s parameters. Afterwards,

an error function is calculated (e.g., sum of squared errors) using the training data. The

computed error is subsequently (back) propagated through the network using the chain

rule of calculus to determine the error caused by each parameter. The weights and bi-

ases are adjusted accordingly and the previous steps are repeated iteratively in order to

minimize the value of the calculated error function.

3.2.2 Generalization

One of the most relevant features of ANNs is their ability to generalize. A good gener-

alization implies that the model did not merely memorized the training examples, but that

it can make reliable predictions on unseen data as well. Three of the numerous approaches

to improve generalization are: growing, regularization and early stopping. When growing

is applied, the size of the network is systematically increased until adequate performance

is achieved. This technique aims to find the simplest (smallest) network architecture that

will provide just enough complexity to fit the data while avoiding overfitting. In contrast,

regularization suppresses the model complexity by restricting, not the number, but the

magnitude of the network parameters. Typically, the error function is given by the mean

squared error (MSE),

MSE =
1

N

N∑
i=1

(ŷi − yi)2 , (3.1)

where yi represents the targets, ŷi the network predictions and N the total number of

training samples. In regularization, this function is modified by adding the sum of square

weights and biases given by

MSW =
1

n

n∑
j=1

w2
j . (3.2)

The modified error function then takes the following form:

E = (1− γ)MSE + γMSW, (3.3)

where γ is the performance ratio. Using this expression as the regularization objective

function, both the prediction errors and the network parameters are minimized simultane-
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ously during training, thus, attaining a smooth network response and good generalization.

Early stopping involves the monitoring of the training progress to determine when

the training must be terminated. For this, the available data must be divided into at

least two subsets: training and validation data. The training data are used to compute

the gradients or the Jacobian matrix necessary to update the values of the network

parameters. On the other hand, the validation data are used to monitor the generalization

ability of the network at each training step as illustrated in Figure 3.3. Throughout

the course of training, the training error will decrease since the parameters are being

updated to fit these data. Similarly, the validation error decreases with each step until

the network begins to memorize the training data resulting in poor performance on the

validation subset. The training is terminated when the validation error starts to rise,

and the parameter vector at the point with the lowest validation error is selected as the

optimal parameter set. [52, 121] A common praxis is to use an additional testing data set

to assess the model’s generalization ability and for model selection. This data set should

only be used after the training procedure has been completed to ensure an unbiased

assessment.

Figure 3.3: Schematic representation of early stopping.

3.3 Data and Methodology for the ANN’s Design

Shallow feedforward ANNs (ANNs with one hidden layer) were designed and imple-

mented in MATLAB software R2018a v9.4.0. The experimental kinetic data used for

training and testing were acquired and published in a previous work [1].The used data

set consists of 180 experiments carried out in a fixed bed reactor at 5 MPa using a 1:1

mechanical mixture of a commercial CZA catalyst and γ-Al2O3 . The syngas composi-

tion, the temperature (T ) and the total gas flow (V̇in) were varied during the experiments

as summarized in Table 3.1, while the hydrogen amount in the feed gas was determined
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for each experiment according to Equation 3.4. The remaining fraction of the feed gas

consisted of a mixture of the inert gases argon and nitrogen.

yH2,in = 2.3 (yCO,in + yCO2,in) + yCO2,in. (3.4)

Table 3.1: Conditions of kinetic data, taken from Delgado Otalvaro et al. [1]

Param. Value Unit
T 493, 503, 513, 523, 533 K

V̇in 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 SLPM*
yCO2in 0, 1, 3 %
yCO,in 4, 8, 15 %
* Standard liters per minute, T = 0 ◦C and p = 1.01325 bar.

The ANNs were trained to predict the mole fraction of the main species (CO, CO2,

H2 and DME) in the product gas based on the composition of the syngas (yCO,in, yCO2,in,

yH2,in) and the varied operating conditions. Hence, the input (x) and target vector (y)

are summarized as follows:

xT =
[
yCO,in, yCO2,in, yH2,in, T, V̇in

]
(3.5)

and

yT = [yCO,out, yCO2,out, yH2,out, yDME,out] . (3.6)

For the design of ANNs the network architecture i.e., the number of neurons in the

hidden layer as well as a suitable activation function of these neurons and a training

algorithm must be determined. Since there is no generally accepted theoretical basis

to address these questions, answers are obtained empirically. For this purpose, various

network architectures and multiple functions were screened and analyzed. The assessment

was carried out in regard to the mean squared error (MSE) and the convergence time.

For this initial screening, the experimental input data were divided randomly into three

data subsets: training, validation and test data containing 70 %, 15 % and 15 % of the

experimental data, respectively. The validation subset was used for training to improve

generalization through early stopping, except in the case of Bayesian regularization where

generalization is achieved by regularization and no validation subset is required [121, 122].

The randomized data classification was constant for all trials conducted in this initial

screening to ensure that the same samples were used in all cases, thus, excluding any

influence of the data division from the preliminary results.
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3.3.1 Activation Function

The nonlinear activation functions listed in Table 3.2 were used in the hidden neurons

to include the known nonlinearities of the kinetic data in the model and to increase

computational flexibility, while linear neurons were used in the output layer. While testing

the listed activation functions, the remaining design parameters were kept constant at

the default values in MATLAB, namely the Levenberg-Marquardt training algorithm and

10 neurons in the hidden layer.

Table 3.2: Tested activation functions [120, 123]

Abbr. Name of Function Equation

elliotsig Elliot Symmetric Sigmoid f(n) =
n

1 + |n|
logsig Logarithmic Sigmoid f(n) =

n

1 + e−n

poslin Positive Linear (ReLU) f(n) =

{
0, n ≤ 0

n, n ≥ 0

radbasn Normalized Radial Basis f(n) =
e−n

2∑
e−n2

satlin Saturating Linear f(n) =


0, n ≤ 0

n, 0 < n < 1

1, n ≥ 1

softmax Softmax f(n) =
en∑
en

satlins Symmetric Saturating Linear f(n) =


−1, n ≤ −1

n, −1 < n < 1

1, n ≥ 1

tansig Hyperbolic Tangent Sigmoid f(n) =
2

1 + e−2n
− 1

tribas Triangular Basis f(n) =


0, n ≤ 0

1− |n|, 0 < n < 1

0, n ≥ 1

3.3.2 Training Algorithm

There are several algorithms for training ANNs with backpropagation. They all have

different computational properties, mathematical backgrounds, memory requirements,

etc., so no algorithm is optimally suited for all instances. Here, the functions listed in

Table 3 were applied using the abovementioned network architecture and the logarithmic

sigmoid activation function (logsig). As a detailed description of the individual training
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algorithms would go beyond the scope of this paper, relevant bibliographic information

is provided in Table 3.3.

Table 3.3: Tested training algorithms [124]

Abbr. Algorithm References
bfg BFGS Quasi-Newton [125, 126]
br Bayesian Regularization [121, 122, 127]
cgb Conjugate Gradient with Powell/Beale Restarts [128, 129]
cgf Fletcher-Powell Conjugate Gradient [120, 130]
cgp Polak-Ribiere Conjugate Gradient [120, 130]
gd Gradient Descent [120]
gdm Gradient Descent with Momentum [120]
gdx Variable Learning Rate Gradient Descent [120]
lm Levenberg-Marquardt [120, 131, 132]
oss One Step Secant [133]
rp Resilient Backpropagation [134]
scg Scaled Conjugate Gradient [135]

3.3.3 Data Division Scheme and Traning Strategy

The proposed data division and training procedure is illustrated in Figure 3.4. In

the first stage of data division, the samples were randomly assigned to two subsets: the

”Design Data” and the ”Test Data A”. In the second stage, the ”Design Data” subset

containing 90 % of the samples was divided into ”Train Data”, which is used to cal-

culate weights and biases and ”Test Data B” used to compare different models within

the framework of Bayesian regularization (without a validation subset). Afterwards, the

multi-start strategy was applied by restarting the training procedure from different ini-

tial parameter values 100 times. This procedure, labeled as (1) in Figure 3.4, screens the

parameter space in order to generate different solutions of the optimization problem, and

thus, to overcome possible local optimality. After completion, the second stage of data

partitioning is repeated to train the networks based on a different data division (label (2)

in Figure 3.4). All trained networks and training records were stored in a 100 by 100 array

for the subsequent network selection. Finally, the “Test Data A” subset, which contains

10 % of the original samples, was used to provide an unbiased assessment of the network

performance on separate data, and thus, of its generalization ability. Thereby, the ANN

with the lowest error on these data exhibits the best generalization to the independent

data set and was chosen as the most suitable network. A pseudo-random division is

advantageous for the problem at hand considering the multidimensionality of the input

space. The presented scheme allows data partitioning in an automated fashion and in-

creases the adaptability of the proposed modeling routine to new data sets of different
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structures.

Figure 3.4: Data division scheme and training strategy.

3.3.4 Network’s Architecture

Based on the universal approximation theorem, shallow ANNs (1 hidden layer) were

implemented. The number of hidden neurons was varied from one to 15 in order to

evaluate the influence of the layer size on the obtained accuracy, and hence, to select

a network architecture that provides sufficient model complexity. For this purpose, the

best activation function, training algorithm and described data partitioning scheme were

utilized.

3.3.5 Evaluation of the Selected ANN

Posterior to the training and network selection, simulations were performed with the

selected network. The responses of the ANN were evaluated in comparison to that of

the lumped kinetic model of a previous work [1], which was parametrized to the same

experimental data used for the ANN training. The parameters of the lumped model were

fitted to kinetic data measured in the absence of transport limitations. The assumptions

of steady state, isothermal and isobaric operation, negligible gradients in radial direction

and negligible back-mixing effects apply. Therefore, only the effects of chemical reaction

and thermodynamic equilibria are included in this model. However, since the lumped

kinetic model is based on balance equations and partially on knowledge of the reaction

mechanism, it is expected to deliver better predictions than the ANN when extrapolated.
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The adjusted coefficient of determination R2
adj. was computed as a measure of the

goodness of fit (Equation 3.7). Different from the coefficient of determination R2 (Equa-

tion 3.8),R2
adj. takes the number of degrees of freedom of each model into consideration,

hence, providing an unbiased basis for the comparison of two different model structures.

R2
adj. = 1− (1−R2)(N − 1)

(N − p) (3.7)

R2 = 1−
∑N

n=1 (yn,out − ŷn,out)2∑N
n=1

(
yn,out − yn,out

)2 (3.8)

In Equations 3.7 and 3.8 N is the total number of experiments, and p is the number

of model parameters. ŷn,out and yn,out are the predicted and measured mole fraction of an

arbitrary component in the product gas for experiment n, and yn,out is the mean value of

the measured mole fraction over all experiments.

3.4 Results and Discussion

3.4.1 Network Design and Training

Figure 3.5a displays the mean squared error values of all activation functions tested.

The piecewise linear functions (poslin, satlin, tribas and satlins) perform poorly in com-

parison to the nonlinear functions (radbasn, elliotsig, tansig, softmax and logsig). The

best performance was obtained with the widely used logarithmic sigmoid function. This

function has well applicable mathematical properties: it is defined for all real input values,

it is bounded, monotonically increasing and continuously differentiable. Therefore, it is

suitable for backpropagation and meets the requirements of the universal approximation

theorem [119, 136, 137].

The minimized MSE obtained with the tested training algorithms is outlined in Fig-

ure 3.5b. Since the training with the algorithms Gradient Descent (gd) and Gradient

Descent with Momentum (gdm) did not converge in any of the run trials, these were

excluded from this diagram. It is obvious that the Jacobian backpropagation methods

Levenberg-Marquardt (lm) and Bayesian regularization (br) provide more accurate pre-

dictions than the gradient descent algorithms (cgp, scg, rp, bfg and cgf). Between lm

and br, the lowest MSE and fastest convergence was achieved with Bayesian Regulariza-

tion. This MATLAB R© training function is based on the Bayesian interpolation frame

proposed by MacKay [138]. With this algorithm, the regularization parameters i.e., the

performance ratio, are computed automatically during training, being advantageous for

problems where the data set is limited, since no validation subset is required [121]. Fur-

thermore, Bayesian regularization calculates and trains only the number of parameters
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necessary to minimize the target function (effective number of parameters) [127, 139]. As

a result, fewer parameters are used than are available reducing the model sensitivity to

the network architecture, as long as the minimum number of neurons is provided. Based

on these advantages and the empirically obtained results, Bayesian regularization was

selected for the network design.
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Figure 3.5: Performance of activation functions and training algorithms regarding the
mean squared error (MSE) and training time for a single network.

The training strategy was conducted for networks with up to 15 neurons in the hidden

layer. This screening showed that five hidden neurons provide enough complexity for the

network to adapt sufficiently to the available data set. Therefore, the network with a

5-5-4 architecture (5 input, 5 hidden and 4 output neurons) was selected. This structure

ensures a sufficient number of parameters to avoid underfitting, while the problem of over-

fitting is prevented by training the network with Bayesian regularization. The resulting

ANN is shown schematically in Appendix B, Figure B.1, along with the ANN parameters.

The proposed approach is applicable when modeling with ANNs due to their remarkably

fast convergence. For the chosen architecture, the time elapsed after the training of 10000

networks was 7.9 minutes (Figure 3.6b). In contrast, the parametrization of the lumped

kinetic model to the same data takes approximately 3.5 hours using the same CPU (on

windows 10 Pro (64-bit) operating system with i5 processor and 8 GB RAM). The re-

sulting ANN is shown schematically in Figure B.1, the connection weights between input

and hidden layer, and between hidden and output layer are contained in the matrices w0,1

and w1,2, while the biases of the hidden and output neurons are contained in the vectors

b1 and b2.
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Figure 3.6: Effect of the hidden layer size on the species mean relative error of prediction,
and on the training time of multiple networks.

3.4.2 Best Network’s Evaluation

Simulations were performed to evaluate the predictive ability of the selected network.

Figure 3.7 shows parity plots itemized for the main components in the system display-

ing the agreement between the measured and predicted concentrations in the product

gas for all experiments. Clearly, the model is capable of simulating the observed trends

accurately. For all components, the simulated points are evenly distributed around the

bisectrix, indicating that there are no pronounced systematic deviations between model

predictions and experimental data.

The observed goodness of fit can be attributed to the fact that appropriate activa-

tion and training functions were chosen as well as a network architecture that provides

sufficient model complexity and flexibility for modeling. Additionally, the proposed data

partitioning scheme proved to be effective in enabling the model to gain insight into the

underlying phenomena with the available data.

The mean relative error (RE) over all inlet compositions is shown in Figure 3.8 against

the temperature and the inlet volume flow. Clearly, the ANN shows a higher predictive

accuracy than the lumped kinetic model for all species in the entire experimentally cov-

ered operating window. This is caused by the flexibility and higher dimensionality of the

ANN and its superior capacity to adapt to the data. The RE of CO, CO2 and H2 over all

data lie below 3 % (2 %, 2.9 % and 0.4 % respectively), while the RE of DME amounts to

11 %. Both response surfaces for DME follow the same trend, with the prediction error

decreasing with increasing temperature. At low temperatures, the low reaction rates lead

to overall low conversion and yield. Hence, resulting in small DME amounts in the prod-

uct gas and thus in a reduced measuring accuracy [1]. Therefore, the deviations of both
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models can be mainly attributed to experimental measurement uncertainties. Addition-

ally, the fact that the ANN did not adapt to the measured values, although the network

has sufficient flexibility, is an indication that overfitting was successfully avoided and the

data were not simply stored by the network, but the input-output relationships were

effectively identified. The adjusted coefficients of determination reported in Table 3.4

highlight the suitability of both models and confirm the better adjustment of the ANN

to the experimental data especially for the fractions of DME and CO2.

Table 3.4: Adjusted coefficients of determination R2
adj. for for lumped model and ANN.

R2
adj. yH2,out yCO,out yCO2,out yDME,out

ANN Model 0.999 0.998 0.994 0.984
Lumped Model 0.998 0.992 0.984 0.943
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Figure 3.8: Mean relative error (RE) of prediction for the lumped model and ANN over
all data within the experimentally studied ranges of temperature and total
gas flow show the higher predictive accuracy of the ANN for all species.

In order to determine if the trained ANN is suitable as a non-linear regression tool,

the ANN’s generalization ability and its suitability to make predictions on unseen data
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have to be tested. For this purpose, additional simulations were performed for unobserved

data within and beyond the model’s validity range. A lumped model [1] is employed for

a comparative analysis of the ANN’s predictions. Since both models were fitted to the

same experimental data, these are valid in the same range of conditions, thus, providing

a sufficient basis for comparison. In the following, representative results are presented

that illustrate and compare the responses of both models. Additional simulation results

are given in the Appendix B.

In Figure 3.9, the experimental values are sorted arbitrarily in ascending order and

depicted along with the superimposed confidence intervals of both fits at a significance

level of 95 %. It can be observed that the confidence intervals of the ANN predictions are

narrower than the confidence interval of the lumped model. It is obvious, in particular for

the fractions of DME and CO2, that the respective confidence intervals of both models

are wider in the low concentration range. This is in accordance with the presumption

made before in this section that low concentrations of DME are subject to an increased

measurement uncertainty, which also explains why this effect is not observable for the

fractions of CO or H2 where the confidence intervals appear to be of the same order of

magnitude in the entire operating window.

Figure 3.10 displays simulation and experimental results in the temperature range

between 453 K and 573 K. The range where both models are formally valid (between

493 K and 533 K) is marked in gray for better visualization. The predictions of the

ANN within the model’s validity range are slightly closer to the experimental values than

the predictions obtained with the lumped kinetic model, consistent with the previous

discussion. Since the phenomena in this range are dominated by reaction kinetics, the

effects observed under these conditions can be explained by the temperature dependence

of the reaction rate, described by the Arrhenius equation. With increasing temperature,

the fraction of DME and CO2 in the effluent increases, while the fraction of CO and

H2 decreases. The fact that CO2 behaves as a product can be attributed to the water

gas shift reaction which is promoted by the CZA catalyst and, in the evaluated range,

is faster than the CO2 hydrogenation. With regards to the total gas flow, it is observed

that at decreasing values, the fraction of CO and H2 at the reactor outlet decreases as

well, while the fraction of DME and CO2 increases. These results can be explained by

the inverse relationship between the total gas flow with residence time and gas load, that

lead to higher conversion and product yield. Furthermore, the consistency of this effect

throughout the entire investigated gas flow range can be attributed to a constant selec-

tivity towards DME. A detailed description of the observed phenomena will be ommited

here, since the focus of this chapter is to evaluate the effects of the structural differences
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Figure 3.9: Measured concentrations in the product gas and 95% confidence intervals
(CI) of the Data-based (ANN) and lumped model. For clarity, only every
third experimental data point is shown.

between a lumped model and ANNs, more details can be found in the publication of

the lumped model [1]. Model predictions in this operational range demonstrate the high

level of agreement between the simulated and measured values, also showing a smooth

mapping and the ANN’s ability to generalize and make predictions for unseen data within

the model’s validity range.

Unexpectedly, the predictions of the lumped model and the ANN at temperatures be-

low 493 K are similar although the ANN was not trained in this temperature range. Both

models indicate that at low temperatures the reaction rates are too low to achieve high

conversion. Hence, the concentrations of all components are close to the respective values

in the feed gas. There are no additional constraints in the ANN’s structure that prevent

negative concentrations to be computed (in the lumped kinetic model, this effect is pre-

vented inherently by the balance equations). Thus, at low temperatures some negative

values are predicted. However, for DME and CO2 , progressions do not decrease steeply

into the negative quadrant with decreasing temperatures. Instead, all values in this tem-
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Figure 3.10: Components mole fraction in the product gas within and beyond the model’s
validity range regarding the temperature. Gray area marks the range covered
experimentally. Syngas composition: 16 % CO, 0.8 % CO2, 42.3 % H2,
40.8 % inert gas (Ar and N2). p = 5 MPa.

perature range are close to zero. Similarly good prediction accuracy despite extrapolation

was observed for most but not all feed compositions and components (Figures B.2 to B.6,

Appendix B). Therefore, although the underlying model is able to extrapolate accurately

for most conditions in this range, the quality of the predictions cannot be guaranteed in

all cases. The predictions for temperatures above 533 K provide valuable insights into

the phenomena comprised by the models. As the main chemical reactions involved in the

DME synthesis are exothermic, high temperatures are kinetically favorable, but thermo-

dynamically unfavorable. This trade-off of exothermic reactions is reflected by a change

in the slope of the concentration profile and is taken into account in the lumped kinetic

model by the equilibrium constants in the rate expressions. However, since the kinetic

data were measured at conditions at which the influence of the equilibrium is minor (ki-
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netic regime), the ANN has no information about the characteristics of this phenomenon,

causing the predictions of both models to diverge at high temperatures. With increasing

temperature, the concentration profiles predicted with ANN follow the observed trend in

the experimentally covered range, i.e., increasing for DME and CO2 , and decreasing for

H2 and CO, while the concentration profiles computed with the lumped kinetic model ex-

hibit the expected points of inflection. Similarly, predictions for low flow rates, at which

mass transport limitation occurs, can be expected to be inaccurate because the model

was parameterized to fit intrinsic kinetic data, i.e., in an operating range with negligible

influence of mass and heat transport.

3.5 Summary and Conclusions

In this chapter ANNs were designed and used to model the direct synthesis of DME.

The exact mechanism of this process is not yet fully understood, and modeling has so far

only been possible in limited operating windows. The networks used are shallow, feed-

forward and fully connected. It was demonstrated that the logarithmic sigmoid function

is most applicable for the problem at hand, and that a higher accuracy is obtained when

applying training algorithms that use Jacobian backpropagation, particularly Bayesian

regularization. A pseudo-random data division scheme allowing data partitioning in an

automated fashion was presented. The training was conducted for ANNs of different

structures and five hidden neurons proved to provide sufficient model complexity to map

the available data. The network with the best performance on unseen data was selected

and its predictive ability was assessed by comparison with experimental data and with

predictions of a lumped kinetic model parametrized to fit the same database. In sum-

mary, it was observed that the ANNs are remarkably fast, very flexible and exhibit a

superior adaptability to the experimental data than the lumped kinetic model while still

providing a comparable interpolation ability.

Moreover, accuracy of the model predictions outside the experimentally covered pa-

rameter range was also evaluated. When the model was extrapolated towards lower

reaction rates, i.e., lower temperatures and higher flow rates, the ANN was able to de-

liver accurate predictions and to describe the single-stage DME synthesis systemically

for most components and inlet feeds. This indicates that extrapolations of the model

may be admissible for operating conditions at which the phenomena covered by the un-

derlying model takes place. However, it is not possible to predict deviations prior to

training. Extrapolations of the ANN towards higher reaction rates, on the other hand,

lead as expected to divergent predictions, as overlapping effects occur (e.g., thermody-

namic limitation of exothermic reactions at high temperatures) which, at the current
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stage of development, cannot be reflected by the ANN that was trained to fit data taken

in the operational window dominated only by reaction kinetics.

These findings underline the suitability of the ANN to act as a predictive tool for

Brownfield applications such as soft sensoring, real-time optimization, on-line control,

predictive maintenance and others, where models with high flexibility and adaptability,

the capacity to map complex nonlinear relationships as well as fast convergence and low

computational cost are required. Furthermore, it can be concluded that ANNs have the

potential to be used for modeling the direct DME synthesis in an even wider range of

operation where the relationship between input and output variables is ambiguous and

modeling under mechanistic assumptions was not yet possible. The presented data par-

titioning and training methodology can be applied for this purpose with simple require-

ments: the input-output relationships to be modelled must be measurable and enough

data must be available for parameter discrimination, i.e., for the training of the network.

One possible application is the modeling of catalyst deactivation as a function of the time

on stream and/or the conditions to which the catalyst system is exposed to. Regardless

of the catalyst system, most kinetic studies of the direct DME synthesis are carried out

under steady state conditions, due to the highly dynamic behavior of the catalysts which

makes the mechanistic modeling in a wide range of conditions very challenging. However,

if the required data are available, the modeling with the proposed methodology can be

easily adapted to new state variables that need to be considered.
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4. HYBRID MODEL

Hybrid kinetic models represent a promising alternative to describe and evaluate

the effect of multiple variables in the performance of complex chemical processes, since

they combine system knowledge and extrapolability of the (semi-) mechanistic models

in a wide range of reaction conditions with the adaptability and fast convergence of

data-based approaches (e.g. artificial neural networks - ANNs). For the first time, a

hybrid kinetic model for the direct DME synthesis was developed consisting of a reactor

model i.e., balance equations, and an ANN for the reaction kinetics. The accuracy,

computational time, interpolation and extrapolation ability of the new hybrid model

were compared to those of a lumped and a data-based models with the same validity

range using both simulations and experiments. The convergence of parameter estimation

and simulations with the hybrid model is much faster than with the lumped model,

and the predictions show a higher degree of accuracy within the models’ validity range.

A satisfactory dimension and range extrapolation was reached when the extrapolated

variable was included in the knowledge module of the model. This feature is particularly

dependent on the network architecture and phenomena covered by the underlying model,

and less on the experimental conditions evaluated during model development.

4.1 Introduction

The detailed reaction mechanism of the direct DME synthesis has not yet been fully

understood [31] and its modeling is challenging. Reasons for this are for example variable

structural changes of the metallic catalyst depending on the reaction conditions [42],

the variation of the dominant pathway of the methanol synthesis [43], as well as the

deactivation of the dehydration catalyst e.g., by acidity loss due to H+/Cu2+ ion exchange

especially in the case of zeolite-based systems, and the sintering of the metallic catalyst

in the presence of high water concentrations [23, 44, 140].

Several semi-mechanistic or lumped models that enable the modeling of the system

in a specific operational range have been developed [1, 2, 32–41]. However, due to the

mentioned difficulties, semi-mechanistic models for the direct DME synthesis are difficult

to fit in a wide range of conditions. This is where the potential of machine learning ap-

proaches to extract and predict input-output relationships in large data sets comes into

play. These methods, especially artificial neural networks (ANNs), have been used suc-

cessfully in various areas of the chemical industry, mostly as predictive tools [46–49]. One

of the general drawbacks of ANNs is that their predictions are only reliable in the range in
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which the training data were measured and extrapolation is only possible in a slightly ex-

tended range. [52] However, unlike semi-mechanistic models, ANNs can be easily adapted

to large amounts of multidimensional data in broad operational windows [48, 52].

Models that combine the features of both (semi-)mechanistic and data-based ap-

proaches represent a promising alternative for modeling the behavior of chemical re-

actors [54]. However, recent studies have highlighted that the adoption of machine

learning approaches is still limited for chemical processes [49, 59, 60]. An extensive

literature search on models for direct DME synthesis revealed that most models are

semi-mechanistic, while only a few are data-based, and none of the models are hybrid in

nature (Section 4.2). Therefore, in addition to providing a timely overview of the avail-

able models for direct DME synthesis, a main objective of this chapter is to establish

an initial hybrid model for this system and to comprehensively compare the different

types of models (Section 4.3). Simulation results obtained with the hybrid model are

compared to those obtained with a semi-mechanistic and a data-based model that have

the same range of validity, which enables an evaluation of the structural differences be-

tween the model types. Based on similar works [28, 53, 55], it is expected that the hybrid

model provides a higher accuracy than the lumped model, while exhibiting an increased

extrapolation capability than the data-based one. These hypotheses are evaluated in a

quantitative manner in Section 4.4. In this section, critical model features such as accu-

racy, computational burden, interpolation and extrapolation ability are put to test, using

both simulations and experiments.

4.2 Available models for the direct synthesis of DME - an

overview

In this section, an overview of kinetic models for the direct synthesis of DME over the

commercial catalyst system CZA/γ-Al2O3 is presented.

4.2.1 Semi-mechanistic (lumped) models

In the semi-mechanistic modeling approach, assumptions about the reaction mech-

anism are made and experimental data is used to determine the reaction kinetic pa-

rameters. Therefore, the influence of relevant operating conditions on the DME direct

synthesis is the focus of numerous current research projects. Overviews are given for

example by Z. Azizi et al.,[21] and U. Mondal and G. D. Yadav [6].

The ranges evaluated in available modeling studies [1, 2, 32–41] are presented in

Figure 4.1 for process variables that are particularly relevant for reaction kinetics. I.e,
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the temperature, pressure, the CZA-to-γ-Al2O3 weight ratio (µ, Equation 4.1), the carbon

oxide ratio (COR, Equation 4.2), and the stoichiometric number (SN, Equation 4.3).

µ =
mCZA

mγ-Al2O3

(4.1)

COR = 100 %
yCO2,in

yCO2,in + yCO,in

(4.2)

SN =
yH2,in − yCO2,in

yCO,in + yCO2,in

(4.3)

The overlapping of the ranges is obvious and explained by the constraints inherent

to the system under consideration. For example, the maximal temperature is defined

based on the thermal stability of the catalysts, such as to avoid sintering of CZA except

of course for studies where deactivation phenomena is investigated [33, 35]. The lowest

temperature on the other hand is typically chosen under consideration of the other process

variables as to have measurements in a range where the catalyst is active, and the signal

to noise ratio is high. In the summarized studies, temperatures from 473 to 623 K have

been evaluated (Figure 4.1a).

Since the process exhibits volume contraction, an increase in pressure has a positive

effect on the process performance according to LeChatelier’s law. However, the maxi-

mal pressure is limited due to high investment costs and necessary safety measures. At

lab scale, the pressure range is often constrained by the experimental rig. As shown in

Figure 4.1b, some studies [1, 2, 36, 41] are conducted at 5 MPa, which is the typical

industrial operational pressure for methanol synthesis, while others evaluate a pressure

range instead of a constant pressure level [33–35, 37, 39, 40]. Overall, the summarized

publications cover a pressure range from 0.9 to 7.2 MPa.

As depicted in Figure 4.1c, the CZA-to-γ-Al2O3 weight ratio (µ) was chosen to be

equal or higher than one in most studies, because it has been demonstrated that an

increased fraction of methanol catalyst is beneficial for the overall process [1, 32, 98].

The optimal catalyst bed composition has been shown to be a function of the operating

conditions [1, 32] and the composition of syngas, especially regarding the CO2 amount in

the feed [2].

In terms of the feed gas composition, instead of a simple listing of this heteroge-

neous information reported by different authors, an unambiguous characterisation was

conducted using the COR and SN in order to enable the comparison of the models.

The relevance of the COR lies in the high influence of the CO2 content in the syngas

on the process performance: High CO2 levels in the feed have shown to promote wa-
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Figure 4.1: Overview of lumped models’ validity ranges regarding a) temperature b)
pressure c) CZA-to-γ-Al2O3 weight ratio µ d) carbon oxide ratio COR and
e) stoichiometric number SN. Models ([1, 2, 32–41]) named after first author
and year of publication.

ter formation and to reduce the attainable product yield [23, 69, 72]. However, kinetic

models valid in a wide COR range are useful for process design and optimization, as

interest in CO2 utilization grows in the industry [15]. The wide pattern in Figure 4.1d

illustrates that the influence of CO2 has become increasingly important in recent years

and is essential in current kinetic studies.

The SN is relevant in terms of the different hydrogen requirements for methanol

production via CO or CO2 hydrogenation. Since due to the different syngas production

technologies, the H2 content in the syngas is known to vary over a wide range [141], and

adjustment of the H2 content in the feed gas is not always economically feasible due to

the lack of sustainable H2 sources [18, 142]. As shown in Figure 4.1e, a large range of SN

is covered by the presented kinetic studies. However, a closer look in each publication

reveals that in most cases, the effect of this variable was not evaluated systematically.

Clearly, operating conditions for kinetic studies are chosen with consideration of the

concurrent effects on the other process variables. For example, if the system is operated

at low pressure, higher temperatures and low dilutions are required to achieve product

concentrations that can be measured accurately. As a consequence, optimal conditions

found in these studies are often local optima within the validity range of each model or

experimental range. For example, Pelaez et al. [32] observed an increasing yield of DME
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with an increasing CZA fraction up to 92.5 wt.%, at a pressure of 3 MPa and no CO2

in the feed. In contrast, in previous investigations 2 [2] conducted at 5 MPa and high

CO2 contents in the feed, an optimal catalyst bed composition was observed at approx.

66 wt.%. Hence, aiming towards the global optimization of the direct DME synthesis, a

further systematic evaluation of process variables and their simultaneous effects is still

necessary. However, in addition to the aforementioned process variables, many other

factors play a significant role, such as the dynamic behavior of the catalysts, the reactor

and its configuration, the composition of the CZA catalyst, the heat removal concept,

etc. Therefore, in terms of time and resources, a comprehensive exploration of the state

space is probably only feasible using models that have enough flexibility to evaluate larger

operational ranges and number of process variables.

4.2.2 Data-based models

Artificial neural networks (ANNs) are one of the most powerful machine learning

approaches for modeling [47, 50, 143], and as universal approximators, these can ap-

proximate nearly any continuous function in a bounded domain [117, 118]. An essential

step of this modeling approach is answering the design questions for ANNs, e.g., which

activation functions are appropriate for the problem at hand, and how many layers and

neurons are required to achieve sufficient model complexity [52]. The performance of the

networks is typically evaluated based on the prediction accuracy and the convergence

time, which have been shown to be remarkable, and superior in comparison to that of

traditional (semi-) mechanistic models [3, 54, 112, 116]. Further advantages of this mod-

eling approach, is that no prior knowledge of the chemistry and physics of the system to

be described is required and the high adaptability of ANNs to different structures and

sizes of data sets [50, 54, 144]. Unlike semi-mechanistic models, ANNs (and in general

machine learning approaches) have not been widely used for the modeling of the direct

DME synthesis. Studies conducted for this process, or for the single steps are summarized

in the following.

In a previous work [3] ANNs have been applied for the modeling of the direct synthesis

of DME over the commercial catalyst system CZA/γ-Al2O3 using data that was previ-

ously used for the parametrization of a lumped model. ANNs could be trained successfully

even with the limited amount of data. The trained ANN exhibited a fast convergence,

and a high adaptability to the experimental data. Moradi et al. [112] analyzed the use

of ANNs for modeling the single-step DME synthesis over a bifunctional CZA-H-ZSM-5

catalyst. The authors successfully trained an ANN to predict the CO conversion as well

as the DME selectivity and yield. Between 2003 and 2009, Omata et al. also conducted

simulations of single-step DME synthesis using ANNs. Unlike Delgado Otalvaro et al.
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and Moradi et al., they used ANNs aiming at the maximization of the CO conversion by

optimizing the temperature profile in the reactor,[114, 145] and by identifying effective

additives for the CZA/γ-Al2O3 catalyst based on the physicochemical properties of the

elements [110].

Additionally, studies using ANNs have been conducted for the single steps of the

direct synthesis [115, 116, 146–148]. For example, Svitnic et al. [146] used ANNs for the

prediction of by-product formation in the methanol synthesis from syngas, based on data

from a pilot plant. Also, since the methanol dehydration to DME proceeds without any

relevant side reactions, its rate is directly proportional to the rate of depletion and/or

formation and it can be measured directly. This advantage of the methanol dehydration

to DME was used by Valeh-E-Sheyda et al. [115] and Alamolhada et al. [116] who used

kinetic data and ANNs for the data-based modeling of the kinetics of this reaction.

4.2.3 Hybrid models

No hybrid model could be found in the open literature for the direct synthesis of

DME. However, some hybrid models have been derived for the individual steps of this

process. Zahedi et al. [56], used a hybrid model for the modeling of the CO2 hydrogena-

tion to methanol. In their work, the authors applied a mechanistic, a data-based and

a hybrid modeling approach and demonstrated the superior performance of the hybrid

model regarding accuracy and computational effort. Potočnik et al.,[57] used a kinetic

model from the literature to predict the methanol production rate as a function of the

pressure, temperature and the partial pressure of the main species in the system. ANNs

were used in combination to this model as an error-corrector, enhancing the prediction

accuracy in the range where experimental data was available. Alavi et al. [58] derived a

mechanistic and a hybrid model for the methanol dehydration to DME. Here, an ANN

was trained using data from a white-box model to predict the global reaction rate and

it was integrated in the balance equations. The hybrid model was simpler and 20 times

faster than the mechanistic model.

These studies show the potential of hybrid modeling for related systems. The second

part of this chapter is devoted to the derivation of the first hybrid model for the direct

DME synthesis.

4.3 Models’ structures, modeling and experimental

methodology

For the comparative study aimed in this chapter, the observed discrepancies between

model predictions must be only attributable to the models’ structural differences. Hence,
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these must be valid in the same range of conditions. In this section, the models’ struc-

tures are presented in order to identify crucial differences. The lumped and the data-based

models are described first in sections 4.3.1 and 4.3.2, since elements from these types are

necessary for the development of the hybrid model. The mathematical structure of the

latter is subsequently introduced in Section 4.3.3. The results obtained with the hybrid

model and the comparative analysis between the different model types is given in Sec-

tion 4.4.

The structure of the models relevant in this chapter, i.e., the lumped, hybrid, and

data-based models, is shown schematically in Figure 4.2. The lumped and the hybrid

model both consist of a reaction kinetic model for the calculation of the reaction rates

and a reactor model based on the balance equations for the laboratory reactor. The mole

fraction profiles yi(z) of the different species in the system are calculated by integration

of the differential equations. With the data-based model on the other hand, the mole

fractions are predicted directly using ANNs.

The color spectrum in Figure 4.2 represents the level of information required for the

different types of modeling; the darker the color, the less system knowledge is necessary.

The ANNs, for example, are predictors based on training data i.e., black box models.

The reactor model for the tube reactor is characterized as white box since it is derived

based on the species and the total mass balance. In contrast, the lumped and the hybrid

model are both characterized as gray box. The lumped model is the model with the

highest knowledge content among the three, because the balance equations are generally

valid and the rate expressions are based on mechanistic assumptions and thermodynamic

considerations. It is considered a gray box model since the parameters of the Arrhenius

and Van’t Hoff equations are estimated to fit experimental data. Comparably, the hybrid

model is also considered a gray box model, since it involves knowledge and data-based

elements in its structure.

In this chapter, a hybrid model for the direct DME synthesis is derived and presented.

Since this is the first model of this type for the DME synthesis, its assessment has been

made based on validation experiments and comparison with a semi-mechanistic model [1]

and a data-based model [3].

4.3.1 Lumped model

The lumped model was developed and validated in detail in a previous work [1]. It

consists of balance equations, and of a lumped reaction kinetic model parametrized to fit

intrinsic kinetic data. Equation 4.4 describes the change of the molar fraction of species i

(yi) along the axial coordinate (z). Equation 4.5 accounts for the drop of the gas velocity
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Figure 4.2: Schematic representation of the lumped, hybrid and data-based models eval-
uated in this chapter.

u due to the reaction-induced volume contraction.
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dz
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In Equations 4.4 and 4.5, yi is the molar fraction of component i, R is the universal gas

constant in J mol−1 K−1, T is the temperature in K, Z is the mixture’s compressibil-

ity factor calculated with the Peng-Robinson equation of state (PR-EoS),[84] u is the

gas velocity in m s−1, p is the pressure in Pa, νi,j is the stoichiometric coefficient of

species i in reaction j. The abbreviations “Nr” and “Nc” refer to the number of re-

actions and components, respectively. Finally, rvj is the volume specific rate of reaction

j in mol m−3 s−1 which is defined by the reaction kinetic model described in the following.

The reaction kinetic model is based on the mechanistic study of Lu et al. [80] con-

sidering the CO2 hydrogenation to methanol, the methanol dehydration to DME, and

the water gas shift reaction (WGSR) (Equations 4.6 to 4.8). Other possible reactions

such as CO2 methanation were not included because no other products were detected at

significant concentrations during the kinetic experiments.

Reaction 1: CO2 + 3 H2 
 CH3OH + H2O (4.6)

Reaction 2: 2 CH3OH 
 CH3OCH3 + H2O (4.7)

Reaction 3: CO + H2O 
 CO2 + H2 (4.8)
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The respective reaction rates in mol kg−1 s−1 are calculated with Equations 4.9 to 4.11.

r1 = k1

(
fCO2f

3
H2
− fH2OfCH3OH

Kf,1

)
(
1 +KCO2fCO2 +KCOfCO +

√
KH2fH2

)3 (4.9)

r2 = k2

(
f 2

CH3OH −
fDMEfH2O

Kf,2

)
(4.10)

r3 = k3

(
fH2O − fCO2fH2

Kf,3fCO

)
1 +KCO2fCO2 +KCOfCO +

√
KH2fH2

(4.11)

Finally, rvj is given by,

rvj =

rj [(1− ε) ρCZA ξCZA] , j = 1 ∨ j = 3

rj [(1− ε) ργ-Al2O3 ξγ-Al2O3 ] , j = 2.
(4.12)

In Equations 4.9 to 4.12, fi is the fugacity of component i in bar, calculated using the

fugacity coefficients obtained from the PR-EoS, ε is the catalyst bed void fraction, ρCZA

and ργ-Al2O3 are the CZA and γ-Al2O3 densities, and ξCZA and ξγ-Al2O3 are the respective

volume fractions in the catalyst bed. The equilibrium constants (Kf,j) are calculated

with Equation 4.13, whereas the reaction rate and adsorption constants (kj and Ki) are

defined by the re-parametrized Arrhenius and Van’t Hoff equations (Equations 4.14 and

4.15) for a reference temperature TR of 503 K.

Kf,j = 10

(
Aj
T
−Bj

)
(4.13)

kj = kj,TR exp

[
−EA,j,n

(
TR
T
− 1

)]
, with EA,j,n =

EA,j
TRR

(4.14)

Ki = Ki,TR exp

[
−∆Hi,n

(
TR
T
− 1

)]
, with ∆Hi,n =

∆Hi

TRR
. (4.15)

The model specific parameters for Equations 4.13 to 4.15 (Aj, Bj, kj,TR , EAj,n, Ki,TR , and

∆Hi,n) are provided in Table 4.1.

Table 4.1: Model specific parameters for the lumped model used for the comparative
evaluation of the hybrid model [1].

Equation 4.13 Equation 4.14 Equation 4.15

Reaction A B ln(kTR) EA,n Adsorbate ln(KTR) ∆Hads,n

1 3014.4029 10.3857 -6.94 21.81 CO -15.32 -14.03
2 1143.9494 0.9925 -2.07 42.77 CO2 -0.57 0
3 2076.2131 2.0101 -2.75 10.82 H2 -19.51 -14.68

These parameters were determined based on intrinsic kinetic data acquired in a fixed

bed reactor at a pressure of 5 MPa under variation of the temperature, the feed com-

position (yCO,in, yCO2,in, yH2,in), and the total gas flow as summarized in Table 3.1. The
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catalyst bed consisted of mechanically mixed CZA and γ-Al2O3 catalysts in a 1:1 mass

ratio for a total catalyst mass of 2 g.

4.3.2 Data-based model and ANN training strategy

The data-based model derived and evaluated in Chapter 3 [3] consists of an ANN

trained to predict the concentration of CO, CO2, H2, and DME in the product gas based

on the composition of the feed gas (yCO,in, yCO2,in and yH2,in), the total gas flow V̇in and

the temperature (Figure 4.3). In this configuration, the ANN replaces both the reactor,

and the reaction kinetic model. The model was trained using the same data used for the

parameter estimation of the lumped kinetic model (Table 3.1) and hence, it has the same

validity range.

Figure 4.3: Representation of the data-based model used for the comparative evaluation
of the hybrid model. Adapted from N. Delgado Otalvaro et al. [3]

Also relevant for this chapter is the data division and training strategy used for the

data-based model, in Chapter 3 [3]. The ANN of the data-based model (ANN-DBM) and

the one of the hybrid model (ANN-HM) are predictors for different quantities and trained

using different data structures (Section 4.3.3). However, the data division and training

methodology presented in Chapter3 is automatic and adaptable to multidimensional data

sets of different sizes and structures, and thus used in this chapter for the design of the

ANN-HM. As depicted in Figure 3.4, the data division is conducted in two stages. In

Stage 1, the data samples are divided into two subsets, one for the design/training of the

networks (Design Data), and one for the posterior network selection based on separate

data (Test Data A). In Stage 2 the design data is again divided into two subsets, the Train

Data subset used in the backpropagation framework [149] to determine the network’s pa-

rameters (weights and biases), and the Test Data B subset used in the framework of

Bayesian regularization [138] to test the trained networks without a validation subset.

The training is conducted iteratively under variation of the start parameter values (label

(1)) to avoid local optimality, and of the data division of the design data (label (2)).

The Test Data B is not used directly to determine the network’s parameters, however,

since the data in this subset is used for model selection, it introduces a certain bias in
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the model. To guarantee that the network with the best generalization i.e., with the best

performance on independent data samples is chosen, Test Data A is used for the final

network selection.

4.3.3 Hybrid model

As depicted in Figure 4.2, the hybrid model consists of two parts: a reactor model, and

an ANN. The reactor model is the same that is used in the lumped model (Equations 4.4

and 4.5). These are generally valid and constitute the ”knowledge module” of the hybrid

model. The ANN embedded within the framework of the ordinary differential equations,

is used for the calculation of the reaction rates (rj), and replaces the reaction kinetic

model. Clearly, the ANN of the data-based model is not suitable for the calculation

of the rates, since this ANN is trained to predict the product gas composition. In the

following sections, the design of the ANN as a predictor of the rates for the hybrid model

(ANN-HM) is described.

4.3.3.1 Architecture

Comparable to the architecture of the ANN-DBM, the ANN-HM is also shallow (one

single hidden layer with a finite number of hidden neurons) and feedforward (unidi-

rectional information flow from input to output), as depicted in Figure 4.4. The new

ANN-HM is trained to replace the reaction kinetic model i.e., to predict the reaction

rates along the axial coordinate z. Hence, the target vector y contains three elements,

one representing the rate of each reaction (Equations 4.6 to 4.8) as follows,

y = [r1, r2, r3] |z. (4.16)

The rates are calculated as a function of the temperature and the mole fractions of each

species in the system. The input vector is thus defined by,

x = [yCO, yCO2 , yH2 , yH2O, yMeOH, yDME, yAr, yN2 , T ] |z. (4.17)

The elements in Equations 4.16 and 4.17 correspond to the values at different positions of

the axial coordinate z. Since all experiments were conducted under isothermal conditions,

the temperature is constant along the reactor length Lbed and Equation 4.18 applies.

T |z = T, ∀ z ∈ [0, Lbed] . (4.18)

Other process variables that are considered to be constant in the axial domain and over

all data points, such as the catalyst distribution and pressure, are not included explicitly

in the model. Furthermore, the proposed structure is one of innumerable possibilities

63



for the design of the ANN-HM, and additional input variables can be included in the

network to consider further phenomena if the respective data is available. For example,

including the time on stream (ToS) in the input vector and data samples measured at

different ToS during the ANN training would enable to consider the effect of activity loss

on the reactions rates.

While the number of input and output neurons is constrained by the input and output

variables (Equations 4.16 and 4.17), the number of neurons in the hidden layer has to be

determined empirically. For the selection of an appropriate number of hidden neurons

(HN), architectures with up to 30 HN were tested. The best ANN was selected based

on the prediction accuracy on ”unseen” data, using a mean relative error of 5 % over all

samples in Test Data A (Figure 3.4).

Figure 4.4: Schematic representation of ANN’s architecture for the hybrid model (ANN-
HM).

The remaining network’s characteristics are chosen to be the same as in the data-based

model in order to ensure comparability of the models. Hence, the logarithmic sigmoid and

the positive linear functions were used as the activation function in the hidden and output

neurons, respectively. The sigmoid function serves to map the known non-linearities in the

system. Bayesian Regularization was chosen as training algorithm. This method proposed

by McKay [138] aims to avoid overfitting by training only the number of parameters

necessary to minimize the objective function, instead of all parameters available. Thus,

the model sensibility to the network architecture is reduced and overfitting can be avoided.

4.3.3.2 Training data

For a comparative study of the models, possible biases must be excluded to ensure

that the prediction discrepancies are caused only by the structural differences between

the model types. For the comparison of the lumped and the data-based model, this was
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achieved by training/parametrizing both models with the same experimental data. In the

case of the hybrid model, the ANNs act as a predictor for the reaction rates, which are

not metrologically accessible from integral experiments where the measurable variable is

the composition of the product gas (yi,out). Therefore, to generate training data for the

ANN-HM, simulations are performed with the lumped model under the conditions of the

experiments to which the lumped and data-based models were fitted (Table 3.1). The

axial domain is discretized as shown in Figure 4.5 using different mesh refinements with

5, 10, 15, 50, and 100 uniformly distributed elements, and the reaction rates at the nodal

points are used for training.

rj |z
Tyi|zyi,in yi,out

z = 0 z z = L

Figure 4.5: Schematic representation of the axial domain discretization, exemplary for 10
uniformly distributed elements.

4.3.4 Experimental equipment and procedures

New experiments were conducted with the same laboratory setup used for the mea-

surement of the kinetic data for model development. These experiments were performed

to validate the simulation results obtained during extrapolation analysis in Section 4.4.3.

The reactor used for the experiments is a plug flow tube reactor made of stainless steel.

It has a length of 460 mm and an internal diameter of 12 mm. For heating purposes the

reactor outer wall is enclosed by four brass jaws with heating cartridges (Horst GmbH).

The pressure of the reactor is regulated manually with a mechanical pressure regulator

(Emerson Electric Co.) and mass flow controller (Bronkhorst High-Tech B.V.) are used

to regulate the gas flow into the reactor. A fourier transformation infrared spectrometer

(FTIR, Gasmet Technologies) and a gas chromatograph (GC, Agilent Technologies) were

used to quantitatively analyze the feed and product gases.

The syngas used for the experiments consisted of the feed gases hydrogen (H2, 99.9999 %),

carbon monoxide (CO, 99.97 %), a mixture of carbon dioxide and nitrogen (CO2/N2, 20:80

± 1.0 %) as well as of nitrogen (N2, 99.9999 %). The gases were purchased by Air Liquide

Germany GmbH. A 1:1 mechanical mixture of the commercial catalysts CuO/ZnO/Al2O3

(CZA) and γ-Al2O3 (Alfa Aesar) was used. The size distribution of the catalyst parti-
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cles lay within 250 µm and 500 µm. Silicone carbide (SiC, Hausen Mineraliengroßhandel

GmbH) with the same particle size distribution was mechanically mixed with the com-

mercial catalysts in order to avoid the formation of hot spots in the catalytic bed.

Before starting the experimental measurements, the catalyst was reduced using 5 %

H2 in N2 at atmospheric pressure and temperatures between 363 K and 513 K. After that,

the catalysts were conditioned and the measured species concentrations were monitored

based on a reference experimental point to check for any loss of activity. After a stable

catalytic activity was achieved, any deactivation of the catalysts could be ruled out.

Additional information on the catalyst conditioning and deactivation can be found in

Appendix C.

4.4 Hybrid model results

In this section, the results of the ANN-HM training are presented first, followed by

the evaluation of the models performance and interpolation ability. Subsequently, a

comparative analysis of the predictions of the three different model types is conducted

and complemented with the experimental validation of simulation results.

4.4.1 ANN-HM training results

In the absence of an established systematic approach, determining the appropriate

number of hidden neurons (HNs) is one of the major challenges in modeling with ANNs.

If the number of HN is too low, the forecasting ability of the model is limited, and the

input-output relationships in the data might not be represented accurately. If the num-

ber of HN is too high, overfitting might occur. In this case, the model can learn the

data noise or “memorize” the training data, and the error on the test data, which is not

used during training, typically begins to rise. [50, 52] In Figure 4.6 two error measures,

namely the mean squared error (Figure 4.6a) and the mean relative error (Figure 4.6b)

are shown as a function of the number of HNs. It is observed that as the number of

HNs increases, the prediction accuracy also increases, which can be attributed to the

increasing number of parameters and model complexity. Additionally, in the evaluated

range with up to 30 HNs, the error on the test data set also decreased with increasing

complexity (Figure 4.6b), which indicates that overfitting was suppressed effectively. An-

other observation from this figure is that the error on the training and test data sets is of

the same order of magnitude, which is also an indication for the successful avoidance of

overfitting. This is attributed to the training algorithm based on Bayesian regularization,

which has proven to be effective for this purpose [3, 127, 138, 139].
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Some approaches for network selection include empirical correlations [150–152] or

graphical methods. One approach is the elbow method, where a loss function e.g., the

mean squared error (MSE) between targets and model outputs is plotted against the

number of hidden neurons, and the optimal network is determined based on the inflec-

tion point (elbow) of the curve [108]. According to this theory, the optimal number of

HN is approx. 4 or 5 (see Figure 4.6a). On the other hand, the mean relative error

of prediction (depicted in Figure 4.6b) shows that 5 HNs do not provide enough model

complexity to achieve the targeted prediction accuracy. A mRE ≤ 5 % is achieved with

networks with more than 25 HNs. Based on this and most importantly on the model

performance regarding extrapolation (further discussion in Section 4.4.3) the ANN with

26 HN was chosen for the further analysis. A schematic representation of the resulting

network as well as the model specific parameters are provided in Appendix C.

The time required to train 10000 ANNs (with 100 schemes for the division of design

data and 100 set of start parameter values as described in Section 4.3.2) is also plotted

in Figure 4.6a. Overall, the training time increases with the number of parameters.

However, even at the highest number of parameters tested (with HN=30), the training

time remained bellow 7 minutes. Considering that the training of the data-based model

and the parameter estimation for the lumped kinetic model required approx. 7.9 min and

3.5 h, respectively [3], the computational burden can be assessed as remarkably low, as

expected from related studies [54, 56, 58].

4.4.2 Hybrid model’s performance and interpolation ability

After integration of the selected ANN-HM into the differential equation framework,

the predictions of the hybrid model can be evaluated in comparison with the experimental

values and the predictions of the other models. First, the successful implementation of

the hybrid model is validated by comparison with experimental data. The mean relative

error between the experiments and the predictions of the lumped and the hybrid model

are shown in Table 4.2. The high similarity between the deviations of both models from

experimental data is explained by the fact the ANN-HM was trained with reaction rates

calculated with the lumped model, and shows the high level of accuracy obtained with the

hybrid approach. Similarly to the computational burden, the accuracy of hybrid models

has been previously investigated in related studies [56, 58, 153] which show, agreement

with the results here, the remarkable performance of this model type.

The interpolation ability of the hybrid model was also evaluated, and no difficulties

were observed. This is shown for an exemplary feed gas composition in Figure 4.7 (Fur-

ther examples are given in the supplementary material). In this figure, the mole fractions
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Figure 4.6: Training results for different architectures of the hybrid model’s artificial neu-
ral network (ANN-HM). a) Mean squared error (MSE) and training time b)
mean relative error (mRE) on training and testing data sets.

Table 4.2: Mean relative errors (mRE) between the experiments and the predictions of the
lumped and hybrid model.

Model mREyH2,out mREyCO,out mREyCO2,out mREyDME,out

Lumped 1.49 % 5.49 % 6.02 % 28.89 %
Hybrid 1.49 % 5.45 % 6.08 % 28.36 %

of H2, CO, CO2 and DME predicted with the hybrid model within the temperature and

total gas flow ranges are shown. At increasing temperatures the reaction rates also in-

crease, leading to higher product concentration (DME and CO2), and lower concentration

of the educts CO and H2 at the reactor outlet. Similarly, a decreasing total gas flow leads

to longer residence times, which affects the outlet concentrations in the same way as

increasing temperatures. These expected trends and also smooth gradients are observed

over the response surfaces for all species. A further illustration of the interpolation ability

of the hybrid model can be observed in Figures 4.10 and 4.11 between the dashed lines

that represent the models’ range of validity. In this range, the predictions of the hybrid

and the lumped models are almost identical and the predictions of the data-based model

are comparable to those of the other two models, but show a slightly better agreement

with the experiments.
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CO, CO2 and DME within the validity range of the temperature and total
gas flow. The black points represent the conditions at which the data for
model development was measured. Feed composition: 42.33 % H2, 16.14 %
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with 26 HNs.

Another relevant feature between the different model types is the convergence time.

To provide a quantitative comparison, simulations were conducted with the three models

for all the operating points in the data base (on windows 10 Pro (64-bit) operating system

with i5 processor and 8GB RAM). The time required by each model to simulate the 180

operating points was:

• Data-Based: 0.0798 s

• Hybrid: 4.2432 s

• Lumped: 16.4095 s

The superiority of the data-based model regarding the convergence time is obvious,

and although the hybrid model is slower than the data-based one, the former is still ap-

prox. four times faster than the lumped model.

The convergence time is of special interest when the models are used for optimiza-

tion purposes and large number of simulations have to be conducted to screen the state

space. A further characteristic relevant for optimization is the extrapolation ability of

the models, which is evaluated in the following section.
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4.4.3 Models’ extrapolation ability

The following sections are dedicated to the evaluation of the models’ predictive ability

outside the range of validity i.e., the extrapolation ability. For this purpose, two types of

extrapolation are evaluated; dimension and range extrapolation. Dimension extrapolation

refers to the extrapolation of a variable that was held constant during the experiments

for model development. Range extrapolation, on the other hand, refers to the evaluation

of a variable outside the range screened during these experiments [154]. The pressure

and the catalyst bed composition are used here as exemplary variables to evaluate the

dimension extrapolation (Section 4.4.3.1). Range extrapolation is analysed based on the

temperature in Section 4.4.3.2. Experimental values used for validation of the simulations

at extrapolated conditions are reported in the supplementary material.

4.4.3.1 Dimension extrapolation

Since all the experimental data used for the parametrization of the hybrid model

were acquired at constant pressure and catalyst bed composition (p=5 MPa and CZA-

toγ-Al2O3 mass ratio µ=1), these variables are suitable for the evaluation of the hybrid

model regarding dimension extrapolation.

The pressure was evaluated in a range between 4 and 6 MPa by the means of exper-

iments and simulations. The data-based model was not used for this analysis since the

structure of the ANN-DBM, that only takes the concentration of the syngas, the temper-

ature and the total gas flow into account, does not allow simulations at other pressure

levels (refer to ANN structure, Figure 4.3).

At 5 MPa, the deviation between the experiments for model development and for val-

idation show a very good agreement, with a maximal deviation of 4.5 %. Furthermore,

the validation experiments show the expected behavior i.e., with increasing pressure the

product gas concentration of the educts decreases, and that of the products increases

(Figure 4.8). Due to the volume contraction of the methanol synthesis from CO2 (Equa-

tion 4.6), the rate of this reaction is favored by high pressures. Hence, from the ther-

modynamic perspective, the pressure has always a positive effect on the overall process

performance. This effect is reflected by the lumped model for all species in the entirety of

the evaluated pressure range. The average deviations between the experiments and the

predictions of the lumped model lie by 2.1 % for H2, 1.5 % for CO, 6.9 % for CO2 and

12.6 % for DME within the prediction accuracy of the model, confirming the high fidelity

of the semi-mechanistic model approach. The concentration profiles obtained with the

hybrid model, on the other hand, are nearly constant over all evaluated pressures at the
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value predicted for 5 MPa. Similar to the ANN-DBM, the structure of the ANN-HM

does not allow the variation of the pressure (Figure 4.4) since all the training data was

measured at only one pressure level. Thus, the pressure dependency of the reaction rates

is not considered by the hybrid model and dimension extrapolation regarding this vari-

able is not possible.
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Figure 4.8: Experimental validation of dimensional extrapolation of the pressure. Feed
composition: 42.3 % H2, 16.1 % CO, 0.82 % CO2. Total gas flow 0.4 slpm.
Temperature 533 K. CZA-to-γ-Al2O3-ratio µ = 1. ANN-HM with 26 HNs.

The catalyst bed composition µ is also suitable for testing the dimension extrapolation

of the hybrid model, since all the experiments for model development were measured

with µ=1. Unlike the pressure, µ does not have a direct influence on the reaction rates,

and hence extrapolating this variable does not imply the extrapolation of the ANN-HM.

Therefore, better extrapolation results are expected. For this analysis, µ was varied from

0 to 5 and simulations with the lumped and hybrid model were conducted. Representative

results are shown in Figure 4.9.

With the lumped model an increasing conversion of COx and yield of DME with in-

creasing µ is predicted, and the values at the highest µ display a high proximity to the

values at equilibrium. This behavior is attributed to the synergy of the direct synthe-

sis, where the equilibrium of the methanol synthesis is shifted towards the products by

methanol consumption through the dehydration to DME. With an increasing µ methanol

is produced faster, which boosts the methanol dehydration reaction and overcompensates
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the decreased amount of dehydration catalyst [1].

The conversion and yield predicted by the selected hybrid model (ANN-HM with 26

HN) show a remarkably good agreement with the predictions of the lumped kinetic model

over the entirety of the extrapolated range. The predictions of the lumped and the hybrid

model overlap from µ up to 1, and proceed with a very similar trend. Although the de-

viation between the models’ predictions increases as the distance from the training point

µ=1 becomes larger, the predictions are thermodynamic consistent, and very similar over

the whole evaluated range (e.g., at µ=5, XCOx= 58.7 and 55 % with the lumped and the

hybrid model, respectively).

The predictions of hybrid models with ANN-HM with 5 and 28 HNs are shown in Fig-

ure 4.9a and c to illustrate the importance of considering model’s extrapolation ability

during the network selection. Both models displayed a relatively good performance on

the training data in Section 4.4.1. This is also evident in Figure 4.9a and c, where the con-

version and yield profiles predicted by all hybrid models overlap near the training point.

However, the hybrid models with 5 and 28 HN clearly lack of the ability extrapolate.

The predictions of these models do not follow the expected trend, nor do they respect

the laws of thermodynamics. This illustrates one of the major drawbacks of data-based

and/or hybrid approaches. Both models delivered a good performance on the training

data and exhibited a good interpolation ability. However, it is not possible to predict

the quality of the forecasts beyond the range where these models were trained, since the

predictions at extrapolated conditions (especially regarding dimension extrapolation) are

only dependent on the mathematical structure of the network, without an explainable

phenomenological reason.

As mentioned in Section 4.3.3.2, different mesh refinements of the axial domain were

tested during the generation of training data. Figure 4.9b and d show the COx conversion

and DME yield at mesh refinements with 5, 10, and 15 axially distributed elements.

Evidently, the mesh refinement with 5 elements does not provide enough data for training,

leading to poor extrapolation capability of the hybrid model. With 15 elements, on the

other hand, no relevant improvement of the network generalization is achieved and the

predictions almost entirely overlap with those obtained with 10 axial elements. Similarly,

no improvement was achieved with mesh refinements with 50 and 100 elements, however,

the training time increased noticeably with the large number of data samples.

In this section, it was shown that the data-based models (ANN-DBM and ANN-HM)

lack on extrapolation ability, while the hybrid model could be extrapolated successfully

in a large range when the extrapolation variable was not in the data-based module of

72



0 1 2 3 4 5
0

20

40

60
a)

Training
point

HN

5
26
28X

C
O

x
/
%

Hybrid Lumped Equilibrium

0 1 2 3 4 5
0

20

40

60
c)

HN

5
26
28

µ / gCZA/gγ-Al2O3

Y
D
M

E
/
%

0 1 2 3 4 5
0

20

40

60
b)

Elements

5
10
15

0 1 2 3 4 5
0

20

40

60
d)

Elements

5
10
15

µ / gCZA/gγ-Al2O3

Figure 4.9: Dimension extrapolation of the catalyst bed composition. The plots show a)
the COx conversion calculated with the lumped model and with the hybrid
models consisting of various HN, b) the COx conversion at various mesh
refinements, c) the DME yield calculated with the lumped model and hybrid
models consisting of various HN as well as d) the DME yield at different
mesh refinements. The results are plotted against µ ranging from 0 to 5.
Feed composition: 48.42 % H2, 16.07 % CO, 2.81 % CO2. Total gas flow 0.2
slpm. Temperature 533 K. Pressure 5 MPa.

the hybrid structure and the extrapolation ability was taken into account during model

development. This requires knowledge of the system and/or of the expected trends, and

is only relevant if extrapolation is relevant for the aimed application of the hybrid model.

4.4.3.2 Range extrapolation

Range extrapolation refers to the evaluation of a variable that was varied during

model development, outside the range in which that variation occurred [154]. For the

evaluation of this extrapolation case, experiments and simulations with the three models

were conducted at temperatures between 453 and 573 K at two different total gas flow

rates. Initially, the results at a total gas flow of 0.2 slpm are shown and discussed, fol-

lowed by results at 0.6 slpm. The hybrid model with ANN-HM with 26 HNs was used

here, as it was the only model that delivered good extrapolation ability for the catalyst

bed composition. Equivalent results with other architectures of the ANN-HM are given
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in the supplementary material.

Figure 4.10 shows the predictions of the three models as well as the experiments used

for model development (conducted in a previous work [1]) and validation for a total gas

flow of 0.2 slpm. Additionally, the molar fractions at equilibrium calculated with the RG-

bibbs reactor in Aspen Plus are displayed, along with the models’ validity range which is

marked gray.

The experiments for experimental validation were conducted in the same reactor in

which the kinetic measurements for model development were performed. Additionally,

the same catalyst reduction and conditioning procedure were followed. As a result, the

experiments from the previous work [1] could be verified, and the experiments in the

temperature range between 493 and 533 K overlap with a low relative deviation of maxi-

mal 6.6 % (max. mRE between experiments for model development and experiments for

validation).
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Figure 4.10: Evaluation of range extrapolation by comparison of models’ predictions and
experimental results beyond the models’ validity range for temperature.
Feed composition: 42.3 % H2, 16.1 % CO, 0.82 % CO2. Total gas flow
0.2 slpm. Pressure 5 MPa. CZA-to-γ-Al2O3-ratio µ = 1. ANN-HM with 26
HNs.

74



Bellow 493 K, the predictions of the hybrid and the lumped models are virtually iden-

tical. The predictions of the data-based model slightly differ, however, the correct and

expected tendency is observable. At low temperatures, the rate of the reactions is low

and almost no conversion takes place. Hence, the concentration of each species should be

equal to the concentration in the feed gas, i.e., 42.3 % H2, 16.1 % CO, 0.82 % CO2, and

0 % DME. The hybrid model predicts this behavior correctly and the predictions do not

deviate from those of the lumped model, although, the model was not explicitly trained in

this range. This can be explained by the fact that the phenomena that play a significant

role in this temperature range are the same as in the range where the model was trained.

The influence of the thermodynamic equilibrium is low compared to that of the reaction

kinetics as it can be inferred from the distance to the values in equilibrium. Similarly, a

priori criteria confirmed that no mass or heat transport limitations take place (refer to

Appendix C). Hence, it can be concluded that, although, the rate of reactions is low, the

reaction kinetics control the process performance also in this temperature range and the

performance can be described correctly by the hybrid model which was trained to predict

this phenomena. In addition, the hybrid model yields physically reasonable results and

the predicted concentrations remain above 0 for all conditions, unlike the predictions of

the data-based model, which also assume negative values.

Above 533 K, the predictions of the three models diverge. At increasing temperature

levels the influence of the thermodynamic equilibrium also increases, as the concentrations

get closer to those at equilibrium. The rates of reversible exothermic reactions increase

initially due to the positive influence of the temperature, but decrease at the proximity of

the thermodynamic equilibrium when the back-reaction is favored. At the temperature

at which thermodynamics prevails over reaction kinetics, an inflection point occurs, as

can be clearly observed in the predictions of the lumped model (gray lines). The concen-

tration of the educts, in this case CO and H2, then rises and that of the products DME

and CO2 decreases as the reaction rates decrease. This can be predicted by the lumped

model successfully due to the Hougen–Watson formulation of the rate expressions, that

accounts for the effect of the proximity to the thermodynamic equilibrium on the rates

by the means of the equilibrium constants (Kf,j). The predictions of the data-based

model do not show any inflection point and the concentration profiles follow the same

trend as in the range of validity. Indicating that the data-based model only reflects the

effect of the temperature on the reaction rate, but not the effect of the proximity to the

thermodynamic equilibrium. In this temperature range, the hybrid model predictions lie

between the predictions of the data-based and the lumped model in all cases. The molar

fraction profiles flatten with increasing temperature, but a clear inflection point is not

evident in the evaluated range. Unlike the lumped model, the hybrid approach attains
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knowledge about phenomena affecting the reaction rates only from data. Hence, since

most operational points in the training data set were measured at conditions at which re-

action kinetics prevail and thermodynamic equilibrium has a negligible effect, the hybrid

model does not have enough information about the effects the equilibrium can have on

the rates and on the process performance. The measured values at temperatures above

533 K showed that the lumped model exhibits the highest accuracy, especially in terms

of the shape of the curve with a clearly visible inflection point.

Equivalent results measured/simulated are shown in Figure 4.11 for a total gas flow

of 0.6 slpm. The residence time for this gas low rate is shorter than at 0.2 slpm, and

lower conversions are attained. Therefore, the distance to thermodynamic equilibrium is

larger which, according to the discussion above, leads to the observed higher prediction

accuracy.
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Figure 4.11: Evaluation of range extrapolation by comparison of models’ predictions and
experimental results beyond the models’ validity range for temperature.
Feed composition: 42.3 % H2, 16.1 % CO, 0.82 % CO2. Total gas flow
0.6 slpm. Pressure 5 MPa. CZA-to-γ-Al2O3-ratio µ = 1. ANN-HM with 26
HNs. Predictions of the lumped and hybrid model overlap over the entire
temperature range.

At this gas flow rate the simulations of the three models are very similar in the whole

temperature range. A slight difference is noticed at temperatures above 553 K, where
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the predictions of the data-based model diverge. However, the predictions of the lumped

and the hybrid model remain superimposed with a maximal relative deviation of 3 %

(computed for CO2 at 573 K).

This confirms that the reason for the model discrepancy is the influence of the thermo-

dynamic equilibrium which becomes more relevant at higher temperatures, and indicates

that the extrapolation limits of data-based and hybrid models do not strictly depend on

the evaluated range of conditions, but more on the effects considered by the underlying

models.

4.5 Summary and conclusions

The first part of this chapter provides a timely overview of the models available for

the direct DME synthesis. It has been shown that most of the available models for the

direct DME synthesis are semi-mechanistic i.e., based on mechanistic assumptions. Since

these models are only valid in a limited operational range, special attention was paid to

the validity of each of the semi-mechanistic models, which were compared graphically to

enable a fast overview of the investigated ranges in each work. Additionally, works where

data-based models were used for the direct DME synthesis have been summarized. No

hybrid model could be found in the open literature for this system.

The second part of this chapter deals with the implementation and evaluation of

a hybrid model for the direct DME synthesis, aiming to identify and evaluate specific

advantages and disadvantages of hybrid modeling approaches for this system. The devel-

oped hybrid model displayed a high level of accuracy and good interpolation ability over

the entirety of the validity range. Additionally, it exhibited a low computational burden.

E.g., the training of this model was approx. 30 times faster than the parametrization of a

lumped model, and simulations compiled almost 4 times faster on the same CPU. These

results are broadly consistent with studies in the open literature and confirmed expected

outcomes regarding accuracy and computational effort.

As one of the main concerns about hybrid models, the extrapolation ability has been

put to test and the predictions of a semi-mechanistic and a data-based model, as well as

experiments have been used for the evaluation of the hybrid model performance. Based

on exemplary variables (pressure, catalyst bed composition, and temperature), it has

been shown that dimension extrapolation i.e., extrapolation of a variable that was kept

constant during model development, was not possible when this variable directly affects

the data-based module of the hybrid model. E.g., simulations and experiments show that

the effect of the pressure on the reaction rates could not be considered by the ANN, which
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was trained at one pressure level only. In contrast, a good extrapolation ability in a broad

range was achieved when the extrapolated variable was in the knowledge-module of the

hybrid model. As an example, it is shown that the extrapolation of the CZA-to-γ-Al2O3

weight ratio was possible and delivered qualitatively accurate results in the broad range

between ratios of zero to five, although all experiments used for model development were

conducted with a ratio of one. A suitable ANN architecture proved to be essential for the

accuracy of predictions at extrapolated conditions. Range extrapolation i.e., the evalua-

tion of a variable outside the range where it was screened during model development, was

possible though in a limited range. It could be concluded that the limit for extrapolation

is defined by the phenomena the underlying models can map which depends strongly on

the network architecture, instead of the range defined by conditions evaluated experi-

mentally during model development.

Since there is currently no theoretical framework for network selection, and broadly

used rules of thumbs failed to deliver a suitable network in this study, the best net-

work was chosen manually based on simulations results. Clearly, this represents a major

drawback when a large number of network architectures must be tested which limits the

transferability of the presented results. Based on the gained insights, it can be concluded

that the hybrid modeling approach could be best applied when large data sets in wide

operational windows are available, and the input-output relationships between the data

are not yet fully understood. This way, the advantages of the hybrid model (i.e., high

accuracy and low computation effort) could be exploited to fill knowledge gaps, while

avoiding extrapolation. Specifically for direct DME synthesis, one application with high

potential for immediate use is to expand the model scope using the numerous lumped

kinetic models available in the literature. These are valid in different operating win-

dows and can be used to generate reaction kinetics data, analogous to the procedure

followed in this work. After the training of ANNs with these data and integration of

these ANNs in the hybrid model structure, the expected outcome is a model that enables

cross-evaluation of multiple process variables such as different catalysts, reactor types,

and reaction conditions throughout nearly the entire relevant operating window.
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5. SUMMARY

In this work, three models for the direct DME synthesis from CO2-enriched synthesis

gas have been developed, presented and evaluated. A highlight of this work is that for the

considered system, each model extends the reach of available models in their categories,

thus providing valuable tools for the further design and optimization of this promising

process. The lumped model presented in Chapter 2 covers a wide range of CO2-rich feed

compositions, and CZA-to-γ-Al2O3 weight ratios. The data-based and hybrid models

presented in Chapters 3 and 4 are the first of each type for the direct DME synthesis

with the commercial catalyst system at an industrially relevant pressure level. All models

types offer different advantages and have unsolved challenges, which are briefly discussed

in the following, along with the methodology followed in each chapter and the main re-

sults.

• Chapter 2: Semi-mechanistic Model. In this chapter, a semi-mechanistic

(lumped) model was derived and evaluated.

The experiments for the model discrimination were performed in an operating win-

dow wider than those modeled in the literature to date, namely at an industrially

relevant pressure of 5 MPa under variation of the carbon oxide ratio in the feed

(CO2 in COx from 20 to 80 %), temperature (503 – 533 K), space-time (240 –

400 kgcat s/m3
gas), and the CZA-to-γ-Al2O3 weight ratio (from 1 to 5).

To answer the questions stated in Section 1.2, “what is the most appropriate model

structure i.e., which mechanistic approach is most suitable for the system descrip-

tion within the evaluated operating window” and “which model-specific parameters

enable accurate predictions in the evaluated range”, a systematic approach consist-

ing of model discrimination and parametrization was followed.

For the initial model discrimination, the available experimental data were simulated

using eight different kinetic models from the open literature. Subsequently, the five

models with the lower residual squared sum were parametrized to fit the data.

The mechanistic assumptions and structure of the model with the highest accu-

racy were chosen for fine-tuning of the model-specific parameters aiming towards

a high statistical significance. The mechanistic approach that enabled the most

accurate system description in the evaluated operating window considered three

main reactions, namely the CO2 hydrogenation to methanol, the methanol dehy-

dration to DME, and the water gas shift reaction (WGSR). Additional assumptions
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include that the dehydration reaction is promoted by the γ-Al2O3 only, and that

the methanol synthesis and the WGSR are promoted by the CZA catalyst. The

rate expressions were postulated based on the general Hougen-Watson formulation

assuming elementary reactions, a relevant influence of the adsorption of CO2, CO

and dissociated H2 on the CZA catalyst, and no adsorption on the surface of the

γ-Al2O3 catalyst.

The model-specific parameters were determined based on experiments, balance

equations, and the described assumptions about the reaction mechanism. Con-

fidence intervals, correlation coefficients, and the analysis of the parameters under-

line the high statistical significance and physical and chemical consistency of the

estimated kinetic parameters. Compared to the adsorption of other species, CO2

adsorption on the CZA catalyst has a strong influence on the reaction rates under

the conditions studied and in the presence of CO2-rich syngas. The successful fitting

to the experimental data resulted in the highlight of this chapter: a mechanistically

sound reaction kinetic model with a particularly large range of validity especially

regarding the composition of the mixed catalyst bed and the CO2 concentration

in the syngas. This model enables model-based optimization and/or reactor and

process design for the direct DME synthesis under consideration of these variables.

It can be stated that semi-mechanistic models provide a rather limited flexibility

due to the complex model structure consisting of coupled balance and constitutive

equations (e.g. equations of state, kinetic approaches and thermodynamic consid-

erations). This prevents the model from adapting to the available data and leads to

deviations in the model predictions. The deviations of the model presented in this

work could be attributed to measurement uncertainties, especially at low concen-

trations of DME. Hence, the fact that the model does not have enough flexibility

to adapt to measurements with a low signal-to-noise ratio proves the reliability

of its predictions and is a major advantage, if not a prerequisite, for exploratory

purposes and applications such as rigorous optimization and optimal reactor design.

• Chapter 3: Data-based Model. In this chapter, an artificial neural network

(ANN) was designed, trained, evaluated and put to test in comparison to a semi-

mechanistic model parametrized to the same data.

Since each ANN is strictly specific and due to the lack of a theoretical framework,

the design questions for ANNs postulated in Section 1.2 “what is a suitable activa-

tion function, backpropagation algorithm, network architecture, data division, and

training strategy?” must be answered empirically.

It was shown that, for the system under consideration, non linear activation func-

tions performed better than the (piece-wise) linear functions, and that algorithms
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based on Jacobian backpropagation are superior to gradient descent methods in

terms of accuracy, whereas no relevant effect of the activation function or training

algorithm on the convergence time could be identified.

Moreover, an automated scheme for data partitioning, network training, and net-

work selection was proposed. A total of 10000 ANNs per architecture were trained

using this strategy. Different starting parameter values were used to avoid local

optimality, and different schemes of data partitioning between training and testing

were evaluated. Subsequently, the best network was selected based on its perfor-

mance on a separate data set to guarantee that the chosen ANN is the one with

the best generalization i.e., with the best results on new data.

The training of 10000 ANNs was completed in 7.9 minutes, while the parameter

estimation of the lumped model parametrized to the same number of data points

took approximately 3.5 hours. It is worth mentioning that the total time required

to parameterize the lumped model is much longer when other steps of the process

that are more difficult to quantify are taken into account, such as the implemen-

tation of different models structures in the framework of model discrimination, the

determination of adequate start parameter values, etc.

The ANNs also outperform the lumped model in regards to the accuracy of pre-

dictions. To name an example, the relative error of predictions for the DME molar

fraction over all data could be reduced by approx. 54 % (from 24 % to 11 %). The

remaining predictive deviation is attributed to the mentioned measurement uncer-

tainties, and to the fact that the ANN could be trained successfully to identify the

input-output relationships in the data, rather than simply storing and replaying

the provided samples.

These findings underline the suitability of the ANN to act as a predictive tool

for Brownfield applications such as soft sensoring, real-time optimization, on-line

control, predictive maintenance, and others, where models with high flexibility and

adaptability, the capacity to map complex nonlinear relationships as well as fast

convergence and low computational cost are required.

Furthermore, the interpolation capability of the network was tested. It was con-

firmed that the chosen ANN is a reliable predictor in this operating window, al-

though the data set was relatively small (180 experimental points). This answers

the question “whether or not relatively small data sets are sufficient to meet the

data requirements of a simple ANN” and demonstrates the remarkable power of

data based models in contrast to semi-mechanistic approaches in regards to com-

putational burden and accuracy within the evaluated operational window.

To assess the model’s extrapolation ability and answer the stated question “to what

extent, if at all, the data-based model can be extrapolated”, simulations beyond the
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validity range were performed. The ANN delivered unexpected predictions at these

conditions. While it is widely accepted that data-based models are not reliable

when extrapolated, the analysis conducted in this work showed that extrapolation

of the ANN is indeed possible in the range where the phenomena covered by the

underlying model prevail, even if these conditions are outside the model’s validity

range. Nevertheless, at conditions where other phenomena unknown for the ANN

take place, the expected deviations were observed. This points out the necessity

for a new definition of “validity range” when dealing with data-based approaches.

Furthermore, only the parameters varied during the experimental investigations

can be included in the model structure of the ANN, which limits the suitability of

the model for exploratory purposes in operating windows not yet experimentally

investigated.

• Chapter 4: Hybrid Model. The first part of this provides a timely overview of

the models available for the direct DME synthesis. It has been shown that most

of the available models for the direct DME synthesis are semi-mechanistic, while

only a few works apply data-based models. No hybrid model could be found in

the open literature for this system. The second part of this chapter deals with the

implementation of a model of this type for the direct DME synthesis, and provides

a comprehensive comparison of the three model types handled in this work.

Since there are innumerable possible hybrid model structures, the first step was to

determine “what is a suitable structure to integrate available system knowledge with

data-based approaches to fill knowledge gaps?”. The postulated model consists of

balance equations of the tube reactor where the experiments used for model design

were measured. These equations are based on thermodynamic laws and hence

introduce known effects in the model. On the other hand, the unknown factor

when modeling the DME synthesis, i.e., the reaction kinetics are described by an

ANN trained to predict the rate of reactions with no mechanistic assumptions.

To answer “what are the advantages of a hybrid model over conventional semi-

mechanistic and/or data-based models in terms of computational burden, extrapo-

lation capability, and other critical properties of predictive models?” the character-

istics of the hybrid model were assessed using experiments and simulations with a

semi-mechanistic and a data-based model. For this purpose, all models must have

the same range of validity, which enables an evaluation of the structural differences

between the models especially regarding extrapolation. Additionally, the charac-

teristics of the data-based and the ANN of the hybrid model were also chosen to

be the same in order to ensure comparability of these models.
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The developed hybrid model could be trained very fast and it displayed a high level

of accuracy as well as short simulation time, especially when compared to the semi-

mechanistic model (e.g., 30 times faster parameter estimation and 4 times faster

simulations).

The interpolation ability was also tested, and the expected accurate and smooth

model predictions were observed. These results are broadly consistent with studies

in the open literature where hybrid model modeling was applied to similar systems.

Special attention was paid to the extrapolation ability of the hybrid model as one of

the critical features of data-based and hybrid modeling approaches. Based on exem-

plary variables, it has been shown that dimension extrapolation i.e., extrapolation of

a variable that was kept constant during model development, was not possible when

this variable directly affects the data-based module (ANN) of the hybrid model. In

contrast, a good extrapolation ability in a broad range was achieved when the ex-

trapolated variable was in the balance equations i.e., in the knowledge-module of

the hybrid model, and a suitable network architecture was chosen. Range extrap-

olation i.e., the evaluation of a variable outside the range where it was screened

during model development was possible, though in a limited range.

It could be concluded that the phenomena the underlying models can map is the

crucial factor regarding the limit for extrapolation, rather than only the range eval-

uated experimentally during model development. Furthermore, these phenomena

depend strongly on whether or not the data used for training reflect the correspond-

ing effects, and on the network mathematical structure (architecture and parame-

ters).

As it was shown in the literature overview, the direct DME synthesis has been widely

studied in the literature over the last decades leading to numerous lumped kinetic models,

each of them only valid in a limited range of conditions.

Future studies could explore the possibility of using these models in a manner anal-

ogous to that used in this chapter to expand the scope of the hybrid model. Through

synthetic data generation, reaction kinetic data can thus be generated in the operating

window in which the respective models were validated and subsequently used to train the

ANN of the hybrid model postulated here. Due to its high flexibility, the hybrid model

has the ability to integrate the knowledge captured by these models and it would be valid

in all the ranges combined. Although the actual reaction mechanism would remain un-

clear with this approach, from the insights obtained in this work it can be expected that

such a model enables cross-evaluation of the multiple process variables investigated in

the single studies such as different catalysts, reactor types and geometries, and reaction

conditions throughout nearly the entire relevant operating window. Thus, the exploration

83



and design of novel reactor or process concepts for this system could be conducted under

consideration of a broad scope of process parameters and ranges. A challenge of this task

is the highly heterogeneous information given in the different studies. E.g., for the carbon

containing compounds some authors report the content of CO, CO2, COx (CO + CO2),

and/or the CO2-to-COx ratio. Similarly, the H2 fraction, and/or the H2-to-CO, or the

H2-to-CO2 ratio are reported to indicate the hydrogen content in the feed. Additionally,

published data is in many instances incomplete, which hinders model implementation

and validation.

At the current stage of development, the main advantages of the data-based and hybrid

models presented in this work are related to low computational burden and remarkable

accuracy and flexibility to adapt to heterogeneous and multidimensional data. A major

drawback is the lack of a theoretical framework for network selection when additional

criteria such as extrapolation ability must be considered. These features highlight the

potential of these approaches for brownfield applications, where an existing process is

to be optimized, controlled, or monitored, while their usage for greenfield approaches

or exploratory applications is rather limited. In the latter case, reliable predictions at

extrapolated conditions are necessary which cannot be guaranteed with data-based or

hybrid models. Here, (semi-) mechanistic approaches represent the better option.
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ZUSAMMENFASSUNG

In dieser Arbeit wurden drei Modelle für die direkte DME-Synthese aus CO2-reichem

Synthesegas entwickelt, beschrieben und bewertet. Ein Highlight dieser Arbeit ist, dass

jedes Modell für das betrachtete System den Gültigkeitsbereich der verfügbaren Modelle

in ihren Kategorien erweitert und somit wertvolle Werkzeuge für die weitere Entwick-

lung und Optimierung dieses vielversprechenden Prozesses bereitstellt. Das in Kapi-

tel 2 vorgestellte formalkinetische Modell deckt einen breiten Bereich von CO2-reichen

Feedzusammensetzungen und Gewichtsverhältnissen von CZA zu γ-Al2O3 ab. Die in

den Kapiteln 3 und 4 vorgestellten datenbasierten und hybriden Modelle sind die er-

sten ihrer Art für die direkte DME-Synthese mit einem kommerziellen Katalysatorsys-

tem und industriell relevantem Druckniveau. Die jeweiligen Modelltypen bieten ver-

schiedene Vorteile und stellen unterschiedliche Herausforderungen dar, die im Folgenden

kurz erörtert werden, wie auch die in den einzelnen Kapiteln angewandte Methodik und

die wichtigsten Ergebnisse.

• Kapitel 2: Semi-mechanistisches Modell. In diesem Kapitel wurde ein semi-

mechanistisches (formalkinetisches) Modell entwickelt und bewertet.

Die Experimente zur Modelldiskriminierung wurden in einem im Vergleich zur

bestehenden Literatur breiteren Betriebsfenster durchgeführt, bei einem industriell

relevanten Druck von 5 MPa unter Variation des Kohlendioxidanteils im Feed (CO2

in COx: 20 - 80 %), der Temperatur (503 - 533 K), der Raum-Zeit (240 – 400 kgKat

s/m3
Gas) und des Gewichtsverhältnisses CZA zu γ-Al2O3 (1 bis 5).

Zur Beantwortung der in Abschnitt 1.2 gestellten Fragen, “welche Modellstruktur

am besten geeignet ist, d. h. welcher mechanistische Ansatz am besten für die

Systembeschreibung innerhalb des untersuchten Betriebsfensters geeignet ist” und

“welche modellspezifischen Parameter präzise Vorhersagen im untersuchten Bereich

ermöglichen”, wurde ein systematischer Ansatz verfolgt, der aus Modellunterschei-

dung und Parametrisierung besteht.

Zunächst wurden die experimentellen Daten mit acht verschiedenen kinetischen

Modellen aus der Literatur simuliert, um die Modelle zu diskriminieren. An-

schließend wurden die fünf Modelle mit der niedrigsten Residuenquadratsumme

an die Daten angepasst und parametrisiert.

Die mechanistischen Annahmen und die Struktur des Modells mit der höchsten

Genauigkeit wurden für die Feinjustierung der modellspezifischen Parameter aus-
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gewählt, um eine hohe statistische Signifikanz zu erreichen. Der mechanistische

Ansatz, der die genaueste Beschreibung des Systems im bewerteten Betriebsfen-

ster ermöglichte, umfasste drei Hauptreaktionen, die CO2-Hydrierung zu Methanol,

die Dehydratisierung von Methanol zu DME und die Wasser-Gas-Shift-Reaktion

(WGSR). Weitere Annahmen sind, dass die Dehydratisierungsreaktion nur durch

das γ-Al2O3 katalysiert wird und die Methanolsynthese und die WGSR durch den

CZA-Katalysator begünstigt werden. Die Ausdrücke für die Reaktionsraten wur-

den auf der Grundlage der allgemeinen Formulierung von Hougen-Watson unter der

Annahme von Elementarreaktionen, eines relevanten Einflusses der Adsorption von

CO2, CO und dissoziiertem H2 am CZA-Katalysator und keiner Adsorption an der

Oberfläche des γ-Al2O3 -Katalysators postuliert.

Die modellspezifischen Parameter wurden auf der Grundlage von Experimenten,

Bilanzgleichungen und den beschriebenen Annahmen über den Reaktionsmechanis-

mus bestimmt. Konfidenzintervalle, Korrelationskoeffizienten und die Analyse der

Parameter unterstreichen die hohe statistische Signifikanz und die physikalische und

chemische Konsistenz der ermittelten kinetischen Parameter. Im Vergleich zur Ad-

sorption anderer Spezies hat die CO2-Adsorption am CZA-Katalysator unter den

untersuchten Bedingungen und bei CO2-reichem Synthesegas einen starken Ein-

fluss auf die Reaktionsgeschwindigkeit. Die erfolgreiche Anpassung an die experi-

mentellen Daten führte zum Highlight dieses Kapitels: ein mechanistisch fundiertes

reaktionskinetisches Modell mit einem besonders umfangreichen Gültigkeitsbereich,

insbesondere in Bezug auf die Zusammensetzung des Katalysatormischbetts und die

CO2-Konzentration im Synthesegas. Dieses Modell ermöglicht die modellgestützte

Optimierung und/oder das Reaktordesign für die direkte DME Synthese unter

Berücksichtigung dieser Variablen.

Es lässt sich feststellen, dass semimechanistische Modelle aufgrund der komplexen

Modellstruktur, die aus gekoppelten Gleichgewichts- und Konstitutivgleichungen

(z. B. Zustandsgleichungen, kinetischen Ansätzen und thermodynamischen Zusam-

menhängen) besteht, eine eher begrenzte Flexibilität besitzen. Dies erschwert die

Anpassung des Modells an die verfügbaren Daten und führt zu Abweichungen

bei den Modellvorhersagen. Die Abweichungen des in dieser Arbeit vorgestell-

ten Modells könnten auf Messunsicherheiten zurückgeführt werden, insbesondere

bei niedrigen DME-Konzentrationen. Die fehlende Flexibilität des Modells bei der

Anpassung an Messungen mit geringem Signal-Rausch-Verhältnis unterstreicht die

Zuverlässigkeit der Vorhersagen und ist ein großer Vorteil, wenn nicht sogar eine

Voraussetzung, für Untersuchungszwecke und Anwendungen wie eine rigorose Op-

timierung und ein optimales Reaktordesign.
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• Kapitel 3: Datenbasiertes Modell. In diesem Kapitel wurde ein künstliches

neuronales Netz (KNN) entwickelt, trainiert, bewertet und im Vergleich zu einem

semi-mechanistischen Modell, das auf die gleichen Daten parametrisiert wurde,

getestet.

Da jedes KNN streng spezifisch ist und ein theoretischer Rahmen fehlt, müssen

die in Abschnitt 1.2 postulierten KNN-Designfragen “Was ist eine geeignete Ak-

tivierungsfunktion, ein geeigneter Backpropagation-Algorithmus, eine geeignete Net-

zwerkarchitektur, eine geeignete Datenaufteilung und eine geeignete Trainingsstrate-

gie?” empirisch beantwortet werden.

Für das betrachtete System konnte gezeigt werden, dass nichtlineare Aktivierungs-

funktionen besser performen als (stückweise) lineare Funktionen und dass Algo-

rithmen, die auf Jacobischer Backpropagation basieren, den Gradienten-Verfahren

in Bezug auf die Genauigkeit überlegen sind, während kein relevanter Einfluss der

Aktivierungsfunktion oder des Trainingsalgorithmus auf die Konvergenzzeit fest-

gestellt werden konnte.

Darüber hinaus wurde ein automatisiertes Schema für die Datenpartitionierung,

das Netztraining und die Netzauswahl vorgestellt. Mit dieser Strategie wurden

insgesamt 10000 ANNs pro Architektur trainiert. Es wurden verschiedene Startpa-

rameterwerte verwendet, um lokale Optimalität zu vermeiden. Weiter wurden ver-

schiedene Schemata der Datenpartitionierung zwischen Training und Test bewertet.

Anschließend wurde das beste Netz in Bezug auf seine Performance bei einem sep-

araten Datensatz Daten ausgewählt, um zu gewährleisten, dass das gewählte KNN

dasjenige mit der besten Generalisierung ist, d. h. mit den besten Ergebnissen bei

der Auswertung neuer Daten.

Das Training von 10000 KNNs war in 7,9 Minuten abgeschlossen, während die Pa-

rameterschätzung des auf die gleiche Anzahl von Datenpunkten parametrisierten

formalkinetischen Modells etwa 3,5 Stunden dauerte. Dabei sollte bedacht wer-

den, dass die Gesamtzeit für die Parametrisierung des formalkinetischen Modells

wesentlich länger ist, wenn weitere, schwieriger zu quantifizierende Schritte des

Prozesses berücksichtigt werden, wie z.B. die Implementierung verschiedener Mod-

ellstrukturen im Rahmen der Modelldiskriminierung, die Bestimmung geeigneter

Startparameterwerte usw.

Die KNNs sind auch hinsichtlich der Genauigkeit der Vorhersagen besser als das

formalkinetische Modell. So konnte beispielsweise der relative Fehler der Vorher-

sagen für den molaren Anteil von DME über alle Daten hinweg um ca. 54 % (von

24 % auf 11 %) reduziert werden. Die verbleibende Vorhersageabweichung wird auf

die erwähnten Messunsicherheiten zurückgeführt und auf die Tatsache, dass das

KNN erfolgreich darauf trainiert werden konnte, die Input-Output-Beziehungen in
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den Daten zu erkennen, anstatt lediglich die bereitgestellten Daten zu speichern

und wiederzugeben.

Diese Ergebnisse verdeutlichen die Eignung von KNN als prädiktives Werkzeug

für Brownfield-Anwendungen wie Soft-Sensoring, Echtzeit-Optimierung, Online-

Kontrolle, vorausschauende Wartung und andere Anwendungen, bei denen Modelle

mit hoher Flexibilität und Anpassungsfähigkeit, der Fähigkeit zur Abbildung kom-

plexer nichtlinearer Beziehungen sowie schneller Konvergenz und geringen Rechen-

aufwand erforderlich sind.

Ferner wurde die Interpolationsfähigkeit des Netzes getestet. Es wurde bestätigt,

dass das gewählte KNN ein zuverlässiger Prädiktor in diesem Betriebsfenster ist,

trotz des relativ kleinen Datensatzes bestehend aus 180 Versuchspunkten. Dies

beantwortet die Frage, ob relativ kleine Datensätze ausreichen, um die Datenan-

forderungen eines einfachen ANN zu erfüllen und zeigt die bemerkenswerte Leis-

tungsfähigkeit datenbasierter Modelle im Gegensatz zu mechanistischen Ansätzen

in Bezug auf Rechenaufwand und Genauigkeit innerhalb eines untersuchten Be-

triebsfensters.

Zur Beurteilung der Extrapolationsfähigkeit des Modells und zur Beantwortung

der Frage, inwieweit das datenbasierte Modell überhaupt extrapoliert werden kann,

wurden Simulationen über den Gültigkeitsbereich hinaus durchgeführt. Das KNN

lieferte unter diesen Bedingungen unerwartete Vorhersagen. Allgemein ist an-

erkannt, dass datenbasierte Modelle bei Extrapolation nicht zuverlässig sind. Je-

doch hat die in dieser Arbeit durchgeführte Analyse gezeigt, dass eine Extrapo-

lation des KNN in dem Bereich, in dem die vom unterliegenden Modell erfassten

Phänomene vorherrschen, wohl möglich ist, selbst wenn diese Bedingungen außer-

halb des Gültigkeitsbereichs des Modells liegen. Dennoch wurden unter Bedin-

gungen, bei denen andere, für das KNN unbekannte Phänomene auftreten, die er-

warteten Abweichungen beobachtet. Dies weist auf die Notwendigkeit einer neuen

Definition von “Gültigkeitsbereich” hin, wenn datengestützte Ansätze eingesetzt

werden. Des Weiteren können nur die in den experimentellen Untersuchungen vari-

ierten Parameter in die Modellstruktur des KNN einbezogen werden, was die Eig-

nung des Modells für explorative Zwecke in noch nicht experimentell untersuchten

Betriebsfenstern ausschließt.

• Kapitel 4: Hybrid Model. Der erste Teil dieses Kapitels gibt einen Überblick

über die für die direkte DME-Synthese verfügbaren Modelle. Die meisten der

in der Literatur verfügbaren Modelle für die direkte DME-Synthese sind semi-

mechanistisch, wohingegen nur einige wenige Arbeiten datenbasierte Modelle ver-

wenden. Ein hybrides Modell für das betrachtete System konnte nicht gefunden
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werden. Der zweite Teil dieses Kapitels befasst sich mit der Implementierung eines

solchen Modells für die direkte DME-Synthese und enthält einen umfassenden Ver-

gleich der drei in dieser Arbeit behandelten Modelltypen.

Da es unzählige mögliche hybride Modellstrukturen gibt, wurde in einem ersten

Schritt definiert, welche Struktur dazu geeignet ist, vorhandenes Systemwissen mit

datenbasierten Ansätzen zu integrieren, um bestehende Wissenslücken zu schließen.

Das postulierte Modell besteht aus Bilanzgleichungen des Rohrreaktors, in dem die

für die Modellentwicklung verwendeten experimentellen Daten ermittelt wurden.

Diese Gleichungen beruhen auf thermodynamischen Gesetzen und führen daher

bekannte Effekte in das Modell ein. Die unbekannte Größe bei der Modellierung der

DME-Synthese, die Reaktionskinetik, wird hingegen durch ein ANN beschrieben,

das darauf trainiert ist, die Reaktionsgeschwindigkeit ohne mechanistische Festle-

gungen vorherzusagen.

Zur Beantwortung der Frage “Welche Vorteile hat ein Hybridmodell gegenüber

herkömmlichen semi-mechanistischen und/oder datenbasierten Modellen in Bezug

auf den Rechenaufwand, die Extrapolationsfähigkeit und andere kritische Eigen-

schaften von prädiktiven Modellen?” wurden die Eigenschaften des hybriden Mod-

ells anhand von Experimenten und Simulationen mit einem semi-mechanistischen

und einem datenbasierten Modell verglichen. Für alle Modelle wurde der gle-

iche Gültigkeitsbereich gewählt, was eine Bewertung der strukturellen Unterschiede

zwischen den Modellen insbesondere hinsichtlich der Extrapolation ermöglicht. Um

die Vergleichbarkeit dieser Modelle zu gewährleisten, entsprechen die Eigenschaften

des KNN des Hybridmodells denen des datenbasierten Modells.

Das entwickelte hybride Modell konnte sehr schnell trainiert werden und wies eine

hohe Genauigkeit sowie kurze Simulationszeiten auf, insbesondere im Vergleich zum

semi-mechanistischen Modell (z. B. 30-mal schnellere Parameterschätzung und 4-

mal schnellere Simulationen).

Ferner wurde die Interpolationsfähigkeit getestet und es wurden die erwarteten

präzisen und stetigen Modellvorhersagen beobachtet. Diese Ergebnisse stimmen

weitgehend mit Studien in der Literatur überein, in denen die hybride Modellierung

bei vergleichbaren Systemen angewendet wurde.

Besonderes Interesse galt der Extrapolationsfähigkeit des hybriden Modells als einem

der kritischen Merkmale von datenbasierten und hybriden Modellierungsansätzen.

Anhand von Beispielvariablen wurde gezeigt, dass die Extrapolation in der Dimen-

sion, d. h. die Extrapolation einer Variablen, die während der Modellentwicklung

konstant gehalten wurde, nicht möglich war, wenn diese Variable das datenbasierte

Modul (KNN) des Hybridmodells direkt beeinflusst. Im Gegensatz dazu wurde

in einem weiten Bereich eine gute Extrapolationsfähigkeit erreicht, wenn die ex-
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trapolierte Variable in den Bilanzgleichungen, d. h. im Wissensmodul des Hybrid-

modells, enthalten war und eine geeignete Netzwerkarchitektur gewählt wurde. Die

Extrapolation des Gültigkeitsbereichs, d. h. die Bewertung einer Variablen außer-

halb des Bereichs, in dem sie während der Modellentwicklung untersucht wurde,

war möglich, allerdings lediglich in einem begrenzten Bereich.

Es lässt sich daraus schließen, dass die Phänomene, die die zugrunde liegenden Mod-

elle abbilden können, der entscheidende Faktor für die Grenze der Extrapolation

sind und nicht allein der Bereich, der während der Modellentwicklung experimentell

untersucht wurde. Darüber hinaus hängen diese Phänomene stark von der mathe-

matischen Struktur des Netzes (Architektur und Parameter) ab sowie davon ob die

zum Training verwendeten Daten die entsprechenden Effekte widerspiegeln.

Wie aus dem Literaturüberblick hervorgeht, wurde die direkte DME-Synthese in den

letzten Jahrzehnten in der Literatur intensiv untersucht, was zu zahlreichen fomalkinetis-

chen Modellen führte, die jeweils nur für einen begrenzten Bereich von Bedingungen gültig

sind. In nachfolgenden Studien könnte die Möglichkeit untersucht werden, diese Mod-

elle analog zu dem in diesem Kapitel angewandten Vorgehen zu verwenden, um den

Anwendungsbereich des Hybridmodells zu erweitern. Durch synthetische Datengener-

ierung können so reaktionskinetische Daten in dem Betriebsfenster erzeugt werden, in

dem die jeweiligen Modelle validiert wurden, und anschließend zum Training der ANN

des hier postulierten Hybridmodells verwendet werden. Aufgrund seiner hohen Flex-

ibilität ist das hybride Modell in der Lage, das von diesen Modellen erfasste Wissen

zu integrieren, wodurch es in einem übergreifenden Bereich Gültigkeit erlangt. Obwohl

der eigentliche Reaktionsmechanismus bei diesem Ansatz unklar bliebe, kann aufgrund

der Ergebnisse dieser Arbeit davon ausgegangen werden, dass ein solches Modell eine

Bewertung der zahlreichen in den einzelnen Studien untersuchten Prozessvariablen (z.

B. verschiedene Katalysatoren, Reaktortypen und -geometrien sowie Reaktionsbedingun-

gen) ermöglichen würde. Die Untersuchung und Auslegung neuartiger Reaktor- oder

Verfahrenskonzepte für dieses System könnte daher unter Berücksichtigung eines breiten

Spektrums von Verfahrensparametern und -bereichen durchgeführt werden. Eine Her-

ausforderung bei dieser Aufgabe ist die große Heterogenität der Informationen in den

verschiedenen Studien. Beispielsweise geben einige Autoren für die kohlenstoffhaltigen

Verbindungen den Gehalt an CO, CO2, COx (CO + CO2) und/oder das Verhältnis von

CO2 zu COx an. In ähnlicher Weise werden der H2-Anteil und/oder das H2/CO- bzw.

das H2/CO2-Verhältnis angegeben, um den Wasserstoffgehalt im Feedgas zu beschreiben.

Außerdem sind die veröffentlichten Daten in vielen Fällen unvollständig, was die Imple-

mentierung und Validierung von Modellen erschwert.

90



Im gegenwärtigen Entwicklungsstadium bestehen die Hauptvorteile der in dieser Ar-

beit vorgestellten datenbasierten und hybriden Modelle in der geringen Rechenleistung

und der bemerkenswerten Genauigkeit und Flexibilität bei der Anpassung an hetero-

gene und multidimensionale Daten. Ein entscheidender Nachteil ist im Gegenzug das

Fehlen eines theoretischen Rahmens für die Netzauswahl, wenn zusätzliche Kriterien wie

die Extrapolationsfähigkeit berücksichtigt werden müssen. Diese Eigenschaften unter-

streichen das Potenzial dieser Ansätze für “Brownfield”-Anwendungen, bei denen ein

bestehender Prozess optimiert, gesteuert oder überwacht werden soll. Die Verwendung

für “Greenfield”-Ansätze oder explorative Anwendungen ist hingegen nur beschränkt

möglich. Im zweiten Fall sind zuverlässige Vorhersagen unter extrapolierten Bedingun-

gen erforderlich, die mit datenbasierten oder hybriden Modellen nicht gewährleistet wer-

den können. Zu diesem Zweck sind (semi-)mechanistische Ansätze nach wie vor die

geeignetere Wahl.
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APPENDIX A. Additional Results on Semi-mechanistic

Model

A.1 Reduction procedure and conditioning.

Before performing the kinetic measurements, the CZA share of the catalytic bed was

activated at atmospheric pressure with a volume flow of 300 ml min−1 containing 5 %

of H2 and 95 % of N2. The system was heated from 373 to 473 K at a heating rate of

20 K h−1. This temperature was hold for one hour, followed by further heating to 513 K

at a heating rate of 12 K h−1. Finally, the H2 concentration in the gas flow was increased

to 50 %, maintaining the same total flow rate for an additional hour. Posterior to the

catalyst reduction, the operating conditions 300 ml min−1, 503 K, 20 % COR and 50 bar,

were set to allow the catalyst system to run in. This operating point was maintained and

the concentration of the product gas was monitored until a steady state of the catalyst

system could be assumed (between 12 and 20 h time on stream).

A.2 A priori Criteria.

Table A.1: Calculated criteria for the verification of assumptions.

Phenomena to
be neglected

Criteria Equation Calculated
Value*

Outer mass transfer Mears [155] ηDaII =
rj,eff |n|
βi ci

< 0.05 0.0182

Inner mass transfer Weisz-Prater [156] ψ =
(rj,eff l2c)
Di,eff ci,s

n+1
2 < 0.15 9.30E-06

Outer heat transfer Mears [155]
|∆HR| rj,eff R

λ T
EA
R T < 0.15 0.0008

Inner heat transfer Anderson [157]
|∆HR| rj,eff r2kat

λ Ts
EA
R T < 0.75 0.0397

Radial Gradients d/D-ratio [158] 24 < dTube
dParticle

< 48 24

Non-Isothermal
operation

Rule of Thumb ∆T = Tmax − Tmin 2

Axial dispersion Bodenstein No. [159] Bo = u0 L
Dax

> 100 481

Pressure drop ∆p/L Zhavoronkov
Correlation [160]

∆pmax

p ≈ 0 5.0 E-08

*for the worst-case scenario
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A.3 Model Discrimination.

For the initial model discrimination, the available experimental data were first simu-

lated using eight different kinetic models from the open literature [1, 32, 33, 36, 37, 39,

40, 87]. The sum of the squared errors between the measured and predicted composition

of the product gas was calculated for each model and depicted in Fig. A.1. In this figure,

the models are named after the first author.

Figure A.1: Total sum of squared errors for the implemented models. Models name after
first author.

After this initial screening, the five models with the lower residual squared sum were

parametrized to fit the experimental data. The model by Delgado Otalvaro et al. [1]

agreed best with the available experimental data. Hence, the model structure and respec-

tive mechanistic assumptions were chosen for fine-tuning. To enable a direct comparison

of the tested models and parameters, these have been compiled in Table A.2. Addition-

ally, the mean relative error between the predictions with the different models, and the

experiments for each species i (REi) is also given. REi is calculated by:

REi = 100%
1

No. Exps

No. Exps∑
n=1

|yi,out,measured,n − yi,out,predicted,n|
yi,out,measured,n

.

The indices of the reaction rates, and rate constants in Table S2 correspond to the

following reactions:

1. CO2 + 3 H2 −−⇀↽−− CH3OH + H2O

2. 2 CH3OH −−⇀↽−− CH3OCH3 + H2O

3. CO + H2O −−⇀↽−− CO2 + H2

4. CO + 2 H2 −−⇀↽−− CH3OH

5. n CO + (2n+1) H2 −−⇀↽−− CnH2n+2 + n H2O
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A.4 Selectivity

The selectivity towards DME is displayed here in Figs. A.2 and A.3 complementary

to Figs. 1, 2 and 4 of the manuscript.

Figure A.2: DME selectivity determined experimentally and plotted as a function of the

temperature (T ) and the CZA-to-γ-AL2O3 ratio (µ) for CORs of a) 20 % b)

40 % c) 60 % d) 80 %.

Figure A.3: Selectivity of methanol and DME at specific conditions: a) 533 K, 20 %

COR, b) 533 K, 80 % COR, c) 492 K, 20 % COR d) 492 K, 80 % COR.
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A.5 Mole percentage profiles including CO and CO2

The concentration profiles of CO and CO2 are shown here (Figures A.4 to A.7) for

the sake of completeness.

Figure A.4: Mole percentage profiles of CO, CO2, water, methanol and DME at T =

533 K, µ = 2. (—) Solid lines: 20 % COR, (- - -) Dashed lines: 80 % COR.

Figure A.5: Mole percentage profiles of CO, CO2, water, methanol and DME at µ = 2 and

COR = 20 %. (—) Solid lines: T = 503 K, (- - -) Dashed lines: T = 503 K

Figure A.6: Mole percentage profiles of CO, CO2, water, methanol and DME at µ = 2 and

COR = 80 %. (—) Solid lines: T = 503 K, (- - -) Dashed lines: T = 503 K
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Figure A.7: Mole percentage profiles of CO, CO2, water, methanol and DME at T =

533 K, COR = 20 %. (—) Solid lines: µ = 1, (- - -) Dashed lines: µ = 2

A.6 Non re-parametrized model specific parameters

The non re-parametrized model specific parameters are listed in Table A.3 comple-

mentary to Table 2.4.

Table A.3: Estimated parameters in non re-parametrized form.

Reaction k0,j EA,j

CO2 hydrogenation 24.47 mol
kg s bar4

32.6 J mol−1

MeOH dehydration 0.003 mol
kg s bar2

105.7 J mol−1

WGSR 5.93 mol
kg s bar2

175.3 J mol−1

Adsorbate Ki ∆Hads,i

CO2 107.9 bar−1 -5.3 J mol−1

CO 1.52 bar−1 -343 J mol−1

H2 1238 bar−1 -21 J mol−1
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A.7 Overview of selected studies conducted at different

CZA-to-γ-Al2O3 ratios
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APPENDIX B. Additional Results on Data-based Model

B.1 Selected ANN and model specific parameters

1

2

5

11

2

5

2

4

Figure B.1: Schematic representation of selected network architecture.

Table B.1: Model specific parameters of the chosen ANN. Connection weights of the
input and hidden layer, biases of the hidden layer.

Wi,h bh

-0,5976 -3,3548 1,2525 0,6804 0,8233 2,8645
0,2729 17,1032 -14,0036 -0,2476 -0,0765 -1,3391
0,0559 0,4986 -2,8614 -0,0755 -0,0333 -0,2824
0,5491 5,5599 -0,9823 -1,0014 -1,3748 -3,5558
0,0695 10,9542 -8,9659 0,5755 -0,0215 -2,0255

B.2 Evaluation of the Selected ANN

Figure 3.10 in Chapter 3 displays simulation and experimental results in the temper-

ature range between 180 and 300 ◦C. Complementary to this diagram, Figures B.2 to B.6

show the results for the remaining inlet feed compositions. The pressure is in all cases

p=5 MPa.

122



Table B.2: Model specific parameters of the chosen ANN. Connection weights of the
hidden and output layer, biases of the output layer.

Wh,o bo

1,0382 -0,9904 -1,9922 0,2485 1,8171 -0,2077
4,5827 -4,4135 -2,2968 1,2669 5,5258 -3,3151
-3,8560 5,2258 0,0799 -1,0704 -5,5635 2,7647
-6,7329 4,5728 0,1974 -1,8899 -5,7006 5,5805

Figure B.2: Components mole fraction in the product gas. Feed: 16.1 % CO, 2.8 % CO2,
48.8 % H2, 32.3 % inert gas (Ar and N2).

Figure B.3: Components mole fraction in the product gas. Feed: 8.4 % CO, 2.9 % CO2,
30.3 % H2, 58.4 % inert gas (Ar and N2).
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Figure B.4: Components mole fraction in the product gas. Feed: 4.1 % CO, 2.9 % CO2,
20.3 % H2, 72.7 % inert gas (Ar and N2).

Figure B.5: Components mole fraction in the product gas. Feed: 8.6 % CO, 0.8 % CO2,
24.0 % H2, 66.6 % inert gas (Ar and N2).
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Figure B.6: Components mole fraction in the product gas. Feed: 4.3 % CO, 0.8 % CO2,
13.1 % H2, 81.8 % inert gas (Ar and N2).
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APPENDIX C. Additional Results on Hybrid Model

C.1 ANN of hybrid model

The model specific parameters of the ANN-HMs discussed in the manuscript (ANN-

HM with 5, 26 and 28 HNs) are given in this section. Especifically, these are the connec-

tion weights between the input and the hidden layer (Wi,h) and between the hidden and

the output layer (Wh,o), as well as the biases of the hidden and outputs neurons (bh and

bo) as shown in Figure C.1.

Figure C.1

Table C.1: Model specific parameters of the ANN-HM with 5 HNs. Connection weights of the input and
hidden layer, biases of the hidden layer.

Wi,h bh

-0.60114 0.14025 -0.63213 0.80736 0.08968 -0.04125 -0.27108 0.00641 -0.43090 3.10519
-1.14673 0.65526 1.31330 1.05803 0.01463 -0.00635 -0.26234 0.05774 -0.44970 3.95600
-3.02931 -0.02462 -3.53521 0.79813 0.04093 19.72959 -3.39553 -0.23304 -1.22452 20.09301
3.98021 -5.89989 0.18136 -1.04395 -0.77207 -0.14084 0.37947 0.21915 0.88733 -7.69831
2.60925 0.85926 2.62343 0.47530 -1.60951 -18.55797 3.14491 0.16885 1.05177 -19.56385

C.2 Interpolation of hybrid model at complementary feed

compositions
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Table C.2: Model specific parameters of the ANN-HM with 5 HNs. Connection weights of the
hidden and output layer, biases of the output layer.

W−1
h,o bo

-14.986096 -16.498396 -14.484296 2.8317
4.86557018 5.96789325 4.68863279 10.1015
6.23236401 -0.5675959 -0.8749624 10.0811
-11.948762 -13.012473 -11.014278
8.14194045 0.55032097 -1.1746633

Table C.3: Model specific parameters of the chosen ANN-HM with 26 HNs. Connection weights of the
input and hidden layer, biases of the hidden layer.

Wi,h bh

0.26106 0.12391 0.82471 0.33482 -0.72017 -0.16497 -0.19633 -0.32429 0.86960 -0.36237
0.19960 0.28507 -1.86320 0.22985 -0.67681 -1.02954 0.16398 0.11994 0.36954 -1.43625
-1.16703 -1.23930 1.94422 0.56587 0.49974 0.16683 1.36101 0.10762 0.45637 -1.66672
0.20960 0.84537 0.24244 0.16916 2.68825 -2.82029 0.66726 -0.00679 2.02909 -4.48702
0.09335 0.43959 -0.34136 0.30138 -0.16581 -0.58593 -0.26262 -0.07968 -1.58115 0.47128
0.00205 0.06033 -0.14307 -0.04459 0.11140 -0.40748 0.06257 -0.22526 0.28571 -0.02085
0.16260 0.45512 2.20344 -0.94117 -0.25011 -0.46153 0.34534 -0.03916 0.32684 -2.61076
-0.24824 -0.39428 0.83872 -0.18088 0.37006 -0.00575 0.06836 0.20577 -1.22799 1.04678
0.06642 0.20981 0.64012 0.33408 -0.77574 -1.37976 0.24136 -0.16015 0.97653 -1.36315
-0.22450 -0.46566 -0.82017 -0.21527 1.06934 0.04703 -0.35663 0.05209 -1.94161 3.53783
0.35660 0.70139 -0.16036 -0.35555 0.14775 0.37536 0.00984 0.08682 1.31660 -2.49721
-0.56388 -0.14535 0.24360 0.31073 -0.98601 -0.13431 0.77766 0.02603 0.25057 -1.83903
-0.79324 1.26824 1.96136 -1.87042 0.29754 0.27066 0.87333 0.10029 1.36528 -2.69636
0.85912 1.50609 -2.13724 -0.40449 -0.68632 -0.33117 -1.34989 -0.21578 -0.16249 2.31635
1.18093 0.13571 -2.43287 -0.26083 0.13894 -0.98120 -0.62123 -0.01411 0.16473 -0.56915
0.13604 0.99348 -0.45484 -0.78550 -0.55885 -1.27551 0.17066 0.31817 0.22216 -1.61553
0.21975 0.25746 -1.96152 0.22746 -0.90822 0.80587 -0.28249 -0.00652 -1.18703 0.06408
0.46520 0.10702 0.07642 0.22147 0.77300 0.61035 -0.50695 -0.01416 0.11848 0.16956
0.25148 0.94812 -0.01635 -0.31923 -0.37376 -0.26056 -0.16762 0.11647 -0.40989 -1.07456
0.65769 0.69521 -0.14171 -0.00214 0.16558 0.92229 -0.69206 -0.32748 -0.59464 -0.22123
0.47396 -0.10615 0.40137 0.06801 0.67045 0.12422 -0.72975 -0.20161 -1.00531 2.23222
0.27067 -0.45266 -1.49560 -0.23085 0.80500 -0.47034 0.42334 0.07572 0.62688 -2.28619
-0.30719 -0.34633 0.06663 1.04917 0.81328 0.10817 0.47108 -0.04857 1.04581 -1.57837
0.57060 0.64921 -1.08245 -0.15155 -0.39120 0.14038 -0.56275 -0.03471 -0.73006 0.16251
0.19670 -0.23625 -0.58807 0.57185 -0.11151 0.01358 -0.15972 0.04672 0.66813 0.32134
0.12129 -0.23764 -2.28032 1.35823 -0.28722 -0.20917 -0.11084 -0.00218 -0.25148 0.02584
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Table C.4: Model specific parameters of the ANN-HM with 26 HNs. Connection weights of the
hidden and output layer, biases of the output layer.

W−1
h,o bo

0.6009 -0.1806 0.2787 -0.2325
-1.5689 0.0367 1.3037 -0.8352
0.5055 1.0450 1.8062 -0.4410
-0.2549 4.9671 0.2776
-0.9679 0.4391 0.1689
-0.5245 -0.2991 -0.3791
1.4918 -0.1403 1.6442
-0.5030 -1.7649 -0.2364
-0.4736 -2.2558 -0.4178
-1.6924 2.0570 0.3809
2.9428 1.3525 0.0294
0.7372 0.6209 -1.2581
-2.6214 -1.4086 0.8564
0.2751 1.0030 2.0603
1.5861 2.0752 0.7404
2.0191 0.6807 -0.0775
0.3512 -1.8184 -0.0947
-0.0987 0.2139 1.2012
-2.3025 -1.8966 -1.4302
0.4858 0.0648 -0.4688
1.6234 0.2751 -0.5682
-1.1198 -2.5540 -2.5515
-1.5483 -1.0474 -1.0012
-1.1105 -1.1005 -0.8157
0.1349 -0.3539 -1.0865
1.1528 -0.0161 -0.9238
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Table C.5: Model specific parameters of the ANN-HM with 28 HNs. Connection weights of the input
and hidden layer, biases of the hidden layer.

Wi,h bh

0.46664 0.28557 0.43946 -0.00902 -0.16684 0.54786 -0.43955 0.21328 -0.19793 -0.16975
0.60392 0.25781 -0.59811 -1.10325 -0.45429 0.44810 -0.66461 -0.11598 0.98309 1.48690
0.07021 -0.02014 0.00078 0.01422 0.72290 -0.30191 -0.02811 0.14087 0.04316 -0.13027
-0.65256 -0.60885 -0.01501 -0.47318 0.50558 -0.77336 0.62161 0.16996 0.63660 0.93549
-0.19340 0.37544 -1.33623 0.05289 -0.24590 0.51843 -0.46170 -0.06380 -1.95280 2.33584
-0.12152 -0.18302 -1.03475 0.82643 0.44755 0.75689 0.47722 -0.03124 1.65909 -2.46539
0.04288 0.29545 0.68057 -0.10564 0.35736 -0.67963 -0.00200 -0.39468 0.95627 -0.38664
-0.56356 0.67832 2.15088 -0.97097 2.05435 -0.92779 0.52143 0.00043 1.51639 -0.88890
-0.57398 -0.33225 -0.48717 0.55994 -0.00700 1.28148 0.26237 -0.00604 -0.04937 0.32635
0.48020 -0.09632 1.15148 0.49759 -0.08547 1.44197 -0.99544 -0.29592 -0.29415 2.49784
-0.49102 -0.47841 0.52580 -0.25073 0.55789 -0.56585 0.53654 0.08371 0.09385 -0.09893
-0.18325 -0.13461 0.47380 -0.18808 0.43415 -0.08744 0.13086 0.05678 0.17174 0.11998
-0.06853 0.28728 0.73074 -0.53532 0.24692 -0.38353 -0.01040 -0.14186 -0.69265 0.32885
-0.24823 -0.48929 0.60280 -0.27136 1.18187 -1.33482 -0.17447 -0.01340 -1.50596 3.43600
-0.75584 -0.31503 1.63727 0.08533 1.34722 -0.20588 0.42242 -0.18111 0.90560 0.94341
-1.28804 -0.83502 -1.31090 -0.65176 -0.91017 -1.24448 1.05639 0.28885 -0.59850 1.50718
-0.44566 -0.36471 1.78173 -0.59253 0.53608 0.07252 0.27134 -0.01676 0.84184 0.93740
0.73352 -0.90533 -1.51640 2.18375 0.16292 -1.12499 -0.88997 -0.03892 -1.02122 2.41060
1.49650 1.85872 -2.08273 -2.02300 0.28420 -0.19405 -2.46870 -0.23513 -0.77545 6.15865
-0.44727 -0.36909 -0.31667 -0.18004 -0.21224 1.43467 0.19270 -0.01945 0.35410 0.54217
-0.17363 -0.40172 0.07947 0.27894 -0.19348 -0.23665 0.17962 0.07693 0.10611 0.02526
-0.07722 0.60267 -1.06913 -0.95967 0.15029 -0.05226 0.62780 0.02814 0.57058 -3.35825
-0.86457 0.74219 3.77944 -1.28672 0.87443 -0.04660 0.54564 0.00464 0.77024 -0.37002
-0.57021 -0.43266 -1.12872 0.23752 -0.51371 -0.83880 0.80082 0.27356 0.13021 -1.04363
-0.22845 0.49498 1.06860 -0.88429 0.87760 0.09871 0.36785 -0.10285 1.83416 -1.25260
0.09510 -0.11401 0.15330 0.24541 0.33723 -0.14926 -0.07379 0.13185 -0.16622 0.02456
0.49600 0.60806 -1.44494 -0.91344 -0.63084 -0.42098 -0.15879 0.11993 0.01247 -0.91623
0.25459 -0.19486 -0.00958 0.53563 0.49777 -0.08896 -0.23045 -0.21662 -0.94394 0.13169
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Table C.6: Model specific parameters of the ANN-HM with 28 HNs. Connection weights of the
hidden and output layer, biases of the output layer.

W−1
h,o bo

0.04726 -0.79667 0.43343 0.1063
-1.19233 -0.88727 0.03829 -0.6298
-0.69891 -0.61537 -0.24272 -0.4188
1.02313 1.75151 0.62214
-1.01982 -1.59516 -0.84936
-1.76369 -1.66547 -1.24119
-0.25505 -1.44239 0.32571
-1.59085 2.50186 0.09647
-0.49080 0.93114 1.42095
1.28131 0.54790 -0.37088
0.28152 -1.14893 -0.84685
0.13544 -0.88629 0.25524
-1.00940 -0.10411 1.01269
-3.10077 1.21421 0.07743
1.35216 1.63563 -0.66500
-1.00380 -1.34031 0.03127
-0.13046 1.07453 1.51489
2.51110 0.87342 -2.01953
0.93582 1.24484 2.61213
-0.03322 -1.04785 -1.38058
0.18938 -0.40356 -0.61202
0.13238 -1.13961 -2.50424
0.15077 -3.01093 -0.01719
-0.51431 -1.25468 -0.09573
1.28006 -0.24813 -0.14723
-0.35293 -0.46369 -0.09210
2.32963 1.98265 -0.13629
-0.50319 -0.76767 -0.46772
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Figure C.2: Surface response for the hybrid model predictions of the mole fractions of H2,
CO, CO2 and DME within the validity range of the temperature and total
gas flow. Feed composition: 48.0 % H2, 16.11 % CO, 2.88 % CO2. Pressure
50 bar. CZA-to-γ-Al2O3-ratio µ = 1. ANN-HM with 26 HNs.

Figure C.3: Surface response for the hybrid model predictions of the mole fractions of H2,
CO, CO2 and DME within the validity range of the temperature and total
gas flow. Feed composition: 13.05 % H2, 4.10 % CO, 0.86 % CO2. Pressure
50 bar. CZA-to-γ-Al2O3-ratio µ = 1. ANN-HM with 26 HNs.
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C.3 Complementary Figures

Figure C.4: Range extrapolation of the temperature. Nominal feed composition: 42.3 %
H2, 16.1 % CO, 0.82 % CO2. Total gas flow 0.2 slpm. Pressure 50 bar.
CZA-to-γ-Al2O3-ratio µ = 1. ANN-HM with 5 HNs.
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Figure C.5: Range extrapolation of the temperature. Nominal feed composition: 42.3 %
H2, 16.1 % CO, 0.82 % CO2. Total gas flow 0.6 slpm. Pressure 50 bar.
CZA-to-γ-Al2O3-ratio µ = 1. ANN-HM with 5 HNs.

Figure C.6: Range extrapolation of the temperature. Nominal feed composition: 42.3 %
H2, 16.1 % CO, 0.82 % CO2. Total gas flow 0.2 slpm. Pressure 50 bar.
CZA-to-γ-Al2O3-ratio µ = 1. ANN-HM with 28 HNs.
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Figure C.7: Range extrapolation of the temperature. Nominal feed composition: 42.3 %
H2, 16.1 % CO, 0.82 % CO2. Total gas flow 0.6 slpm. Pressure 50 bar.
CZA-to-γ-Al2O3-ratio µ = 1. ANN-HM with 28 HNs.

C.4 A priori Criteria

A priori criteria were employed for ruling out mass and heat transport limitations.

These criteria were calculated for temperatures between 180-300 ◦C and total gas flows

between 0.15-0.8 slpm.The values calculated for the worst case scenarios are give in Ta-

ble C.7 for each reaction, and show that mass and heat transport limitations do not play

a significant role at the evaluated operating conditions.

C.5 Experimental values

The experimental values measured for validation of the simulation results at extrap-

olated conditions are given in Table C.8.

C.6 Catalyst conditioning and deactivation

Figure C.8 shows the COx-conversion (XCOx) as a function of the Time-On-Stream

(ToS) for a reference operating point measured at 513 K, 50 bar and 0.4 slpm. Within

the first 25 hours the reaction conditions were left constant at 513 K, 50 bar and 0.4

slpm. After that, the conditions were varied dynamically between 453-573 K, 40-60 bar

and 0.15-0.8 slpm. After 129 hours the experiments for model validation at 453-573 K,

40-60 bar as well as 0.15-0.8 slpm were taken. Between the ToS of 129 and 160 hours,
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Table C.7: Calculated a priori criteria for determination of transport limitations.

Phenomenon Equation [158] Max. Calculated Value

rj,eff |n|
a′kf cb

< 0.05

For reaction 1: 3.29 · 10−5

Outer mass transfer For reaction 2: 2.09 · 10−5

For reaction 3: 5.74 · 10−5

EA
RTb

∣∣∣−∆HR
hTb

∣∣∣ rj,effa′ < 0.05
For reaction 1: 4.75 · 10−4

Outer heat transfer For reaction 2: 3.09 · 10−4

For reaction 3: 4.97 · 10−4

rj,effL
2

Deff cs

(n+1)
2 < 0.15

For reaction 1: 4.62 · 10−4

Inner mass transfer For reaction 2: 2.93 · 10−4

For reaction 3: 8.06 · 10−4

EA
RTb

∣∣∣ −∆HR
λeff,pTb

∣∣∣ rj,effL2 < 0.1
For reaction 1: 4.28 · 10−5

Inner heat transfer For reaction 2: 2.78 · 10−5

For reaction 3: 4.48 · 10−5

where the experiments were conducted, the XCOx remains stable with a relative deviation

of 10 % between the minimal and maximal measured XCOx.

Figure C.8: The COx-conversion (XCOx) as a function of the Time-On-Stream (ToS) for
a reference operating point measured at 513 K, 50 bar and 0.4 slpm.
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APPENDIX D. Published Manuscripts

In the following, the published manuscripts corresponding to Chapters 2 to 4 are

included along with the respective supplementary files.
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irect DME synthesis from CO2 rich
syngas under variation of the CZA-to-g-Al2O3 ratio
of a mixed catalyst bed†

Nirvana Delgado Otalvaro, Gerardo Sogne, Karla Herrera Delgado, *
Stefan Wild, Stephan Pitter and Jörg Sauer

The one-step synthesis of dimethyl ether over mechanical mixtures of Cu/ZnO/Al2O3 (CZA) and g-Al2O3

was studied in a wide range of process conditions. Experiments were performed at an industrially

relevant pressure of 50 bar varying the carbon oxide ratio in the feed (CO2 in COx from 20 to 80%),

temperature (503–533 K), space-time (240–400 kgcat s mgas
�3), and the CZA-to-g-Al2O3 weight ratio

(from 1 to 5). Factors favoring the DME production in the investigated range of conditions are an

elevated temperature, a low CO2 content in the feed, and a CZA-to-g-Al2O3 weight ratio of 2. A lumped

kinetic model was parameterized to fit the experimental data, resulting in one of the predictive models

with the broadest range of validity in the open literature for the CZA/g-Al2O3 system.
1. Introduction

Dimethyl ether (DME) has many uses in industries. Applications
include its use as a coolant or a propellant, and as an important
commodity for the production of lower olens.1 Other potential
applications include its use as a diesel substitute or fuel additive.2,3

Comparedwith fossil diesel fuels, the combustion of DME produces
less NOx, CO, and particulate emissions, while still achieving a high
performance with only minor modications of the fuel storage and
supply.4,5 DME is produced from synthesis gas, which originates
fromdifferent sources such as coal, natural gas, and wastematerials
like biomass.4–6 Depending on the raw material and syngas
production process, the composition of the syngas may change in
awide range, resulting in a variable feedstock for theDME synthesis.

The commercially established production route of DME
involves two steps. The rst step is methanol synthesis from
syngas, followed by the methanol dehydration step in a second
reactor. An alternative route is the direct or single-step synthesis,
where DME is produced directly from syngas in a single reactor.4

Potential advantages of a single reactor are reduced complexity
and investment costs. Also, the direct synthesis is thermodynam-
ically advantageous compared to the conventional route.7 The in
situ conversion of methanol by the dehydration reaction shis the
thermodynamic equillibrium of methanol synthesis towards the
products. As a result, a higher conversion of the synthesis gas can
be achieved under comparable conditions.7
ermann-von-Helmholtz-Platz 1, D-76344

il: karla.herrera@kit.edu; Tel: +49 721

tion (ESI) available. See DOI:

4569
Many dual catalyst systems have been proposed in the
scientic literature for direct DME synthesis.8–10 These combine
the properties of metallic catalysts for the methanol synthesis
(typically copper-based),11 and a solid acid catalyst for the
selective methanol dehydration to DME (such as g-Al2O3,
zeolites, and silica-modied alumina).12 In this contribution, we
consider mechanical mixtures of the two commercial catalysts
of each step i.e., Cu/ZnO/Al2O3 (CZA) and g-Al2O3.

Identifying and quantifying dependencies between process
parameters and performance is essential for efficient,
economically viable and safe process design and operation.
Hence, numerous studies have been conducted investigating
the inuence of different variables on the performance of the
direct DME synthesis from CO2 rich synthesis gas.
CO2 content in the synthesis gas

Ateka et al.13 investigated the effect of CO2 content in the feed gas
on the thermodynamics of the methanol and DME synthesis. Ng
et al.14 studied the inuence of CO2-to-COx ratios and catalyst bed
compositions on the kinetics of the DME synthesis at 250 �C and
5 MPa. Peĺaez et al.15 described the effects of different feed gas
compositions on the process performance at a pressure of 30 bar.
These and other works7,16–19 have shown that increasing CO2

content in the feed decreases the process performance, and that
water plays an important role, not only affecting the reaction
kinetics, but also the catalyst structure by deactivation of the
dehydration component g-Al2O3.
Catalyst bed composition and conguration

With regard to the composition of the catalyst bed, previous
investigations14,20–23 have shown on the basis of simulated and
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Selected properties of the commercial catalysts

Properties of the CZA catalyst10

Metal composition (Cu/Zn/Al)/wt% 64/29/6
Specic surface area (SBET)/m

2 g�1 98
Pore volume/cm3 g�1 0.332
Maximum pore diameter/nm 11
Pore size range/nm 5–26

Properties of the g-Al2O3 catalyst
33

Specic surface area (SBET)/m
2 g�1 213

NH3-TPD peak position in low and high
temperature regions/K

512 and 624

Total acidity/mmol NH3 per gcat (desorbed
NH3 in NH3-TPD)

0.37

Acidity in low and high temperature
regions/mmol NH3 per gcat

0.18 and 0.19
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experimental data that optimization can lead to signicant
enhancement of the process performance. For instance, in the
studies of Peláez et al.15 and Peinado et al.24 the authors showed
that for CO2 rich synthesis gas a signicant increase in the
performance is achieved by increasing the CZA-to-g-Al2O3 ratio.
In a previous study,21 applying a dynamic optimization scheme
and experimental validation we showed that these effects hold
true also for high pressure (50 bar) and different compositions
of CO2 rich syngas, including a hydrogen-lean feed. Other
studies20,21,25 on the loading and arrangement of physical cata-
lyst mixtures have shown that homogeneously mixed catalyst
beds achieve similarly good process performance compared to
more complex congurations.

Quantication and prediction of system behavior

Reliable models able to predict the process performance in
different operating windows are necessary to enable the optimal
reactor and process design, especially if DME synthesis is to be
conducted at dynamic conditions or changing feed composi-
tions. Therefore, several kinetic models have been proposed in
the open literature to quantitatively describe and predict the
effects of process variables on process performance. A widely
used modelling approach is the combination of available
models for the methanol synthesis,26,27 and its dehydration.28

Models derived for the direct DME synthesis under mechanistic
assumptions include the works of Lu et al.,29 Aguayo et al.,30

Ereña et al.,31 and Peláez et al.15

Although so many studies have been carried out for the
direct DME synthesis from CO2 rich synthesis gas, the detail
reaction mechanism is still controversial.32 Therefore, reliable
kinetic models valid in a wide range of conditions at industrially
relevant process conditions are still necessary. In this work, we
develop a reaction kinetic model applicable for an extended
range of catalyst bed compositions, and process parameters
(CO2 content in the synthesis gas, temperature and space time),
extending the scope of available reaction kinetic models and
providing a useful tool for model-based reactor and process
design and optimization.

2. Experimental setup and
procedures

In this chapter the equipment and methodology for the exper-
imental kinetic investigations are described. First, the labora-
tory setup is described, then the materials used are listed,
followed by a brief description of the experimental procedures
and conditions at which the kinetic measurements were
conducted.

2.1. Reactor and periphery

The reactor setup used in this work is presented in detail else-
where.21 It consists of a laboratory tube reactor made of the
stainless steel with an internal diameter of 12 mm, and a total
length of 460 mm. The reactor is divided in four independent
heating zones, each of which is surrounded by brass jaws
equipped with heating cartridges (Horst GmbH) to set the
© 2021 The Author(s). Published by the Royal Society of Chemistry
temperature at the reactor outer wall. The gas supply is regu-
lated via mass ow controller (Bronkhorst High-Tech B.V.) by
using proportional integral derivative control. The system
pressure is set by using a mechanical pressure regulator
(Emerson Electric Co.). A gas chromatograph G1530A (Agilent
Technologies) was used to analyse the composition of the feed
gas and product gas.

2.2. Materials

Commercial catalysts, i.e., Cu/ZnO/Al2O3 (CZA) and g-Al2O3

(Alfa Aesar) were used as hydrogenation catalyst for the meth-
anol synthesis and methanol dehydration to DME, respectively.
Relevant properties of the used catalysts are provided in Table 1.
The catalysts were ground and sieved to a particle size between
250 and 500 mm. To avoid hot spot formation, the catalytic bed
was diluted with silicon carbide (SiC, Hausen Mineralien-
grobhandel GmbH) of the same size distribution.

The feed gases, carbon monoxide (CO, 99.97%), nitrogen
(N2, 99.9999%), hydrogen (H2, 99.9999%) and a mixture carbon
dioxide/nitrogen (CO2/N2, 50 : 50� 1.0%) were purchased by Air
Liquid Germany GmbH.

2.3. Kinetic measurements

Before performing the kinetic measurements, the CZA share of
the catalytic bed was reduced at atmospheric pressure (5%H2 in
N2, at temperatures between 393 and 513 K). Following the
reduction procedure, the catalyst was conditioned until stable
catalyst activity was achieved, in order to decouple the kinetic
measurements from deactivation effects. The reduction and
conditioning procedures are described in detail elsewhere17 and
summarized in the ESI.† The kinetic measurements were per-
formed at a pressure of 50 bar under variation of the CZA-to-g-
Al2O3 weight ratio (m), temperature (T), space time (s), and
carbon oxide ratio (COR),

COR ¼ yCO2 ;in

yCO2 ;inþ yCO;in

� 100%: (1)
RSC Adv., 2021, 11, 24556–24569 | 24557
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The experimental conditions as summarized in Table 2 were
chosen in order to measure intrinsic kinetics i.e., by minimizing
heat and mass transport limitations. The total catalyst mass in
all experiments was 2 g, while the mass of each catalyst was
distributed in different ratios (m ¼ mCZA/mg-Al2O3

). The mole
fraction of H2 in the feed (yH2,in) was set to 46.5% to avoid
a stoichiometric limitation in all cases. The mole fraction of
carbon oxides in the feed, i.e., yCOx,in ¼ yCO2,in + yCO,in was at
15%, and the fraction of N2 (yN2,in) was set accordingly to 38.5%.
The concentrations used for the model parametrization were
determined from the mean value of at least 4 chromatograms
per operating point. Each set point was held for at least 3 hours
enabling multiple readings, and conrmation of stability.
2.4. Estimation of model-specic parameters

The Matlab® (Version R2019a) built-in solver ode45 was used to
integrate the system of differential equations (Section 3.1) along
the reactor axial coordinate. The model-specic parameters
were tted to experimental data using the nonlinear least-
squares solver lsqcurvet and the algorithm trust-region-reec-
tive. The model-specic parameters were estimated such as to
minimize the weighted sum of squared errors,

SSE ¼
XNo:Exps

n¼1
wn½ yn � f ðxn; qÞ�2: (2)

where yi represent the response values (measured quantities),
f(xn,q) the predicted values with the nonlinear model function,
and xn and q are respectively the predictor values of observation
n, and the model-specic parameters.

The parameter estimation took place based on the measured
mole fractions of the components in the product gas, excluding
water and methanol since it was not possible to detect these
species accurately over the wide range of conditions shown in
Table 2. Reported values for water and methanol correspond to
those calculated based on the component balances (C, H and O
balance). Additionally, experimental data for which the
component balances exhibited a relative error higher than 8%
were excluded from the parameter estimation (wn ¼ 0). Due to
the strong inuence of initial parameter values, and in order to
avoid local optimality, the tting procedure was iteratively
repeated until the relative difference between the parameters
obtained in two consecutive iterations was lower than 5%. The
Matlab built-in function nlparci was used to calculate the 95%
condence intervals of the parameter estimates using the
residuals and the Jacobian matrix of the tted model, which are
Table 2 Conditions for kinetic measurements

Variable Values

Temperature (T), K 503, 513, 523, 533
Space-timea (s), kgcat s mgas

�3 240, 300, 400
Carbon oxide ratio (COR), % 20, 40, 60, 80
Catalyst ratio (m), gCZA gg-Al2O3

�1 1, 2, 3, 5

a At standard conditions: p ¼ 101 325 Pa, T ¼ 293.15 K.

24558 | RSC Adv., 2021, 11, 24556–24569
both output arguments of lsqcurvet. Additionally, correlation
coefficients were computed using eqn (3),34

ri;j ¼
yi;jffiffiffiffiffiffiffiffiffiffiffiffi
yi;i yj;j
p : (3)

Here, yi,j represents the elements of the covariance matrix of the
parameters of the tted model. The covariance matrix Vq is calcu-
lated with the variance of the experimental uctuations s2 (assumed
to be constant over all experiments) and the Jacobian matrix J by,

Vq ¼ s2(JTJ)�1. (4)

Correlation coefficients jri,jj $ 0.95 are assessed to indicate
a strong parameter correlation.35
3. Mathematical model

In this section, the mathematical model consisting of the
reactor model (balance equations) and the reaction kinetic
model (rate expressions) is presented.
3.1. Reactor model

The change of the mole fraction of the components along the
reactor's axial coordinate can be described by the balance
equation of an ideal plug ow reactor (eqn (5)). This simplied
form of the general material balance of a xed-bed reactor is
admissible for the characteristics of the lab-scale reactor, and
the conditions at which it was operated. Isothermal operation was
achieved by diluting the catalyst bed with silicon carbide (SiC), and
diluting the feed gas with inert N2. Temperature gradients did not
exceed 2 K in any of the measurements. Hence, the assumption of
isothermal operation applies and the energy balance can be
omitted. All measurements took place under steady state condi-
tions, which was veried experimentally. Furthermore, it was
proven by the means of a priori criteria, that no signicant inu-
ence of mass or heat transport processes took place, and that the
assumption of plug ow applies. Finally, the pressure drop in the
xed bed was determined to be negligible by the means of corre-
lations. Values to support the mentioned assumptions are re-
ported in Table S1 in the ESI.† It can be concluded that the
intrinsic reaction rates were measured in all experiments and that
the reactor can be described by the balance equations of an ideal
plug ow reactor. Furthermore, the volume contraction caused by
reaction can be accounted for by eqn (6).

dyi

dz
¼ RTZ

up

 
Ri � yi

XN
k

Rk

!
; (5)

du

dz
¼ RTZ

p

XN
i

Ri: (6)

In eqn (5) and (6), yi is the mole fraction of component i, z
represents the position in the axial coordinate, R is the universal
gas constant in J mol�1 K�1, T is the temperature in K, p is the
pressure in Pa, u is the gas velocity in m s�1, wi,j is the stoi-
chiometric coefficient of component i in reaction j, and N is the
number of components in the system. Z is the compressibility
© 2021 The Author(s). Published by the Royal Society of Chemistry
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factor of the mixture, which takes into account possible devia-
tions from the ideal gas behavior at the high pressure (50 bar)
considered in our investigations. The Peng–Robinson equation
of state (PR-EoS)36 was chosen to calculate Z, since it has already
been successfully applied to the system under consideration,21,37

and it provides accurate calculations for light gases, alcohols
and hydrocarbons.38 In addition, van der Waals mixing rules36

were used to account for inter-molecule interactions. The molar
rate of depletion or formation of component i due to chemical
reaction (Ri in mol m�3 s�1) is dened by:

Ri ¼
XJ
j

wi;jr
v
j ; (7)

with

rvj ¼ (1 � 3bed)rcat,jxcat,jr
m
j . (8)

In the above equations, rvj and rmj are the volume and mass
specic rates of reaction j inmolm3 s�1 andmol kg�1 s�1, 3bed is
the porosity of the catalyst bed estimated to be 0.39, rcat,j is the
density of the catalyst that promotes reaction j, i.e., the densities
of the CZA and the g-Al2O3 catalysts with the respective values of
1761.3 kg m�3 and 667.9 kg m�3, and J is the number of reac-
tions. Finally, xcat,j stands for the volume fraction of the catalyst
that promotes reaction j calculated by,

xCZA ¼
VCZA

VCZA þ Vg-Al2O3
þ VSiC

; (9)

xg-Al2O3
¼ Vg-Al2O3

VCZA þ Vg-Al2O3
þ VSiC

: (10)

where VCZA, Vg-Al2O3
and VSiC are the volumes of CZA, g-Al2O3 and

SiC respectively.
3.2. Reaction kinetic model

For the initial model discrimination, the available experimental
data were simulated using eight different kinetic models from
the open literature.15,21,22,30,31,39–41 Subsequently, the ve models
with the lower residual squared sum were parameterized to t the
data. Our previous model21 exhibited the best agreement with the
experimental data acquired for this contribution, which can be
attributed to similar operating conditions, and to the fact that in
both contributions the same catalysts (same supplier), and pre-
treatment procedures were employed. The mechanistic assump-
tions and model structure were chosen for ne-tuning, and the
model structure that enabled the best t is presented in the
following. Further information on the initial model discrimination
is presented in the ESI,† along with a compilation of the rate
expressions and specic parameters of the tested models (Table
S2†). The new estimated model parameters are presented in
Section 4.2.1 followed by the statistical evaluation of the estimates.

The reaction network considered in this model consists of
the CO2 hydrogenation (reaction 1), the methanol dehydration
to DME (reaction 2), and the water gas shi reaction (reaction
3). Reactions 1 and 3 are assumed to be promoted by the CZA
catalyst, while reaction 2 is promoted by g-Al2O3.
© 2021 The Author(s). Published by the Royal Society of Chemistry
Reaction 1:

CO2 + 3 H2 # CH3OH + H2O

Reaction 2:

2 CH3OH # CH3OCH3 + H2O

Reaction 3:

CO + H2O # CO2 + H2

The reaction rate expressions were postulated based on the
general Hougen–Watson formulation,

r ¼ ðkinetic termÞðpotential termÞ
adsorption term

: (11)

The kinetic term equals the rate constant of each reaction j
(kj). The potential term, describing the driving force of the
reaction i.e., the distance from thermodynamic equilibrium, is
dened for each reaction j as follows,

Potential termj ¼
Y

i;j;n\0

fi
jni;jj � 1

Kf;j

Y
i;j;n. 0

fi
jni;jj: (12)

The adsorption term is generally dened by,

Adsorption term ¼
 
1þ

X
i

Kifi

!n

: (13)

It accounts for the inhibition caused by adsorbed species on
the catalytically active surface, and hence it must be dened for
each component of the catalyst mixture. The postulated model
includes the adsorption of CO2, CO and dissociated H2 on the
CZA (eqn (14)), whereas no adsorption on the dehydration
catalyst was considered (eqn (15)). Furthermore, the adsorption
term has a different inuence on the rates of the CO2 hydro-
genation and the WGSR, with n ¼ 3 and 1 respectively.21,29 In
eqn (12) and (13), fi is the fugacity of component i in bar, Kf,j is
the equilibrium constant of the same reaction, ni,j is the stoi-
chiometric coefficient of component i in reaction j, and Ki is the
adsorption constant of component i.

Ads: termCZA ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KH2

fH2

p
þ KCO2

fCO2
þ KCOfCO (14)

Ads. termg-Al2O3 ¼ 1 (15)

The resulting rate expressions for the three reactions are
presented in eqn (16)–(18).

rm1 ¼
k1

�
fCO2

fH2

3 � 1

Kf;1

fMeOHfH2O

�
�
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KH2
fH2

p þ KCO2
fCO2
þ KCOfCO

�3 (16)
RSC Adv., 2021, 11, 24556–24569 | 24559
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rm2 ¼ k2

�
fMeOH

2 � 1

Kf ;2

fDMEfH2O

�
(17)

rm3 ¼
k3

�
fCOfH2O �

1

Kf;3

fCO2
fH2

�
�
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KH2
fH2

p þ KCO2
fCO2
þ KCOfCO

� (18)

The reaction rate and adsorption constants (kj and Ki) are
each calculated using modied Arrhenius and the van't Hoff
equations (eqn (19) and (20)). This re-parameterization reduces
the correlation between the frequency factor and the activation
energy, as well as between the sticking coefficients and the
enthalpy of adsorption.42 Other advantages of using re-
parameterized expressions are lower computational costs and
higher robustness in parameter estimation with the least
squares algorithm.43 These are particularly relevant for the
tting of large data sets, as used in this work.

kj ¼ exp

�
k*
0;j þ E*

A;j

�
T � TR

T

��
(19)

Ki ¼ exp

�
K*

i þ DH*
ads;i

�
T � TR

T

��
(20)

Themodied parameters are related to the parameters of the
traditional Arrhenius equation according to eqn (21) and (22).34

k*
0;j ¼ ln

	
k0;j

� EA;j

RTR

(21)

E*
A;j ¼

EA;j

RTR

(22)

the same applies to the van't Hoff equation as follows,

K*
i ¼ lnðKiÞ � DHads;i

RTR

; (23)

DH*
ads;i ¼

DHads;i

RTR

: (24)

The reference temperature (TR) was calculated with eqn (25)
based on the temperature of each experiment n.44

TR ¼
 

1

No: Exps

X
n

1

Tn

!�1
(25)

The equilibrium constants Kf,j of each reaction j are calcu-
lated using eqn (26),45 the temperature T in K, and the param-
eters in Table 3.
Table 3 Parameters for the calculation of eqn (26).21

Parameter Reaction 1 Reaction 2 Reaction 3

A 3014.4029 1143.9494 2076.2131
B 10.3856 0.9925 2.0101

24560 | RSC Adv., 2021, 11, 24556–24569
Kf;j ¼ 10

�
Aj

T
�Bj

�
(26)

The equilibrium constants are dimensionless for reactions 2
and 3 (methanol dehydration to DME, and WGSR), while Kf,1

(the equilibrium constant of CO2 hydrogenation to methanol)
has the units bar�2, in accordance with the law of mass action.

For performance evaluation, the conversion of component i
(Xi), and the carbon-normalized yield and selectivity of
component i from COx (Yi and Si) were computed based using
eqn (27)–(29), respectively.

Xi ¼ ni;in � ni;out

ni;in
(27)

Yi ¼
	
ni;out � ni;in



hc;i

	
nCO þ nCO2



in

(28)

Si ¼
	
ni;out � ni;in



hc;i

	
nCO þ nCO2



in
�	nCO þ nCO2



out

(29)

In these equations, _ni is the molar ow of component i, hc,i is
the number of carbon atoms in the same component, and the
subscripts “in” and “out” refer to the respective quantities at the
reactor inlet and outlet.

4. Results and discussion

In this section, experimental results will be presented (Section
4.1), followed by the modelling results andmechanistic analysis
(Section 4.2). Since most of the studies for the direct DME
synthesis have been carried out with a catalyst weight ratio of
one (m ¼ 1), this catalyst ratio is treated here as the reference
composition for the evaluation of experimental and simulations
results. The results are presented for the highest space-time (at
which the effects are more pronounced) unless otherwise
stated.

4.1. Experimental results

This section presents an overview of the effects observed
experimentally. To determine causality and for a comprehen-
sive understanding of the phenomena, the reactions kinetics
are studied and analyzed in Section 4.2 in the light of the
derived kinetic model and further kinetic studies from the
literature.

For an initial qualitative analysis of the experimental results,
the measured conversion of COx (XCOx

) and DME yield (YDME)
are shown in Fig. 1 and 2 as a function of the temperature and
the CZA-to-g-Al2O3 ratio (m) for the four investigated COR levels
(20, 40, 60 and 80%). To create this graphical representation,
the values between the experiments were calculated using low-
pass interpolation with the Matlab® function interp. The
maximal conversion attained for the different inlet feed
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Conversion of COx determined experimentally and plotted as
a function of the temperature (T) and the CZA-to- g-Al2O3 ratio (m) for
nominal CORs of (a) 20%, (b) 40%, (c) 60% and (d) 80%. Experimental
conditions summarized in Table 2.

Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
Ju

ly
 2

02
1.

 D
ow

nl
oa

de
d 

on
 7

/1
4/

20
21

 8
:0

0:
43

 A
M

. 
View Article Online
composition varies from 19.8% (COR ¼ 80%, T ¼ 523 K, m ¼ 2)
to 42.6% (COR ¼ 20%, T ¼ 533 K, m ¼ 2). In general, low CORs,
i.e., low CO2 contents in the feed, lead to higher conversions at
all temperatures. The highest conversions were reached in all
cases with m ¼ 2, whereas the conversions attained with the
reference catalyst bed composition (m ¼ 1) are the lowest. Even
at high temperatures relatively low conversions are attained
with the reference m ¼ 1 in comparison to those reached with
the other catalyst beds. It is obvious that the temperature at
Fig. 2 Yield of DME determined experimentally and plotted as
a function of the temperature (T) and the CZA-to- g-Al2O3 ratio (m) for
nominal CORs of (a) 20%, (b) 40%, (c) 60% and (d) 80%. Experimental
conditions summarized in Table 2.

© 2021 The Author(s). Published by the Royal Society of Chemistry
which the maximal conversion was measured, decreases with
increasing CORs.

The DME yield, displayed in Fig. 2, exhibits a strong
temperature dependency. The maximal YDME varies between
4.6% (COR ¼ 80%, T ¼ 533 K, m ¼ 2) and 27.9% (COR ¼ 20%, T
¼ 533 K, m ¼ 2). Overall, lower CORs lead to higher yields of
DME, and analogous to the conversion of COx, the highest
yields were attained with a CZA-to-g-Al2O3 ratio m ¼ 2. The
response surfaces are very similar for all CORs, however, it can
be observed that with increasing COR, the region at which the
highest yields are reached migrates towards the upper le
corner i.e., towards high temperatures and low m. At 533 K and
20% COR for example, high yields are attained with all the
catalyst beds, whereas at 80% COR, the yields reached at this
temperature are high with m up to two, and signicantly lower
with m of three and higher.

To enable a quantitative analysis of the observed effects,
representative results at the minimal and maximal temperature
are investigated more in detail in the following. The COx

conversion is depicted in Fig. 3 for the investigated CORs as
a function of the CZA-to-g-Al2O3 ratio, at the maximal and
minimal temperature of 533 K and 503 K (Fig. 3a and b). At 533
K, the COx conversion increased for all measured feeds when
increasing m up to a value of 2. This effect was most pronounced
for a COR of 20% where the relative enhancement of the
conversion was of 47%. For a COR of 80% the relative
enhancement amounted 19%. A further increase of the CZA-to-
g-Al2O3 ratio had a negative effect on the conversion compared
to the conversion obtained with m ¼ 2, but in all cases, the
attained values were still higher than in the reference case (m ¼
1). The only exception to this observation was for COR ¼ 80%
and m ¼ 5, where the conversion decreases from 14% (m ¼ 1) to
13% (m ¼ 5).

At a temperature of 503 K, the conversion of COx shown in
Fig. 3b for all bed compositions and CORs is lower than for the
corresponding values attained at 533 K, which can attributed to
the general dependency of the reaction rates on the tempera-
ture. For all CORs, a maximum at m ¼ 2 was detected. With this
CZA-to-g-Al2O3 ratio, a relative conversion enhancement of 88%
and 52% was obtained compared to m ¼ 1 at the minimal and
maximal COR levels of 20% and 80% respectively. Comparable
to the observations made at 533 K, the effect of the catalyst bed
composition on the conversion is more pronounced at lower
CORs. Furthermore, it can be observed that with the reference
Fig. 3 COx conversion as a function of the CZA-to-g-Al2O3 ratio (m)
for CORs from 20% to 80%. (a) T ¼ 533 K and (b) T ¼ 503 K.

RSC Adv., 2021, 11, 24556–24569 | 24561
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catalyst ratio m ¼ 1, the attained COx conversion is at a close
value of approx. 14% regardless of the CO2 content in the inlet
feed, in contrast to the other experiments with increasing COx

conversion as the COR is decreased.
In general it was observed that decreasing amounts of CO2 in

the feed gas (i.e., decreasing CORs) lead to higher conversions,
and to more pronounced effects of the catalyst bed composi-
tion. The benecial effect of low CO2 concentration in the
synthesis gas has been observed in other kinetic studies of both
the methanol and the DME synthesis.14,15,26,46–48 Regarding the
surface chemistry, low CO2 concentration prevents sintering of
the CZA catalyst, and promotes catalyst morphology that
enhances the catalytic activity.48,49 From a thermodynamic
perspective, high CO2 feed concentration shis the equilibrium
of the WGSR towards the educts (H2O and CO), resulting in
increased water formation and subsequently in decrease of the
methanol dehydration rate.14,15 This explanation is in accor-
dance with our ndings and is further conrmed by increased
methanol selectivity at high CORs discussed in the following. In
addition, we explain this effect on the basis of mechanistic
considerations in Section 4.2.2.1.

In Fig. 4a–d the yields are shown for the minimal and
maximal CORs 20% and 80%, and for theminimal andmaximal
temperatures 503 K and 533 K. Since the yield is calculated
based on the reacted COx, and no other carbon-containing
compounds were detected in a signicant amount during the
experiments, the yield is calculated only for methanol and DME.
However, as discussed further in Section 4.2, CO and CO2

formation was evidenced at some specic conditions.
At 533 K and a COR of 20% (Fig. 4a), the converted COx in the

feed gas reacted to form mainly DME. In general, at this
temperature and COR, an increased amount of the CZA catalyst
led to a higher DME production than that attained with the
reference catalyst bed (m¼ 1). The highest relative enhancement
Fig. 4 Yield of methanol and DME at specific conditions: (a) 533 K,
20% COR, (b) 533 K, 80% COR, (c) 492 K, 20% COR and (d) 492 K, 80%
COR.

24562 | RSC Adv., 2021, 11, 24556–24569
of the DME yield was 30.3% with m¼ 2. A further increase of m¼
3 and 5 also enhanced the yield of DME but to a lower extent
(enhancement of 22.8% and 13.2% respectively compared to the
yield attained with the reference m ¼ 1). At the same tempera-
ture and a COR of 80% (Fig. 4b), the methanol yield was at least
twice as high as that of DME. An increased m did not increase
the DME yield which amounts 4.6% at m ¼ 1 and 2, and was
lower otherwise. Comparing the results shown in Fig. 4a and
b (and also Fig. S3a and b†), a shi of the selectivity from DME
to methanol is observed when increasing the COR from 20 to
80%. The water concentration is low at high CO contents in the
feed (water removal viaWGSR), and high at a high level of CO2.14

Obviously, presence of water is thermodynamically unfavorable
for the dehydration, explaining the observed methanol
concentration at high CORs. This conclusion is supported by
the mechanistic analysis provided in Section 4.2.2.1.

In Fig. 4c and d it is observable that for a temperature of 503
K, the yield of methanol is higher than that of DME for both
COR levels. An enhancement of the DME yield compared to the
reference case is still observable at a COR of 20% (38.2% and 4.3%
with m¼ 2 and 3), whereas at 80%COR, an increase of the m proved
to be disadvantageous for the DME yield. The lowest DME yields
were observed at 503 K, a COR of 80% and m ¼ 3 and 5.

The catalytic activity of the CZA/g-Al2O3 system is a function
of combined physicochemical characteristics such as Cu
surface area, dispersion, and acidity.50–52 Furthermore, the setup
of reaction conditions have also shown to be a key factor.24

While the study of the catalysts properties was out of the scope
of this work, a wide range of conditions was covered during the
experimental program. The improvement observed by
increasing the CZA-to-g-Al2O3 ratio reveals that the number of
required acid sites has already been signicantly exceeded when
equivalent catalysts masses are used.15,21 Therefore, an increase
of the catalyst ratio leads to an overall enhancement of the
synergetic effects of the direct DME synthesis i.e., the faster
methanol formation due to an increased amount of CZA catalyst
has a positive effect on the methanol dehydration even though
the amount of the catalyst that promotes this reaction is
reduced. Overall, it was observed that the highest enhancement
of the DME yield was attained at a CZA-to-g-Al2O3 ratio of m ¼ 2,
and that higher ratios lead to a minor improvement, or even to
a decrease of the DME production. Additionally, it was observed
that the methanol yield increased with increasing CZA-to-g-
Al2O3 ratio at all conditions (Fig. 4a–d) as also described in
other kinetic studies.15,24,50 Hence, the evidenced enhancement
of the DME yield is associated to the higher conversion, i.e., the
conversion of COx increased more than the DME selectivity
decreased, leading to higher DME yields than with the reference
catalyst bed.
4.2. Modeling results

Predictive models able to make accurate predictions over a wide
range of conditions are of considerable importance as a basis
for model-based optimization and for the design of novel
reactor concepts. The respective contribution of our work is
a reaction kinetic model for direct DME synthesis suitable these
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Table 4 Estimated parameters in re-parameterized form according to
eqn (19) and (20), and 95% confidence intervals

Reaction k*0;j E*
A;j

CO2 hydrogenation 3.19 (�0.04) mol kg�1 s�1 bar�4 7.60 (�2.20)
MeOH dehydration �5.72 (�0.07) mol kg�1 s�1 bar�2 24.58 (�3.22)
WGSR 1.74 (�0.11) mol kg�1 s�1 bar�2 40.77 (�4.96)

Adsorbate K*
i DH*

ads;i

CO2 4.68 bar�1 �1.25
CO �34.04 bar�1 �79.81
H2 7.13 bar�1 �5.04
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purposes. In Section 4.2.1, the results of the parameter esti-
mation are presented together with an analysis of the achieved
goodness of t and statistical signicance of the parameter
estimates. In Section 4.2.2, the phenomena experimentally
observed (Section 4.1) are explained taking into account the
derived kinetic model. In addition, we describe to what extent
our ndings are consistent with the results and new mecha-
nistic insights of other studies.

4.2.1. Reaction kinetic model. In this section, the resulting
kinetic model, i.e., the parameter estimates and model evalua-
tion are discussed. As mentioned briey in Section 3.2, the
presented model was the one that enabled the best t of the
experimental data within the entire range of conditions inves-
tigated in this work. The derived model chosen aer a discrim-
ination procedure agrees with the one derived frommechanistic
assumptions by Lu et al.29 and used in a previous work.21 It
considers the linearly independent reactions CO2 hydrogena-
tion and WGSR, along with the methanol dehydration to DME.
In agreement with the mentioned studies, including no
adsorption term for the dehydration catalyst, and the adsorp-
tion of CO, CO2 and dissociated H2 on the CZA catalyst led to the
best representation of the experimental data. Considering the
adsorption of water and methanol as done in other kinetic
studies of the direct DME synthesis15,30,53 worsen the quality of
t, and was therefore discounted from the model structure. The
goodness of t for CO, CO2, H2 and DME with the resulting
model is represented by the parity diagrams in Fig. 5 with the
measured quantities plotted against the numerically predicted
ones. The model-specic parameters were estimated based on
186 experimental data points. The mean relative error between
the predicted and measured molar fractions over all data
amount to 2.7% for CO2, 7.2% for CO, 1.0% for H2, and 22.3%
for DME. The deviation of the DME predictions is mostly
attributed to an over-prediction of the datameasured withMu¼
5. The data taken with this catalyst bed exhibits the lowest DME
production and low DME mole fractions in the product gas as
shown in Fig. 2. Hence, these measurements have a high signal-
Fig. 5 Parity plots for mole percent of CO, CO2, H2 and DME in the
product gas for all data (186 experiments).

© 2021 The Author(s). Published by the Royal Society of Chemistry
to-noise ratio, and a lower measurement accuracy, to which the
larger deviations can be attributed to. Nonetheless, the devia-
tion of the DME predictions is considered acceptable, especially
regarding the extensive range in which the experiments were
measured. Furthermore, the predictions lie with a clear
tendency and a weak scattering along the bisector (y ¼ x), and
no systematic deviations are identiable for any of the species.

The resulting parameter estimates are shown in Table 4
along with the respective 95% condence intervals. The
adsorption parameters were xed. Hence, no statistical infor-
mation is available on these estimates. In regards to the rate
constants, the condence intervals demonstrate that all re-
parameterized pre-exponential factors and activation energies
are statistically signicant. Moreover, the width of the con-
dence intervals is less than 13% of the respective estimates for
ve out of six parameters. The widest condence interval was
that of the re-parameterized activation energy of the CO2

hydrogenation, with a width of 29% of the estimated value,
which underlines the high statistical signicance of the esti-
mated kinetic parameters.

The reference temperature was calculated as TR ¼ 517.43 K
using eqn (25) for the 186 experiments used for tting.

Notice that E*
A;j and DH*

ads;i are dimensionless according to
eqn (22) and (24), and that k*0;j is based on the mass of the
catalyst that promotes each reaction, i.e., CZA for the CO2

hydrogenation and the WGSR, and g-Al2O3 for the methanol
dehydration to DME.

The adsorption constants Ki were calculated with eqn (20) at
the different temperature levels to determine the inuence of
the adsorption of each species on the adsorption term (the re-
ported value for H2 corresponds to

ffiffiffiffiffiffiffiffi
KH2

p
according to eqn (14)).

The calculated values are shown in Table 5. The CO adsorption
has clearly the lowest adsorption constant, in agreement with
Table 5 Adsorption constants at different temperatures

T ¼ 503 K T ¼ 513 K T ¼ 523 K T ¼ 533 K

KCO2
/bar�1 111.9 109.2 106.6 104.1

KCO/bar
�1 1.6 � 10�14 3.2 � 10�15 6.9 � 10�16 1.6 � 10�16ffiffiffiffiffiffiffiffi

KH2

p
/bar�0.5 37.9 36.0 34.3 32.8

RSC Adv., 2021, 11, 24556–24569 | 24563
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Table 6 Binary correlation coefficients of parameter estimates

ri,j k*0;1 E*
A;1 k*0;2 E*

A;2 k*0;3 E*
A;3

k*0;1 1 �0.53 �0.83 0.40 �0.39 0.28

E*
A;1 1 0.38 �0.85 0.31 �0.36

k*0;2 1 �0.44 �0.07 �0.11
E*
A;2 1 �0.11 �0.03

k*0;3 1 �0.28
E*
A;3 1

Fig. 6 Reaction rates (a) CO2 hydrogenation, (b) MeOH dehydration,
(c) WGSR and (d) mole percentage profiles of water, methanol and
DME at T ¼ 533 K, m ¼ 2. (—) Solid lines: 20% COR, (- - -) dashed lines:

RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
Ju

ly
 2

02
1.

 D
ow

nl
oa

de
d 

on
 7

/1
4/

20
21

 8
:0

0:
43

 A
M

. 
View Article Online
the studies of Lu et al.29 and Delgado Otalvaro et al.21 where the
same adsorption term was employed. The constant of CO2

adsorption exhibited both in Delgado Otalvaro et al.21 and in the
present work the highest value. This is also consistent with the
investigations of Klier et al.,47 where a strong CO2 adsorption on
the metallic catalyst was observed. All adsorption constants
shown in Table 5 decrease with increasing temperature due to
the exothermal nature of adsorption.

Binary correlation coefficients (ri,j) were computed to assess
the correlation between the parameter estimates (Table 6). The
absolute values of all the non-trivial correlations coefficients
conrm that using the re-parameterized Arrhenius and van't
Hoff equations (eqn (19) and (20)) led successfully to a weak
correlation between the parameter estimates. In addition, the
convergence time of the tting was reduced by about 60% aer
applying re-parameterization.

4.2.2. Mechanistic analysis. Using the derived model, the
proposed reaction mechanism is elucidated in the following
based on representative results. The inuence of the COR, the
temperature, and the CZA-to-g-Al2O3 ratio on the reactions rates
is discussed, as well as the observed CO and CO2 formation
during reaction.

4.2.2.1 Effect of the COR. In Section 4.1 it has been shown
that high conversions and yields of DME are attained at the
lowest COR levels. This was observed at all conditions in the
investigated operating range, although at differing extent. This
is in accordance with former kinetic studies of the meth-
anol,26,47,48 and DME synthesis14,15 which have shown that an
optimal CO2 feed concentration exists, at which both the
methanol formation and subsequently the DME formation are
favored, while exceeding this concentration leads to reduced
conversions and yields. Sintering of Cu crystallites in the CZA
catalyst takes place with CO/H2 and CO2/H2 feeds due to Cu
segregation from ZnO, and due to the presence of water
respectively. However, sintering is prevented at the optimal CO2

feed concentration.48 Since we observed no optimal value for the
COR within the investigated operating range, we conclude, in
agreement with other studies,14,15,47,48 that the optimal value is
probably less than or equal to 3%, which was the lowest CO2

concentration considered in this work (at 20% COR).
To elucidate the effect of the COR on the reactions rates,

these have been depicted in Fig. 6a–c at exemplary conditions
for the minimal and maximal CORs of 20% and 80%. Addi-
tionally, the mole percentage proles of water, methanol and
24564 | RSC Adv., 2021, 11, 24556–24569
DME are displayed in Fig. 6d (Fig. S4 in the ESI† includes the
proles of CO and CO2, which were le out here for better vis-
ualisation). It is shown that the rates of the three reactions, i.e.,
CO2 hydrogenation, methanol dehydration and WGSR, are
higher at 20% COR than at 80% COR. This effect is straight
forward for the WGSR where CO2 is a product, and an increased
product concentration shis the equilibrium towards the
educts according to the Le Chatelier's principle. For the CO2

hydrogenation on the other hand, it may appear contradictory
that the rate is lower at higher CORs since CO2 is a reactant in
this reaction. This has been attributed to several factors in the
literature such as to the presence of water in high concentra-
tions leading to sintering of the Cu particles,48 to thermody-
namic limitation of the methanol formation,54 or to strong CO2

adsorption on the metallic catalyst.47 CO2 adsorption is also
believed to be important in our study, which is accounted for in
the model by the strong inuence of CO2 concentration on the
adsorption term (eqn (14) and Section 4.2.1), and by the
considerable inuence of the adsorption term on the CO2

hydrogenation (eqn (16)). The strong inuence of the adsorp-
tion term leads to an overall decrease of the reaction rate with
increasing CO2 in the feed, even though the potential term of
the forward reaction is indeed higher at higher CORs.

The rate of the WGSR (Fig. 6c) takes on negative values at the
reactor entrance at both CORs, indicating that the reverse water
gas shi reaction (rWGSR) is faster than the WGSR at the inlet
conditions. At 80% COR the rWGSR is particularly fast (high
negative values, min. rv3 ¼ �3.7 mol m3 s�1 at z ¼ 0), which we
attribute to the high concentrations of CO2 and H2 in the feed.
Although a high hydrogen feed concentration is necessary to
avoid the stoichiometric limitation of CO2 hydrogenation to
methanol, the high feed concentration of both, CO2 and H2,
accelerates the rWGSR instead of the CO2 hydrogenation as
evidenced, leading to water and CO production.16,55 The
80% COR.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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simulations show that the rWGSR prevails over the WGSR for
the initial 10% bed length, resulting in a pronounced increase
of water concentration (Fig. 6d, blue dashed line). From a bed
length beyond 10%, the water gas shi equilibrium (reaction 3)
shis to the right side and rv3 takes on nearly constant positive
values over the entire following bed length, accompanied by
reduced overall water formation as water is partially consumed
by the WGSR. The widely accepted mechanism of methanol
formation by CO2 hydrogenation over copper-based catalysts
was disputed by Gaikwad et al.56 It was shown by means of
space-resolved experiments that the main carbon source for
methanol formation from CO2 rich feeds depends on the reac-
tion conditions, in particular on the temperature. The authors
concluded that at 533 K and CO2/H2 feeds, methanol formation
takes place via CO hydrogenation formed by the rWGSR at the
reactor inlet. Our simulation results are in accordance with that
conclusion, i.e., the rWGSR takes place at the reactor inlet,
followed by the CO hydrogenation, in the model described by
the WGSR and the subsequent CO2 hydrogenation. We also
believe that this explains the higher conversions and yields at
high CO feed concentration. At this COR, the rWGSR prevails
only at the reactor entrance (up to 0.8% reactor length), and the
rate does not reach such high negative values (min. rv3 ¼
�2.2 mol m3 s�1 at z¼ 0). As a result, the water concentration at
the reactor entrance rises steeply, but does not reach such
a high level as at 80% COR. Although water has shown to limit
the catalyst deactivation by coke deposition31,57 high water
concentration in is indisputably detrimental for direct DME
synthesis, especially when using g-Al2O3 as the dehydration
component.4,54 This underlines the importance of water
removal, e.g., by permselective membranes58,59 which could also
be axially tailored to counteract the observed steep water
increase at the reactor entrance shown here as well as in other
kinetic studies.60,61
Fig. 7 Reaction rates (a) CO2 hydrogenation, (b) MeOH dehydration,
(c) WGSR and (d) mole percentage profiles of water, methanol and
DME at m ¼ 2 and COR ¼ 20%. (—) Solid lines: T ¼ 503 K, (- - -) dashed
lines: T ¼ 533 K.

© 2021 The Author(s). Published by the Royal Society of Chemistry
Clearly, the methanol dehydration to DME is also affected
strongly by the COR, as shown in Fig. 6b. At 20% COR the
concentration of methanol is higher than the concentration of
water for the largest portion of the reactor (solid lines in
Fig. 6d). Conversely, at 80% COR the water concentration is
higher than the concentration of methanol (dashed lines in
Fig. 6d). Reduced methanol dehydration rate at high CORs has
been explained in the literature by deactivation phenomena of
the g-Al2O3, and by a strong adsorption of methanol and/or
water on the surface of the dehydration catalyst.14,28,30,62 In our
experiments, no activity drop was observed and, as mentioned
in Section 3.1, the model that enabled the best t to the
experimental data is based on the assumption that no adsorp-
tion on the dehydration catalyst takes place.21,29,54 Hence, the
inuence of the COR on the dehydration rate is accounted for by
thermodynamics only. I.e., considering the stoichiometry of the
dehydration reaction it is clear that high methanol and low
water concentrations as evidenced at 20% COR are thermody-
namically favorable for DME formation, while low methanol
and high water concentrations as exhibited at 80% COR are
disadvantageous. As a result, the methanol dehydration is
signicantly slower at 80% COR than at 20% COR explaining
the decreasing DME formation with increasing CORs observed
experimentally (Fig. 2 and 4a, b).

4.2.2.2 Effect of the temperature. The reaction rates, and the
mole fractions of DME, water and methanol are depicted in
Fig. 7 at the minimal and maximal evaluated temperatures, i.e.,
at 503 K and 533 K for a COR of 20%. Due to the general
temperature dependence of the reaction rate constants, all
reactions proceed faster at 533 K than at 503 K (Fig. 7a–c). In
addition to the temperature dependence of the rate constants,
the dependence of the adsorption rates is also relevant when
assessing the inuence of temperature based on the proposed
model. Adsorption constants decrease with increasing temper-
atures due to the exothermal nature of adsorption processes
(Table 5). Since the adsorption terms have an indirect propor-
tional effect on the reaction rates (eqn (11)), the slower
adsorption also contributes to the higher rates of the CO2

hydrogenation and WGSR evidenced at higher temperatures.
A factor not considered by the model but potentially favoring

methanol dehydration at elevated temperature is enhanced
water desorption from the dehydration catalyst surface,63

leading to an increased number of available active centres for
the dehydration reaction. The effect of the temperature on the
concentrations proles is shown in Fig. 7d. Compared to 503 K
(solid lines), at 533 K (dashed lines) themethanol concentration
is higher for 55% of the reactor length, while the water
concentration is lower for almost the entire reactor. Hence it is
obvious that at 533 K, the driving force of the dehydration
reaction is increased, leading to signicantly higher DME
concentrations and DME yields, as also determined experi-
mentally (Fig. 4a and c). Furthermore, the concentration
increase for DME is signicantly higher than for methanol,
conrming that higher temperatures have a positive effect on
DME selectivity24 (Fig. S2 and S3†).

In the study of Gaikwad et al.,56 for methanol synthesis at
453, 533 and 613 K, the authors concluded that at 533 K the
RSC Adv., 2021, 11, 24556–24569 | 24565
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main reaction mechanism takes place via rWGSR and CO
hydrogenation, while at lower temperature, direct CO2 hydro-
genation is the dominant pathway. In Fig. 8, simulation results
at the highest COR considered (80%) and at 503 and 533 K show
that our lumped kinetic model is mechanistically sound
according to these new insights. The respective reaction rates of
the WGSR (Fig. 8c) are of particular interest: at 533 K, the
phenomenon described in Section 4.2.2.1 takes place; i.e., the
rWGSR dominates at the reactor inlet, followed by both, WGSR
and CO2 hydrogenation, in combination representing
a descriptor for CO hydrogenation; at 503 K, the WGSR rate is
nearly zero and shows a nearly constant prole along the reactor
length. This leads us to the conclusion that at 503 K, methanol
formation takes place via direct CO2 hydrogenation. From the
ndings of Gaikwad et al.,56 it cannot be concluded exactly at
which temperature the mechanism shis, although from our
ndings it seems plausible that at 503 K, both reaction path-
ways are contributing.

4.2.2.3 Effect of the catalyst bed composition. There are
several studies concerning the catalyst bed composition for the
direct DME synthesis. A literature overview recently provided by
Peinado et al.24 summarizes that most studies have been per-
formed for CO2 lean feeds and, with high CZA proportions in
the catalyst bed. Some of the studies cited state that the optimal
catalyst bed composition consists of 50% CZA24,50,64 while other
authors, like us, came to the conclusion that higher CZA-to-acid
catalyst ratios are advantageous for the DME productivity.15,21,46

To demonstrate the inuence of higher CZA-to-g-Al2O3 ratios on
the reaction rates, these are depicted in Fig. 9 for the reference
CZA-to-g-Al2O3 weight ratio m ¼ 1, and for m ¼ 2, which
exhibited the best performance with regard to the DME yield in
the experiments. The increased m is clearly advantageous for all
the reactions rates, as assumed in Section 4.1. The effect of the
Fig. 8 Reaction rates (a) CO2 hydrogenation, (b) MeOH dehydration,
(c) WGSR and (d) mole percentage profiles of water, methanol and
DME at m ¼ 2 and COR ¼ 80%. (—) Solid lines: T ¼ 503 K, (- - -) dashed
lines: T ¼ 533 K.

24566 | RSC Adv., 2021, 11, 24556–24569
catalyst bed composition is less pronounced than that of the
COR and the temperature, and no signicant changes on the
shapes of the reaction rate proles is observed. With regard to
the concentration proles, an increased m leads to higher meth-
anol and DME concentrations, whereas the concentration of water
is virtually unchanged.Moreover, the relative increase inmethanol
concentration is higher than the relative increase in DME, indi-
cating a decrease of the selectivity towards DME, consistent with
experimental observations described in Section 4.1.

Table S3 in the ESI† provides an overview on studies with
different CZA-to-g-Al2O3 ratios. A direct comparison with other
works regarding this variable is not comprehensively possible,
due to the wide range of process parameters evaluated in liter-
ature studies,24 and also due to more or less widespread catalyst
properties, reactor types and congurations, and nally the
respective methodology followed in each study. Commonly
drawn conclusions in accordance with our work are as follows:
(1) DME selectivity increases with decreasing CZA-to-g-Al2O3

ratios when CO2 is present in the feed.24,50 (2) However,
decreasing CZA-to-g-Al2O3 ratio especially below a value of 1, is
detrimental for the DME production.15,24,64 (3) Hence, increased
DME yield attained with increasing CZA-to-g-Al2O3 ratios is
attributed to a signicant enhancement of the COx conversion,
that makes up for the selectivity loss. Higher amounts of the
CZA catalyst, evidently lead to higher rates of CO2 hydrogena-
tion and water gas shi reaction (Fig. 9a and c), which are both
promoted by this catalyst. On the other hand, increased meth-
anol formation and water depletion rates are contributing to
methanol dehydration to DME. Hence, explaining the higher
rate of the dehydration reaction (Fig. 9b), even though
compared to the reference case (m ¼ 1), the fraction of the
dehydration catalyst at m ¼ 2 is reduced. It should also be noted
that most of the studies mentioned are experimental in scope.
This emphasizes the general importance and necessity of
Fig. 9 Reaction rates (a) CO2 hydrogenation, (b) MeOH dehydration,
(c) WGSR and (d) mole percentage profiles of water, methanol and
DME at T ¼ 533 K, COR ¼ 20%. (—) Solid lines: m ¼ 1, (- - -) dashed
lines: m ¼ 2.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 10 CO2 and CO conversion for all evaluated CORs and temper-
atures. m ¼ 2.
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models valid for a broader range of catalyst bed compositions
(especially also for a wide range of CO2/COx feed ratios) to
enable model-based evaluation of optimization strategies and/
or reactor designs under consideration of these variables.

4.2.2.4 CO2 and CO formation during reaction. According to
eqn (27), a negative conversion (Xi) indicates that the amount of
the respective species i is higher at the reactor outlet than at the
reactor inlet, i.e., that the species was formed during reaction.
Within the wide operational windows studied in this work, CO2

and CO formation was observed at specic conditions.
As depicted in Fig. 10a, CO2 formation was evidenced at high

temperatures and low CORs. The highest CO2 formation, i.e.,
the lowest CO2 conversion, was observed at 20% COR and 533 K.
At these conditions, the WGSR is faster than the CO2 hydroge-
nation for most of the reactor length. Hence, more CO2 is
produced than consumed, explaining the negative CO2

conversions. Contrary to the results at higher temperatures, CO2

formation does not take place at 503 K.
CO formation on the other hand, was evidenced at low

temperatures and high CORs (Fig. 10b). The minimal CO
conversion took place at 80% COR and 503 K, caused by
a relatively late shi of the rWGSR to WGSR. At these condi-
tions, the rWGSR prevailed over the WGSR for approx. half of
the reactor length. The CO produced in the rst half of the
reactor, is not completely consumed in the second half, leading
to the slight overall CO production shown in Fig. 10b. In
agreement with the mechanistic analysis presented before, CO2

and CO conversion show opposite trends, with the CO conver-
sion increasing with temperature, as methanol formation takes
place via CO hydrogenation.56 CO conversion is also increasing
with decreasing COR, due to WGSR that is favored at high CO
feed concentration, and decreases respectively with increasing
COR according to an increased participation of the rWGSR.
5. Summary and conclusions

The reaction kinetics of the direct DME synthesis over Cu/ZnO/
Al2O3 (CZA) and g-Al2O3 were investigated at high pressure (50
bar) in a temperature range between 503 and 533 K, CZA-to-g-
Al2O3 weight ratios from 1 to 5, space times from 240 to 400
kgcat s mgas

�3, and carbon oxide ratios (CO2/COx) from 20 to
80%. The successful tting to these data resulted in the main
contribution of this paper: a mechanistically sound reaction
kinetic model with a particularly large range of validity. Due to
© 2021 The Author(s). Published by the Royal Society of Chemistry
its wide validity range, the reaction kinetic model provided in
this contribution is suitable aiming towards optimal reactor
and/or process design, and optimization of novel technologies
for the direct DME synthesis.

The inuence of key process variables on reaction rates was
examined in light of the derived model, and representative
results were presented with the goal of determining causality
and providing a comprehensive understanding of the observed
phenomena. An increased CZA-to-g-Al2O3 ratio was found to be
favorable in terms of DME yield, although this reduced the
amount of dehydrogenation catalyst. This is attributed to the
synergistic effects of direct DME synthesis, i.e., an increased
methanol production rate also accelerates the dehydration of
methanol to DME. With regard to the composition of the feed,
a high CO content leads to an increased DME yield, since the
water gas shi reaction and thus the water consumption in the
system are accelerated. Conversely, a high CO2 content leads to
a signicantly increased water concentration. This is due to
a strong effect of reverse water gas shi at the reactor inlet,
which increases with CO2 content. Moreover, it was shown that
increasing temperatures lead to higher DME yield and selec-
tivity regardless of the feed composition. However, at high CO2

content in the feed, the attainable enhancement by optimiza-
tion of the reaction conditions might not lead to sufficiently
high DME yields for the process to be economically feasible.
Therefore, additional technical improvements are necessary to
achieve a signicant increase in overall performance. Possible
technical improvements include water removal, novel reactor
concepts such as membrane reactors or reactive distillation, as
well as a customized product separation.
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S1. Reduction procedure and conditioning  
Before performing the kinetic measurements, the CZA share of the catalytic bed was activated at atmospheric pressure with a volume flow 

of 300 ml min−1 containing 5% of H2 and 95% of  N2. The system was heated from 373 to 473 K at a heating rate of 20 K h−1. This temperature 

was hold for one hour, followed by further heating to 513 K at a heating rate of 12 K h‐1. Finally, the H2 concentration in the gas flow was 

increased to 50%, maintaining the same total flow rate for an additional hour. Posterior to the catalyst reduction, the operating conditions 

300 ml min−1, 503 K, 20% COR and 50 bar, were set to allow the catalyst system to run  in. This operating point was maintained and the 
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stream). 

S2. A priori Criteria. 

Table S1. Calculated criteria for the verification of assumptions.  

Phenomena to be neglected  Criteria  Equation  Calculated Value* 

Outer mass transfer  Mears1  	 ,

	
0.05
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Inner mass transfer  Weisz‐Prater2 
, 			

, 			 ,

1
2

0.15  9.30E‐06 

Outer heat transfer  Mears1 
|∆ 	|	 , 	

	 	
0.15  0.0008 

Inner heat transfer  Anderson3 
|∆ 	|	 , 	

	 	
0.75  0.0397 

Radial Gradients  d/D‐ratio4  24 48  24 

Non‐Isothermal operation  Rule of Thumb  ∆T   2 

Axial dispersion  Bodenstein Number5 
	

100  481 

Pressure drop 
∆ /L Zhavoronkov 
Correlation6 

∆
~	0	  5.0 E‐08 

*for the worst‐case scenario
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S3. Model Discrimination. 

For the initial model discrimination, the available experimental data were first simulated using eight different kinetic models from 

the open literature7–14. The sum of the squared errors between the measured and predicted composition of the product gas was 

calculated for each model and depicted in Fig. S1. In this figure, the models are named after the first author.  

 

Figure S1. Total sum of squared errors for the implemented models 

After this initial screening, the five models with the lower residual squared sum were parametrized to fit the experimental data. 

The  model  by  Delgado  Otalvaro  et  al.14  agreed  best  with  the  available  experimental  data.  Hence,  the  model  structure  and 

respective  mechanistic  assumptions  were  chosen  for  fine‐tuning.  To  enable  a  direct  comparison  of  the  tested  models  and 

parameters, these have been compiled in Table S2. Additionally, the mean relative error between the predictions with the different 

models, and the experiments for each species	  ( ) is also given.   is calculated by: 

 

	 	100%				
1
.

, , , 	 , , ,

, , ,

.

. 

The indices of the reaction rates, and rate constants in Table S2 correspond to the following reactions:  

  

1. CO 3	H 	⇌ 	CH OH H O 
2. 2	CH OH	 ⇌ 	CH OCH H O 
3. CO H O	 ⇌ 	CO H  

4. CO 2	H 	⇌ 	CH OH 
5. CO 2 1 H ⇌ C H H O  

 

Table S2. Compilation of tested reaction kinetic models with the respective specific parameters, and resulting relative error for each species. 

Model  Rate expressions  Model specific parameter  RE/% 

N. Delgado  
Otalvaro14 

	
	 , 	

1 	 	

1 	 	 	
		

	 	
	

	 , 	
1 	 	  

	
	

	 , 		
1 	 	

1 	 	 	
	 

 

exp 6.94 exp
21.81
	

1  

exp 2.07 exp
42.77
	

1  

exp 2.75 exp
10.82
	

1  

exp 15.32 exp
14.03
	

1  

exp 0.57 exp
0
	

1  

exp 19.51 exp
14.68
	

1  

 

	mol	m s  

CO  
9.7   
 

CO2  
7.1   
 

H2  
1.5   
 

DME 
54.5 

J. Ereña13  	
	

	 	
  3.41 10 	exp

63.5 1 1
548

 
CO 
11.3 
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1 	 	 	
 

	
	
	 	

1 	 	 	
 

: not	given 

2.4	 10 	exp
90.0 1 1

548
 

1.23	 10 exp
9.9 1 1

548
 

2.67 10 exp
384.8 1 1

548
 

1.13 10 	exp
43.4 1 1

548
 

 
	mol 	 mol g 	h bar  
	mol mol g 	h bar  

	mol mol g 	h bar  
kJ	mol   

∆ kJ	mol   
	 bar  

CO2 
7.6 
 

H2 
1.6 
 

DME 
62.8 

Z. Nie12 

	 	 1	
	

	 	

1 	 	 	 	 	
 

1	
	

1 	
 

	 	 1	
	 	 	

1 	 	 	 	 	
 

 
 

5.059 10 	exp
67515

	
 

1.602	 10 	exp
43473

	
 

	7.380 10 	exp
54307

	
 

3.934 10 	exp
37373

	
 

	1.858 10 	exp
53795

	
 

	0.6716	exp
6476
	

 

	3.480 10 	exp
54689

	
 

 
  ml	g h  

CO 
36.5 
 

CO2 
10.6 
 

H2 
6.7 
 

DME 
100 

P. 
Ratamana
laya11 

	
	

	 	

1 	 	 	 	
 

	
	 	

1 	 	 	 	 	 	 	
 

	 	
	

	 	

1 	 	 	 	 	 	
 

 

1.69 10 	exp
69787

	
 

1202.8	exp
20437

	
 

40.498	exp
18203

	
 

	0.9535	exp
16243

	
 

	6.992	exp
26452

	
 

4.49 10 	exp
60528

	
 

1.092	 10 	exp
66924

	
 

0.2487	exp
30961

	
 

 
	 	bar  

CO 
36.1 
 

CO2 
10.7 
 

H2 
6.7 
 

DME 
100 

R. 
Pelaez10 

1 	
	

 

 

1
 

 
 

Equation for temperature dependency of the 
rate or adsorption constants is not given. 
Parameter estimates: 

 

, 	 	 2.55 10 	mol	kg 	s bar  

, 3.8	kJ/mol 

, 	 	 8.13	mol	kg 	s bar  

: not	given	 	at	equilibrium  

, 	 	 6.43 10 mol	kg 	s bar  

, 171.8	kJ/mol 
19	bar  

CO  
25.8 
 

CO2  
13.2 
 

H2  
6.4   
 

DME 
99.5 
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C. P. 
Renk9 

	 	 , 	 , 	  

	 	 , , 	 , 	 ,  

	 	 	 , 	 ,  

	 5.1 10 	exp
0
	

 

	 8.6 10 	exp
31
	

 

	 1.5 10 	exp
0.2
	

 

	 2.6 10 	exp
107
	

 

	 1.4 10 	exp
138
	

 

	 1.1 10 	exp
44
	

 

 
kJ	mol   

	 ml	g 	s 	ml 	mol 	 

CO 
26.8 
 

CO2 
12.4 
 

H2 
7.6 
 

DME 
100 

Y. I. 
Pyatnitskii

8 

	 1	
	

	 	 	

1 	 	 	 	

 

	 1	
	

	

1 	 	 	
 

	 1	
	

	 		

1 	 	 	 	

 

 

	 0.00107	exp
4414

 

	 2.82 10 	exp
6938

 

	 1.22 10 	exp
11398

 

	 0.499	exp
2068

 

	 6.62 10 	exp
14928

 

	 3453.38 

2.20 10 	exp
7738

 

0.051	exp
626

 

 

bar . ,  bar    
 

mol g 	s 	bar  
mol 	g 	h 	bar    
mol g 	s 	bar  

	 bar ,  	bar 

CO  
26.6 
 

CO2  
18.4 
 

H2  
7.3 
 

DME 
98.5 

A. T.  
Aguayo7 
(Model 1) 

	
	

	 	
 

	
	

	 	
 

	
	 	

 

	
	

	
 

1.44	exp
80.64 1 1

548
 

	not	given	 	in	equilibrium  

1.91 10 	exp
11.3 1 1

548
 

2.04 10 	exp
15.92 1 1

548
 

 
	 kcal	mol  

	mol mol g 	h bar  

mol mol g 	h bar  

	mol mol g 	h bar  

CO  
35.7 
 

CO2  
9.9   
 

H2  
7.3   
 

DME 
127.2 
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S4. Selectivity  
The selectivity towards DME is displayed here in Figs. S2 and S3 complementary to Figs. 1, 2 and 4 of the manuscript.  

 

 
 

Figure S2. DME selectivity determined experimentally and 

plotted as a function of the temperature ( ) and the CZA‐to‐ 

γ‐Al2O3 ratio (μ) for CORs of a) 20% b) 40% c) 60% d) 80%. 
Experimental conditions summarized in Table 1. 

Figure S3. Selectivity of methanol and DME at specific 

conditions:  a) 533 K, 20% COR, b) 533 K, 80% COR, c) 492 K, 

20% COR d) 492 K, 80% COR 

S5. Mole percentage profiles including CO and CO2 

The concentration profiles of CO and CO2 are shown here for the sake of completeness.  

 

Figure S4. Mole percentage profiles of CO, CO2, water, methanol 

and DME at  =533 K, μ=2. 
(—) Solid lines: 20% COR, (‐‐‐) Dashed lines: 80% COR 

 

Figure S5. Mole percentage profiles of CO, CO2, water, methanol 

and DME at	μ=2 and COR=20%. 
(—) Solid lines:  =503 K, (‐‐‐) Dashed lines:	 =533 K 
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Figure S6. Mole percentage profiles of CO, CO2, water, methanol 

and DME at	μ=2 and COR=80%. 
(—) Solid lines:  =503 K, (‐‐‐) Dashed lines:	 =533 K 

 

Figure S7. Mole percentage profiles of CO, CO2, water, methanol 

and DME at  =533 K, COR=20%. 

(—) Solid lines: μ=1, (‐‐‐) Dashed lines: μ=2 

S6. Overview of selected studies conducted at different CZA‐to‐γ‐Al2O3 ratios 

 

Table S3. Overview of selected studies conducted at different CZA‐to‐γ‐Al2O3 ratios 

Study ‐ named after 
first author 

Catalyst system and properties 
Feed, conditions, reactor,* catalyst 

particle size 
Optimal catalyst bed 

composition** 

R. Pelaez et al.10 

‐ CZA: CHEMPACK 
SBET: 76.6 m2g‐1 
Pore volume: 0.257 cm3g‐1 
 
‐ γ‐Al2O3: BASF 
SBET: 239.9 m2g‐1 
Pore volume: 0.545 cm3g‐1 

CO/CO2/H2 

250‐270 °C, 30 bar,  
0.067‐0.244 kgh/Nm3 
100‐250 μm 
CZA/γ‐Al2O3: 70/30, 85/15, 92.5/7.5% 

CZA/γ‐Al2O3: 92.5/7.5% 
regarding CO conversion and 
DME yield 

N. Delgado Otalvaro 
et al.14  

Commercial CZA/γ‐Al2O3 

CO/CO2/H2/Inert 
220‐260 °C, 50 bar,  
200‐700 Nml/min, 
250‐500 μm 
(model‐based optimization) 

65.5% CZA,   
34.5 % γ‐Al2O3  (v.) without 
dilution. Regarding 
conversion of COx and DME 
yield 

K. L. Ng et al.15 
‐ CZA 
‐ γ‐Al2O3: Norton Chemicals Co. 

CO/CO2/H2/He, 
250 °C, 50 bar,  
27500 h‐1,  
Gradientless, internal‐recycle‐type 
reactor, stacked catalysts,  
250‐500 μm,  
CZA/γ‐Al2O3: 1/0, 1/0.5, 1/1, 1/2 

CZA/γ‐Al2O3: 1/2 regarding 
DME yield*** 

C. Peinado et al.16 

‐CZA: Katalco 51‐8 
 
‐ γ‐Al2O3: Alfa Aesar bimodal 
SBET: 220‐280 m2g‐1 

CO/CO2/H2, 
270‐290 °C, 25‐50 bar,  
5000‐7500 h‐1, 
250‐300 μm, 
CZA/γ‐Al2O3: 90/10, 50/50, 10/90 

CZA/γ‐Al2O3: 50/50 regarding 
DME productivity 

J. W. Bae et al.17 

‐ CZA: prod. in‐house 
CuO/ZnO/Al2O3=50/40/10 
 
‐ γ‐Al2O3: prod. in‐house 
SBET: 437.8 m2g‐1 

CO/CO2/H2: 41/21/38 v. %, 
250 °C, 40 bar,  
11000 h‐1 

Pellet form hybrid catalyst 
CZA/γ‐Al2O3: 1, 3, 5 

CZA/γ‐Al2O3: 1 
Regarding the DME 
selectivity 
 
CZA/γ‐Al2O3: 5 
Regarding the CO conversion 

J. Abu‐Dahrieh et 
al.18 

‐CZA: prod. in‐house 
CuO/ZnO/Al2O3=60/30/10  
SBET: 56.9 m2g‐1  
pore size: 1.05 nm 

CO/CO2/H2/Ar: 31/4/62/3 v. %, 
200‐260 °C, 20 bar,  
2400 ml g‐1 h‐1, 
250‐425 μm,  

CZA/γ‐Al2O3: 1 
and  
CZA/HZSM‐5: 3 
regarding the DME yield 
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‐ NH4ZSM‐5,  
HZSM‐5 and  
γ‐Al2O3  
 
γ‐Al2O3: prod. in‐house, 
SBET: 117 m2g‐1, 
Pore size = 1.035 nm 

admixed catalyst, 
CZA/γ‐Al2O3: 1, 2, 3 

A. Ateka et al.19 

Comparison of different commercial 
and in‐hose made catalyst systems 
 
‐ CuO–ZnO–ZrO2,  
CuO–ZnO–MnO, and  
CuO/ZnO/Al2O3 

 
CZA: SBET: 24 m2g‐1, 
Pore volume: 0.081 cm3g‐1 
Cu dispersion: 5.2% 
 
‐ SAPO‐18 and γ‐Al2O3 

 
SAPO‐18: SBET: 480 m2g‐1, 
Pore volume: 0.39 cm3g‐1 
Total acidity: 0.42 mmolNH3/gcat 

CO/CO2/H2, 
275 °C, 30 bar,  
3.7 g h (molC)‐1, 
125‐500 μm,  
Bifunctional catalysts 
CZA/SAPO‐18: 1, 2, 5, 10 

CZA/SAPO‐18: 2 
regarding yield and 
selectivity of DME for CO2 
free feeds (H2/CO=3) 

*  The  reactor  type  is  a  fixed  bed  tubular  reactor,  with  mechanically  mixed  catalyst  bed  unless  otherwise  stated 

** percentages and ratios in weight, unless otherwise stated 

*** In this study the mass of CZA was held constant while the mass of γ‐Al2O3 was increased to achieve a higher γ‐Al2O3‐to‐CZA 

ratio. Hence, the γ‐Al2O3‐to‐CZA ratio leading to the highest performance was the case at which the total catalyst mass was also 

the highest. 
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1 Introduction

Using artificial neural networks (ANNs) is the most wide-
spread machine learning approach for modeling complex
phenomena due to their simple formulation, flexibility and
robustness [1, 2]. ANNs have proven to be suitable for cre-
ating predictive models for chemical engineering processes
and several applications have been subject of research in the
last decades such as the evaluation and modeling of com-
plex kinetic data [3–6], catalyst design [7, 8], soft sensoring
[1, 9], advanced process control [10], and others [11]. Stud-
ies regarding the application of ANNs for the synthesis of
dimethyl ether (DME) have been reported, e.g., for the
screening of additives [7, 8], the optimization of tempera-
ture profiles in a temperature gradient reactor [12], and the
modeling of the single process steps [13, 14]. Furthermore,
ANNs have been used for predicting the performance of the
liquid phase direct synthesis of DME over CuO/ZnO/Al2O3

and H-ZSM-5 catalysts [9]. In this work, we used ANNs to
model the direct synthesis of DME from CO2-rich synthesis
gas over a mixed catalyst bed of commercial CuO/ZnO/
Al2O3 (CZA) and g-Al2O3 catalysts at high pressure. DME
is of general interest due to its potential for chemical energy
storage, making it a promising key compound in power to
fuel technologies [15–20]. However, the detailed reaction
mechanism of this system is still controversial [21]. One of
the main difficulties for modeling the direct DME synthesis
concerns changes in the catalyst during time on stream. It
has been shown that the catalytic active state of CZA

dynamically adjusts to the process conditions [22, 23], par-
ticularly at high CO2 contents in the synthesis gas feed [24].
In addition, water formation not only influences the active
centers of CZA, but also those on the solid acid dehydration
component (i.e., g-Al2O3) [25, 26]. Morphological and
structural changes induced by certain operating conditions
or interactions with reactants, intermediates or products
make it almost impossible to correlate a vast array of
experiments at different working conditions using a simple
kinetic model [27].

The ANNs used to model the direct synthesis of DME
map the input-output relationships in intrinsic kinetic data
taken over a wide range of operating conditions and inlet
feed compositions. The ANNs applied are fully connected
multi-layer feedforward networks trained by supervised
learning. A brief summary of the theoretical background
regarding the design and training of ANNs, is provided in
the Supporting Information (SI). For the ANN design, sev-
eral back-propagation training algorithms as well as differ-
ent activation functions and network architectures have
been tested. Additionally, a data partitioning scheme is pre-
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sented, which enables the data division for training and
testing in an automated fashion. We conduct simulations
within and beyond the model’s validity range to shed light
on the ANN’s predictive ability in both operational win-
dows, and report on the ability of simple ANNs in modeling
this system in comparison to that of a lumped kinetic model
fitted to the same data.

2 Data and Methodology for the ANN’s
Design

Shallow feedforward ANNs (ANNs with one hidden layer)
were designed and implemented in Matlab� software
R2018a v9.4.0. The experimental kinetic data used for train-
ing and testing were acquired and published in a previous
work [28]. The used data set consists of 180 experiments
carried out in a fixed bed reactor at 50 bar using a 1:1
mechanical mixture of a commercial CZA catalysts and
g-Al2O3. The syngas composition, the temperature (T) and
the total gas flow ( _VN;in) were varied during the experi-
ments as summarized in Tab. 1, while the hydrogen amount
in the feed gas was determined for each experiment accord-
ing to Eq. (1). The remaining fraction of the feed gas con-
sisted of a mixture of the inert gases argon and nitrogen.

yH2;in ¼ 2:3 yCO;in þ yCO2;in
� �þ yCO2;in (1)

The ANNs were trained to predict the mole fraction of
the main species (CO, CO2, H2 and DME) in the product
gas based on the composition of the syngas
(yCO;in; yCO2;in; yH2;in) and the varied operating conditions.
Hence, the input vector (x) and target vector (y) are sum-
marized as follows:

xT ¼ yCO;in; yCO2;in; yH2;in; T; _VN;in
� �

(2)

and

yT ¼ yCO;out ; yCO2;out ; yH2;out ; yDME;out
� �

(3)

For the design of ANNs the network architecture, i.e., the
number of neurons in the hidden layer, as well as a suitable
activation function of these neurons and a training algo-
rithm must be determined. Since there is no generally

accepted theoretical basis to address these questions,
answers are obtained empirically. For this purpose, various
network architectures and multiple functions were screened
and analyzed concerning the resulting accuracy and conver-
gence time (refer to SI for further details on the evaluated
algorithms). The assessment was carried out in regard to
the mean squared error (MSE) and the convergence time.
For this initial screening, the experimental input data were
divided randomly into three data subsets: training, valida-
tion and test data containing 70 %, 15 % and 15 % of the
experimental data, respectively. The validation subset was
used for training to improve generalization through early
stopping, except in the case of Bayesian regularization
where generalization is achieved by regularization and no
validation subset is required [29, 30]. The randomized data
classification was constant for all trials conducted in this
initial screening to ensure that the same samples were used
in all cases, thus, excluding any influence of the data divi-
sion from the preliminary results.

After determining the most appropriate functions several
networks were trained using the pseudo-random two-stage
data-partitioning scheme presented in Sect. 3.1. The error
function on the test data was considered the determining
factor for selecting the best network. Since this data set is
completely independent of the training routine, the error
on these data is a sufficient indicator of both the prediction
accuracy and the generalization of the network.

Posterior to the training and network selection, simula-
tions were performed with the selected network. The
responses of the ANN were evaluated in comparison to a
lumped kinetic model parametrized to the same experimen-
tal data used for the ANN training. The parameters of the
lumped model were fitted to kinetic data measured in the
absence of transport limitations. The assumptions of steady
state, isothermal and isobaric operation, negligible gradients
in radial direction and negligible backmixing effects apply.
Therefore, only the effects of chemical reaction and thermo-
dynamic equilibria are included in this model. However,
since the lumped kinetic model is based on balance equa-
tions and partially on knowledge of the reaction mecha-
nism, it is expected to deliver better predictions than the
ANN when extrapolated.

The adjusted coefficient of determination R2
adj: was com-

puted as a measure of the goodness of fit (Eq. (4)). Different
from the coefficient of determination R2 (Eq. (5)), R2

adj: takes
the number of degrees of freedom of each model into con-
sideration, hence, providing an unbiased basis for the com-
parison of two different model structures.

R2
adj: ¼ 1� 1� R2ð Þ N � 1ð Þ

N � p
(4)

R2 ¼ 1�
PN

n¼1 yn;out � ŷn;out

� �2

PN
n¼1 yn;out � �yout

� �2 (5)
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Table 1. Conditions of kinetic data taken from Delgado Otal-
varo et al. [28]

Parameter Value

T [K] 493, 503, 513, 523, 533

_VN;in [slpm]a) 0.2, 0.3, 0.4, 0.5, 0.6, 0.7

yCO2 ;in [%] 1, 3

yCO,in [%] 4, 8, 15

a) Standard liter per minute, T = 0 �C and p = 1.01325 bar
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In Eqs. (4) and (5), N is the total number of experiments,
and p is the number of model parameters. ŷn;out and yn,out

are the predicted and measured mole fraction of an arbi-
trary component in the product gas for experiment n, and
�yout is the mean value of the measured mole fraction over
all experiments.

3 Results and Discussion

3.1 Network Design and Training

During the initial screening the activation and training
functions available in Matlab� were changed systematically
in order to find the most suitable function for the available
data. The screening showed that the piecewise linear func-
tions (ReLU, satlin, tribas and satlins) perform poorly com-
pared to the nonlinear functions (radbasn, elliotsig, tansig,
softmax and logsig). The best performance was obtained
with the widely used logarithmic sigmoid function logsig
(refer to Fig. S5 in the SI). When evaluating the training
functions no convergence was achieved in any of the run
trials with the algorithms Gradient Descent (gd) and Gra-
dient Descent with Momentum (gdm). On the other hand,
the Jacobian backpropagation methods Levenberg-
Marquardt (lm) and Bayesian regularization (br) provide
more accurate predictions than the gradient descent algo-
rithms (cgp, scg, rp, bfg, cgb and cgf). Between lm and br,
the lowest MSE and fastest convergence was achieved with
br (Fig. S6). This Matlab� training function is based on the
Bayesian interpolation frame proposed by MacKay [31]
which is advantageous for problems where the data set is
limited since no validation subset is required [29]. Further-
more, Bayesian regularization calculates and trains only the
number of parameters necessary to minimize the target
function (effective number of parameters) [32, 33]. As a
result, fewer parameters are used than are available reduc-
ing the model sensitivity to the network architecture, as
long as the minimum number of neurons is provided. Based
on these advantages and the empirically obtained results,
Bayesian regularization was selected for the network design.

The proposed data division and training procedure is
illustrated in Fig. 1. In the first stage of data division, the
samples were randomly assigned to two subsets: ‘‘Design
Data’’ and ‘‘Test Data A’’. In the second stage, the ‘‘Design
Data’’ subset containing 90 % of the samples was divided
into ‘‘Train Data’’, which is used to calculate weights and
biases, and ‘‘Test Data B’’ used to compare different models
within the framework of Bayesian regularization (without a
validation subset). Afterwards, the multi-start strategy was
applied by restarting the training procedure from different
initial parameter values 100 times. This procedure, labeled
as (1) in Fig. 1, screens the parameter space in order to gen-
erate different solutions of the optimization problem, and
thus, to overcome possible local optimality. After comple-
tion, the second stage of data partitioning is repeated to

train the networks based on a different data division (label
(2) in Fig. 1). All trained networks and training records
were stored in a 100 by 100 array for the subsequent net-
work selection. Finally, the ‘‘Test Data A’’ subset, which con-
tains 10 % of the original samples, was used to provide an
unbiased assessment of the network performance on sepa-
rate data, and thus, of its generalization ability. Thereby, the
ANN with the lowest error on these data exhibits the best
generalization to the independent data set and was chosen
as the most suitable network. A random division is advanta-
geous for the problem at hand considering the multidimen-
sionality of the input space. The presented scheme allows
data partitioning in an automated fashion and increases the
adaptability of the proposed modeling routine to new data
sets of different structures. Furthermore, the model require-
ments, i.e., high accuracy, fast convergence and good gener-
alization, are fulfilled.

The training strategy was conducted for networks with
up to 15 neurons in the hidden layer. This screening showed
that five hidden neurons provide enough complexity for the
network to adapt sufficiently to the available data set.
Therefore, the network with a 5-5-4 architecture (5 input,
5 hidden and 4 output neurons, Fig. S8) was selected. This
structure ensures a sufficient number of parameters to avoid
underfitting, while the problem of overfitting is prevented
by training the network with Bayesian regularization. The
resulting ANN is shown schematically in the SI, where also
the parameters of the ANN and further training results are
given.

The proposed approach is applicable when modeling with
ANNs due to their remarkably fast convergence. For the
chosen architecture, the time elapsed after the training of
10 000 networks was 7.9 min (refer to the SI). In contrast,
the parametrization of the lumped kinetic model to the
same data takes approximately 3.5 h using the same CPU
(on windows 10 Pro (64-bit) operating system with i5 pro-
cessor and 8 GB RAM).

www.cit-journal.com ª 2021 The Authors. Chemie Ingenieur Technik published by Wiley-VCH GmbH Chem. Ing. Tech. 2021, 93, No. 5, 754–761

Figure 1. Data division scheme and training strategy.
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3.2 Evaluation of the Selected ANN

Simulations were performed to evaluate the predictive abil-
ity of the selected network. Fig. 2 shows parity plots item-
ized for the main components in the system displaying the
agreement between the measured and predicted concentra-
tions in the product gas for all experiments. Clearly, the
model is capable of simulating the observed trends accu-
rately. For all components, the simulated points are evenly
distributed around the y = x line, indicating that there are
no pronounced systematic deviations between model pre-
dictions and experimental data.

We attribute the observed goodness of fit to the fact that
appropriate activation and training functions were chosen
as well as a network architecture that provides sufficient
model complexity and flexibility for modeling. Additionally,
the proposed data partitioning scheme proved to be effec-
tive in enabling the model to gain insight into the underly-
ing phenomena with the available data.

The mean relative error (RE) over all inlet compositions
is shown in Fig. 3 against the temperature and the inlet vol-
ume flow. Clearly, the ANN shows a higher predictive accu-
racy than the lumped kinetic model for all species in the en-
tire experimentally covered operating window. This is
caused by the flexibility and higher dimensionality of the
ANN and its superior capacity to adapt to the data. The RE
of CO, CO2 and H2 over all data lies below 3 % (2 %, 2.9 %
and 0.4 %, respectively), while the RE of DME amounts to
11 %. Both response surfaces for DME follow the same
trend, with the prediction error decreasing with increasing
temperature. At low temperatures, the low reaction rates
lead to overall low conversion and yield. Hence, resulting in
small DME amounts in the product gas and thus in a re-
duced measuring accuracy [28]. Therefore, the deviations of
both models can be mainly attributed to experimental mea-
surement uncertainties. Additionally, the fact that the ANN

did not adapt to the measured values, although the network
has sufficient flexibility, is an indication that overfitting was
successfully avoided and the data were not simply stored by
the network, but the input-output relationships were effec-
tively identified. The adjusted coefficients of determination
reported in Tab. 2 highlight the suitability of both models
and confirm the better adjustment of the ANN to the exper-
imental data especially for the fractions of DME and CO2.

In order to determine if the trained ANN is suitable as a
non-linear regression tool, the ANN’s generalization ability
and its suitability to make predictions on unseen data have
to be tested. For this purpose, additional simulations were
performed for unobserved data within and beyond the
model’s validity range. The lumped model published in our
previous work [28] is employed for a comparative analysis
of the ANN’s predictions. Since both models were fitted to
the same experimental data, these are valid in the same
range of conditions, thus, providing a sufficient basis for
comparison. In the following, representative results are pre-
sented that illustrate and compare the responses of both
models. Additional simulation results are given in the SI.

In Fig. 4, the experimental values are sorted arbitrarily in
ascending order and depicted along with the superimposed
confidence intervals of both fits at a significance level of
95 %. It can be observed that the confidence intervals of the
ANN predictions are narrower than the confidence interval
of the lumped model. It is obvious, in particular for the
fractions of DME and CO2, that the respective confidence

Chem. Ing. Tech. 2021, 93, No. 5, 754–761 ª 2021 The Authors. Chemie Ingenieur Technik published by Wiley-VCH GmbH www.cit-journal.com

Figure 2. Parity plots for concentrations in the product gas.

Figure 3. Mean relative error (RE) of prediction for the lumped
model and ANN over all data.

Table 2. Adjusted coefficients of determination.

R2
adj: ŷH2;out ŷCO;out ŷCO2 ;out ŷDME;out

ANN model 0.999 0.998 0.994 0.984

Lumped model 0.998 0.992 0.984 0.943
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intervals of both models are wider in the low concentration
range. This is in accordance with the presumption made
before in this section that low concentrations of DME are
subject to an increased measurement uncertainty, which
also explains why this effect is not observable for the frac-
tions of CO or H2 where the confidence intervals appear to
be of the same order of magnitude in the entire operating
window.

Fig. 5 displays simulation and experimental results in the
temperature range between 453 K and 573 K. The range
where both models are formally valid (between 493 K and
533 K) is marked in gray for better visualization.

The predictions of the ANN within the model’s validity
range are slightly closer to the experimental values than the
predictions obtained with the lumped kinetic model, consis-
tent with the previous discussion. Since the phenomena in
this range are dominated by reaction kinetics, the effects
observed under these conditions can be explained by the
temperature dependence of the reaction rate, described by
the Arrhenius equation. With increasing temperature, the
fraction of DME and CO2 in the effluent increases, while
the fraction of CO and H2 decreases. The fact that CO2 be-
haves as a product can be attributed to the water-gas shift
reaction, which is promoted by the CZA catalyst and, in the
evaluated range, is faster than the CO2 hydrogenation. With
regards to the total gas flow, it is observed that at decreasing
values, the fraction of CO and H2 at the reactor outlet
decreases as well, while the fraction of DME and CO2

increases. These results can be explained by the inverse rela-
tionship between the total gas flow with residence time and
gas load, that lead to higher conversion and product yield.
Furthermore, the consistency of this effect throughout the
entire investigated gas flow range can be attributed to a con-
stant selectivity towards DME. A detailed description of the

observed phenomena can be found elsewhere [28]. Model
predictions in this operational range demonstrate the high
level of agreement between the simulated and measured val-
ues, also showing a smooth mapping and the ANN’s ability
to generalize and make predictions for unseen data within
the model’s validity range.

Unexpectedly, the predictions of the lumped model and
the ANN at temperatures below 493 K are similar although
the ANN was not trained in this temperature range. Both
models indicate that at low temperatures the reaction rates
are too low to achieve high conversion. Hence, the concen-
trations of all components are close to the respective values
in the feed gas. There are no additional constraints in the
ANN’s structure that prevent negative concentrations to be
computed (in the lumped kinetic model, this effect is pre-
vented inherently by the balance equations). Thus, at low
temperatures some negative values are predicted. However,
for DME and CO2, progressions do not decrease steeply
into the negative quadrant with decreasing temperatures.
Instead, all values in this temperature range are close to
zero. Similar good prediction accuracy despite extrapolation
was observed for most but not all feed compositions and
components (refer to SI, Fig. S9 to S13). Therefore,
although the underlying model is able to extrapolate accu-
rately for most conditions in this range, the quality of the
predictions cannot be guaranteed in all cases. The predic-
tions for temperatures above 533 K provide valuable
insights into the phenomena comprised by the models. As
the main chemical reactions involved in the DME synthesis
are exothermic, high temperatures are kinetically favorable,
but thermodynamically unfavorable. This trade-off of
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Figure 4. Measured concentrations in the product gas and 95 %
confidence intervals (CI) of the ANN and lumped model. For
clarity, only every third experimental data point is shown.

Figure 5. Components mole fraction in the product gas. Gray
area marks the range covered experimentally. Feed: 16.1 % CO,
0.8 % CO2, 42.3 % H2, 40.8 % inert gas (Ar and N2). p = 50 bar.
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exothermic reactions is reflected by a change in the slope of
the concentration profile and is taken into account in the
lumped kinetic model by the equilibrium constants in the
rate expressions. However, since the kinetic data were mea-
sured at conditions at which the influence of the equilibri-
um is minor (kinetic regime), the ANN has no information
about the characteristics of this phenomenon, causing the
predictions of both models to diverge at high temperatures.
With increasing temperature, the concentration profiles
predicted with ANN follow the observed trend in the exper-
imentally covered range, i.e., increasing for DME and CO2,
and decreasing for H2 and CO, while the concentration pro-
files computed with the lumped kinetic model exhibit the
expected points of inflection. Similarly, predictions for low
flow rates at which mass transport limitation occurs can be
expected to be inaccurate because the model was parameter-
ized to fit intrinsic kinetic data, i.e., in an operating range
with negligible influence of mass and heat transport.

4 Summary and Conclusions

In this paper ANNs were used to model the direct synthesis
of DME from syngas over a commercial dual catalyst sys-
tem at high pressure. The exact mechanism of this process
is not yet fully understood, and modeling has so far only
been possible in limited operating windows. The networks
used in this study are shallow, feedforward and fully con-
nected. It was demonstrated that the logarithmic sigmoid
function is most applicable for the problem at hand, and
that a higher accuracy is obtained when applying training
algorithms that use Jacobian backpropagation, particularly
Bayesian regularization. A pseudo-random data division
scheme allowing data partitioning in an automated fashion
was presented. The training was conducted for ANNs of
different structures and five hidden neurons proved to pro-
vide sufficient model complexity to map the available data.
The network with the best performance on unseen data was
selected and its predictive ability was assessed by compari-
son with experimental data and with predictions of a
lumped kinetic model parametrized to fit the same data-
base. In summary, it was observed that the ANNs are
remarkably fast, very flexible and exhibit a superior adapt-
ability to the experimental data than the lumped kinetic
model while still providing a comparable interpolation
ability.

Moreover, accuracy of the model predictions outside the
experimentally covered parameter range was also evaluated.
When the model was extrapolated towards lower reaction
rates, i.e., lower temperatures and higher flow rates, the
ANN was able to deliver accurate predictions and to de-
scribe the single-stage DME synthesis systemically for most
components and inlet feeds. This indicates that extrapola-
tions of the model may be admissible for operating condi-
tions at which the phenomena covered by the underlying
model takes place. However, it is not possible to predict

deviations prior to training. Extrapolations of the ANN
towards higher reaction rates, on the other hand, lead as
expected to divergent predictions, as overlapping effects
occur (e.g., thermodynamic limitation of exothermic reac-
tions at high temperatures) which, at the current stage of
development, cannot be reflected by the ANN that was
trained to fit data taken in the operational window domi-
nated only by reaction kinetics.

Our findings underline the suitability of the ANN to act
as a predictive tool for Brownfield applications such as soft
sensoring, real-time optimization, online control, predictive
maintenance and others, where models with high flexibility
and adaptability, the capacity to map complex nonlinear
relationships as well as fast convergence and low computa-
tional cost are required. Furthermore, we conclude that
ANNs have the potential to be used for modeling the direct
DME synthesis in an even wider range of operation where
the relationship between input and output variables is
ambiguous and modeling under mechanistic assumptions
was not yet possible. The presented data partitioning and
training methodology can be applied for this purpose with
simple requirements: the input-output relationships to be
modeled must be measurable and enough data must be
available for parameter discrimination, i.e., for the training
of the network. One possible application is the modeling of
catalyst deactivation as a function of the time on stream
and/or the conditions to which the catalyst system is
exposed to. Regardless of the catalyst system, most kinetic
studies of the direct DME synthesis are carried out under
steady state conditions, due to the highly dynamic behavior
of the catalysts which makes the mechanistic modeling in a
wide range of conditions very challenging. However, if the
required data are available, the modeling with the proposed
methodology can be easily adapted to new state variables
that need to be considered.
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Symbols used

N [–] total number of experiments
p [bar] pressure
R2

adj: [–] adjusted coefficient of determination
R2 [–] coefficient of determination
T [K] temperature
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_VN;in [slpm] total gas flow at standard conditions,
standard liter per minute, T = 0 �C
and p = 1.01325 bar

y [–] measured mole fraction
ŷ [–] predicted mole fraction

Sub- and Superscripts

in quantity at reactor inlet
n experiment index
out quantity at reactor outlet
T transpose of a matrix or vector

Abbreviations

ANN artificial neural network
br Bayesian regularization
CI confidence interval
CZA CuO/ZnO/Al2O3

DME dimethyl ether
lm Levenberg-Marquardt
MSE mean squared error
RE relative error
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1  Introduction 

Artificial Neural Networks - Key Design Parameters 
and Modeling 

Features and Functional Principles. ANNs are a 
mathematical portrayal of the human neural system. 
Similar to the biological system, ANNs consist of 
interconnected neurons that are responsible for the 
processing and forwarding of data. There is an 
extensive number of ANN types that can be classified 
based on their application, topology, connection 
pattern and the applied learning method as depicted in 
Fig. S1. 

 
Figure S1. Classification of artificial neural networks 
(modified according to Sohrab Zendehboudi et al. [34]). 

The ANNs relevant for this contribution are multilayer, 
feedforward networks used for function evaluation 
(i.e., nonlinear regression) and trained by supervised 
learning method. 

In multilayer feedforward networks, the elementary 
units (neurons) are organized into layers, as depicted 
in Fig. S2. There is one input layer containing the input 
signals and one output layer containing all output 
signals of the network. Additionally, they may also have 

one or more hidden layers located between input and 
output. These networks are known as “shallow” or 
“deep” ANNs respectively. Moreover, the 
“feedforward” connection type between neurons 
indicates that information is transferred 
unidirectionally from the input to the output layer. 

 
Figure S2. Structure of a multilayer feedforward 
artificial neural network. 

The functional principle of an artificial neuron is shown 
in Fig. S3. The input signals 𝑥𝑥𝑖𝑖  are multiplied with 
connections weights 𝑤𝑤𝑖𝑖 that define the influence of the 
respective input data on the neuron’s output signal. 
The net input 𝑛𝑛 of the neuron is the sum of all weighted 
input signals and the bias 𝑏𝑏 , which represents the 
neuron’s threshold. If this threshold is exceeded, the 
neuron will be activated, i.e., an output signal 𝑦𝑦 will be 
produced. The neural output signal is calculated using 
the activation function 𝑓𝑓(𝑛𝑛) that transforms the input 
of the neuron e.g., introducing nonlinearities. This 
output signal is then transferred to the next artificial 
neuron [34, 35].  
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Figure S3. Functionality of an artificial neuron. 

The number of neurons in the input and output layers 
is constraint by the scenario under consideration, while 
the number of hidden layers and hidden neurons must 
be determined by the designer based on trial-and-error 
or using rules-of-thumb [35, 1]. Clearly, an increasing 
number of hidden layers would lead to an increasing 
number of parameters. In some cases, a large network 
can be favorable for the model prediction accuracy. 
However, too many hidden layers can also lead to an 
excessive information processing capacity, and thus to 
the memorization of the training samples (overfitting). 
On the other hand, an insufficient number of 
parameters can result in poor forecasting abilities of 
the network. One approach for choosing the network 
structure is provided by the universal approximation 
theorem [36, 37]. This theorem states that a network 
with at least one hidden layer and nonlinear hidden 
neurons would be capable of approximating any 
continuous function in a closed and bounded domain. 
Therefore, this type of network can be applied 
universally for function approximation when 
theoretical models are not available [35, 38].  

Furthermore, “supervised learning” refers to the 
learning method in which the available dataset 
contains information about the inputs (i.e., the 
composition of the participating chemical species and 
the operating conditions) and the desired output data 
or targets (i.e., the measured composition of the 
gaseous products). The network “learns” by 
systematically changing the network parameters in 
order to minimize the error between predictions and 
targets. The “training” of a multilayer network, i.e., the 
estimation of the parameters (weights and biases) that 
adapt the predictions to the available data, is 
conducted using numerical optimization algorithms. 
These may use the gradient of the error function with 
respect to the network parameters or the Jacobian 
matrix of the errors [39]. Both the gradients and the 
Jacobian matrix can be calculated using the 

backpropagation algorithm as follows: First, the output 
signals of the network are calculated using the input 
data and the initial values of the network’s parameters. 
Afterwards, an error function is calculated (e.g., sum of 
squared errors) using the training data. The computed 
error is subsequently (back) propagated through the 
network using the chain rule of calculus to determine 
the error caused by each parameter. The weights and 
biases are adjusted accordingly and the previous steps 
are repeated iteratively in order to minimize the value 
of the calculated error function [35, 40, 41].  

Generalization. One of the most relevant features of 
ANNs is their ability to generalize. A good 
generalization implies that the model did not merely 
memorized the training examples, but that it can make 
reliable predictions on unseen data as well. Three of 
the numerous approaches to improve generalization 
are relevant in our contribution: growing, 
regularization and early stopping. 

When growing is applied, the size of the network is 
systematically increased until adequate performance is 
achieved. This technique aims to find the simplest 
(smallest) network architecture that will provide just 
enough complexity to fit the data while avoiding 
overfitting. 

In contrast, regularization suppresses the model 
complexity by restricting, not the number, but the 
magnitude of the network parameters. Typically, the 
error function is given by the mean squared error 
(MSE), 

MSE =
1
𝑁𝑁
�(𝑦𝑦�𝑖𝑖−𝑦𝑦𝑖𝑖)2,
𝑁𝑁

𝑖𝑖=1

 
 
(S1) 

where 𝑦𝑦�  represents the targets, 𝑦𝑦  the network 
predictions and 𝑁𝑁 the total number of training samples. 
In regularization, this function is modified by adding 
the sum of square weights and biases given by 

MSW =
1
𝑛𝑛
�𝑤𝑤𝑗𝑗2.
𝑛𝑛

𝑗𝑗=1

 
 
(S2) 

The modified error function then takes the form 

𝐸𝐸 = (1 − 𝛾𝛾) MSE + 𝛾𝛾 MSW, (S3) 

where 𝛾𝛾 is the performance ratio. Using this expression 
as the regularization objective function, both the 
prediction errors and the network parameters are 
minimized simultaneously during training, thus, 
attaining a smooth network response and good 
generalization. 
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Furthermore, early stopping involves the monitoring of 
the training progress to determine when the training 
must be terminated. For this, the available data must 
be divided into at least two subsets: training and 
validation data. The training data are used to compute 
the gradients or the Jacobian matrix necessary to 
update the values of the network parameters. On the 
other hand, the validation data are used to monitor the 
generalization ability of the network at each training 
step as illustrated in Fig. S4. Throughout the course of 
training, the training error will decrease since the 
parameters are being updated to fit these data. 
Similarly, the validation error decreases with each step 
until the network begins to memorize the training data 
resulting in poor performance on the validation subset. 
The training is terminated when the validation error 
starts to rise, and the parameter vector at the point 
with the lowest validation error is selected as the 
optimal parameter set [35, 29].  

 
Figure S4. Schematic representation of early stopping. 

An additional data set for testing can be used to assess 
the model’s generalization ability and for model 
selection. This data set should only be used after the 
training procedure has been completed to ensure an 
unbiased assessment. 

2  Data and Methodology for the ANN’s Design 

Activation Function. The nonlinear activation functions 
listed in Tab. S1 were used in the hidden neurons to 
include the known nonlinearities of the kinetic data in 
the model and to increase computational flexibility, 
while linear neurons were used in the output layer. 
While testing the listed activation functions, the 
remaining design parameters were kept constant at 
the default values in MATLAB®, namely the Levenberg-
Marquardt training algorithm and 10 neurons in the 
hidden layer.  

Table S1. Tested activation functions [39, 42]. 

Abbr. Name of 
Function Equation 

elliotsig Elliot Symmetric 
Sigmoid 

𝑓𝑓(𝑛𝑛) =  
𝑛𝑛

1 + |𝑛𝑛| 

logsig Logarithmic 
Sigmoid 𝑓𝑓(𝑛𝑛) =  

1
1 + 𝑒𝑒−𝑛𝑛 

poslin Positive Linear 𝑓𝑓(𝑛𝑛) = �0, 𝑛𝑛 ≤ 0
𝑛𝑛, 𝑛𝑛 > 0 

radbasn Normalized 
Radial Basis 𝑓𝑓(𝑛𝑛) =

𝑒𝑒−𝑛𝑛2

∑ 𝑒𝑒−𝑛𝑛2
 

satlin Saturating 
Linear 𝑓𝑓(𝑛𝑛) = �

0, 𝑛𝑛 ≤ 0
𝑛𝑛, 0 < 𝑛𝑛 < 1
1, 𝑛𝑛 ≥ 1

 

satlins 
Symmetric 
Saturating 
Linear 

𝑓𝑓(𝑛𝑛) = �
−1, 𝑛𝑛 ≤ −1
  𝑛𝑛, −1 < 𝑛𝑛 < 1
 1, 𝑛𝑛 ≥ 1

 

softmax Softmax 𝑓𝑓(𝑛𝑛) =  
𝑒𝑒𝑛𝑛

∑ 𝑒𝑒𝑛𝑛 

tansig 
Hyperbolic 
Tangent 
Sigmoid 

𝑓𝑓(𝑛𝑛) =  
2

1 + 𝑒𝑒−2𝑛𝑛 − 1 

tribas Triangular Basis 𝑓𝑓(𝑛𝑛) = �
0, 𝑛𝑛 ≤ −1

1 − |𝑛𝑛|, −1 < 𝑛𝑛 < 1
0, 𝑛𝑛 ≥ 1

 

 

Training Algorithm. There are several algorithms for 
training ANNs with backpropagation. Here, the 
functions listed in Tab. S2 were applied using the 
logarithmic sigmoid activation function (logsig). 
Relevant bibliographic information on the training 
algorithms is also provided. 

Table S2. Tested training algorithms [43]  
Abbr. Algorithm References 

bfg BFGS Quasi-Newton [44, 45] 

br Bayesian Regularization [29, 30, 32] 

cgb Conjugate Gradient with 
Powell/Beale Restarts 

[46, 47] 

cgf Fletcher-Powell Conjugate Gradient [39, 48] 

cgp Polak-Ribiere Conjugate Gradient [39, 48] 

gd Gradient Descent [39] 

gdm Gradient Descent with Momentum [39] 

gdx Variable Learning Rate Gradient 
Descent 

[39] 

lm Levenberg-Marquardt [39, 49, 50] 

oss One Step Secant [51] 

rp Resilient Backpropagation [52] 

scg Scaled Conjugate Gradient [53] 
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3 Results and Discussion 

3.1. Network Design and Training 

Activation Function. Fig. S5 displays the mean squared 
error values of all activation functions tested and the 
training time required for one ANN. The performance 
of all nonlinear activation functions is very similar. The 
lowest MSE was obtained with the widely used 
logarithmic sigmoid function.  

 
Figure S5. MSE and training time with the tested 
activation functions. 

Training Algorithm. The performance of the tested 
training algorithms is outlined in Fig. S6. The algorithms 
gd and gdm were left out since no convergence was 
achieved in any of the run trials. The lowest MSE was 
obtained with the algorithms that apply Jacobian 
backpropagation i.e., lm and br. The time required for 
the training of one ANN with these function was 0.97 s 
and 0.67 s respectively. 

 
Figure S6. MSE and training time with the tested 
training algorithms. 

Network Architecture. To find an appropriate ANN size, 
shallow networks with up to 15 hidden neurons were 
tested. The training time shown in Fig. S7 refers to the 
time required to train and test 10000 networks with 
the described training strategy (Fig. 1 in the 
manuscript). A network with five hidden neurons 
delivers a satisfactory fit for all components (highest 
mean relative error over all data was 11% for DME). 

The training with this architecture was completed in 
7.9 minutes.  

 
 

Figure S7. Mean relative error of prediction for each 
species and training time of 10000 networks for 
different sizes of the hidden layer. 

The resulting ANN is illustrated schematically in Fig. S8.  

 
Figure S8. Schematic representation of selected 
network architecture. 

The matrices 𝑤𝑤0,1  and 𝑤𝑤1,2  contain the connection 
weights between input and hidden layer, and between 
hidden and output layer respectively. The biases of the 
hidden and output neurons are contained in the 
vectors 𝑏𝑏1 and 𝑏𝑏2. 

𝑤𝑤0,1 =   

⎣
⎢
⎢
⎢
⎡
−0,598
0,273
0,056
0,549
0,069

   

−3,355
17,103
0,499
5,560

10,954

   

1,252
−14,004
−2,861
−0,982
−8,966

   

0,680
−0,248
−0,075
−1,001
0,576

   

0,823
−0,077
−0,033
−1,375
−0,022⎦

⎥
⎥
⎥
⎤
   

 
𝑏𝑏1,𝑇𝑇 = [2,865  − 1,339  − 0,282  − 3,556  − 2,025] 
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𝑤𝑤1,2 =  �

1,038
4,583
−3,856
−6,733

  

−0,990
−4,413
5,226
4,573

  

−1,992
−2,297
0,080
0,197

  

0,249
1,267
−1,070
−1,890

  

1,817
5,526
−5,563
−5,701

� 

 
𝑏𝑏2,𝑇𝑇 = [−0,208  − 3,315  2,765  5,580] 

 

3.2 Evaluation of the Selected ANN 

Fig. 5 in the manuscript displays simulation and 
experimental results in the temperature range 
between 180 °C and 300 °C. Complementary to this 
diagram, Figs. S9 to S13 show the results for the 
remaining inlet feed compositions. The pressure is in 
all cases 𝑝𝑝=50 bar. 

  
Figure S9. Components mole fraction in the product 
gas. Feed: 16.1 % CO, 2.8 % CO2, 48.8 % H2, 
32.3 % inert gas (Ar and N2). 

  
Figure S10. Components mole fraction in the product 
gas. Feed: 8.4 % CO, 2.9 % CO2, 30.3 % H2, 58.4 % inert 
gas (Ar and N2). 

  
Figure S11. Components mole fraction in the product 
gas. Feed: 4.1 % CO, 2.9 % CO2, 20.3 % H2, 72.7 % inert 
gas (Ar and N2). 

  
Figure S12. Components mole fraction in the product 
gas. Feed: 8.6 % CO, 0.8 % CO2, 24.0 % H2, 66.6 % inert 
gas (Ar and N2). 

  
Figure S13. Components mole fraction in the product 
gas. Feed: 4.3 % CO, 0.8 % CO2, 13.1 % H2, 81.8 % inert 
gas (Ar and N2). 
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Abstract: Hybrid kinetic models represent a promising alternative to describe and evaluate the
effect of multiple variables in the performance of complex chemical processes, since they combine
system knowledge and extrapolability of the (semi-)mechanistic models in a wide range of reaction
conditions with the adaptability and fast convergence of data-based approaches (e.g., artificial neural
networks—ANNs). For the first time, a hybrid kinetic model for the direct DME synthesis was
developed consisting of a reactor model, i.e., balance equations, and an ANN for the reaction kinetics.
The accuracy, computational time, interpolation and extrapolation ability of the new hybrid model
were compared to those of a lumped and a data-based model with the same validity range, using both
simulations and experiments. The convergence of parameter estimation and simulations with the
hybrid model is much faster than with the lumped model, and the predictions show a greater degree
of accuracy within the models’ validity range. A satisfactory dimension and range extrapolation
was reached when the extrapolated variable was included in the knowledge module of the model.
This feature is particularly dependent on the network architecture and phenomena covered by the
underlying model, and less on the experimental conditions evaluated during model development.

Keywords: hybrid modeling; reaction kinetics; dimethyl ether

1. Introduction

Dimethyl ether (DME) is an important chemical that can be used as an intermediate
for the production of CO2-neutral base products, as coolant or propellant, and as a diesel
substitute or fuel additive [1–3]. A promising alternative to the state-of-the-art two-step
DME production is the direct or one-step synthesis in a single reactor over dual catalyst
systems [4–6]. This process has been demonstrated at pilot scale and it is currently under
further development [1,7,8], for which reliable predictive models are essential. However,
the detailed reaction mechanism of the direct DME synthesis has not yet been fully un-
derstood [9] and its modeling is challenging. Reasons for this are, for example, variable
structural changes of the metallic catalyst depending on the reaction conditions [10], the
variation of the dominant pathway of the methanol synthesis [11], as well as the deac-
tivation of the dehydration catalyst, e.g., by acidity loss due to H+/Cu2+ ion exchange,
especially in the case of zeolite-based systems, and the sintering of the metallic catalyst in
the presence of high water concentrations [12–14].

Several semi-mechanistic or lumped models that enable the modeling of the system in
a specific operational range have been developed [15–26]. However, due to the mentioned
difficulties, semi-mechanistic models for the direct DME synthesis are difficult to fit in a
wide range of conditions. This is where the potential of machine learning approaches to
extract and predict input–output relationships in large data sets comes into play. These
methods, especially artificial neural networks (ANNs), have been used successfully in
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various areas of the chemical industry, mostly as predictive tools [27–30]. One of the
general drawbacks of ANNs is that their predictions are only reliable in the range in which
the training data were measured and extrapolation is only possible in a slightly extended
range [31]. However, unlike semi-mechanistic models, ANNs can be easily adapted to large
amounts of multidimensional data in broad operational windows [30,31].

Models that combine the features of both (semi-)mechanistic and data-based ap-
proaches represent a promising alternative for modeling the behavior of chemical reac-
tors [32]. However, recent studies have highlighted that the adoption of machine learning
approaches is still limited for chemical processes [27,33,34]. An extensive literature search
on models for direct DME synthesis revealed that most models are semi-mechanistic,
while only a few are data-based, and none of the models are hybrid in nature (Section 2).
Therefore, in addition to providing a timely overview of the available models for direct
DME synthesis, a main objective of this work is to establish an initial hybrid model for
this system and to comprehensively compare the different types of models (Section 3).
Simulation results obtained with the hybrid model are compared to those obtained with
a semi-mechanistic and a data-based model that have the same range of validity, which
enables an evaluation of the structural differences between the model types. Based on
similar works [35–37], it is expected that the hybrid model provides a higher accuracy than
the lumped model, while exhibiting an increased extrapolation capability compared with
the data-based one. These hypotheses are evaluated in a quantitative manner in Section 4.
In this section, critical model features such as accuracy, computational burden, interpolation
and extrapolation ability are tested, using both simulations and experiments.

2. Available Models for the Direct Synthesis of DME—An Overview

In this section, an overview of kinetic models for the direct synthesis of DME over the
commercial catalyst system with CuO/ZnO/Al2O3 (CZA) and γ-Al2O3 is presented.

2.1. Semi-Mechanistic (Lumped) Models

In the semi-mechanistic modeling approach, assumptions about the reaction mecha-
nism are made and experimental data are used to determine the reaction kinetic parameters.
Therefore, the influence of relevant operating conditions on the DME direct synthesis is
the focus of numerous current research projects. Overviews are given, for example, by
Z. Azizi et al. [4] and U. Mondal and G. D. Yadav [38].

The ranges evaluated in available modeling studies [15–26] are presented in Figure 1
for process variables that are particularly relevant for reaction kinetics, i.e, the temperature,
pressure, the CZA-to-γ-Al2O3 weight ratio (µ, Equation (1)), the carbon oxide ratio (COR,
Equation (2)) and the stoichiometric number (SN, Equation (3)).

µ =
mCZA

mγ-Al2O3

(1)

COR = 100 %
yCO2,in

yCO2,in + yCO,in
(2)

SN =
yH2,in − yCO2,in

yCO,in + yCO2,in
(3)

The overlapping of the ranges is obvious and explained by the constraints inherent to
the system under consideration. For example, the maximal temperature is defined based on
the thermal stability of the catalysts, so as to avoid sintering of CZA except, of course, for
studies where deactivation phenomena are investigated [18,20]. The lowest temperature,
on the other hand, is typically chosen under consideration of the other process variables so
as to have measurements in a range where the catalyst is active, and the signal-to-noise ratio
is high. In the summarized studies, temperatures from 473 to 623 K have been evaluated
(Figure 1a).
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Since the process exhibits volume contraction, an increase in pressure has a positive
effect on the process performance according to LeChatelier’s law [39]. However, the
maximal pressure is limited due to high investment costs and necessary safety measures.
At lab scale, the pressure range is often constrained by the experimental rig. As shown in
Figure 1b, some studies [15,17,21,26] are conducted at 50 bar, which is the typical industrial
operational pressure for methanol synthesis, while others evaluate a pressure range instead
of a constant pressure level [18–20,22,24,25]. Overall, the summarized publications cover a
pressure range from 9 to 72 bar.

As depicted in Figure 1c, the CZA-to-γ-Al2O3 weight ratio (µ) was chosen to be equal
to or higher than the one in most studies, since it has been demonstrated that an increased
fraction of methanol catalyst is beneficial for the overall process [15,16,40]. The optimal
catalyst bed composition has been shown to be a function of the operating conditions [15,16]
and the composition of syngas, especially regarding the CO2 amount in the feed [17].
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Figure 1. Overview of lumped models’ validity ranges regarding (a) temperature (b) pressure
(c) CZA-to-γ-Al2O3 weight ratio µ (d) carbon oxide ratio COR and (e) stoichiometric number SN.
Models [15–26] named after first author and year of publication.

In terms of the feed gas composition, instead of a simple listing of this heterogeneous
information reported by different authors, an unambiguous characterization was conducted
using the COR and SN in order to enable the comparison of the models.

The relevance of the COR lies in the high influence of the CO2 content in the syngas on
the process performance: High CO2 levels in the feed have been shown to promote water
formation and to reduce the attainable product yield [14,41,42]. However, kinetic models
valid in a wide COR range are useful for process design and optimization, as interest in
CO2 utilization grows in the industry [43]. The wide pattern in Figure 1d illustrates that
the influence of CO2 has become increasingly important in recent years and is essential in
current kinetic studies.

The SN is relevant in terms of the different hydrogen requirements for methanol
production via CO or CO2 hydrogenation. This is because, due to the different syngas pro-
duction technologies, the H2 content in the syngas is known to vary over a wide range [44],
and adjustment of the H2 content in the feed gas is not always economically feasible due to
the lack of sustainable H2 sources [45,46]. As shown in Figure 1e, a large range of SN is
covered by the presented kinetic studies. However, a closer look in each publication reveals
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that in most cases, the effect of this variable was not evaluated systematically. Clearly,
operating conditions for kinetic studies are chosen with consideration of the concurrent
effects on the other process variables. For example, if the system is operated at low pressure,
higher temperatures and low dilutions are required to achieve product concentrations that
can be measured accurately. As a consequence, optimal conditions found in these studies
are often local optima within the validity range of each model or experimental range. For
example, Pelaez et al. [16] observed an increasing yield of DME with an increasing CZA
fraction up to 92.5 wt.%, at a pressure of 30 bar and no CO2 in the feed. In contrast, in
our previous investigations [17] conducted at 50 bar and high CO2 contents in the feed,
an optimal catalyst bed composition was observed at approximately 66 wt.%. Hence,
aiming towards the global optimization of the direct DME synthesis, a further systematic
evaluation of process variables and their simultaneous effects is still necessary. However,
in addition to the aforementioned process variables, many other factors play a significant
role, such as the dynamic behavior of the catalysts, the reactor and its configuration, the
composition of the CZA catalyst, the heat removal concept, etc. Therefore, in terms of time
and resources, a comprehensive exploration of the state space is probably only feasible
using models that have enough flexibility to evaluate larger operational ranges and number
of process variables.

2.2. Data-Based Models

Artificial neural networks (ANNs) are one of the most powerful machine learning
approaches for modeling [29,47,48], and as universal approximators, these can approximate
nearly any continuous function in a bounded domain [49,50]. An essential step of this
modeling approach is answering the design questions for ANNs, e.g., which activation
functions are appropriate for the problem at hand, and how many layers and neurons are
required to achieve sufficient model complexity [31]. The performance of the networks
is typically evaluated based on the prediction accuracy and the convergence time, which
have been shown to be remarkable, and superior in comparison to that of traditional
(semi-)mechanistic models [32,51–53]. Further advantages of this modeling approach, is
that no prior knowledge of the chemistry and physics of the system to be described is
required and the high adaptability of ANNs to different structures and sizes of data
sets [32,47,54]. Unlike semi-mechanistic models, ANNs (and, in general, machine learning
approaches) have not been widely used for the modeling of the direct DME synthesis.
Studies conducted for this process or for the single steps are summarized in the following.

In a previous work [51], we applied ANNs for the modeling of the direct synthesis of
DME over the commercial catalyst system CZA/γ-Al2O3 using data that had previously
been used for the parametrization of a lumped model. ANNs could be trained successfully
even with the limited amount of data. The trained ANN exhibited a fast convergence, and
a high adaptability to the experimental data. Moradi et al. [52] analyzed the use of ANNs
for modeling the single-step DME synthesis over a bifunctional CZA-H-ZSM-5 catalyst.
The authors successfully trained an ANN to predict the CO conversion, as well as the DME
selectivity and yield. Between 2003 and 2009, Omata et al. also conducted simulations of
single-step DME synthesis using ANNs. Unlike Delgado Otalvaro et al. and Moradi et al.,
they used ANNs aiming at the maximization of the CO conversion by optimizing the
temperature profile in the reactor [55,56] and by identifying effective additives for the
CZA/γ-Al2O3 catalyst based on the physicochemical properties of the elements [57].

Additionally, studies using ANNs have been conducted for the single steps of the
direct synthesis [53,58–61]. For example, Svitnic et al. [58] used ANNs for the prediction of
by-product formation in the methanol synthesis from syngas, based on data from a pilot
plant. Moreover, since the methanol dehydration to DME proceeds without any relevant
side reactions, its rate is directly proportional to the rate of depletion and/or formation
and it can be measured directly. This advantage of the methanol dehydration to DME was
used by Valeh-E-Sheyda et al. [59] and Alamolhada et al. [53] who used kinetic data and
ANNs for the data-based modeling of the kinetics of this reaction.
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2.3. Hybrid Models

To the best of our knowledge, hybrid models have not been yet applied to the direct
DME synthesis. However, some hybrid models have been derived for the individual
steps of this process. Zahedi et al. [62] used a hybrid model for the modeling of the CO2
hydrogenation to methanol. In their work, the authors applied a mechanistic, a data-based
and a hybrid modeling approach and demonstrated the superior performance of the hybrid
model regarding accuracy and computational effort. Potočnik et al. [63] used a kinetic
model from the literature to predict the methanol production rate as a function of the
pressure, temperature and the partial pressure of the main species in the system. ANNs
were used in combination with this model as an error-corrector, enhancing the prediction
accuracy in the range where experimental data were available. Alavi et al. [64] derived
a mechanistic and a hybrid model for the methanol dehydration to DME. Here, an ANN
was trained using data from a white-box model to predict the global reaction rate and it
was integrated in the balance equations. The hybrid model was simpler and 20 times faster
than the mechanistic model.

These studies show the potential of hybrid modeling for related systems. The second
part of this contribution is devoted to the derivation of the first hybrid model for the direct
DME synthesis.

3. Models’ Structures, Modeling and Experimental Methodology

For the comparative study aimed in this work, the observed discrepancies between
model predictions must be only attributable to the models’ structural differences. Hence,
these must be valid in the same range of conditions. In this section, the models’ structures
are presented in order to identify crucial differences. The lumped and the data-based
models are described first in Sections 3.1 and 3.2, since elements from these types are
necessary for the development of the hybrid model. The mathematical structure of the
latter is subsequently introduced in Section 3.3. The results obtained with the hybrid model
and the comparative analysis between the different model types is given in Section 4.

The structure of the models relevant in this work, i.e., the lumped, hybrid and data-
based models, is shown schematically in Figure 2. The lumped and the hybrid model both
consist of a reaction kinetic model for the calculation of the reaction rates and a reactor
model based on the balance equations for the laboratory reactor. The mole fraction profiles
yi(z) of the different species in the system are calculated by integration of the differential
equations. With the data-based model, on the other hand, the mole fractions are predicted
directly using ANNs.

The color spectrum in Figure 2 represents the level of information required for the
different types of modeling; the darker the color, the less system knowledge is necessary.
The ANNs, for example, are predictors based on training data, i.e., black box models.
The reactor model for the tube reactor is characterized as white box since it is derived
based on the species and the total mass balance. In contrast, the lumped and the hybrid
model are both characterized as gray box. The lumped model is the model with the
greatest knowledge content among the three, because the balance equations are generally
valid and the rate expressions are based on mechanistic assumptions and thermodynamic
considerations. It is considered a gray box model since the parameters of the Arrhenius
and Van’t Hoff equations are estimated to fit experimental data. Comparably, the hybrid
model is also considered a gray box model, since it involves knowledge and data-based
elements in its structure.

In this contribution, a hybrid model for the direct DME synthesis is derived and
presented. Since this is the first model of this type for the DME synthesis, its assessment
has been made based on validation experiments and comparison with a semi-mechanistic
model [15] and a data-based model [51].
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Figure 2. Schematic representation of the lumped, hybrid and data-based models relevant for
this work.

3.1. Lumped Model

The lumped model was developed and validated in detail in a previous work [15].
It consists of balance equations and a lumped reaction kinetic model parametrized to fit
intrinsic kinetic data. Equation (4) describes the change of the molar fraction of species i
(yi) along the axial coordinate (z). Equation (5) accounts for the drop of the gas velocity u
due to the reaction-induced volume contraction.

dyi
dz

=
RTZ
up

(
Nr

∑
j

νi,j rj − yi

Nc

∑
k

Nr

∑
j

νk,j rv
j

)
(4)

du
dz

=
RTZ

p

Nc

∑
i

Nr

∑
j

νi,j rv
j (5)

In Equations (4) and (5), yi is the molar fraction of component i, R is the universal gas
constant in J mol−1 K−1, T is the temperature in K, Z is the mixture’s compressibility factor
calculated with the Peng–Robinson equation of state (PR-EoS) [65], u is the gas velocity in
m s−1, p is the pressure in Pa, νi,j is the stoichiometric coefficient of species i in reaction
j. The abbreviations “Nr” and “Nc” refer to the number of reactions and components,
respectively. Finally, rv

j is the volume-specific rate of reaction j in mol m−3 s−1 which is
defined by the reaction kinetic model described in the following.

The reaction kinetic model is based on the mechanistic study of Lu et al. [66] con-
sidering the CO2 hydrogenation to methanol, the methanol dehydration to DME and the
water gas shift reaction (WGSR) (Equations (6)–(8)). Other possible reactions such as CO2
methanation were not included because no other products were detected at significant
concentrations during the kinetic experiments.

Reaction 1: CO2 + 3 H2 
 CH3OH + H2O (6)

Reaction 2: 2 CH3OH 
 CH3OCH3 + H2O (7)

Reaction 3: CO + H2O 
 CO2 + H2 (8)
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The respective reaction rates in mol kg−1 s−1 are calculated with Equations (9)–(11).

r1 = k1

(
fCO2

f 3
H2
−

fH2O fCH3OH

K f ,1

)
(

1 + KCO2
fCO2

+ KCO fCO +
√

KH2
fH2

)3 (9)

r2 = k2

(
f 2
CH3OH −

fDME fH2O

K f ,2

)
(10)

r3 = k3

(
fH2O −

fCO2
fH2

K f ,3 fCO

)
1 + KCO2

fCO2
+ KCO fCO +

√
KH2

fH2

(11)

Finally, rv
j is given by

rv
j =

{
rj [(1− ε) ρCZA ξCZA], j = 1∨ j = 3
rj
[
(1− ε) ργ-Al2O3 ξγ-Al2O3

]
, j = 2.

(12)

In Equations (9)–(12), fi is the fugacity of component i in bar, calculated using the
fugacity coefficients obtained from the PR-EoS, ε is the catalyst bed void fraction, ρCZA
and ργ-Al2O3 are the CZA and γ-Al2O3 densities, and ξCZA and ξγ-Al2O3 are the respective
volume fractions in the catalyst bed. The equilibrium constants (K f ,j) are calculated with
Equation (13), whereas the reaction rate and adsorption constants (k j and Ki) are defined
by the reparametrized Arrhenius and Van ’t Hoff equations (Equations (14) and (15)) for a
reference temperature TR of 503 K.

K f ,j = 10

(
Aj
T −Bj

)
(13)

k j = k j,TR exp
[
−EA,j,n

(
TR
T
− 1
)]

, with EA,j,n =
EA,j

TRR
(14)

Ki = Ki,TR exp
[
−∆Hi,n

(
TR
T
− 1
)]

, with ∆Hi,n =
∆Hi
TRR

. (15)

The model-specific parameters for Equations (13)–(15) (Aj, Bj, k j,TR , EAj,n, Ki,TR and
∆Hi,n) are provided in Table 1.

Table 1. Model-specific parameters for the lumped model [15].

Equation (13) Equation (14) Equation (15)
Reaction

A B ln(kTR ) EA,n
Adsorbate

ln(KTR ) ∆Hads,n

1 3014.4029 10.3857 −6.94 21.81 CO −15.32 −14.03
2 1143.9494 0.9925 −2.07 42.77 CO2 −0.57 0
3 2076.2131 2.0101 −2.75 10.82 H2 −19.51 −14.68

These parameters were determined based on intrinsic kinetic data acquired in a fixed
bed reactor at a pressure of 50 bar under variation of the temperature, the feed composition
(yCO,in, yCO2,in, yH2,in) and the total gas flow, as summarized in Table 2. The catalyst bed
consisted of mechanically mixed CZA and γ-Al2O3 catalysts in a 1:1 mass ratio for a total
catalyst mass of 2 g.
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Table 2. Conditions for kinetic measurements [15].

Param. Value Unit

T 220, 230, 240, 250, 260 ◦C
V̇in 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 slpm *

yCO2in 0, 1, 3 %
yCO,in 4, 8, 15 %
yH2in yH2in = 2.3(yCOin+ yCO2in) + yCO2in %

* Standard liters per minute, T = 0 ◦C and p = 1.01325 bar.

3.2. Data-Based Model and ANN Training Strategy

The data-based model derived and evaluated in a previous work [51] consists of an
ANN trained to predict the concentration of CO, CO2, H2 and DME in the product gas
based on the composition of the feed gas (yCO,in, yCO2,in and yH2,in), the total gas flow V̇in
and the temperature (Figure 3). In this configuration, the ANN replaces both the reactor
and the reaction kinetic model. The model was trained using the same data used for the
parameter estimation of the lumped kinetic model (Table 2) and, hence, it has the same
validity range.

Figure 3. Representation of the data-based model. Adapted from N. Delgado Otalvaro et al. [51].

The data division and training strategy used for the data-based model is also relevant
to this work [51]. The ANN of the data-based model (ANN-DBM) and the one of the hybrid
model (ANN-HM) are predictors of different quantities and are trained using different data
structures (Section 3.3). However, the data division and training methodology presented in
our previous work [51] is automatic and adaptable to multidimensional data sets of different
sizes and structures, and thus used in this work for the design of the ANN-HM. As depicted
in Figure 4, the data division is conducted in two stages. In Stage 1, the data samples are
divided into two subsets, one for the design and training of the networks (Design Data),
and one for the posterior network selection based on separate data (Test Data A). In Stage
2, the design data are again divided into two subsets, the Train Data subset used in the
backpropagation framework [67] to determine the network’s parameters (weights and
biases), and the Test Data B subset used in the framework of Bayesian regularization [68] to
test the trained networks without a validation subset. The training is conducted iteratively
under variation of the start parameter values (label (1)) to avoid local optimality, and of the
data division of the design data (label (2)). The Test Data B subset is not used directly to
determine the network’s parameters, however, since the data in this subset are used for
model selection, it introduces a certain bias in the model. To guarantee that the network
with the best generalization, i.e., with the best performance on independent data samples,
is chosen, Test Data A are used for the final network selection.
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Figure 4. Data division scheme and training strategy. Taken from N. Delgado Otalvaro et al. [51].

3.3. Hybrid Model

As depicted in Figure 2, the hybrid model consists of two parts: a reactor model and an
ANN. The reactor model is the same that is used in the lumped model (Equations (4) and (5)).
These are generally valid and constitute the “knowledge module” of the hybrid model. The
ANN embedded within the framework of the ordinary differential equations, is used for
the calculation of the reaction rates (rj), and replaces the reaction kinetic model. Clearly, the
ANN of the data-based model is not suitable for the calculation of the rates, since this ANN
is trained to predict the product gas composition. In the following sections, the design of
the ANN as a predictor of the rates for the hybrid model (ANN-HM) is described.

3.3.1. Architecture

Comparable to the architecture of the ANN-DBM, the ANN-HM is also shallow (one
single hidden layer with a finite number of hidden neurons) and feedforward (unidirec-
tional information flow from input to output), as depicted in Figure 5. The new ANN-HM
is trained to replace the reaction kinetic model, i.e., to predict the reaction rates along the
axial coordinate z. Hence, the target vector y contains three elements, one representing the
rate of each reaction (Equations (6)–(8)), as follows,

y = [r1, r2, r3]|z. (16)

The rates are calculated as a function of the temperature and the mole fractions of each
species in the system. The input vector is thus defined by

x =
[
yCO, yCO2

, yH2
, yH2O, yMeOH, yDME, yAr, yN2

, T
]
|z. (17)

The elements in Equations (16) and (17) correspond to the values at different positions
of the axial coordinate z. Since all experiments were conducted under isothermal conditions,
the temperature is constant along the reactor length Lbed and Equation (18) applies.

T|z = T, ∀ z ∈ [0, Lbed]. (18)

Other process variables that are considered to be constant in the axial domain and over
all data points, such as the catalyst distribution and pressure, are not included explicitly in
the model. Furthermore, the proposed structure is one of innumerable possibilities for the
design of the ANN-HM, and additional input variables can be included in the network to
consider further phenomena if the respective data is available. For example, including the
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time on stream (ToS) in the input vector and data samples measured at different ToS during
the ANN training would enable to consider the effect of activity loss on the reactions rates.

While the number of input and output neurons is constrained by the input and output
variables (Equations (16) and (17)), the number of neurons in the hidden layer has to be
determined empirically. For the selection of an appropriate number of hidden neurons
(HN), architectures with up to 30 HN were tested. The best ANN was selected based on the
prediction accuracy on “unseen” data, using a mean relative error of 5% over all samples in
Test Data A (Figure 4).

Figure 5. Schematic representation of ANN’s architecture for the hybrid model (ANN-HM).

The remaining network’s characteristics are chosen to be the same as in the data-
based model in order to ensure comparability of the models. Hence, the logarithmic
sigmoid and the positive linear functions were used as the activation function in the
hidden and output neurons, respectively. The sigmoid function serves to map the known
nonlinearities in the system. Bayesian regularization was chosen as the training algorithm.
This method proposed by McKay [68] aims to avoid overfitting by training only the number
of parameters necessary to minimize the objective function, instead of all parameters
available. Thus, the model sensibility to the network architecture is reduced and overfitting
can be avoided.

3.3.2. Training Data

For a comparative study of the models, possible biases must be excluded to ensure
that the prediction discrepancies are caused only by the structural differences between
the model types. For the comparison of the lumped and the data-based model, this was
achieved by training/parametrizing both models with the same experimental data. In the
case of the hybrid model, the ANNs act as a predictor for the reaction rates, which are
not metrologically accessible from integral experiments where the measurable variable
is the composition of the product gas (yi,out). Therefore, to generate training data for the
ANN-HM, simulations are performed with the lumped model under the conditions of the
experiments to which the lumped and data-based models were fitted (Table 2). The axial
domain is discretized as shown in Figure 6, using different mesh refinements with 5, 10, 15,
50 and 100 uniformly distributed elements, and the reaction rates at the nodal points are
used for training.
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Figure 6. Schematic representation of the axial domain discretization, exemplary for 10 uniformly
distributed elements.

3.4. Experimental Equipment and Procedures

New experiments were conducted with the same laboratory setup used for the mea-
surement of the kinetic data for model development. These experiments were performed
to validate the simulation results obtained during extrapolation analysis in Section 4.3. The
reactor used for the experiments is a plug flow tube reactor made of stainless steel. It has a
length of 460 mm and an internal diameter of 12 mm. For heating purposes, the reactor
outer wall is enclosed by four brass jaws with heating cartridges (Horst GmbH, Lorsch,
Germany). The pressure of the reactor is regulated manually with a mechanical pressure
regulator (Emerson Automation Solutions, Langenfeld, Germany) and mass flow controller
(Bronkhorst High-Tech B.V., AK Ruurlo, The Netherlands) are used to regulate the gas flow
into the reactor. A Fourier-transform infrared spectrometer (FTIR, Gasmet Technologies
GmbH, Germany) and a gas chromatograph (GC, Agilent Technologies Deutschland GmbH,
Waldbronn, Germany) were used to quantitatively analyze the feed and product gases.
Further details on the reactor setup and analytics are described in previous works [15,17].

The syngas used for the experiments consisted of the feed gases hydrogen (H2,
99.9999%), carbon monoxide (CO, 99.97%), a mixture of carbon dioxide and nitrogen
(CO2/N2, 20:80 ± 1.0%), as well as nitrogen (N2, 99.9999%). The gases were purchased
by Air Liquide Deutschland GmbH., Ludwigshafen, Germany A 1:1 mechanical mixture
of the commercial catalysts CuO/ZnO/Al2O3 (CZA) and γ-Al2O3 (Alfa Aesar, Kandel,
Germany) was used. The size distribution of the catalyst particles lay between 250 µm and
500 µm. Silicone carbide (SiC, Hausen Mineraliengroßhandel GmbH, Germany) with the
same particle size distribution was mechanically mixed with the commercial catalysts in
order to avoid the formation of hot spots in the catalytic bed.

Before starting the experimental measurements, the catalyst was reduced using 5% H2
in N2 at atmospheric pressure and temperatures between 363 K and 513 K. After that, the
catalysts were conditioned and the measured species concentrations were monitored based
on a reference experimental point to check for any loss of activity. After a stable catalytic
activity was achieved, any deactivation of the catalysts could be ruled out. Additional
information on the catalyst conditioning and deactivation can be found in the ESI.

4. Hybrid Model Results

In this chapter, the results of the ANN-HM training are presented first, followed
by the evaluation of the models performance and interpolation ability. Subsequently, a
comparative analysis of the predictions of the three different model types is conducted and
complemented with the experimental validation of simulation results.

4.1. ANN-HM Training Results

In the absence of an established systematic approach, determining the appropriate
number of hidden neurons (HNs) is one of the major challenges in modeling with ANNs.
If the number of HN is too low, the forecasting ability of the model is limited, and the
input-output relationships in the data might not be represented accurately. If the number
of HN is too high, overfitting might occur. In this case, the model can learn the data
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noise or “memorize” the training data, and the error on the test data, which is not used
during training, typically begins to rise [31,47]. In Figure 7, two error measures, namely,
the mean squared error (Figure 7a) and the mean relative error (Figure 7b) are shown as a
function of the number of HNs. It is observed that as the number of HNs increases, the
prediction accuracy also increases, which can be attributed to the increasing number of
parameters and model complexity. Additionally, in the evaluated range with up to 30 HNs,
the error on the test data set also decreased with increasing complexity (Figure 7b), which
indicates that overfitting was suppressed effectively. Another observation from this figure
is that the error on the training and test data sets is of the same order of magnitude, which
is also an indication of the successful avoidance of overfitting. We attribute this to the
training algorithm based on Bayesian regularization, which has proven to be effective for
this purpose [51,68–70].
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Figure 7. Training results for different architectures of the ANN-HM. (a) Mean squared error (MSE)
and training time (b) mean relative error (mRE) on training and testing data sets.

Approaches for network selection include empirical correlations [71–73] or graphical
methods. One approach is the elbow method, where a loss function, e.g., the mean squared
error (MSE) between targets and model outputs is plotted against the number of hidden
neurons, and the optimal network is determined based on the inflection point (elbow)
of the curve [74]. According to this theory, the optimal number of HN is approx. 4 or 5
(see Figure 7a). On the other hand, the mean relative error of prediction (depicted in
Figure 7b) shows that 5 HNs do not provide enough model complexity to achieve the
targeted prediction accuracy. A mRE ≤ 5% is achieved with networks with more than
25 HNs. Based on this and, most importantly, on the model performance regarding
extrapolation (further discussion in Section 4.3) the ANN with 26 HN was chosen for
the further analysis. A schematic representation of the resulting network as well as the
model-specific parameters are provided in the Supplementary Material.

The time required to train 10,000 ANNs (with 100 schemes for the division of design
data and 100 set of start parameter values as described in Section 3.2) is also plotted in
Figure 7a. Overall, the training time increases with the number of parameters. However,
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even at the highest number of parameters tested (with HN = 30), the training time remained
bellow 7 min. Considering that the training of the data-based model and the parameter
estimation for the lumped kinetic model required approximately 7.9 min and 3.5 h, respec-
tively [51], the computational burden can be assessed as remarkably low, as expected from
related studies [32,62,64].

4.2. Hybrid Model Performance and Interpolation Ability

After integration of the selected ANN-HM into the differential equation framework,
the predictions of the hybrid model can be evaluated in comparison with the experimental
values and the predictions of the other models. First, the successful implementation of
the hybrid model is validated by comparison with experimental data. The mean relative
error between the experiments and the predictions of the lumped and the hybrid model
are shown in Table 3. The high similarity between the deviations of both models from
experimental data is explained by the fact the ANN-HM was trained with reaction rates
calculated with the lumped model, and shows the high level of accuracy obtained with the
hybrid approach. Similarly to the computational burden, the accuracy of hybrid models
has been previously investigated in related studies [62,64,75] which show, in agreement
with our results, the remarkable performance of this model type.

Table 3. Mean relative errors (mRE) between the experiments and the predictions of the lumped and
hybrid model.

Model mREyH2,out mREyCO,out mREyCO2,out mREyDME,out

Lumped 1.49% 5.49% 6.02% 28.89%
Hybrid 1.49% 5.45% 6.08% 28.36%

The interpolation ability of the hybrid model was also evaluated, and no difficulties
were observed. This is shown for an exemplary feed gas composition in Figure 8 (further
examples are given in the Supplementary Material). In this figure, the mole fractions of H2,
CO, CO2 and DME predicted with the hybrid model within the temperature and total gas
flow ranges are shown. At increasing temperatures, the reaction rates also increase, leading
to higher product concentration (DME and CO2) and lower concentration of the educts CO
and H2 at the reactor outlet. Similarly, a decreasing total gas flow leads to longer residence
times, which affects the outlet concentrations in the same way as increasing temperatures.
These expected trends and also smooth gradients are observed over the response surfaces
for all species. A further illustration of the interpolation ability of the hybrid model can be
observed in Figures 11 and 12 between the dashed lines that represent the models’ range
of validity. In this range, the predictions of the hybrid and the lumped models are almost
identical and the predictions of the data-based model are comparable to those of the other
two models, but show a slightly better agreement with the experiments.

Another relevant feature between the different model types is the convergence time. To
provide a quantitative comparison, simulations were conducted with the three models for
all the operating points in the data base (on Windows 10 Pro (64-bit) operating system with
i5 processor and 8GB RAM). The time required by each model to simulate the 180 operating
points was:

• Data-Based: 0.0798 s;
• Hybrid: 4.2432 s;
• Lumped: 16.4095 s.

The superiority of the data-based model regarding the convergence time is obvious,
and although the hybrid model is slower than the data-based one, the former is still
approximately four times faster than the lumped model.

The convergence time is of special interest when the models are used for optimization
purposes and large number of simulations have to be conducted to screen the state space.
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A further characteristic relevant for optimization is the extrapolation ability of the models,
which is evaluated in the following section.
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Figure 8. Surface response for the hybrid model predictions of the mole fractions of H2, CO, CO2,
and DME within the validity range of the temperature and total gas flow. The black points represent
the conditions at which the data for model development were measured. Feed composition: 42.33%
H2, 16.14% CO, 0.82% CO2. Pressure 50 bar. CZA-to-γ-Al2O3-ratio µ = 1. ANN-HM with 26 HNs.

4.3. Models’ Extrapolation Ability

The following sections are dedicated to the evaluation of the models’ predictive ability
outside the range of validity, i.e., the extrapolation ability. For this purpose, two types of
extrapolation are evaluated—dimension and range extrapolation. Dimension extrapolation
refers to the extrapolation of a variable that was kept constant during the experiments for
model development. Range extrapolation, on the other hand, refers to the evaluation of a
variable outside the range screened during these experiments [76]. The pressure and the
catalyst bed composition are used here as exemplary variables to evaluate the dimension
extrapolation (Section 4.3.1). Range extrapolation is analyzed based on the temperature in
Section 4.3.2. Experimental values used for validation of the simulations at extrapolated
conditions are reported in the Supplementary Material.

4.3.1. Dimension Extrapolation

Since all the experimental data used for the parametrization of the hybrid model were
acquired at constant pressure and catalyst bed composition (p = 50 bar and CZA-to-γ-
Al2O3 mass ratio µ = 1), these variables are suitable for the evaluation of the hybrid model
regarding dimension extrapolation.

The pressure was evaluated in a range between 40 and 60 bar by means of experiments
and simulations. The data-based model was not used for this analysis since the structure
of the ANN-DBM, which only takes the concentration of the syngas, the temperature and
the total gas flow into account, does not allow simulations at other pressure levels (refer to
ANN structure, Figure 3).

At 50 bar, the deviation between the experiments for model development and for
validation show a very good agreement, with a maximal deviation of 4.5%. Furthermore,
the validation experiments show the expected behavior, i.e., with increasing pressure,
the product gas concentration of the educts decreases and that of the products increases
(Figure 9). Due to the volume contraction of the methanol synthesis from CO2 (Equation (6)),
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the rate of this reaction is favored by high pressures. Hence, from the thermodynamic
perspective, the pressure has always a positive effect on the overall process performance.
This effect is reflected by the lumped model for all species in the entirety of the evaluated
pressure range. The average deviations between the experiments and the predictions of the
lumped model lie by 2.1% for H2, 1.5% for CO, 6.9% for CO2 and 12.6% for DME within
the prediction accuracy of the model, confirming the high fidelity of the semi-mechanistic
model approach. The concentration profiles obtained with the hybrid model, on the other
hand, are nearly constant over all evaluated pressures at the value predicted for 50 bar.
Similar to the ANN-DBM, the structure of the ANN-HM does not allow the variation of
the pressure (Figure 5) since all the training data was measured at only one pressure level.
Thus, the pressure dependency of the reaction rates is not considered by the hybrid model
and dimension extrapolation regarding this variable is not possible.
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Figure 9. Experimental validation of dimensional extrapolation of the pressure. Feed composition:
42.3% H2, 16.1% CO, 0.82% CO2. Total gas flow 0.4 slpm. Temperature 533 K. CZA-to-γ-Al2O3-ratio
µ = 1. ANN-HM with 26 HNs.

The catalyst bed composition µ is also suitable for testing the dimension extrapolation
of the hybrid model, since all the experiments for model development were measured
with µ = 1. Unlike the pressure, µ does not have a direct influence on the reaction rates,
and hence extrapolating this variable does not imply the extrapolation of the ANN-HM.
Therefore, better extrapolation results are expected. For this analysis, µ was varied from
0 to 5 and simulations with the lumped and hybrid model were conducted. Representative
results are shown in Figure 10.

With the lumped model, an increasing conversion of COx and yield of DME with
increasing µ is predicted, and the values at the highest µ display a high proximity to
the values at equilibrium. This behavior is attributed to the synergy of the direct synthe-
sis, where the equilibrium of the methanol synthesis is shifted towards the products by
methanol consumption through the dehydration to DME. With an increasing µ, methanol
is produced faster, which boosts the methanol dehydration reaction and overcompensates
for the decreased amount of dehydration catalyst [15].

The conversion and yield predicted by the selected hybrid model (ANN-HM with
26 HN) show a remarkably good agreement with the predictions of the lumped kinetic
model over the entirety of the extrapolated range. The predictions of the lumped and the
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hybrid model overlap from µ up to 1, and proceed with a very similar trend. Although the
deviation between the models’ predictions increases as the distance from the training point
µ = 1 becomes larger, the predictions are thermodynamic consistent, and very similar over
the whole evaluated range (e.g., at µ = 5, XCOx = 58.7 and 55% with the lumped and the
hybrid model, respectively).

The predictions of hybrid models with ANN-HM with 5 and 28 HNs are shown in
Figure 10a,c to illustrate the importance of considering the model’s extrapolation ability
during the network selection. Both models displayed a relatively good performance on
the training data in Section 4.1. This is also evident in Figure 10a,c, where the conversion
and yield profiles predicted by all hybrid models overlap near the training point. However,
the hybrid models with 5 and 28 HN clearly lack the ability to extrapolate. The predic-
tions of these models do not follow the expected trend, nor do they respect the laws of
thermodynamics. This illustrates one of the major drawbacks of data-based and/or hybrid
approaches. Both models delivered a good performance on the training data and exhib-
ited a good interpolation ability. However, it is not possible to predict the quality of the
forecasts beyond the range where these models were trained, since the predictions at extrap-
olated conditions (especially regarding dimension extrapolation) are only dependent on the
mathematical structure of the network, without an explainable phenomenological reason.

As mentioned in Section 3.3.2, different mesh refinements of the axial domain were
tested during the generation of training data. Figure 10b,d show the COx conversion and
DME yield at mesh refinements with 5, 10 and 15 axially distributed elements. Evidently, the
mesh refinement with five elements does not provide enough data for training, leading to
poor extrapolation capability of the hybrid model. With 15 elements, on the other hand, no
relevant improvement of the network generalization is achieved and the predictions almost
entirely overlap with those obtained with 10 axial elements. Similarly, no improvement
was achieved with mesh refinements with 50 and 100 elements, however, the training time
increased noticeably with the large number of data samples.

In this section, it was shown that the data-based models (ANN-DBM and ANN-HM)
lack in extrapolation ability, while the hybrid model could be extrapolated successfully in a
large range when the extrapolation variable was not in the data-based module of the hybrid
structure and the extrapolation ability was taken into account during model development.
This requires knowledge of the system and/or of the expected trends, and is only relevant
if extrapolation is relevant for the aimed application of the hybrid model.

4.3.2. Range Extrapolation

Range extrapolation refers to the evaluation of a variable that was varied during
model development, outside the range in which that variation occurred [76]. For the
evaluation of this extrapolation case, experiments and simulations with the three models
were conducted at temperatures between 453 and 573 K at two different total gas flow
rates. Initially, the results at a total gas flow of 0.2 slpm are shown and discussed, followed
by results at 0.6 slpm. The hybrid model with ANN-HM with 26 HNs was used here,
as it was the only model that delivered good extrapolation ability for the catalyst bed
composition. Equivalent results with other architectures of the ANN-HM are given in the
Supplementary Material.

Figure 11 shows the predictions of the three models as well as the experiments used
for model development (conducted in a previous work [15]) and validation for a total
gas flow of 0.2 slpm. Additionally, the molar fractions at equilibrium calculated with the
RGbibbs reactor in Aspen Plus are displayed, along with the models’ validity range which
is enclosed by the dashed lines.
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Figure 10. Dimension extrapolation of the catalyst bed composition.The plots show (a) the COx

conversion calculated with the lumped model and with the hybrid models consisting of various HN,
(b) the COx conversion at various mesh refinements, (c) the DME yield calculated with the lumped
model and hybrid models consisting of various HN as well as (d) the DME yield at different mesh
refinements. The results are plotted against µ, ranging from 0 to 5. Feed composition: 48.42% H2,
16.07% CO, 2.81% CO2. Total gas flow 0.2 slpm. Temperature 533 K. Pressure 50 bar.
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Figure 11. Evaluation of range extrapolation by comparison of models’ predictions and experimental
results beyond the models’ validity range for temperature. Feed composition: 42.3% H2, 16.1% CO,
0.82% CO2. Total gas flow 0.2 slpm. Pressure 50 bar. CZA-to-γ-Al2O3-ratio µ = 1. ANN-HM with
26 HNs.
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The experiments for experimental validation were conducted in the same reactor in
which the kinetic measurements for model development were performed. Additionally,
the same catalyst reduction and conditioning procedure were followed. As a result, the
experiments from our previous work [15] could be verified, and the experiments in the
temperature range between 493 and 533 K overlap with a low relative deviation of max-
imal 6.6% (max. mRE between experiments for model development and experiments
for validation).

Bellow 493 K, the predictions of the hybrid and the lumped models are virtually
identical. The predictions of the data-based model slightly differ, however, the correct and
expected tendency is observable. At low temperatures, the rate of the reactions is low and
almost no conversion takes place. Hence, the concentration of each species should be equal
to the concentration in the feed gas, i.e., 42.3% H2, 16.1% CO, 0.82% CO2 and 0% DME.
The hybrid model predicts this behavior correctly and the predictions do not deviate from
those of the lumped model, although the model was not explicitly trained in this range.
This can be explained by the fact that the phenomena that play a significant role in this
temperature range are the same as in the range where the model was trained. The influence
of the thermodynamic equilibrium is low compared to that of the reaction kinetics as it
can be inferred from the distance to the values in equilibrium. Similarly, a priori criteria
confirmed that no mass or heat transport limitations take place (refer to ESI). Hence, it can
be concluded that, although the rate of reactions is low, the reaction kinetics control the
process performance also in this temperature range and the performance can be described
correctly by the hybrid model which was trained to predict this phenomenon. In addition,
the hybrid model yields physically reasonable results and the predicted concentrations
remain above 0 for all conditions, unlike the predictions of the data-based model, which
also assume negative values.

Above 533 K, the predictions of the three models diverge. At increasing temperature
levels, the influence of the thermodynamic equilibrium also increases, as the concentrations
become closer to those at equilibrium. The rates of reversible exothermic reactions increase
initially due to the positive influence of the temperature, but decrease at the proximity of the
thermodynamic equilibrium when the back-reaction is favored. At the temperature at which
thermodynamics prevails over reaction kinetics, an inflection point occurs, as can be clearly
observed in the predictions of the lumped model (gray lines). The concentration of the
educts, in this case CO and H2, then rises and that of the products DME and CO2 decreases
as the reaction rates decrease. This can be predicted by the lumped model successfully
due to the Hougen–Watson formulation of the rate expressions (Equations (9)–(11)), which
accounts for the effect of the proximity to the thermodynamic equilibrium on the rates by
the means of the equilibrium constants (K f ,j). The predictions of the data-based model
do not show any inflection point and the concentration profiles follow the same trend
as in the range of validity. This indicates that the data-based model only reflects the
effect of the temperature on the reaction rate, but not the effect of the proximity to the
thermodynamic equilibrium. In this temperature range, the hybrid model predictions lie
between the predictions of the data-based and the lumped model in all cases. The molar
fraction profiles flatten with increasing temperature, but a clear inflection point is not
evident in the evaluated range. Unlike the lumped model, the hybrid approach attains
knowledge about phenomena affecting the reaction rates only from data. Hence, since
most operational points in the training data set were measured at conditions at which
reaction kinetics prevail and thermodynamic equilibrium has a negligible effect, the hybrid
model does not have enough information about the effects the equilibrium can have on the
rates and on the process performance. The measured values at temperatures above 533 K
showed that the lumped model exhibits the highest accuracy, especially in terms of the
shape of the curve with a clearly visible inflection point.

Equivalent results measured or simulated are shown in Figure 12 for a total gas flow
of 0.6 slpm. The residence time for this gas low rate is shorter than at 0.2 slpm, and lower
conversions are attained. Therefore, the distance to thermodynamic equilibrium is larger



Catalysts 2022, 12, 347 19 of 24

which, according to the discussion above, leads to the observed higher prediction accuracy.
At this gas flow rate, the simulations of the three models are very similar in the whole
temperature range. A slight difference is noticed at temperatures above 553 K, where the
predictions of the data-based model diverge. However, the predictions of the lumped and
the hybrid model remain superimposed with a maximal relative deviation of 3% (computed
for CO2 at 573 K). This confirms that the reason for the model discrepancy is the influence
of the thermodynamic equilibrium which becomes more relevant at higher temperatures,
and indicates that the extrapolation limits of data-based and hybrid models do not strictly
depend on the evaluated range of conditions, but more on the effects considered by the
underlying models.
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Figure 12. Evaluation of range extrapolation by comparison of models’ predictions and experimental
results beyond the models’ validity range for temperature. Feed composition: 42.3% H2, 16.1% CO,
0.82% CO2. Total gas flow 0.6 slpm. Pressure 50 bar. CZA-to-γ-Al2O3-ratio µ = 1. ANN-HM with
26 HNs. Predictions of the lumped and hybrid model overlap over the entire temperature range.

5. Summary and Conclusions

The first part of this work provides a timely overview of the models available for
the direct DME synthesis. It has been shown that most of the available models for the
direct DME synthesis are semi-mechanistic, i.e., based on mechanistic assumptions. Since
these models are only valid in a limited operational range, special attention was paid to
the validity of each of the semi-mechanistic models, which were compared graphically to
enable a fast overview of the investigated ranges in each work. Additionally, works where
data-based models were used for the direct DME synthesis have been summarized. No
hybrid model could be found in the open literature for this system.

The second part of this paper deals with the implementation and evaluation of a hybrid
model for the direct DME synthesis, aiming to identify and evaluate specific advantages
and disadvantages of hybrid modeling approaches for this system. The developed hybrid
model displayed a high level of accuracy and good interpolation ability over the entirety of
the validity range. Additionally, it exhibited a low computational burden, e.g., the training
of this model was approximately 30 times faster than the parametrization of a lumped
model, and simulations compiled almost 4 times faster on the same CPU. These results are
broadly consistent with studies in the open literature and confirmed expected outcomes
regarding accuracy and computational effort.
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As one of the main concerns about hybrid models, the extrapolation ability has been
put to test and the predictions of a semi-mechanistic and a data-based model, as well as
experiments, have been used for the evaluation of the hybrid model performance. Based
on exemplary variables (pressure, catalyst bed composition and temperature), it has been
shown that dimension extrapolation, i.e., extrapolation of a variable that was kept constant
during model development, was not possible when this variable directly affects the data-
based module of the hybrid model. For example, simulations and experiments show that
the effect of the pressure on the reaction rates could not be considered by the ANN, which
was trained at one pressure level only. In contrast, a good extrapolation ability in a broad
range was achieved when the extrapolated variable was in the knowledge-module of the
hybrid model. As an example, it is shown that the extrapolation of the CZA-to-γ-Al2O3
weight ratio was possible and delivered qualitatively accurate results in the broad range
between ratios of zero to five, although all experiments used for model development were
conducted with a ratio of one. A suitable ANN architecture proved to be essential for the
accuracy of predictions at extrapolated conditions. Range extrapolation, i.e., the evaluation
of a variable outside the range where it was screened during model development, was
possible, although in a limited range. It could be concluded that the limit for extrapolation is
defined by the phenomena the underlying models can map, which depends strongly on the
network architecture, instead of the range defined by conditions evaluated experimentally
during model development.

Since there is currently no theoretical framework for network selection, and broadly
used rules of thumbs failed to deliver a suitable network in our study, the best network was
chosen manually based on simulations results. Clearly, this represents a major drawback
when a large number of network architectures must be tested, which limits the transfer-
ability of the presented results. Based on the gained insights, we conclude that the hybrid
modeling approach could be best applied when large data sets in wide operational win-
dows are available, and the input–output relationships between the data are not yet fully
understood. This way, the advantages of the hybrid model (i.e., high accuracy and low
computation effort) could be exploited to fill knowledge gaps, while avoiding extrapolation.
Specifically for direct DME synthesis, one application with high potential for immediate
use is to expand the model scope using the numerous lumped kinetic models available in
the literature. These are valid in different operating windows and can be used to generate
reaction kinetics data, analogous to the procedure followed in this work. After the training
of ANNs with these data and integration of these ANNs in the hybrid model structure, the
expected outcome is a model that enables cross-evaluation of multiple process variables
such as different catalysts, reactor types and reaction conditions throughout nearly the
entire relevant operating window.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.339
0/catal12030347/s1, Figure S1: Schematic representation of the ANN-HM. Figure S2: Surface response
for the hybrid model predictions of the mole fractions of H2, CO, CO2 and DME within the validity
range of the temperature and total gas flow. Feed composition: 48.0% H2, 16.11% CO, 2.88% CO2.
Pressure 50 bar. CZA-to-γ-Al2O2-ratio µ = 1. ANN-HM with 26 HNs. Figure S3: Surface response
for the hybrid model predictions of the mole fractions of H2, CO, CO2 and DME within the validity
range of the temperature and total gas flow. Feed composition: 13.05% H2, 4.10% CO, 0.86% CO2.
Pressure 50 bar. CZA-to-γ-Al2O2-ratio µ = 1. ANN-HM with 26 HNs. Figure S4: Range extrapolation
of the temperature. Nominal feed composition: 42.3% H2, 16.1% CO, 0.82% CO2. Total gas flow
0.2 slpm. Pressure 50 bar. CZA-to-γ-Al2O3-ratio µ = 1. ANN-HM with 5 HNs. Figure S5: Range
extrapolation of the temperature. Nominal feed composition: 42.3% H2, 16.1% CO, 0.82% CO2. Total
gas flow 0.6 slpm. Pressure 50 bar. CZA-to-γ-Al2O3-ratio µ = 1. ANN-HM with 5 HNs. Figure S6:
Range extrapolation of the temperature. Nominal feed composition: 42.3% H2, 16.1% CO, 0.82%
CO2. Total gas flow 0.2 slpm. Pressure 50 bar. CZA-to-γ-Al2O3-ratio µ = 1. ANN-HM with 28 HNs.
Figure S7: Range extrapolation of the temperature. Nominal feed composition: 42.3% H2, 16.1%
CO, 0.82% CO2. Total gas flow 0.6 slpm. Pressure 50 bar. CZA-to-γ-Al2O3-ratio µ = 1. ANN-HM
with 28 HNs. Figure S8: COx-conversion (XCOx) as a function of the Time-On-Stream (ToS) for a

https://www.mdpi.com/article/10.3390/catal12030347/s1
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reference operating point measured at 513 K, 50 bar and 7599.5 h−1 and a feed of 38.2% H2, 15.2% CO,
1.0% CO2, 45.7% N2. Table S1: Model specific parameters of the ANN-HM with 5 HNs. Connection
weights of the input and hidden layer, biases of the hidden layer. Table S2: Model specific parameters
of the ANN-HM with 5 HNs. Connection weights of the hidden and output layer, biases of the output
layer. Table S3: Model specific parameters of the chosen ANN-HM with 26 HNs. Connection weights
of the input and hidden layer, biases of the hidden layer. Table S4: Model specific parameters of the
chosen ANN-HM with 26 HNs. Connection weights of the hidden and output layer, biases of the
output layer. Table S5: Model specific parameters of the ANN-HM with 28 HNs. Connection weights
of the input and hidden layer, biases of the hidden layer. Table S6: Model specific parameters of the
ANN-HM with 28 HNs. Connection weights of the hidden and output layer, biases of the output
layer. Table S7: Calculated a priori criteria for determination of transport limitations (Reference [77]
are cited in Table S7). Table S8: Experimental values measured for validation of simulation results at
extrapolated conditions. The catalyst bed consisted of 1.007 g CZA, 0.9996 g γ-Al2O3, 9.98 g SiC, and
it was 7.8 cm long.
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1. Model specific parameters of the ANN-HM

The model specific parameters of the ANN-HMs discussed in the manuscript (ANN-HM with 5, 26 and 28 HNs) are
given in this section. Especifically, these are the connection weights between the input and the hidden layer (Wi,h) and
between the hidden and the output layer (Wh,o), as well as the biases of the hidden and outputs neurons (bh and bo) as
shown in Figure S1.

Figure S1. Schematic representation of the ANN-HM.

Table 1: Model specific parameters of the ANN-HM with 5 HNs. Connection weights of the input and hidden layer,
biases of the hidden layer.

Wi,h bh

-0.60114 0.14025 -0.63213 0.80736 0.08968 -0.04125 -0.27108 0.00641 -0.43090 3.10519
-1.14673 0.65526 1.31330 1.05803 0.01463 -0.00635 -0.26234 0.05774 -0.44970 3.95600
-3.02931 -0.02462 -3.53521 0.79813 0.04093 19.72959 -3.39553 -0.23304 -1.22452 20.09301
3.98021 -5.89989 0.18136 -1.04395 -0.77207 -0.14084 0.37947 0.21915 0.88733 -7.69831
2.60925 0.85926 2.62343 0.47530 -1.60951 -18.55797 3.14491 0.16885 1.05177 -19.56385

Table 2: Model specific parameters of the ANN-HM with 5 HNs. Connection weights of the hidden and output layer,
biases of the output layer.

W−1
h,o bo

-14.986096 -16.498396 -14.484296 2.8317
4.86557018 5.96789325 4.68863279 10.1015
6.23236401 -0.5675959 -0.8749624 10.0811
-11.948762 -13.012473 -11.014278
8.14194045 0.55032097 -1.1746633
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Table 3: Model specific parameters of the chosen ANN-HM with 26 HNs. Connection weights of the input and hidden
layer, biases of the hidden layer.

Wi,h bh

0.26106 0.12391 0.82471 0.33482 -0.72017 -0.16497 -0.19633 -0.32429 0.86960 -0.36237
0.19960 0.28507 -1.86320 0.22985 -0.67681 -1.02954 0.16398 0.11994 0.36954 -1.43625
-1.16703 -1.23930 1.94422 0.56587 0.49974 0.16683 1.36101 0.10762 0.45637 -1.66672
0.20960 0.84537 0.24244 0.16916 2.68825 -2.82029 0.66726 -0.00679 2.02909 -4.48702
0.09335 0.43959 -0.34136 0.30138 -0.16581 -0.58593 -0.26262 -0.07968 -1.58115 0.47128
0.00205 0.06033 -0.14307 -0.04459 0.11140 -0.40748 0.06257 -0.22526 0.28571 -0.02085
0.16260 0.45512 2.20344 -0.94117 -0.25011 -0.46153 0.34534 -0.03916 0.32684 -2.61076
-0.24824 -0.39428 0.83872 -0.18088 0.37006 -0.00575 0.06836 0.20577 -1.22799 1.04678
0.06642 0.20981 0.64012 0.33408 -0.77574 -1.37976 0.24136 -0.16015 0.97653 -1.36315
-0.22450 -0.46566 -0.82017 -0.21527 1.06934 0.04703 -0.35663 0.05209 -1.94161 3.53783
0.35660 0.70139 -0.16036 -0.35555 0.14775 0.37536 0.00984 0.08682 1.31660 -2.49721
-0.56388 -0.14535 0.24360 0.31073 -0.98601 -0.13431 0.77766 0.02603 0.25057 -1.83903
-0.79324 1.26824 1.96136 -1.87042 0.29754 0.27066 0.87333 0.10029 1.36528 -2.69636
0.85912 1.50609 -2.13724 -0.40449 -0.68632 -0.33117 -1.34989 -0.21578 -0.16249 2.31635
1.18093 0.13571 -2.43287 -0.26083 0.13894 -0.98120 -0.62123 -0.01411 0.16473 -0.56915
0.13604 0.99348 -0.45484 -0.78550 -0.55885 -1.27551 0.17066 0.31817 0.22216 -1.61553
0.21975 0.25746 -1.96152 0.22746 -0.90822 0.80587 -0.28249 -0.00652 -1.18703 0.06408
0.46520 0.10702 0.07642 0.22147 0.77300 0.61035 -0.50695 -0.01416 0.11848 0.16956
0.25148 0.94812 -0.01635 -0.31923 -0.37376 -0.26056 -0.16762 0.11647 -0.40989 -1.07456
0.65769 0.69521 -0.14171 -0.00214 0.16558 0.92229 -0.69206 -0.32748 -0.59464 -0.22123
0.47396 -0.10615 0.40137 0.06801 0.67045 0.12422 -0.72975 -0.20161 -1.00531 2.23222
0.27067 -0.45266 -1.49560 -0.23085 0.80500 -0.47034 0.42334 0.07572 0.62688 -2.28619
-0.30719 -0.34633 0.06663 1.04917 0.81328 0.10817 0.47108 -0.04857 1.04581 -1.57837
0.57060 0.64921 -1.08245 -0.15155 -0.39120 0.14038 -0.56275 -0.03471 -0.73006 0.16251
0.19670 -0.23625 -0.58807 0.57185 -0.11151 0.01358 -0.15972 0.04672 0.66813 0.32134
0.12129 -0.23764 -2.28032 1.35823 -0.28722 -0.20917 -0.11084 -0.00218 -0.25148 0.02584
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Table 4: Model specific parameters of the chosen ANN-HM with 26 HNs. Connection weights of the hidden and output
layer, biases of the output layer.

W−1
h,o bo

0.6009 -0.1806 0.2787 -0.2325
-1.5689 0.0367 1.3037 -0.8352
0.5055 1.0450 1.8062 -0.4410
-0.2549 4.9671 0.2776
-0.9679 0.4391 0.1689
-0.5245 -0.2991 -0.3791
1.4918 -0.1403 1.6442
-0.5030 -1.7649 -0.2364
-0.4736 -2.2558 -0.4178
-1.6924 2.0570 0.3809
2.9428 1.3525 0.0294
0.7372 0.6209 -1.2581
-2.6214 -1.4086 0.8564
0.2751 1.0030 2.0603
1.5861 2.0752 0.7404
2.0191 0.6807 -0.0775
0.3512 -1.8184 -0.0947
-0.0987 0.2139 1.2012
-2.3025 -1.8966 -1.4302
0.4858 0.0648 -0.4688
1.6234 0.2751 -0.5682
-1.1198 -2.5540 -2.5515
-1.5483 -1.0474 -1.0012
-1.1105 -1.1005 -0.8157
0.1349 -0.3539 -1.0865
1.1528 -0.0161 -0.9238
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Table 5: Model specific parameters of the ANN-HM with 28 HNs. Connection weights of the input and hidden layer,
biases of the hidden layer.

Wi,h bh

0.46664 0.28557 0.43946 -0.00902 -0.16684 0.54786 -0.43955 0.21328 -0.19793 -0.16975
0.60392 0.25781 -0.59811 -1.10325 -0.45429 0.44810 -0.66461 -0.11598 0.98309 1.48690
0.07021 -0.02014 0.00078 0.01422 0.72290 -0.30191 -0.02811 0.14087 0.04316 -0.13027
-0.65256 -0.60885 -0.01501 -0.47318 0.50558 -0.77336 0.62161 0.16996 0.63660 0.93549
-0.19340 0.37544 -1.33623 0.05289 -0.24590 0.51843 -0.46170 -0.06380 -1.95280 2.33584
-0.12152 -0.18302 -1.03475 0.82643 0.44755 0.75689 0.47722 -0.03124 1.65909 -2.46539
0.04288 0.29545 0.68057 -0.10564 0.35736 -0.67963 -0.00200 -0.39468 0.95627 -0.38664
-0.56356 0.67832 2.15088 -0.97097 2.05435 -0.92779 0.52143 0.00043 1.51639 -0.88890
-0.57398 -0.33225 -0.48717 0.55994 -0.00700 1.28148 0.26237 -0.00604 -0.04937 0.32635
0.48020 -0.09632 1.15148 0.49759 -0.08547 1.44197 -0.99544 -0.29592 -0.29415 2.49784
-0.49102 -0.47841 0.52580 -0.25073 0.55789 -0.56585 0.53654 0.08371 0.09385 -0.09893
-0.18325 -0.13461 0.47380 -0.18808 0.43415 -0.08744 0.13086 0.05678 0.17174 0.11998
-0.06853 0.28728 0.73074 -0.53532 0.24692 -0.38353 -0.01040 -0.14186 -0.69265 0.32885
-0.24823 -0.48929 0.60280 -0.27136 1.18187 -1.33482 -0.17447 -0.01340 -1.50596 3.43600
-0.75584 -0.31503 1.63727 0.08533 1.34722 -0.20588 0.42242 -0.18111 0.90560 0.94341
-1.28804 -0.83502 -1.31090 -0.65176 -0.91017 -1.24448 1.05639 0.28885 -0.59850 1.50718
-0.44566 -0.36471 1.78173 -0.59253 0.53608 0.07252 0.27134 -0.01676 0.84184 0.93740
0.73352 -0.90533 -1.51640 2.18375 0.16292 -1.12499 -0.88997 -0.03892 -1.02122 2.41060
1.49650 1.85872 -2.08273 -2.02300 0.28420 -0.19405 -2.46870 -0.23513 -0.77545 6.15865
-0.44727 -0.36909 -0.31667 -0.18004 -0.21224 1.43467 0.19270 -0.01945 0.35410 0.54217
-0.17363 -0.40172 0.07947 0.27894 -0.19348 -0.23665 0.17962 0.07693 0.10611 0.02526
-0.07722 0.60267 -1.06913 -0.95967 0.15029 -0.05226 0.62780 0.02814 0.57058 -3.35825
-0.86457 0.74219 3.77944 -1.28672 0.87443 -0.04660 0.54564 0.00464 0.77024 -0.37002
-0.57021 -0.43266 -1.12872 0.23752 -0.51371 -0.83880 0.80082 0.27356 0.13021 -1.04363
-0.22845 0.49498 1.06860 -0.88429 0.87760 0.09871 0.36785 -0.10285 1.83416 -1.25260
0.09510 -0.11401 0.15330 0.24541 0.33723 -0.14926 -0.07379 0.13185 -0.16622 0.02456
0.49600 0.60806 -1.44494 -0.91344 -0.63084 -0.42098 -0.15879 0.11993 0.01247 -0.91623
0.25459 -0.19486 -0.00958 0.53563 0.49777 -0.08896 -0.23045 -0.21662 -0.94394 0.13169
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Table 6: Model specific parameters of the ANN-HM with 28 HNs. Connection weights of the hidden and output layer,
biases of the output layer.

W−1
h,o bo

0.04726 -0.79667 0.43343 0.1063
-1.19233 -0.88727 0.03829 -0.6298
-0.69891 -0.61537 -0.24272 -0.4188
1.02313 1.75151 0.62214
-1.01982 -1.59516 -0.84936
-1.76369 -1.66547 -1.24119
-0.25505 -1.44239 0.32571
-1.59085 2.50186 0.09647
-0.49080 0.93114 1.42095
1.28131 0.54790 -0.37088
0.28152 -1.14893 -0.84685
0.13544 -0.88629 0.25524
-1.00940 -0.10411 1.01269
-3.10077 1.21421 0.07743
1.35216 1.63563 -0.66500
-1.00380 -1.34031 0.03127
-0.13046 1.07453 1.51489
2.51110 0.87342 -2.01953
0.93582 1.24484 2.61213
-0.03322 -1.04785 -1.38058
0.18938 -0.40356 -0.61202
0.13238 -1.13961 -2.50424
0.15077 -3.01093 -0.01719
-0.51431 -1.25468 -0.09573
1.28006 -0.24813 -0.14723
-0.35293 -0.46369 -0.09210
2.32963 1.98265 -0.13629
-0.50319 -0.76767 -0.46772
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2. Supplementary figures

Figure S2. Surface response for the hybrid model predictions of the mole fractions of H2, CO, CO2 and DME within the validity range
of the temperature and total gas flow. Feed composition: 48.0 % H2, 16.11 % CO, 2.88 % CO2. Pressure 50 bar. CZA-to-γ-Al2O3-ratio
µ = 1. ANN-HM with 26 HNs.

Figure S3. Surface response for the hybrid model predictions of the mole fractions of H2, CO, CO2 and DME within the validity range
of the temperature and total gas flow. Feed composition: 13.05 % H2, 4.10 % CO, 0.86 % CO2. Pressure 50 bar. CZA-to-γ-Al2O3-ratio
µ = 1. ANN-HM with 26 HNs.
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Figure S4. Range extrapolation of the temperature. Nominal feed composition: 42.3 % H2, 16.1 % CO, 0.82 % CO2. Total gas flow 0.2
slpm. Pressure 50 bar. CZA-to-γ-Al2O3-ratio µ = 1. ANN-HM with 5 HNs.

Figure S5. Range extrapolation of the temperature. Nominal feed composition: 42.3 % H2, 16.1 % CO, 0.82 % CO2. Total gas flow 0.6
slpm. Pressure 50 bar. CZA-to-γ-Al2O3-ratio µ = 1. ANN-HM with 5 HNs.
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Figure S6. Range extrapolation of the temperature. Nominal feed composition: 42.3 % H2, 16.1 % CO, 0.82 % CO2. Total gas flow 0.2
slpm. Pressure 50 bar. CZA-to-γ-Al2O3-ratio µ = 1. ANN-HM with 28 HNs.

Figure S7. Range extrapolation of the temperature. Nominal feed composition: 42.3 % H2, 16.1 % CO, 0.82 % CO2. Total gas flow 0.6
slpm. Pressure 50 bar. CZA-to-γ-Al2O3-ratio µ = 1. ANN-HM with 28 HNs.
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3. A priori criteria for the determination of mass and heat transport limitations

A priori criteria were employed for ruling out mass and heat transport limitations. These criteria were calculated for
temperatures between 180-300 ◦C and total gas flows between 0.15-0.8 slpm.The values calculated for the worst case
scenarios are give in Table 7 for each reaction, and show that mass and heat transport limitations do not play a significant
role at the evaluated operating conditions.

Table 7: Calculated a priori criteria for determination of transport limitations.

Phenomenon Equation [1] Max. Calculated Value

rj,e f f |n|
a′k f cb

< 0.05
For reaction 1: 3.29 · 10−5

Outer mass transfer For reaction 2: 2.09 · 10−5

For reaction 3: 5.74 · 10−5

EA
RTb

∣∣∣−∆HR
hTb

∣∣∣ rj,e f f
a′ < 0.05

For reaction 1: 4.75 · 10−4

Outer heat transfer For reaction 2: 3.09 · 10−4

For reaction 3: 4.97 · 10−4

rj,e f f L2

De f f cs

(n+1)
2 < 0.15

For reaction 1: 4.62 · 10−4

Inner mass transfer For reaction 2: 2.93 · 10−4

For reaction 3: 8.06 · 10−4

EA
RTb

∣∣∣ −∆HR
λe f f ,pTb

∣∣∣rj,e f f L2 < 0.1
For reaction 1: 4.28 · 10−5

Inner heat transfer For reaction 2: 2.78 · 10−5

For reaction 3: 4.48 · 10−5

4. Experimental values

The experimental values measured for validation of the simulation results at extrapolated conditions are given in
Table 8.

5. Catalyst conditioning and deactivation

Figure S8 shows the COx-conversion (XCOx) as a function of the Time-On-Stream (ToS) for a reference operating
point measured at 513 K, 50 bar and 7599.5 h−1 and a feed of 38.2 % H2, 15.2 % CO, 1.0 % CO2, 45.7 % N2. Within the
first 25 hours the reaction conditions were left constant at 513 K, 50 bar and 7599.5 h−1. After that, the conditions were
varied dynamically between 453-573 K, 40-60 bar and 2849.8-15199.0 h−1. After 129 hours the experiments for model
validation at 453-573 K, 40-60 bar as well as 2849.8-15199.0 h−1 were taken. Between the ToS of 129 and 160 hours, where
the experiments were conducted, the XCOx remains stable with a relative deviation of 10 % between the minimal and
maximal measured XCOx.

Figure S8. The COx-conversion (XCOx) as a function of the Time-On-Stream (ToS) for a reference operating point measured at 513 K,
50 bar and 7599.5 h−1 and a feed of 38.2 % H2, 15.2 % CO, 1.0 % CO2, 45.7 % N2.
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