Adaptive Automated Machine Learning

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften
(Dr.-Ing.)

von der KIT-Fakultét fiir
Wirtschaftswissenschaften
des Karlsruher Instituts fiir Technologie (KIT)

genehmigte

DISSERTATION

von

M.Sc. Cedric Peter Charles Kulbach

Tag der miindlichen Priifung: 08.09.2022
Referent: Prof. Dr. York Sure-Vetter
Korreferent: Prof. Dr. Albert Bifet

Karlsruhe 2022

Abstract

The ever-growing demand for machine learning has led to the development of automated machine learning
(AutoML) systems that can be used off the shelf by non-experts. Further, the demand for ML applications with
high predictive performance exceeds the number of machine learning experts and makes the development of
AutoML systems necessary. Automated Machine Learning tackles the problem of finding machine learning
models with high predictive performance. Existing approaches incorporating deep learning techniques
assume that all data is available at the beginning of the training process (offline learning). They configure
and optimise a pipeline of preprocessing, feature engineering, and model selection by choosing suitable
hyperparameters in each model pipeline step. Furthermore, they assume that the user is fully aware of the
choice and, thus, the consequences of the underlying metric (such as precision, recall, or F1-measure). By
variation of this metric, the search for suitable configurations and thus the adaptation of algorithms can be
tailored to the user’s needs. With the creation of a vast amount of data from all kinds of sources every day, our
capability to process and understand these data sets in a single batch is no longer viable. By training machine
learning models incrementally (i.ex. online learning), the flood of data can be processed sequentially within
data streams. However, if one assumes an online learning scenario, where an AutoML instance executes on
evolving data streams, the question of the best model and its configuration remains open.

In this work, we address the adaptation of AutoML in an offline learning scenario toward a certain utility
an end-user might pursue as well as the adaptation of AutoML towards evolving data streams in an online
learning scenario with three main contributions:

1. We propose a System that allows the adaptation of AutoML and the search for neural architectures
towards a particular utility an end-user might pursue.

2. We introduce an online deep learning framework that fosters the research of deep learning models
under the online learning assumption and enables the automated search for neural architectures.

3. We introduce an online AutoML framework that allows the incremental adaptation of ML models.

We evaluate the contributions individually, in accordance with predefined requirements and to state-of-the-
art evaluation setups. The outcomes lead us to conclude that (i) AutoML, as well as systems for neural
architecture search, can be steered towards individual utilities by learning a designated ranking model
from pairwise preferences and using the latter as the target function for the offline learning scenario; (ii)
architectual small neural networks are in general suitable assuming an online learning scenario; (iii) the
configuration of machine learning pipelines can be automatically be adapted to ever-evolving data streams
and lead to better performances.

Contents

Abstract i
I Overview 1
1 Introduction 3
L1 Motivation o o o e e e e 3

1.2 Challenges e e 4
1.2.1 Utility Based Adaptation 5

1.2.2 Stream Based Adaptation 6

1.3 Hypotheses & Research Questions, 7

1.4 Contributions L e 9

1.5 Outline L 11

Il Preliminaries 13
2 Foundations 15
2.1 Knowledge Discovery in Database 15
2.1.1 SEMMA e 16

2.1.2 Crisp-DM e e e 16

2.1.3 Comparison e 17

2.2 Machine Learning Pipeline L 18
2.2.1 Supervised Machine Learning L. 19

222 DataPreparation e 20

2.2.3 Feature Preprocessingo e 21

224 LearningModels 23

2.3 Automation . . o.o. oL e e e e 32
2.3.1 Optimization Techniques 34

2.3.2 Automated Machine Learning 39

2.3.3 Neural Architecture Searcho oL o 42

24 LearningtoRank Lo 49
241 Pointwise e 50

242 Pairwise e e 50

243 LASIWISE o v o e e e e e e e 51

2.5 LearningonData Streams 52
2.5.1 OnlineLearning e 54

252 ConceptDrift 55

2.5.3 Preprocessing e e e 56

2.54 Online Learning Models 57

2.6 Evaluation Protocols e 60
2.6.1 Metrics e 60

2.6.2 BatchEvaluation 64

2.6.3 Online Evaluation e 64

2.7 SUMMATYo e e e e e 66

3 Related Work 67

Contents

3.1 MetricLearning oL e e e e 67
3.2 Multi-Objective AutoML L 70
3.3 Online Ensemble Learning 72
34 Online Deep Learning 74

3.5 Summary ... e e 76

Il Utility Adaptation 77
4 Preference Learning 79
4.1 Problem Formalisation e 80
42 Approach e 82
4.2.1 Evaluation Initiator 83

4.2.2 Evaluation Generator e 84

4.2.3 Preference Interface e 85

424 MetricLearner e 86

43 Summary e e e e e e 88

5 Automated Machine Learning, 89
5.1 RecapResearch Questions 89
5.2 Experimental Setup e 90
52,1 DataSets e 90

5.2.2 Preferences e 92

5.3 Evaluation e e 92
5.3.1 MetricLearner 92

5.3.2 System Evaluation oL Lo 94

54 Summary e e 97

6 Neural ArchitectureSearch 99
6.1 Recap Research Questions e 99
6.2 Integrated Utility-based Process 100
6.3 Experimental Setup L e 102
6.3.1 DataSets e e 102

6.3.2 MEtriCS o e e e e 103

6.4 Evaluation e e 104
6.4.1 Metric Evaluation Lo 104

6.4.2 System Evaluation oL L o 105

6.5 Summary e e e 107
IV Stream Adaptation 109
7 OnlineLearning L 111
7.1 Frameworks for Online Analysis 112
7.2 Scikit-learn Principles oL 113
721 COnSiSeNCY . .« v v v v vt e e e e e e e e e e e e 113

7.2.2 Accessibility 114

723 Classes . . v v v v e e e e e e e e e e e 114

7.24 Composition 114

7.2.5 Default Variables 114

7.3 Framework Design Overview o 115
T4 DataStreams« . oo e e e e e e 115

Contents

7.4.1 Real-world Streams e 116

7.4.2 Synthetic Streams L 116

8 Online Deep Learning Framework 119
8.1 Approach e e 119
8.1.1 Configuration 121

8.1.2 Training Process e 121

8.1.3 Prediction Processo 123

8.2 Experimental Setup 124
8.2.1 DataStreams e 124

8.2.2 Default Parametrisation 125

8.2.3 Suitability of Neural Networks 126

8.3 Results e 127
8.3.1 Default Parametrisation 127

8.3.2 Suitability 130

8.4 Summary e e e 132

9 Incremental HPO 135
9.1 Problem Formalisation 135
9.2 Approach e 136
9.3 Online AutoML e 138
9.3.1 Experimental Setup L 138

932 Results. e e 140

9.4 Online NAS e 143
9.4.1 Experimental Setup 143

942 Results. e 145

9.5 Summary e e e 147

V Synthesis 149
10 Conclusionand Outlook 151
10.1 Summary e e e 151
10.2 DISCUSSION v o e e e e e e e e e 153
10.3 Outlook e 154

A Appendix 157
A.1 Results Online Deep Learning 157
Listof Figures 161
Listof Tables e 163
List of Abbreviations 165

Part |

Overview

Introduction

Given the topic "Adaptive Automated Machine Learning ", we motivate this thesis by starting with the need for
automation of commonly consciously or unconsciously practised Data Mining processes. We introduce the
problem of adaptivity in AutoML by first motivating the setting in Section 1.1 and presenting the challenges
in Section 1.2. We then introduce our hypotheses and research questions in Section 1.3. In Section 1.4, we
frame the scope and the contributions of this work by pointing out which aspects we focus on and which we
neglect. In the last section of this introduction, Section 1.5, we give an overview of all parts and chapters of
this thesis.

1.1 Motivation

Already in 1989 Frawley et al. [86] claimed that the amount of information in the world doubles every 20
months. Information that is stored in millions of databases that describe potentially valuable patterns in
hidden ways. To cope with this amount of data, massive research has been employed towards a standardised
process for mining these patterns. The term most commonly employed for this purpose is KDD, which
was coined in 1989 by Piatetsky-Shapiro. As the name states, the KDD process implements the process
of discovering valuable knowledge (patterns) from data [79] and thus assists humans in extracting useful
information in an environment of exploding volumes of data. Based on the KDD process, extensions such
as the CRISP-DM [50] further standardised and extended the process of DM. Besides the introduction of
KDD and its implementation CRISP-DM, Piatetsky-Shapiro [190] further claimed the success of ML in this
area to be capable of dealing with the amounts of data:

"The next area that is going to explode is the use of machine learning tools as a
component of large scale data analysis."

—Piatetsky-Shapiro, 1989

It is superfluous to say that nowadays, we face a flood of data from all kinds of applications, devices, and
different formats containing valuable information. And even further, we can foresee that IoT and IloT
applications even raise the scale of data to an unprecedented level [23]. To be capable of dealing with
this amount of data, the development of a vast number of ML tools and applications took place, and its
success in a broad range of applications has led to an ever-growing demand for ML systems. As a result,
similar to the development towards a standardised DM and KDD processes, research in ML led to a common
iteration of steps to successfully employ ML models within a ML pipeline. The increasing computing power
at our disposal led, further, to the application of more and more complex models such as NN in the field
of DL. In addition to standardising ML pipelines, DL has shown its strong ability to extract new previously
unknown patterns from data. However, the common development of ML applications that successfully

1 Introduction

decode knowledge from data follows in accordance with the KDD process the exact development steps. Still,
it requires experts such as data scientists that employ and configure DM pipelines that include ML steps.

To meet the demand for ML systems, AutoML and NAS frameworks aim at automatically propose suited ML
pipelines or DL models that are automaticly orchestrated and configured by following a predefined target.
AutoML, however, is the challenge of finding ML pipelines with high predictive performance without the
need for specialised data scientists and thus theoretically incorporates the search for suitable DL models,
which is denoted to as NAS. Existing approaches optimise a pipeline of preprocessing, feature engineering,
model selection and hyperparameter optimisation and thus cover a few steps of classical DM processes.
However, to be effective in practice, such systems choose based on a predefined target good algorithm and
feature preprocessing steps for a given data set and set their respective hyperparameters. For this purpose,
they have shown impressive results in learning patterns and thus performing classification or regression tasks
accordingly to KDD given a predefined objective and when assuming that all data is available at once. Due to
their different characteristics and tasks they aim to solve, AutoML and NAS are usually considered separately.

A particular drawback of today’s AutoML frameworks is their lack of adaptability:

They assume an awareness of the underlying metric that follows a target. This metric is defined beforehand,
does not essentially adapt to the user’s utility and thus may not direct AutoML and NAS systems towards
a desired solution. Further, they are based on the data at hand at the beginning of the process and thus
assume that data patterns do not change over time. AutoML has shown impressive performance on offline
learning tasks in which all data is available at once. However, many real-world environments generate data
continuously and indefinitely in the form of never-ending data streams [23, 92]. Considering i.ex. an IoT
or I1oT environment, data is often produced as a data stream, i.ex; sensors produce over time floods of data,
where the environment and thus the patterns may change. Consequently, the system is challenged to adapt.

This work investigates the extension of AutoML including NAS techniques towards their adaptivity. Whereby
the term adaptivity is two-folded, as, on the one hand, AutoML and NAS techniques are adapted towards the
utility a user might pursue and, on the other hand, towards their ability to adapt to changes within the data
patterns that often occur in data streams.

1.2 Challenges

This section describes the challenges and problems we investigate in this work towards Adaptive Automated
Machine Learning, including Neural Architecture Search. We refer to Chapter 2 for an in-depth introduction
to AutoML and NAS starting with the KDD process. In Figure 1.1, we locate the utility adaptation of AutoML
and the adaptation to data streams on the CRISP-DM process. As illustrated in Figure 1.1, AutoML and thus

N

Utility Adaptation (\ Automated Machine Learning > Stream Adaptation
- stream
@ . f D awmining Fipeline y l....‘ >
g Eremonme e v
* >~ 5
O wr & o el e e
. P | < ML framework / processor processor H predictor l

i Dat
Busmess_ ata . Data Preparation Modeling Evaluation Deployment
Understanding Understanding
1 1
1

LS <--' T 1

Figure 1.1: Illustration of connecting principles towards a utility and pattern based adaptation of AutoML systems in the context of the
CRISP-DM [50] process.

1.2 Challenges

also NAS frameworks only cover few steps of the depicted CRISP-DM process exemplary illustrated for a
DM pipeline. Notably, they adapt without an understanding of the underlying business and consideration of a
continuous evaluation protocol. While AutoML tries to automate a ML pipeline by employing preprocessing,
feature engineering, model selection and hyperparameter optimisation, classical DM approaches such as the
CRISP-DM process go beyond these pipeline building steps. Referring to the beginning of the CRISP-DM
process in Figure 1.1, AutoML does not cover the business understanding step since AutoML frameworks
require the awareness of an underlying metric that the AutoML system should pursue to extract patterns and
thus to perform a task such as classification or regression. Further, the search for suitable neural architectures
poses new problems despite the similarity to AutoML. In comparison, NAS systems are more complex due to
an immense and theoretically infinite ample configuration space and further to their computation complexity
during training. While AutoML systems take depending on the data and the available computing power several
hours [177] to find suitable ML pipelines, NAS can take several weeks [198] to train and find suitable neural
architectures. In Section 1.2.1 we investigate on the problem statement towards an utility-based adaptation
of AutoML and NAS systems. By referring to the last steps of the CRISP-DM process, the steps that consider
the evaluation and deployment, commonly applied AutoML systems optimise the underlying ML pipeline
based on a given data set and are thus evaluated on data that was available at a given point. Already in this
setting, it emerges that the validity of the evaluation is limited to the collected data set. However, considering
that underlying patterns and data distributions change over time and data is continuously generated not only
in IloT or IoT environments, it raises the problem of adapting the AutoML or NAS system to new data that
may contain changing patterns. Thus the challenge within the adaptation of AutoML or NAS systems is
to find suitable ML pipelines or neural architectures that are not limited to be ideal for a given data set at
a certain point; they need to adapt constantly to continuously available data in the form of evolving data
streams. In Section 1.2.2, we investigate on the problem towards a stream based adaptation of AutoML and
NAS systems.

1.2.1 Utility Based Adaptation

Current approaches for AutoML and NAS aim at efficiently maximising individual or sets of objectives. For
this purpose, they need a preset metric (e.g. accuracy) to optimise the underlying ML pipeline or neural
architecture. However, end-users objectives are diverse, reaching beyond the accuracy of a classification task.
The end-user is, thus, assumed to be fully aware of his or her preference and knows the available metrics
that are suitable to represent this preference. To find suitable solutions, current research considers only a few
metric functions (e.g. precision, recall) optimised within a Pareto-frontier, which remains unscalable with a
more significant number of objectives. Further, they do not explore sets of metrics that inherently follow the
same goal (e.g. optimising predictive performance with precision, recall, accuracy and F1-measure).

The utility-based adaptation of AutoML and NAS aims to close this gap by learning the user’s preference
and steering the optimisation process of the AutoML or NAS system into the direction an end-user or domain
expert might pursue. As illustrated in Figure 1.1, a utility-based metric £* could incorporate metrics based
on the predictive performance but also time and memory relevant metrics. This research field, however,
is closely related to the research fields HGML and metric learning. While the goal of HGML is to create
"...systems that allow a domain expert, without a machine learning expert, to use relevant domain knowledge
to inform the automated search for high quality, impactful and interpretable model, including necessary data
preparation steps necessary for analysis" [95], the goal of metric learning is to learn a data-dependent metric
that measures the performance of a distance-related (ML) model [150] (see Section 3.1). Derived from both
research areas [95, 150], we can set the following main requirements for a utility-based AutoML and NAS
framework and the underlying utility metric.

1 Introduction

R II-1 An end-user may give certain variables and parameters of the underlying model
more priority.

R II-2 The end-users utility should reflect within the metric.

R II-3 A utility-based metric should influence the optimisation of an underlying model
in the direction of the utility

R 114 The utility-metric should follow a symmetry.

R II-5 The metric should be non-negative.

The first requirement describes that an end-user should be able to state their preference towards their utility.
This requirement is manifold in that its fulfilment is dependent on the set of parameters; from the method,
certain variables and parameters are preferred, and from the interface, the user interacts with to state his or
her preference. As a set of parameters, one could consider a broad range of already established metrics, such
as accuracy, latency, precision, recall, number of parameters of the underlying model etc., that emerged to
be valuable over time. As a method to state the user’s preference, we base our evaluation on an approach
that learns the underlying utility by pairwise comparisons, whereby we exclude the user interface from the
evaluation as it entails too numerous dependencies that influence the evaluation. The third requirement (R
11-2) concerns the (metric learning) method that should reflect the underlying utility and further it should
steer the optimisation process (R /I-3) toward this utility. Further, the utility should follow a symmetry (R
11-4) that provides the same metric score when the function’s input is switched, and the utility metric should
be non-negative (R II-5). The utility-based adaptation of AutoML and NAS thus pose the problem of how to
teach the model a utility that goes beyond predictive performance.

1.2.2 Stream Based Adaptation

Considering offline learning tasks in which the entire data set is available at once, AutoML and NAS systems
have shown impressive results by configuring pipelines of algorithms or the architectures of a NNs. However,
many real-world environments generate data continuously and infinitely in the form of never-ending data
streams [23, 92]. Unlike the offline setting, the unbounded nature of these data raises some practical and
technical requirements that need to be addressed, where streaming algorithms follow the online learning
requirements defined by Bifet et al. [23]:

R I-1 Process an instance at a time and inspect it (at most) once.
R I-2 Use a limited amount of time to process each instance.

R -3 Use a limited amount of memory.

R -4 Be ready to give an answer (e.g. prediction) at any time.

R I-5 Adapt to temporal changes.

The first requirement refers to incremental learning, where the data stream is processed iteratively. The
requirement towards a time and memory limitation of the underlying algorithm, as well as the availability
to give an answer at any time, results from the nature of data streams. This is especially the case in IoT and
IIoT environments, where data is produced commonly in high volume and high frequency and thus requires
efficient processing to guarantee a certain throughput and thus to be ready to predict at any time (R I-4).
The last requirement defined by Bifet et al. refers to the adaptability to temporal changes of the underlying
model. However, when retraining AutoML or other offline learning algorithms where all data is at hand at
once, a significant part of these requirements is infringed. Referring to Figure 1.1, the problem towards
the adaption to data streams and thus to changing patterns is located at the end of the CRISP-DM process,

6

1.3 Hypotheses & Research Questions

where a further question arises about the evaluation of ML algorithms in general and for the scope of this
work about the evaluation of AutoML and NAS systems in dynamic environments. The evaluation step, as
illustrated in Figure 1.1, cannot be seen separately from the CRISP-DM process, since the question about
the evaluation influences the answer to the question for the best ML pipeline in AutoML and for the best
neural architecture in NAS. The question about the evaluation, thus, incorporates the model’s configuration
and hence influences the optimisation process of the entire AutoML and NAS system. The challenge within
the adaptation of AutoML or NAS to data streams is thus to find suitable ML pipelines or neural architectures
within a dynamic data stream environment.

1.3 Hypotheses & Research Questions

Our research aims to provide novel methodologies that steer data-centric AutoML and NAS frameworks
towards adaptivity. We approach this adaptivity from two sides. On the one hand, from the adaptation to a
particular utility, an end-user might pursue and on the other hand, from a dynamic environment, where data
becomes continuously available in the form of data streams. Targeting the adaptation towards a utility-based
AutoML and NAS framework we assume that (i) the target function £ can be modified into the direction
an end-user might pursue and (ii) that the variation of the target function has an influence on the output of
AutoML and NAS frameworks.

RQ1I. How can an AutoML system be adapted to a utility an end-user might pursue?
RQ I.1. How can a new target function £* be learned?

RQ IL.2. How can we optimise an AufoML system towards the learned utility?

The first research question RQ I, thus asks the adaptivity of AutoML systems to a certain utility. We split
RQ I into the research questions RQ 1.1 and RQ 1.2, where the first research question is about the variation
of a target function and how to express the utility an end-user could pursue within a target function £. RQ
1.2 asks for the integration of the adapted target function £* into an AutoML system and its influence on the
performance towards the utility.

RQ II. How can a NAS system be adapted to the user’s utility?

RQ II.1. How can a new target function £* beyond predictive performance measure-
ments be learned?

RQI1.2. How does a learned target function influence NAS towards the pursued utility?

Despite the fact, that NAS can be seen as specialisation of AutoML, NAS poses new problems in terms
of configuration and computational complexity. Thus, in this thesis, NAS is seen separately to AutoML.
Following RQ I we ask in RQ II for the adaptivity of NAS systems. The greater complexity of NAS systems
requires even more attention to metrics that go beyond predictive performance, and thus the question arises
how new target functions £* that go beyond the predictive performance can be learned (RQ II.1). Further,

1 Introduction

the larger (possibly infinite) configuration space raises the question RQ II.2 towards the impact of a learned
target L*. As we assume that the target function £ can be modified into the direction of the utility and the
learned metric influences the AutoML and NAS framework into the direction of the utility, we derive based
on the presented research question Hypothesis I.

Hypothesis I (Utility Adaptation)

Existing approaches for AutoML and NAS aim efficiently maximising individual or sets of
objectives L. By variation of the target function L, the output of AutoML systems can be
adapted and tailored to the needs of the user and thus to a utility.

Targeting the adaptation of AutoML and NAS to data streams and thus changing patterns we assume that (i)
the configuration of AutoML and NAS systems is possible accordingly to the requirements defined by Bifet
et al. [23] in an incremental manner and that the incremental adaptation (ii) enables better performances in
form of the adaptation to potentially infinite data streams and changing patterns of AutoML and NAS systems.
Based on the problem description presented in Section 1.2.2, we derive the following research questions.

RQ III. How can HPO techniques be applied in an online learning environment to further
enable online AutoML and NAS?

RQ IIL.1. Are neural networks suitable for online learning?

RQ IIL.2. How can the hyperparameters of ML pipelines (AutoML) and NNs (NAS)
incrementally be adapted to data streams?

RQ IIL.3. Does an incremental adaptation of hyperparameters in AutoML or NAS
systems enable better performances on data streams?

The main research question (RQ III) asks for the adaptation of AutoML systems to data streams and thus
for an HPO technique capable of handling data streams. However, to apply NAS within an online learning
scenario, RQ III.1 asks for the (general) suitability of NN within an online learning environment. In order to
integrate AutoML systems into online learning, RQ II1.2 refers to the first requirement defined by RQ II1.3
goes one step further, assumes that an incremental adaptation of hyperparameters is possible and asks for the
performance advances of incrementally adapted hyperparameters. Derived from these research questions,
we formulate Hypothesis II by assuming that the incremental configuration of AutoML and NAS systems is
possible and leads to better performances on data streams.

Hypothesis II (Stream Adaptation)

In an online learning environment, the incremental adaptation of hyperparameters enables
superior performance on data streams by aligning the learning process with the online
learning requirements defined by Bifet et al. [23].

In contrast to the research questions for Hypothesis I, RQ III integrates AutoML and NAS techniques into
one main research question. This is, on the one hand, the result of the additional requirements for online

8

1.4 Contributions

learning for both AutoML and NAS and, on the other hand, the application of similar optimisation techniques
developed within the course of this work. Further, while Hypothesis I and the resulting research questions
build on already existing AutoML and NAS systems, in RQ III the aim is to build a common HPO system
that is applied to automatically configure ML pipelines and neural architectures in a streaming environment.

1.4 Contributions

The research towards adaptivity in AutoML has led to several contributions along with the hypotheses and
research questions identified in Section 1.2. We divide the provided contributions into (i) systems, (ii)
Jframeworks and (iii) artifacts. While the systems and artefacts provided in Contribution C I are collections
of steps that enable the utility-based adaptation, the provided frameworks (Contributions C II and C III)
follow the Scikit-Learn’s design principles [42, 185, 94]:

R III-1 All objects share a consistent and simple interface.
R III-2 All hyperparameters are directly accessible and exposed as public attributes.

R I1I-3 Algorithms are the only objects to be represented using custom classes. Data sets
are represented as sparse matrices and hyperparameter names as well as their
values are expressed as standard Python strings or numbers.

R I1I-4 Many ML tasks are expressible as sequences or combinations of transformations
to data. Whenever feasible, algorithms are implemented and composed from
existing building blocks.

R I1I-5 Whenever an operation requires a user-defined parameter, the library defines an
appropriate default value.

These design principles avoid the proliferation of already developed framework code, aim to adopt simple
conventions and thus limits the number of methods to be known to a minimum required for the execution of
the proposed algorithms. Further, we provide various artefacts that were developed along with the systems
developed in Contribution C I that allow an evaluation of the system against the related work. We conclude
the main contributions of this work as follows:

C 1. System towards utility adapted AutoML and NAS:

We provide a modular system that allows the adaptation of AutoML and NAS systems to an end-users
utility. While the formalisation for a utility adapted AutoML and NAS framework resemble each other,
their training, execution and thus utility preferences vary. The first system concerns the adaptation
of AutoML and is exemplary evaluated based on TPOT [177] given different performance metrics.
The second system concerns the adaptation of NAS. Since NAS systems require greater computational
resources, we evaluated this system on the established NATS-Bench [67] data set given metrics that
include preferences such as the NN’s latency.

This research has led to the development of several software artefacts. The proposed systems are
implemented in Python and available as Software artefacts on Github'. To evaluate the utility-based
NAS system against state-of-the-art multi-objective NAS approaches, we provide a RL Open-Al Gym [39]
environment that builds on the NATS-Bench [67] data set and enables the execution of (multi-criteria)
RL approaches to NAS. To evaluate our approach, we present a synthetic evaluation where we assume
predefined utilities. Since a user study would lead to new research questions about the user interface
and its experience to state preferences, we exclude an evaluation with user interfaces as it would blur
the thread of this work.

1

Introduction

C II. Online Deep Learning Framework:

In order to give answer to the general suitability of NN within an online learning scenario (RQ III.1),
we provide a framework that combines the established frameworks river [173] for online learning and
PyTorch for the development of NN algorithms in Python. Our framework follows the Scikit-Learn
design principles and thus extends river by the broad capabilities of PyTorch for developing neural
architectures. To orchestrate generated NN with other components from the river library, online DL
follows the river API. Further, this framework enables the execution of NAS and further research in
DL considering an online learning scenario. The aim of this framework goes beyond the evaluation
presented in this thesis, as it fosters and unifies future research in the area of online DL.

C III. Online Automated Machine Learning Framework:

To enable incremental HPO, and thus the automated configuration of ML pipelines under the online
assumption, we propose and provide EvoAutoML, an evolution-based online learning framework con-
sisting of heterogeneous and connectable models that support large and diverse configurations spaces
that adapts to the online learning scenario. The configuration space of this framework is variable in
that it allows in combination with the online DL framework, the application of NAS. We refer within
the evaluation for the automated configuration of ML pipelines identical to the frameworks name to
EvoAutoML and for the configuration of neural architectures considering both EvoAutoML and online
DL frameworks to EvoNAS. The configuration space of EvoAutoML is generated within components
from the river [173] framework. EvoAutoML follows as online DL the river API to further extend its
capabilities in orchestrating ML pipelines.

Both frameworks (C II-III) are inspired by the Scikit-Learn design principles and based on the river [173]

framework. Instead of building EvoNAS in a separate framework, we combine EvoAutoML and online DL
into one system to answer RQ III.3 for the application of NAS on data streams. However, as the course
of this work will show, the complexity of EvoNAS requires further techniques, such as the use of network
morphisms, to achieve comparable results. This lies in the nature of the underlying online HPO process of

EvoAutoML and the nature of NN revealed by answering RQ III in the course of this work.

1

https://github.com/kulbachcedric/, accessed on January 30, 2023

10

1.5 Outline

1.5 Outline

This thesis is structured into five parts that include the (i) overview, the (ii) preliminaries, the (iii) utility- and
(iv) stream-based adaptation and the final part that concludes this work. The parts are thereby structured as
follows and further illustrated in Figure 1.2:

Part Il provides the preliminaries for this work. This part is split into two chapters: (i) the
foundations that provide the main concepts building on the idea of automating the well
researched KDD process and thus introducing and formalising the idea of AutoML and
NAS; (ii) the related work that illustrates the allied research regarding the adaptation to a
particular utility and the adaptation to data streams of AutoML and NAS systems. For the
utility-based adaptation this includes related work in metric learning and multi-objective
ML and for the adaptation to data streams the related work incorporates online ensembles
as well as research carried out in the field of online DL.

Part 11l provides our approach towards the adaptation to a utility an end-user might pursue based
on preference learning techniques (Contribution C I) and evaluates the proposed approach
incorporating AutoML and NAS frameworks. This part of this thesis builds on the following
publications:

e Kulbach,C., Philipp,P., and Thoma,S.,“Personalized Automated Machine Learning”,
ECML 2019.

e Kulbach,C., and Thoma,S.,”Personalized Neural Architecture Search”, ICDMW
2021.

Part IV introduces the frameworks towards evolution-based online AutoML and NN. First, we
present and formalise the algorithm of EvoAutoML and then give the methodology and
the framework for online NN in detail. Within the framework description for online NN
empirically evaluate the (general) suitability for NN’s (RQ III.1). Finally, we evaluate in
this part the adaptability of EvoAutoML as well as the combination of the EvoAutoML and
online NN to a NAS framework regarding related approaches. This part of this thesis builds
on the following publication:

» Kulbach,C., Montiel,J., Bahri,M., Heyden,M. and Bifet,A. “Evolution-Based Online
Automated Machine Learning”, PAKDD 2022.

Part V concludes this thesis, provides an overview and outlook towards future research on
utility-based adaption with and without consideration of feedback. Further, we depict the
roadmap for the EvoAutoML and online DL frameworks developed within the course of
this thesis.

11

1 Introduction

Introduction
2 —
@ I Motivation I
<
g I Problem Statements I
o I Contributions I
Foundations
I Knowledge Discovery in Databases I
" I Machine Learning Pipeline I
()]
= I Automation I
©
E I Learning to Ranking I I Learning on Data Streams I
% I Evaluation Protocols I
S
o
Related Work
Metric Multi- Online Online Deep
Learning objective ML Ensembles Learning
c Preference Learning
o I Problem Formalisation I
b
2 h
-4 I Approac I
©
<
3 AutoML NAS
= I Experimental Setup I I Experimental Setup I
o
= I Evaluation I I Evaluation I
Online Machine Learning
I Frameworks for Online Analysis I I Framework Design Overview I
I Scikit-learn Principles I I Data Streams I
S
'.E Online DL
-
% I Methodology I I Framework I
u .
< I Experimental Setup I
€ :
g I Evaluation I
™
et
()
Incremental HPO
I Approach I
| AutoML [| NAS |
2
w .
it | Conclusion |
L
T look
S, | Outloo |
(%)

Figure 1.2: Structure and overview of this thesis

12

Part |l

Preliminaries

In this part, the essential basics for this work are presented. Given the topic "Adap-
tive Automated Machine Learning” and starting from a Data Mining process, these
are divided into ML pipelines, their automation, Neural Architecture Search and the
foundations for an online learning environment.

13

Foundations

This chapter defines the foundations for this thesis. We approach AufoML from a data mining point by
presenting in Section 2.1 the basic KDD process. Following this process, we define in Section 2.2 the ML
Pipeline concept and introduce its principal components. To automate and optimise ML pipelines we discuss
in Section 2.3 various HPO techniques as well as the concept of ML pipeline automation also referred to
as AutoML. We introduce different ranking techniques in Section 2.4 that enable utility driven AutoML and
NAS by learning the underlying utility. In Section 2.5, we switch from a supervised batch learning setting to a
supervised incremental learning setting and discuss the essential requirements and concepts for incremental
learning. To complete the foundations for this work, we present in Section 2.6 standard evaluation protocols
for the batch and for the incremental setting as well as established metrics (Section 2.6.1) that are used
within the evaluation protocols.

2.1 Knowledge Discovery in Database

KDD (Knowledge Discovery in Databases) encompasses the overall process of discovering useful knowledge
from data [79] and thus assists humans in extracting useful information (knowledge) in an environment of
exploding volumes of data. It seeks the establishment of standards in the field of DM, whereby it includes
DM as one (key) component. From this point of view, the scope of a data scientist within the KDD process
goes further than DM. Fayyad et al. [79] defines KDD as "the non-trivial process of identifying valid, novel,
potentially useful, and ultimately understandable patterns in data" [79], where a non-trivial process implies
5 steps (see. Figure 2.1). These steps involve the search process for retrieving useful patterns within the data.
By patterns Fayyad et al. describe the structure of a set of data, where data is a set of facts. The patterns
found are subject to the requirements that they must be (i) valid, (ii) useful and (iii) understandable for the
system and the user [79]. When considering AutoML or NAS as an instrument that searches for patterns
by optimising and applying ML algorithms, we investigate in this work the usefulness of found patterns by
steering the optimisation process of AutoML system to a utility that goes beyond the predictive performance.
And further, we investigate the validity of these patterns that occur continuously and may change over time
within possibly infinite data streams by proposing an incremental optimisation technique for ML pipelines.
In Figure 2.1, we depict the steps comprising the KDD process. A prerequisite for the process is to have or

Selection Preprocessing Transformation Data Mining Evaluation

Figure 2.1: KDD

develop an understanding of the application domain and identify the process’s goal. Within the first Selection

2 Foundations

step, we create a target data set by selecting a data set or a subset on which the discovery is performed. After
which, the Preprocessing step incorporates basic operations, such as handling missing values or removal
of noise. In the next step, the Transformation, the goal is to find useful features that represent the data
accordingly to the defined purpose of this process. Dimensionality reduction or transformation methods
are applied to reduce the number of variables and thus lower the computation complexity or find invariant
representations. The goal of the Data Mining step is to select appropriate methods that search for patterns
in the data and thus match the overall criteria of this process. This includes deciding which models and
parameters may be appropriate for searching patterns in the data. Lastly, the Evaluation step involves the
interpretation of the mined patterns, where extracted patterns or the data passed to the selected models are
visualised and thus evaluated. Building on the Evaluation step, it is possible to reflect on each of the previous
steps and iterate over loops to match the process’s goal or incorporate the gained knowledge into another
system. In the following we broadly depict the SEMMA as well as the CRISP-DM processes as industry
standards [6] and implementations of the KDD process.

2.1.1 SEMMA

The SEMMA (Sample, Explore, Modify, Model, Assess) process was developed by the SAS Institute,
considers five steps and is designed to work with the Enterprise Miner software from the SAS institute.
However, SEMMA is besides its implementation within the SAS Software a popular methodology for applying
DM. In Figure 2.2 we depict this process, where one can see the similarity to the KDD process. It is likewise
possible to reflect on each of the previous steps after the last step. The first step, Sample, of this process

i Sample > : Explore)i Modify)i Model)i Assess)
1] 1
! 1 | :

__

Figure 2.2: SEMMA

consists of sampling the data by extracting information that is big enough to contain important information
and small enough to manipulate quickly. Within the Explore step, we get an understanding of the data
by conducting univariate and multivariate analyses. This enables understanding each factor individually
and finding relationships between the data collected. Based on the exploration, the data is similar to the
transformation step in the KDD process parsed, cleaned and refined within the Modify step. In the Model
step, we apply data mining techniques to produce a projected model of the final, desired outcome of the
process. Within the last step, the Assess, the model is evaluated for its usefulness and reliability. As for
the KDD process, it is possible to reflect on each of the previous steps and iterate over loops to match the
process’s goal.

2.1.2 Crisp-DM

Another popular process is proposed by Chapman et al. [50] that can guide the implementation of DM
applications is CRISP-DM (CRoss Industry Standard Process for Data Mining). It comprises 6 steps that
are iterated within a loop and visualized in Figure 2.3. The process starts with a Business Understanding
step, where the focus lies on understanding the objectives and requirements from a business perspective. This
knowledge is then converted into a DM problem. A preliminary process plan that achieves the objectives is
defined in this step. Considering the goals of this work, the utility adaptation that enables to steer AutoML
and NAS systems into a direction the end-user or domain expert pursues is located within this step. After

16

2.1 Knowledge Discovery in Database

Business Data Data Modeli Evaluati Deol .
Understanding Understanding Preparation odeling valuation eploymen
vy

Figure 2.3: CRISP-DM

having developed the objectives and the requirements, the next step is the Data Understanding, where the
goal is to get familiar with the collected data, identify data quality problems and detect subsets of information
to develop initial hypotheses from the data. As visualised in Figure 2.3, there is a close link between the
Business Understanding and the Data Understanding step; By formulating the DM problem, we need at least
some understanding of the available data. The Data Preparation step comprises all activities to generate
the data that will be fed into the chosen DM model. In this step, we further clean the data, select and generate
functional attributes, as well as transform the data to then apply modelling techniques within the Model
step. In this step, the search for suited modelling techniques and their parameters is carried out. Since some
modelling techniques require specific data formats or one realises data problems while searching for suitable
methods, the Modelling step is linked back to the Data Preparation step. Nowadays, this modelling step
compromises a broad range of ML models At the Evaluation step, one or more models that appear to have
high utility are evaluated to be sure that the previously executed steps achieve the objectives defined within the
first step but also to determine if other types of malfunctions occur that were not yet been considered. If the
model matches the requirements and the objectives, the model can be deployed within the final Deployment
step. Depending on the requirements and making use of the created models, the Deployment step can reach
from a simple report to a complex repeatable DM process.

2.1.3 Comparison

We presented the KDD process as well as the SEMMA and the CRISP-DM processes that define a set of
sequential steps that pretend to guide the implementation of DM applications and thus to standardise the
KDD process. Based on Azevedo and Santos [6], we want in this Section to broadly compare these processes
to then transfer the correspondences into a learning process and thus enable an AutoML system. A summary
of the correspondences of the different processes is presented in Table 2.1. Comparing the KDD and the

Table 2.1: Comparison of the correspondences between KDD, SEMMA and CRISP-DM [6]

KDD SEMMA CRISP-DM
Pre KDD - Business Understanding
Selectlol? Sample Data Understanding
Preprocessing Explore
Transformation Modity Data Preparation
Data Mining Model Modelling
Evaluation Assessment Evaluation
Post KDD - Deployment

SEMMA process, the commonalities are striking in that the Selection step from the KDD can be identified
with the Sample step from the SEMMA process, the Preprocessing step can be identified with the Explore
step, the Transformation with the Modify step, the Data Mining with Model and the Evaluation step can
be recognised with the Assessment step. However, since SEMMA is directly linked to the SAS Enterprise
miner software, it can be seen as an implementation of the KDD process [6]. In Table 2.1, we defined

17

2 Foundations

the initial phase and requirements of KDD as the Pre KDD step and the necessary steps to incorporate the
gained knowledge into another System after the Evaluation step as Post KDD step. Comparing CRISP-DM
with KDD the correspondences and boundaries of the steps are not as straightforward as for the SEMMA
process. However, CRISP-DM incorporates a Business understanding step which can be identified with the
requirements defined within the Pre KDD steps. Since the goal of the Data Understanding step is to gain an
understanding of the collected data, identify possible data quality problems and develop initial hypotheses,
the Data Understanding step comprises the Selection as well as the Preprocessing step from KDD. The Data
Preparation step can then be aligned to the Transformation step, the Modelling to the Data Mining and the
Evaluation step to the Evaluation of the KDD process. The Deployment step can be identified with the Post
KDD step by utilising the developed models.

We presented the KDD process as one step towards a unified methodology for KDD and thus for DM.
Furthermore, we depicted SEMMA and CRISP-DM as implementations of KDD and compared the processes
by pointing out the commonalities within the different steps. As depicted within the introduction of this thesis
in Figure 1.1, AutoML aims to automate the steps between the Selection and the Data Mining steps by building
ML pipelines and performing HPO. However, it emerges that only parts of the KDD process are covered
by the KDD process. In order to automate KDD and DM the Selection, Preprocessing, Transformation and
Data Mining AutoML and NAS apply HPO techniques to optimize the process based on a predefined loss
function. Within the utility-based adaptation of AutoML, we aim to investigate the business understanding
step that defines an underlying objective and within the adaptation to data streams, we aim to investigate the
adaptation to patterns that may change over time and thus, the evaluation step of the KDD process.

2.2 Machine Learning Pipeline

Following KDD, we define in this section the concept of a ML pipeline considering (i) Data Preparation (Sec-
tion 2.2.2), (ii) Feature Preprocessing (Section 2.2.3) and (iii) Supervised Learning Models (Section 2.2.1).
In the latter, we present, besides the foundations for various supervised learning models, also NNs like a
foundation for NAS, as well as ensemble models.

Before introducing the concept of a ML pipeline and its components, we highlight the commonalities and
differences between KDD and ML. Since both KDD and ML fall under the aegis of Data Science, and both
are valuable tools for solving complex problems, the lines between these terminologies become blurred.
While KDD is about techniques and tools used to unfold patterns in data that were previously unknown
and make data more usable for analysis, ML aims at training machines based on gathered data to perform
complex tasks that incorporate tasks, such as retrieving patterns in a supervised or unsupervised manner.
Here, the differences become apparent. While KDD relies on the overall process of discovering valuable
and understandable knowledge, ML is concerned with training models that perform a specific task [131].
This significant difference incorporates that KDD relies on human intervention and is created for use by
people. These differences, however, allow them to complement each other, as ML techniques are handy
tools in DM to discover regularities that can be found automatically. For instance, in ML there is an effort
to integrate humans (Human Guided Machine Learning) within the learning process and in KDD ML is
a powerful instrument that is nowadays indispensable. Our approach aims to steer AutoML systems to a
particular utility and thus aims to adapt AufoML to obtain useful ML pipelines.

ML is the process of discovering algorithms that have improved courtesy of experience derived from data. It’s
the design, study and development of algorithms that permit machines to learn without human intervention.
However, ML algorithms can be divided into supervised and unsupervised learning techniques based on
the data structure, but also into online and offline learning algorithms based on the availability of data. In

18

2.2 Machine Learning Pipeline

Section 2.2.1, we formalise supervised offline ML as well as the concept of ML pipelines. The distinction to
online learning is made within Section 2.5.

2.2.1 Supervised Machine Learning

In supervised ML, one assumes each instance of a data set can be assigned to classes or numerical values
for predicting diverse outcomes. This can also be referred to as labelled data. If one assumes that all data
are available simultaneously, one speaks of offline or batch learning. In Definition 1, we formalise the
supervised offline learning problem.

> Definition 1. Supervised offline learning

Let D be a set of data points D = {(21,1),...,(Z ¢, 1)}, then the task is to learn a
function f* : X — Y (also referred to as model), that transforms a feature vector 7eX
into a target value y € Y using all data points at once. Furthermore, let £(f(Z),) be a loss
function that quantifies the correctness of a series of predictions of f trained on Dy;.qs,y C D
for 7. Denote that {7, Yy} & Dirain a0d Dypgin N Dyaria = 0. Then the goal to is to
minimise the loss £ on D,,;;4 using a validation protocol V(-, -, -, -).

f* € minV(L, f, Divain, Dvatia) .1

Assuming that Y is a set of categorical values, Definition 1 is referred to as classification problem and when
Y € R" Definition 1 is referred to as a regression problem. In addition to the supervised offline learning
problem, we also added in Definition 1 the notion of a function or model f, that transforms a feature vector
into a target value based on the given data set. Most ML models have settings also denoted hyperparameters
that are set before the model learns based on the given data set. These parameters are set in dependence
on the data and are crucial for the model’s performance. To influence the external settings of a model, we
assume that each algorithm has parameters A € A that can be set in advance of the training process. We
define a hyperparameter as follows:

> Definition 2. Hyperparameter

Let A= {AM ... A™}bea seiof algorithms, then each algorithm A(Y) € A s configured
by a vector of hyperparameters A () € A 4. Whereby, A 4 denotes the configuration
space of A(), e.g. learning method, optimiser or thresholds for prediction.

The hyperparameters of a model f can range from the underlying optimiser, complexity thresholds, e.g.,
memory consumption, or similarity measurements to approximate the distance between data points. These
parameters have a high impact on the model’s performance and are optimised within the modelling step
when referring to the KDD process. We have defined the supervised offline learning setting in Definition 1,
where we assume that a function f : X — Y transforms a feature vector into a target value. Furthermore, we
introduced hyperparameters where we assume that e;gh algorithm A() € A can be externally configured in
advance of a learning process by its hyperparameters X (*) from its domain A A¢). Based on the Definitions 1
and 2, we can now define a ML pipeline that is capable of transforming a feature vector 7 intoa target value
y as does a function or model f. By a set A of defined algorithms and their configurations space A4 we

19

2 Foundations

can concatenate these algorithms within a pipeline P that represents the function f : X — Y. We assume
that the concatenation of algorithms can be modelled by a DAG, where each node represents an algorithm,
and the edges represent the flow of the input data through the different algorithms. The DAG restricts the
concatenation of algorithms in that no data is passed back within the ML pipeline. Denote that this structure
is likely to be more restricted in applied ML pipelines, e.g. the last step of the pipeline is an algorithm that
finally performs the classification or regression step in supervised learning. Accordingly, to the definitions
of a model and its hyperparameters, we define a ML pipeline as follows:

> Definition 3. ML Pipeline [253]

Let a triplet (g, 27 Y) define an ML pipeline with g € G a valid pipeline structure, Z €
Al9l a vector of the selected algorithm for each node and X a vector comprising the
hyperparameters of al selected algorithms. The pipeline is denoted as ngj. The learning
goal of a configured pipeline szj can be defined accordingly to Definition 1 as follows:

,P;’X7Y € min V(£7 7)972’?7 Dtrairu Dvalid) (22)

Following the KDD process domain experts, but also the best common practices [253] commonly build a
ML pipeline considering (i) data preparation (also referred as data cleaning), (ii) feature engineering and
(iii) modelling algorithm (see Figure 2.4). At first, the data is cleaned by searching for errors in D and
then repairing them. Within the feature engineering step new features are created and relevant features are
selected. Within the final step based on the generated and selected features a suited model is selected and
trained. This prototypical ML pipeline is usually adapted and extend by data scientists. In the following, we

Data Preparation Feature Engineering
Model
» | Cleaning || Reparation | | Extraction || Selection Selection » Usage
ML Pipeline

Figure 2.4: Illustration of a ML pipeline consisting of (i) data preparation, (ii) feature engineering, and (iii) model selection.

present the typical steps of the ML pipeline as depicted in Figure 2.4. Algorithms for the data preparation
step will be depicted in Section 2.2.2, algorithms for the feature preprocessing step in Section 2.2.3 and in
Section 2.2.1 we present common models that can be chosen within the model selection step.

2.2.2 Data Preparation

The purpose of data preparation is to improve the quality of the given data by i.ex. Removing data errors,
thus, has a strong influence on the later steps of the ML pipeline, as the preparation of data makes the further
steps possible. Its process can be split accordingly to Chu et al. [55] into a (i) error detection and an (ii) error
repairing task. Further, it is mainly applied based on predefined rules executed when i.ex. an error has been
detected.

20

2.2 Machine Learning Pipeline

2.2.2.1 Error Detection

Errors within the data at hand can be classified into missing values, redundant entries, invalid data formats
or broken links between entries when merging multiple data sources [195]. For detecting errors, most
techniques [96, 235, 244] involve humans that decide whether a value is an error or not, e.g. to identify if
an instance corresponds to a duplicate and thus is redundant or not. Some approaches [30, 55, 49] detect
errors automatically by evaluating predefined functional dependencies or learning separate ML models (e.g.
in anomaly detection). Commonly AutoML systems apply simple error detection mechanisms, such as
removing or repairing instances that are not a number within a feature that contains only numbers.

2.2.2.2 Error Reparation

The subsequent repairing task is usually carried out automatically, e.g. by modifying the data set concerning
minimal changes or reparation specified by rules. The imputation of missing values, i.ex. it can be applied
with different strategies, such as using the mean, median, the most frequent value from other instances of the
feature, or predefined imputation values. Redundant entries, such as duplicates, can be removed from the
data set, and invalid data formats can be reformatted based on rules. However, most data cleaning algorithms
are rule-based and hardcoded. This step influences the performance of the underlying ML model in that it
allows its execution without errors that might result in misleading predictions. Further, as SVM’s require
numerical encodings of categorical features while tree-based approaches (see Section 2.2.4) allow categorical
values, a suitable error reparation technique enables the execution of further ML pipelines. Referring to
Definition 3, the applied cleaning method within the ML pipeline can be seen as a node of the DAG ¢ and

an)

thus as an algorithm AE\de configured by \.

2.2.3 Feature Preprocessing

While data preparation techniques primarily enable the execution of ML pipelines, feature engineering has a
significant impact on the pipeline’s predictive performance. It can be seen as the process of generating and
selecting features from a given data set for the subsequent modelling step [253]. Thus, it summarises all types
of preprocessing steps [94] that go towards (i) feature selection and (ii) feature extraction (see Figure 2.4).
The feature preprocessing step is highly domain-specific and difficult to generalise. For example, when
considering a categorical feature that is encoded within the data set D as a numerical value, the underlying
and subsequent algorithm would treat this feature as a numerical feature, where a higher or lower value
does not reflect the category. Even for data scientists, assessing a feature’s impact is difficult, as domain
knowledge is necessary, e.g. to encode categorical features. A commonly applied technique is to calculate the
covariance matrix to measure the feature importance and the correlation between numerical features. This
step enables the combination of features that point into the same direction. In the following we first formally
define the feature preprocessing step and then depict the different types in more detail.

> Definition 4. Feature Preprocessing, adapted from [127]

LetD = {(Z1,11),.-.,(Z¢, y:)} be a set of data points, then the task is to learn a feature
representation ¢ : X — F' that maps the input vectors 7 to feature vectors ¢ € F. We
want to infer a function f (see Definition 1) with the aim that its metric loss £(f(¢(7'),)
is lower than £(f (), y).

21

2 Foundations

The search for a suitable representation ¢ that increases the performance of f requires notably domain
knowledge and also shows in Definition 4 a close connection and dependence to the learned function f.
Thus, it can similar to the data preparation step be seen as a node A(Ap reprocessing) of the DAG g and thus
be integrated into a ML pipeline (see Definition 3). Also, the concatenation of multiple preprocessing steps
might be considered within a ML pipeline. Furthermore, Definition 4 shows the possibility of automating this
step by testing various preparation techniques ¢ that lead to better performances regarding the metric £. As
for the data preparation step in Section 2.2.2, feature preprocessing can be divided into (i) feature extraction
and (ii) feature selection, which are depicted in more detail in the following. While feature extraction aims
to generate new features or transform existing features that minimise the metric of £(f¢(2’),y), feature
selection aims to compress the given features into a smaller feature representation by removing non-influential
and selecting useful features.

2.2.3.1 Feature Extraction

The feature extraction step generates new features by combining existing features to produce more useful ones.
However, a common approach for extracting new feature values is to apply a set of predefined operators to the
original feature values. These operators can be grouped into unary, binary and high dimensional operators.
Unary operators extract from a single original feature value new feature values. For instance, if the original
data set incorporates dates, one can extract additional features such as the year, month, weekday or whether
the given date was on the weekend describing seasonal influences. Binary operators combine two feature
values by applying basic operations (e.g. +, —, *) or comparing these feature values using correlation tests
and regression models [253, 127]. The choice of operators is based on domain knowledge and the type of the
underlying feature values. Operators with a higher-order use multiple feature values to create one or several
new features. For example, several features’ average or mean values can be used as a new feature. However,
to extract new features by applying predefined operators, one can also use algorithms that automatically
learn informative features and reduce feature preprocessing costs compared to manual approaches. The PCA
is one technique commonly used for feature extraction in high-dimensional feature spaces [200] and also
integrated into Auto-Sklearn (see Section 2.3.2). Applying various kernels allows for extracting linear and
non-linear components and, thus, extracting (automatically) helpful features. NNs have shown their ability
to extract valuable features by applying, e.g. auto-encoders that learn a feature representation through a
bottleneck layer of the network’s architecture. Thus, they implicitly apply representation learning, where
the task is to learn how to represent features using simple computational units. The extracted features are
represented by the bottleneck of the auto-encoder and thus a dense representation that implicitly combines
and selects suitable features.

2.2.3.2 Feature Selection

Feature selection is the task of selecting the most valuable features from a given data set to improve the
ML pipeline performance. By selecting the most valuable features and removing redundant or misleading
features, less data is passed into the pipeline, and thus costly computations are reduced. Furthermore, by
bypassing less features into the ML pipeline, the interpretability for predictions made are improved as less
features are considered within the underlying ML model. It might enhance the performance of the pipeline
[203] as redundant noise is removed from the data set used for training. The main feature selection techniques
can by characterised by their interaction with the function f (see Definition 4) into (i) filter, (ii) wrapper and
(iii) embedded techniques [203].

22

2.2 Machine Learning Pipeline

Filter techniques assess the use of the features by looking only at the intrinsic properties of the feature
values that can be divided into univariate and multivariate methods and are independent of the ML model.
Univariate filter techniques consider each feature separately and ignore feature dependencies e.g. x2-test or
information gain [17]. Multivariate filter techniques consider feature dependencies e.g. by selecting features
based on the correlation [105]. Further examples for multivariate filter techniques that do not incorporate a
selected ML prediction model f are the Markov blanket filter [132] or the fast correlation based [248] feature
selection.

Wrapper techniques embed ML models within the feature selection step. Subsets of possible features define
a search space that is evaluated in conjunction with the model on a loss metric £. Therefore, the search
for a specific subset of features is performed by training a model on the subset and testing it based on L.
The search for valuable features is thus wrapped around the model and can be performed automatically.
Search techniques can be grouped into deterministic and heuristic methods [254]. Search heuristics (HPO)
that can be applied not only on AutoML but also on feature selection tasks are depicted in more detail
in Section 2.3. Siedlecki and Sklansky [212] compare different approaches such as branch and bound
optimization techniques that lead to optimal solutions and state that due to the exponential growth of
possible feature combinations the application of heuristics such as simulated annealing [216] and genetic
algorithms [125, 152, 179] (see Section 2.3) is more suitable for an automated and wrapped feature selection
than the application of approaches that guarantee an optimal solution.

When the search for suitable features is integrated into the model, embedded techniques are applied. For
instance weighted random forest [63, 231] selects features within an ensemble of classification trees (see
Section 2.2.4.1) that are used as decision nodes. But also NNs are successfully applied [12, 165] to select
suitable features and to perform a supervised learning task. The wrapper and the embedded techniques can
be combined with feature extraction but are mapped to a specific model.

For instance, by learning weights of NNs, features can be extracted as well as selected. This also shows
that the boundaries between the individual steps displayed in Figure 2.4 can sometimes not be distinguished,
but also that the data preparation, as well as the feature engineering step, can be automated in connection
with the underlying model. These models can either be predictive models used in the latter step of the ML
pipeline to evaluate a feature set [212, 216, 125, 152, 179] or a model used to perform HPO [63, 231, 103].
To complete the ML pipeline depicted in Figure 2.4 and to showcase the main differences in concepts that
are suitable to solve the supervised learning problem (see Definition 1), we present in the following the main
learning techniques.

2.2.4 Learning Models

In this section we present the foundations for different algorithms that are capable to minimise the metric £
using a validation protocol V(-, -, -, -) (see Definition 1). The most common approaches to solve Equation 2.1
are decision trees, SVM (Support Vector Machine), Bayes based, neighbourhood based and NN (Neural
Network) approaches. By highlighting the differences, strengths and weaknesses of these concepts, we
showcase the heterogeneity and thus the importance of the model selection step. Furthermore, the selection
of the underlying model influences the needed data preparation steps in that some models are constrained in
their feature values. For a more profound insight into different ML concepts we refer to [94, 101, 170].

23

2 Foundations

2.2.4.1 Decision Tree

A decision tree is first and foremost a method for approximating discrete-valued targets y € Y (classification)
that uses a tree like model for its decisions. They learn simple decision rules inferred from the instances
7 e X [192] by sorting them down in a tree from the root to some leaf node. The last leaf node provides
the classification of the instance . Each node of the tree represents a tested feature and has two or more
branches that constitute values for the tested attribute. Quinlan [192] propose a greedy algorithm that
grows the tree from the root to its leafs top-down. The algorithm selects the attribute that best classifies
the used training examples at each node. The choice of a feature’s worth for a decision node is commonly
measured by the information gain, which measures how well a given feature separates the training examples
according to the target y. This process continues until the tree perfectly classifies the training examples
(7, y) € Dirain, or until all features have been used. However, besides this greedy heuristic, there have
been several extensions and improvements [193] for decision tree learners, and the advantages are evident.
Decision trees can easily be visualised and thus are simple to understand and interpret. Furthermore, due to
the structure of the tree, the computational costs for predicting ¢ are logarithmic in the number of instances
used to train the tree. Disadvantages appear when learners that build a decision tree create over-complex
trees that do not generalise on the data set D. This effect often appears when learning regression tasks since
the label y can have an infinite number of expressions. To avoid over-complex decision trees is to limit the
tree size or its memory consumption.

2.2.4.2 Support Vector Machine

Another powerful and versatile concept for learning supervised problems are SVM’s [32, 57]. They construct
a hyperplane, or set of hyperplanes in a high dimensional space that maximises the margin between the
training features 7 and the hyperplanes. Intuitively, a good separation is achieved by the hyperplane with
the most significant distance to any class’s nearest training data points. In general, the larger the margin,
the lower the generalisation error of the classifier. The planes used to build the hyperplane and measure
the distance passing through a class’s points are called support vectors. The learned hyper-planes are then
used to predict based on the feature vector 7 the value y. If all points are separable by a hyperplane,
this can be defined by a hard margin SVM. However, this is not the default due to data contamination.
To solve this problem, a soft margin SVM uses a tolerance to violations of the hyperplane employing a
hyperparameter. One key innovation associated with SVM is the kernel trick. The kernel trick observes
that many machine learning algorithms can be written exclusively about dot products between examples.
It enables a non-linear classification and is mainly implemented as a further hyperparameter. However, to
extend SVM for regression tasks, the objective to find a hyperplane that splits the classes of D is reversed in
that the goal is to find a hyperplane and support vectors that fit as many instances as possible between the
support vectors and thus to predict a regression label . Since SVM models use only a small subset of training
points to create the support vectors, they have the advantage of being memory efficient. Furthermore, by
choosing a soft margin SVM, the classification function can be adapted to inconstant data and thus to the
data preparation step presented in Section 2.2.2. A disadvantage of SVM is that if the number of features is
much higher than the number of samples available within D;,.4;,,, avoiding over-fitting in choosing Kernel
functions and regularisation terms, are crucial and require deep domain and model knowledge.

2.2.4.3 Neighbourhood

Algorithms based on the search in the neighbourhood of a feature vector 7 are usually used in unsupervised
learning settings. In the unsupervised scenario, the task is to cluster data points based on the distance

24

2.2 Machine Learning Pipeline

measurement of Z. Fix and Hodges [83] propose with k-NN (k-Nearest Neighbors) an approach that
classifies data points based on a majority voting of the £ closest already seen data points (D¢,.q;5,). Thus, the
training of the algorithms consists of storing the labelled data points to estimate the closest relation within the
feature space X on unseen data points. With the given labelled data points, k-NN can predict an unlabelled
data point 7 based on the distance measure. Commonly used distance measurements are e.g. Minkowski,
Manhattan or a simple Euclidean distance. To perform a regression task, each of the k nearest data points
contributes uniformly or based on their weighted distance to the regression estimation of a feature vector .

However, with an increasing amount of data points and with a high number of features, k-NN gets compu-
tationally expensive. To avoid a computationally expensive distance estimation, the dimension of Z can be
reduced by dimensionality reduction techniques (see Section 2.2.3). Also, not all data points are necessary
to be stored for a class estimation of an unlabelled data point. Data reduction techniques remove unnecessary
data points from the training data set, reducing the computation complexity. Besides the k-NN approach
where the k nearest neighbours provide the distance estimation and thus the label ¥, a radius based approach
can be applied, where a majority voting is performed based on all data points within a radius r. Besides the
classification, regression tasks can be performed by averaging the label y of the k nearest neighbours or the
instances within the radius 7.

2.2.4.4 Naive Bayes

NB (Naive Bayes) is a simple method to perform classification tasks. They are based on applying the Bayes’
theorem with the assumption of conditional independence between the features z given the label y. For
example, an apple could be classified as an apple (label y) if it is red, round and has a diameter of about 10
cm (features 7). The assumption in NB considers each of these features to contribute independently to the
probability that the apple is classified as an apple, regardless of possible correlations between the colour,
roundness, and diameter features [249]. The Bayes’ theorem is defined by

P(y)P(wlvaxn‘y)

P cey X)) = 23
(y‘xlv) L) P(Il,...,l‘n) ()
and enables the estimation of the conditional probability P(y|z1,. .., z,) for alabel y given a feature vector
2. The probabilities P(z1, ..., x,) and P(y) are retrieved from the data set and are constant given the
input and by assuming that all features of 2 are independent
P(l‘i|y,$1, B T P o7 S [,l‘n) = P(xz‘y) (24)
the probability P(y, 1, ..., x,) for a label y given the feature 7’ can be estimated by
P ITi—, P(zily)
Ply,z1,...,2p) = = . 25
(v, 1 Tn) P(xy,...,xy) (2.5)
The label § can be estimated based on the maximal probability, whereby P(z1,...,x,) can be negotiated,
as it is constant given an input z
n
9 = argmax P(y) H P(x;ly) (2.6)
v i=1

It is clear that the assumption of conditional independence is a strong limitation for real-world applications
and has led to various extensions to the NB approach, e.g. GNB (Gaussian Naive Bayes) [199], augmented

25

2 Foundations

NB Zhang [249] or multinomial NB to support various data distributions. However, Caruana and Niculescu-
Mizil [48] showed in a comprehensive comparison that approaches based on Bayes are outperformed by
other classification algorithms, such as boosted trees or random forests but provided in few cases superior
performances. A further disadvantage of this approach is the limitation to classification tasks.

2.2.4.5 Neural Networks

Neural networks, in general, can range from simple to complex, multi-layered structures. Due to their
versatile NN topologies, they can be used in a wide variety of applications such as image and natural
language processing [109] and showed impressive performances not only in supervised learning tasks.
They are commonly employed in RL, unsupervised learning (auto-encoders) and time series forecasting
tasks. Because of their importance for NAS algorithms, NN are discussed in more detail in this subchapter.
In the literature, NN’s are often associated with the modelling of the human brain due to their artificial
neurons and type of communication along weighted channels. The history of neural networks has been
awe-inspiring in recent years, with its origins in the work of McCulloch and Pitts [162]. To further illustrate
the parametrisation space and the variety of NN’s as well as the importance of their architectures, we
introduce NN’s by modelling a simple logistic regression model as a NN and then depict more complex
NN architectures that finally provided the breakthrough impact. We furthermore formalise NN’s for their
application in NAS.

Xo

Input Activation

i X Output
function function

Input
E weights
%

Figure 2.5: A mathematical model for a neuron adopted from Russell et al. [202].

The elementary component of a NN is a single artificial neuron depicted in Figure 2.5. As the figure shows,
a neuron consists of an input :?; , where each element x; 1,...,%;, is weighted by w; ;, including a bias
o = 1 weighted by w; ¢ within an input function [202]:

ing(T5) = Y wiy % xy 27
=0

An activation function ¢n is applied to this input function to calculate the neuron’s output based on the
weighted input. Most neural networks exhibit a layered or clustered structure, where multiple neurons are
combined into one layer and then concatenated within the NN’s architecture. Whereby the first layer is
called the Input Layer and the last layer Output Layer. If these layers are connected only in one direction,
without loops, they are called FNN (Feed Forward Neural Network). MLP’s are a prominent example for
FNN’s where multiple layers are concatenated, and all layers are fully connected.

The activation function of a neuron (see Figure 2.5) are of great importance for the modelling of NN’s because
they enable us to learn complex functions as, without them, linear functions are generated as outputs, which

26

2.2 Machine Learning Pipeline

limits the ability to learn complex data. Thus, the output of the activation function can be used as input for
further layers or as prediction output:

n

g = ac(in;) = ac(z Wi *Tj;) (2.8)

i=0
By applying non-linear activation functions, it is possible to map non-linearity between inputs and outputs,
allowing more complex problems to be solved. In the modelling of artificial neurons, a distinction is made
between different types of activation functions. The most commonly applied activation functions are ReLU,
Leaky ReLU, TanH, Sigmoid and Softmax. The application of the activation functions depicted in Figure 2.6

104 1.00
s ac(in) = Gt

aclin) = 0 for in <0 o
YT L in for in >0)

-100 -75 -50 -25 (fo 25 5.0 75 10.0

10.0 75 5.0 25 ol 25 5.0 75 10.0

(a) ReLU (b) TanH

089

ac(in) = axin for in <0
R in for in >0

-100 -75 -50 5 00 25 5.0 7.5 10.0

10.0 75 5.0 25 ol 25 5.0 75 10.0

(c) Sigmoid (d) Leaky ReLU a = 0.2

Figure 2.6: Commonly used Activation Functions: (a) ReLU, (b) TanH, (c) Sigmoid, (d) Leaky ReLU

can be developed based on their advantages and disadvantages and thus is highly dependent on the task and
the domain knowledge. ReLU, for example, has the advantage of being very resource-efficient, as the output
is always greater than 0 but does not bound the result of the output to higher values. In contrast, Leaky
RelU differentiates negative input values. The Softmax activation function is generally used as a categorical
activation function as it compromises all inputs. It compresses the outputs in that they range between (0, 1)
by dividing through the inputs of other neurons within the layer:

ing

e
Zf:l e

The Softmax activation function depicted in Equation 2.9 can thus be interpreted as a probability for a class,

aci(in) = 2.9)

whereby the sum of the results equals 1. However, the architecture is already crucial for the predictive
performance and highly depends on domain knowledge. For instance, considering a neural architecture
with only one output neuron and a Softmax activation function, the output remains constant regardless of

27

2 Foundations

the input. TunH is a logistic function that maps the outputs to the range of (—1,1). It can be used in
binary classification and produces two classes accordingly within the range [—1, 1]. The Sigmoid activation
function is another logistic function that normalises the output of a neuron to (0, 1). As it normalises the
output and is independent of other neurons within the layer, it can be used for binary classification tasks.

The most straightforward neural architecture commonly applied in regression tasks is the linear regression
and for classification tasks the logistic regression. By summarising the weighted bias b = wg_; + xo, we
receive the prediction function for a linear regression model, where w; ; are the regression coefficients and
b denotes the intercept:

m7(37;) = Zwi)j * Xi5 + b (2.10)
1=1

By passing this input into a Sigmoid activation (Figure 2.6¢c) function, we receive a (binary) Logistic
Regression model, that is broadly used in statistics as well as in ML:

1

e i

PY=1X=z;) =
This means, we can think of Logistic Regression as a one-layer NN. Further, seeing the linear and logistic
regression models as the simplest architecture of a NN that are already broadly applied in online and offline
learning indicates the suitability of NN’s in online learning (RQ II1.1), which will be useful in the course of
this thesis and particularly for Chapter 8 , where we present the the online DL framework.

However, besides the activation function, the concatenation of different layers, as well as the input function
(see Figure 2.5), shows the variability of possible neural architectures. In the context of NN with multiple
(hidden) layers, the term DL and DNN is often used. Besides a MLP another well-known form of NN are
RNN, where the neurons can have connections travelling in both directions by introducing loops into the NN
architecture. This means that a neuron is also influenced by its own but temporally previous activation. The
modelling is, therefore, much more dynamic than in the case of FNN and takes temporal behaviour patterns
into account. However, RNNs bring challenges that need to be overcome, such as the fact that the gradient
required to train the weights of the NN is challenging to obtain, as it needs to be propagated, not only over
several layers but also back over time [174]. LSTM (Long-Short Term Memory) offer a solution to stabilise
this gradient problem. In addition to the traditional RNN, these neural networks contain memory blocks in
the recurrent hidden layers and thus can be trained similar to FNNs. On the one hand, these blocks consist
of memory cells that store the temporal state of the network via self-connections. Furthermore, they contain
gates that enable the flow of information to be controlled [111]. Other well-known RNNs are Hopfield
networks and Boltzmann machines [202].

Besides, the backward connections of RNNs architectural changes of the layers have led to the outstand-
ing performances of NNs on various learning tasks. One of the most popular types of DNNs are CNN
(Convolutional Neural Network), which were introduced by LeCun et al. [146] in 1989. They gained
success in recent years particularly in image classification [138, 145], NLP (Natural Language Processing)
and computer vision [4]. They mainly involve sliding a filter over the layer’s input and thus gathering the
activation of the filters, which makes them particularly good at processing data that can be organised into a
grid structure. This applies, for example, to time series that can be arranged in the form of one-dimensional
grids or two-dimensional pixel grids that are present in image data. A CNN layer can be parametrised by its
convolution as well as a pooling operation that further reduces the dimensions of the filter’s output. CNN
architectures have shown impressive results on the most common data sets for image classification.

A breakthrough to state-of-the-art in image classification was achieved in 2012 with the developed AlexNet
[138] architecture, which obtained a then remarkable performance on image classification competitions. By

28

2.2 Machine Learning Pipeline

increasing the number of convolutional layers Simonyan and Zisserman [215] proposed in 2015 VGGNet that
outperformed AlexNet, but also increased the number of trainable parameters (weights) from 62.4 million to
138.3 million parameters. However, the increasing number of convolutional layers leads to an impediment to
the convergence of the model during training [107, 18]. This problem is also called vanishing or exploding
gradients. In 2016 He et al., introduced instead of increasing the number of convolutional layers, the concept
of residual learning, where skip connections are used to bypass some layers [107]. Another concept for
improving CNN’s is InceptionNet [225], where the structure of the CNN layers are twisted by using filters
of various sizes in one layer of the neural architecture. With an ever-increasing availability of computing
power, Google introduced the search for the best CNN architecture with NASNet [255, 256] and thus paved
the search for suitable neural architectures (NAS). In particular, research on CNN’s has created a remarkable
change in terms of ways to solve complex problems in a wide variety of domains. We further discuss the
development for NAS developments in Section 2.3.3.

We discussed the basic concepts, as well as the constituents of NNs; and to perform NAS within the course of
this thesis, we formalise a NN in Definition 5. There have already been numerous formalisations [13, 82] for
neural networks, whereby the formalisations differ in their focus and variability. Bauer [13] propose graphs
for representing the computational processes and functions with NN and Fiesler [82] formalises a NN by a
topology combining a framework of layers and their interconnection scheme. We define a configured NN in
regard to NAS techniques as FNN in Definition 5 for a supervised learning (see. Definition 1) task. Further,
as we assume a FNN structure, we denote the connections between the neurons as a DAG g, whereby the
nodes of g represent the neurons of the neural architecture.

> Definition 5. NN (Neural Network) optimization problem, adopted from Bauer [13] and
Fiesler [82]

Let g be a DAG (Directed Arbitrary Graph) that characterises the connection between a set of
nodes z € Z, which are also referred to as layers. Eachnode z € Z is configured by A € A(*)
and contains a set of trainable parameters w € W), Then a NN architecture f : X — Y
can be characterised by fg — ~ and the supervised learning goal (see Definition 1) becomes

2 A
to find the optimal weights S that minimises:

w* € arg min V(»C, fg >3 Dtraina Dvalid) (2.12)
wew T

In addition to the types of networks already discussed for classification, there are other types, such as Auto-
Encoders, Extreme Learning Machines, Deep Residual Networks [149] or Graph Neural Networks [206] as
well as Spiking Neural Networks [156], whose popularity is increasing. However, for the aim of this work,
we rely on CNN and MLP architectures and refer to Goodfellow et al. [101] for a deeper presentation of
different network architectures.

Due to the more complex network structures given by the additional layers compared to single-layer NN,
it remains unclear how the network can learn, respectively, how the training process works. As stated in
Definition 5, the weight should be assigned in such a way that the error function is minimised. The gradient
descent method exploits the fact that the negative gradient is defined as the steepest descent direction. This
motivates to find a better parameter value by taking small steps in the direction of the negative gradient of
the error function £. The algorithm to find suitable weights w* can be broken down into three essential
steps:

29

2 Foundations

* Feed-forward calculation fgjj (Z)
* Back-propagation from the output to the input layer

e Update of the weights w

In a first step a feed forward calculation is performed on fg > 7(?) to estimate the output ¢ and thus to
calculate the loss L(y, 3). In the second step, the back-propagation algorithm based on the gradient descent
method is applied [202].

The aim is to allocate the weights of the NN so that the class membership of the training is modelled in the
best possible way. The problem with multi-layered networks is that only the output layer’s predicted output
values can be checked to see whether the expected class corresponds to the actual class. However, the optimal
outputs of the hidden layers are unknown. The back-propagation algorithm, as the name suggests, allows
the error of the output layer to be propagated back to the hidden layers [202]. The third step updates the
weights of the model fg,7,? based on the gradients received for each layer by the back-propagation step and
the loss £. This step is performed by an optimiser. For instance, the SGD optimiser adjusts the weights of a
model for each (?, y) € D based on a learning rate and the gradients obtained from the back-propagation
step. The learning process is comparatively fast, but the frequent updates with little information gain lead
to significant fluctuations in the objective function. Since the performance of SGD highly depends on the
individual data points, the convergence to the global minimum of the minimisation problem in Definition 5
is made more difficult. In batch gradient descent, the gradients from the back-propagation step are first
calculated for all data points within a batch of D and then the weights are updated based on the resulting
mean. Another popular optimization technique to SGD is the Adam [129]. Adam is essentially based on the
momentum algorithm and the use of adaptive learning rates to accelerate convergence of the optimization
problem and is based on AdaGrad proposed by Duchi et al. [70] and RMSProp proposed by Hinton et
al. [110]. While AdaGrad is a modified SGD algorithm that adapts the learning rate based on the parameters
sparsity, RMSProp adapts the learning rate based on a running average of gradients for each weight [202].
Further optimisers are the SGDHD optimiser that was introduced by Rumelhart et al. [201] in 1986. It uses
as Adam a momentum to SGD that remembers the weight update at each iteration. The following weight
update is applied as a linear combination of gradients from the back-propagation step and the previous
updates. This momentum might be beneficial in online learning, especially for the adaptation to concept
drifts. However, as Adam is an extension to RMSProp, AdamW is an extension to Adam, proposed by
Loshchilov and Hutter [158] where the L regularisation factor of Adam is decoupled from the optimisation
process and thus improves the generalization performance.

An enabler for the growing popularity of NNs are, on the one hand, the performance and the increasing
computational resources available, but also the frameworks that facilitate the realisation of a wide variety of
NN architectures. Python frameworks such as Tensor-flow [1], Keras [52] and PyTorch [184] in particular
offer a wide range of possibilities for the modelling of DNN, which can be evaluated against each other using
common problems in the machine learning world. While Tensor-flow was developed by Google and works
on static graph concepts, where the user has to first define the computation graph g of the model and then
run the NN, PyTorch follows a dynamic approach that allows the manipulation of the graph while training.
Further, PyTorch relies on the Torch library [56], that enables the computation of large matrices on GPUs,
and Tensor-flow uses Tensors as core element of the library to perform the matrix multiplications.

In summary, the potential of neural networks becomes apparent due to the multitude of possibilities of their
application and the already achieved results, which is why there is also great interest in using NNs in the
best possible way in practical applications.

30

2.2 Machine Learning Pipeline

2.2.4.6 Ensemble Learning

In many cases, aggregated model’s predictions are better than the best individual model. A group of models
used to perform an aggregated prediction is called ensemble and defined in Definition 6.

> Definition 6. Ensemble Learning [189]
Given a set of n models A™°%! = {f(1) . f(M1 and a data set D, where each model
f: X =Y e Amodel predicts a label y € Y based on a feature vector 7 € X. The goal is
to learn a joint function

FeofMWx.ox fMxXx Y (2.13)

The idea of ensemble learning methods is to select an ensemble of models and to combine their predictions.
Already in Equation 2.6, we chose from a set of different probabilities for classes the most probable one as
final prediction label . Ensemble Learning techniques thus aim to learn a joint function of predictions made
from models that may differ in their predictions. AutoML highly relies on Ensemble Learning as it often
trains an ensemble of ML pipelines. The most popular methods are voting, bagging, boosting and stacking
[94]. In the following, we briefly discuss these techniques.

Voting models aggregate the predictions of each model within an ensemble and predict the value
7 that gets the most votes. Instead of creating separate dedicated models and finding their
accuracy, we create a single model that trains by these models and predicts an output based
on their combined majority of voting for each output value. This technique is also called
majority voting and is mostly used when various independent models are at hand. A voting
model often achieves higher accuracy than the best model within the ensemble.

Bagging is a technique that enables a set of models by using the same algorithms but training
them on different random subsets of Dy,.q;,,. A distinction for training the model set is made
between the sampling of the data set. When sampling is performed with replacement from
the original D;,4in, then this method is called bagging. Sampling without replacement is
called pasting [36].

Boosting is applied when several weak models are combined into a strong learner. Most
boosting techniques train models sequentially, where each model is trying to correct its
predecessor. The most know Boosting techniques are Ada Boost and Gradient Boosting
Ada Boost corrects its predecessor by paying more attention to the training instances that the
predecessor underfitted [94, 87]. By weighting the training instances that the predecessor
under fitted and by weighting the models that perform more accurate Ada Boost temps to
overfit on a training set Dy,q;, When using low regularisation models or chaining too many
models. Gradient Boosting chains models by training the following model on the residual
errors made by the predecessor. The prediction ¢ is calculated as the sum of the predictions
of all models within the chain. Boosting techniques have the drawback that they cannot be
parallelised while training and do not scale as well as voting or bagging techniques.

31

2 Foundations

Stacking is the idea of training different models on Dy, and aggregating them by training new
models based on the predictions made. It was first developed by Wolpert [243], whereby
the model that learns from the output of the base models and finally predicts y is called
meta learner. Stacking has the advantage that the base models can be trained in parallel,
and only the base models and the meta model are trained sequentially.

As we have briefly discussed the main ensemble techniques, some broadly used models have emerged again.
For instance a Random Forests model [230] is an ensemble of decision trees (see Section 2.2.4.1) trained
via the bagging technique [94]. Furthermore, we want to highlight that these ensemble techgques can be
treated as a single model f and thus as an algorithm A parametrised by its hyperparameters X (V) € A AG) -
Concerning the application of ensemble models in AutoML, it can generally be assumed that the ensemble
learner contains all hyperparameters of the underlying base models, plus those parameters that the ensemble
itself requires. These parameters are, for example, the number of base models for applying bagging or the
maximum number of the concatenation of models for boosting techniques.

Summary

In this section, we presented the concept of a typical ML pipeline assuming a supervised learning case, which
consists of the steps (i) data preparation (Section 2.2.2), (ii) data preprocessing (Section 2.2.3) and the (iii)
ML models (Section 2.2.4), following the KDD process. The diversity of the algorithms and models, as well
as the extensive range of parametrisations, result in numerous development possibilities within the KDD,
CRISP-DM or the SEMMA process and thus a large variability to handle a given data set D. Furthermore,
we investigated the development of a ML pipeline with regard to its automation and thus regarding AutoML.
But also, in the specific case of NNs, we highlighted the broad range of architectures and design decisions
that need to be made to successfully apply NNs and thus motivate further the application of NAS.

2.3 Automation

In this Section, we address the automation of the ML pipeline formally defined in Definition 3 and further
introduce the concepts of AutoML (Automated Machine Learning). Further, we introduce different optimisa-
tion techniques to automatically search for suitable parametrisations and present existing approaches towards
AutoML. HowevelrL> before automating an entire ML pipeline, we will focus on the automatic optimisation of
hyperparameters X (*) of a single model A(¥), that transforms a feature vector Z € X into a target value
y € Y. We then introduce in Section 2.3.1 the optimization techniques for HPO that can be extended to
AutoML in Section 2.3.2 and thus utilised for solving the CASH problem depicted in Definition 9.

As already stated, many, almost all ML systems have hyperparameters that can be set in advance of the
training process and thus influence the performance to solve a specific task such as the supervised offline
learning task (see Definition 1). The aim of HPO is to find the hyperparameters A* of a given ML model
that returns the best performance on a given loss £. We define the HPO problem as follows:

32

2.3 Automation

> Definition 7. HPO (Hypterparamter optimization):
Let D be a set of data points and Dy, and D454 subsets ofg, where Dyrqin N Dyaria = 0.
Furthermore, let fy : X — Y be amodel, parametrised by A € Ay. A is also referred to

_>
as the configuration or search space of f. Then the task is to find the hyperparameters A *
of f that return the best performance on D,,,;;4 as measured by a loss £ using a validation
protocol V(, -, -, +):

%
A * € arg min V(‘Ca f?a Dtraina Dvalid) (214)
AEAS

As shown in Equation 2.14 the complexity of HPO depends on several variables. The challenges of HPO
can be resumed as follows [118]:

Evaluation In Definition 7, the possible configurations A ; determines the search space of the
HPO problem and is dependent on the number of options to configure a model f. However,
the evaluation of a hyperparameter search space can be very complex since the model is
configured in advance of the training process [119, 161] and depends on the complexity of
the underlying model.

Complexity The search space A f is often complex and high-dimensional, mainly when compris-
ing a mix of continuous, categorical, but also conditional hyperparameters. Considering
i.ex. a model f configured by p parameters with r possible settings each, then the configu-
ration space increases by the complexity of O(p") [16].

Gradient Usually, the models f are seen as black-boxes, where the loss function £ has no gradient
concerning the hyperparameters of f, and the optimisation process does not consider any
information about the inner functional principles of the model. This leads to the inability
to apply classical optimisation techniques such as Gradient Decent. It becomes even more
apparent when assuming data streams and the data needs to be continuously processed, and
thus the hyperparameters need to adapt incrementally to the data stream.

Generalisability To obtain models that do not only perform well on a validation data set D44
another challenge of HPO is to configure a model f that generalises well on D. The given
data set D is finite, and thus one cannot optimise for generalisation on D,,4;4.

In many cases, the difficulty with HPO lies in the evaluation of the objective function £. Since the
hyperparameters are set in advance of a training process and have possibly a significant influence on the
model’s performance, the search for the hyperparameters A* that minimise the loss £ based on validation
protocol V becomes extremely expensive. Exceedingly exact and solvers that search for global optimal
configurations in Ay are not applicable. Each time we try different hyperparameters, we have to train a
model on Dy,qin, make predictions on D,,;4, and then calculate the validation metric to determine the
models score. With a large number of hyperparameters and complex models, such as for ensembles (see
Section 2.2.4.6), this process quickly becomes intractable to do by hand. To overcome these challenges, we
present in the next Section recent heuristics that are commonly used in HPO.

33

2 Foundations

2.3.1 Optimization Techniques

Optimisation heuristics for HPO can be characterised by their underlying search technique as well as by their
connection to the model f to be optimised. In the latter, when no information about the inner functional
principles is accessible, the optimiser is called black-box optimiser. These are predominantly limited to
Random Search, Grid Search, BO, GA (Genetic Algorithm) and Sequential optimization approaches and are
introduced in the following, whereby we introduce in Section 2.3.1.1 the trivial strategies Random Search,
Grid Search, in Section 2.3.1.2 GA and in Section 2.3.1.3 BO optimisation techniques.

2.3.1.1 Trivial Search Algorithms

The most basic search algorithms for HPO are Grid Search also referred to as factorial design [171] and
Random Search [19]. The Grid Search exhaustively generates candidates by evaluating the Cartesian product
of all parameter configurations specified within A ¢. This product makes Grid Search sufter from the curse of
dimensionality since the number of evaluations increases exponentially with the growth of the configuration
space A [16]. Grid Search is simple to implement, and when not bound to a limited number of evaluations,
it generates a globally optimal solution within A ;. Furthermore, it can easily be parallelised and is reliable
in low dimensional configuration spaces. This has even led to the common use of Grid Search in HPO for
ML systems [94] as well as in NAS [19, 143, 110].

In black-box optimization Random Search is a useful baseline foi> HPO, since it makes no assumption on
the ML model being optimised [118]. It samples configurations A at random until a particular budget for
the search is exhausted. Especially when some hyperparameters are more critical than others, Random
Search finds better models than Grid Search. Figure 2.7 illustrates how parameter grids and uniformly
random parameters differ, when a parameter p; has high and ps a low influence on a function f(p1,p2).
A grid of parameters leads to an inefficient coverage of the exploration space. In contrast, the choice of
random parameters are more unevenly distributed and thus provide a more evenly distributed coverage.
When considering a budget of B for evaluations in both optimisation techniques, both algorithms have no

Unimportant parameter
[
[
o
Unimportant parameter
[

Important parameter Important parameter
(a) Grid Search (b) Random Search
Figure 2.7: Comparison Grid Search and Random Search with a budget of nine trials for optimizing a function f(p1,p2) = g(p1) +

h(p2) =~ g(p1). Above each square g(p1), and on the left of each square h(p2) with low effect on f(p1, p2) is plotted.
This Figure is based on Bergstra and Bengio [19].

guarantee to generate a globally optimal solution within the configuration space. By considering a budget
Bergstra and Bengio [19] claim, that Random Search finds better models by effectively searching a larger
configuration space. A random sampling of hyperparameters can be used to initialise GA and, in particular,

34

2.3 Automation

EA that further explore the configuration space Ay. These search heuristics are depicted in more detail
within the following Section.

2.3.1.2 Evolutionary Algorithms

Population-based methods such as EA (Evolutionary Algorithm) create a set of configurations, and improve
this population by applying local perturbations also referred to as mutations. EA can be split into (i) GA
(Genetic Algorithm), (ii) GP (Genetic Programming), (iii) ES (Evolutionary Strategy), (iv) EP (Evolutionary
Programming) and (v) PSO (Particle Swarm Optimization) [71, 214, 241]. They differ primarily in their
operational scheme depicted in Figure 2.8 and their encoding of the parameter space A for the resulting search
space of the algorithm. This encoding is particularly useful if the representation of a possible solution A can
be significantly simplified. However, the historically emerged search techniques are often used as synonyms

In|t|a||sat|on » Evaluation » | Selection I F
Evaluation

Figure 2.8: The procedure of EA usually consists of an (i) initialisation, (i) evaluation phase and a generation loop containing a
(iii) Selection, (iv) Recombination, (v) Recombination and an (vi) Evaluation step that is run through until a termination
criterion is fulfilled.

for the entire field of evolutionary algorithms. An abundance of other methods and an unmanageable number
of combinations have led to terms conflating. Whitley [241] provide a theoretical comparison between the
classical bit-coded GA, ES and EP. As our approach towards a online AutoML framework relies on EA, we
depict and characterise the broad operational scheme in Figure 2.8 in deeper detail in the following:

Initialisation The initialisation of an EA contains the first generation of solution candidates
and is mainly generated randomly. These candidates are also referred as population or
swarm in PSO and are subsequently evaluated. Considering the Definition 7 GA require a
genotype-phenotype mapping to enable the search within categorical as well as continuous
hyperparameters [113]. ES and PSO [31] can handle the configuration space A directly
so that the configuration space and the search space of the algorithm are identically. GP
initialise and represent an individual (configuration A) of the population within a tree
structure and EP within finite-state machines. Notably, in PSO, the initialisation of a swarm
has a significant impact on the optimisation performance since all particles (individuals
configured by) of the swarm are updated within the search process.

35

2 Foundations

Selection This step is used to select solution individuals for recombination (parental selection)
and determine the next generation of the underlying algorithm. To select the most vital
individuals, for each individual, a fitness is calculated, which forms the reproduction success
of the individuals. In HPO this fitness is represented by the loss £. Common methods for
selection are (i) roulette wheel, (ii) rank, (iii) steady state, (iv) tournament, and (v) elitism
selection [160]. In roulette wheel selection, the probability of choosing an individual
for breeding of the next generation is proportional to its fitness. Rank selection selects
individuals based on their fitness rank within the population and thus considers an equal
share of being set. In steady state selection, only a few good individuals from the population
are selected for creating a new offspring. Poorly performing individuals are removed for
the next generation. Tournament selection incorporates several comparisons based on
their fitness among randomly chosen individuals from the population. The winner of
each competition is used for the recombination step. In elitism selection, well-performing
individuals in the population are used for the next generation without any changes.

Recombination The recombination or crossover step [160] produces an offspring population
by randomly combining randomly the selected individuals from the population. This step
aims to transfer traits (hyperparameters) from the selected individuals that have positive
effects on the configuration and thus the fitness £. Due to the diverse structure (binary,
categorical or continuous) of parameters within configuration space, A different algorithms
are carried out to perform the recombination step. For a genetic recombination k — point
crossover [160] is a commonly applied for recombination, where % crossover points are
chosen from a bit array representation of A. The bits between the crossover points are
swapped between the selected individuals to generate a new configuration A .

Mutation After having generated a new configuration Y, a mutation step is applied, where the
design of the model is randomly changed. This step is usually controlled by a mutation rate
that gives the probability that an individual of the newly generated population is mutated.
In a binary representation of A, a mutation can be applied by randomly flipping bits of the
array. For continuous variables the mutation can be applied using a (0, o) distribution.

Evaluation After the initialisation or the mutation step (see Figure 2.8), the algorithm contains
a population of models (individuals) where the fitness or the performance is unknown. In
this step, these individuals are evaluated, and their fitness is calculated. For HPO this step
calculates the fitness based on a validation protocol V(-, -, -, -) by training the model f5 on
a training data set Dy,.q;,, and validating it based on D,,,;;4. The computation of the fitness
(see Definition 7) can be summarised by performing V(L, f<, Dirain, Duatid)-

A broadly used EA is NSGA-II that is capable of finding multi-objective solutions by performing the basic
steps of an EA (see Figure 2.8) and generating a new population by selecting from a combined population
of the old population. Further, it performs a tournament selection, recombines the selected individuals and
mutates them into a newly generated population. NSGA-II has successfully been applied in AutoML by Olson
etal. [177, 144] in TPOT. A prominent example for ES is the CMA-ES [106], where the idea is to learn the
shape of the search space during evolution. This approach aims to increase the probability of previously
successful steps. The covariance matrix of the distribution is changed in such a way that the probability of
the selected step of the last generation is increased [214]. It is one of the most competitive [118] black-box
optimization algorithms. In NAS, Real et al. [198] apply a regularized evolutionary approach, that skips
the recombination step by only copying and mutating the best performing neural architectures. The oldest

36

2.3 Automation

individual is removed from the population of neural architegt)ures. Similar to Grid Search and Random
Search the search for the best hyperparameter configuration A * of a model f) can be parallelised in EA’s
by calculating V(L, f?, Dirain, Duvalia) for each individual of the configuration in a parallel manner.

In this section, we presented the foundations for EA techniques for solving the HPO problem in Definition 7.
In the following we present BO as another HPO technique that can also be applied in AutoML and NAS.

2.3.1.3 Bayesian Optimization

Challenges in HPO are the evaluation time and complexity of the underlying configuration space A. BO
(Baysian Optimization) as well as EA approaches do not assume any knowledge of the underlying model
and are thus suited for black-box optimisation. It iteratively generates a surrogate model [118, 117] that
quantifies the uncertainty and thus estimates the utility of a configuration A. This estimation is used to
decide for the next configurations A to be evaluated by the validation protocol V(L, fY’ Dirains Duatid)-
BO, therefore consists of two components: (i) the surrogate model for iteratively modelling the objective
function of HPO and (ii) an acquisition function that decides where to sample next [117]. Compared to
the execution of the validation protocol, the acquisition function is cheap to compute and can, therefore,
effortlessly be optimised. Thus, it trades between exploitation and exploration. The acquisition function
is high where the surrogate model predicts a high objective score (exploitation) and where the uncertainty
of the surrogate model is high (exploration). In BO a Gaussian process is commonly applied to build a
surrogate model. The Gaussian process gP(ng), k(?, X)) is specified by the mean function of all
already known configuration performances m(A) and a covariance function k(A, X') [37, 118]. The
mean predictions z(X) can be expressed by the vector of covariances k., the covariance matrix K—! of
all previous observations and the achieved scores y, [118] for the previous observations from the validation
protocol. The mean and variance predictions can be obtained by:

p(X) = kTK 1y, 2(N) = k(X, X) - kK 'k,
The choice of the covariance function k:(?, Y’) considerably influences o and thus indicates the essential
characteristics of the process. However, common choices for this function are the Matern kernel [118] or a
squared exponential kernel [37] function. To determine a well-balanced trade-off between exploitation and
exploration of the acquisition function concerning the Gaussian process, the expected improvement [126] is

a common choice, where all possible improvements by the surrogate model (Gaussian process) are weighted.

In Figure 2.9, we depict adapted from [37, 118] the iterations of the BO process, whereby the Gaussian
prior encapsulates all assumptions or information that where already observed by evaluating different
hyperparameter configurations \. If new hyperparameter configurations are made, the prior belief is
updated based on the new evaluations (also referred to as observations) made. The result is a Gaussian
posterior. The optimisation procedure iteratively explores the search space A by optimising the acquisition
function and thus finding a functional trade-off configuration A between exploitation and exploration. This
sample configuration (in Figure 2.9 referred to as observation) is evaluated on the objective function (see
Definition 7).

The Gaussian prior is updated based on the sampled configuration and its score from the objective function
L. This procedure is repeated until a stopping criterion, such as a maximum number of observations, is
fulfilled.

37

2 Foundations

observation

acquisition function

(a) Iteration 2

- ~
N - ~

mean_estimation - X

uncertainty estimation

acquisition max

(b) Iteration 3

(c) Iteration 4

Figure 2.9: Iterations of the BO process adapted from [37, 118] based on one continuous hyperparameter Y (x-axis), where the goal
is to solve the HPO problem (see Definition 7) and thus to minimise the loss £ of a model f? parametrised by A using
a validation protocol V(+, -, -, -). The objective function is depicted as a dashed black line. The optimisation process uses
a Gaussian process to build a surrogate model, where the predicted mean is shown as a black line, and the uncertainty
estimation is represented by the grey tube. The acquisition function (bottom) is high where the surrogate model estimates
a low mean (exploitation) and where the uncertainty of the surrogate model is high (exploration).

Approximating the the objective function by a surrogate model has led to new state-of-the are results in HPO
and thus the application on AutoML [81, 80] and NAS [218, 217, 166]. BO is exceptionally well suited
for HPO problems where the configuration space is small and continuous. However, it scales cubically
[118] with the number of observed data points (evaluations), and it becomes increasingly complex when the
configuration space A is highly dimensional. The iterative process has a further disadvantage in that it is
difficult to parallelise. To overcome these drawbacks Hutter et al. propose SMAC, a framework for BO that
incorporates random forests.

In this section, we presented the main optimisation methods used in the field of HPO. We presented
trivial strategies, EA and BO based HPO techniques, that already have successfully been applied in HPO.
Furthermore, we highlighted each of the approaches, their advantages and disadvantages. In HPO, we
have so far addressed the problem of finding a suitable model configuration A. However, to automate
the configuration of a ML pipeline (see Figure 2.4) the search space remains more complex, as parameters
of available models that are not used within the configured ML pipeline do not need to be set and thus an
extension to HPO is necessary to incorporate a ML pipeline, but also to search within NAS search spaces. The
extension of HPO to configure ML pipelines is referred to as AutoML and to configure neural architectures
it is referred to as NAS. Both are depicted in the following sections.

38

2.3 Automation

2.3.2 Automated Machine Learning

So far, we have addressed the problem of finding a suitable model configuration f~. by applying HPO.
AutoML (Automated Machine Learning), however, aims to automate a ML pipeline P [81] comply containing
the steps (i) data preparation, (ii) feature engineering and (iii) modelling algorithm (see Figure 2.4). In this
section, we formalise in Definition 8 the pipeline creation problem that enable the automation of the ML
pipeline as well as the underlying CASH Problem that is commonly used in recent AutoML frameworks.
Subsequently, we present common implementations for AutoML.

In Definition 3 we defined a ML pipeline as a triplet (g, X, Y), where g € G represents within a DAG the
pipeline’s structure, X € A the employed algorithms and A € A their configurations. Automating this
configuration of a ML pipeline, however, incorporates finding a suitable structure ¢g* € GG and choosing the
right algorithms A* € A. Following the definition from Thornton et al. [228] a ML pipeline structure g € G
can be modelled as an arbitrary DAG, where each node represents an algorithm A jcaning, A feature and
Anmoder from each step. The problem to find a suitable pipeline P that incorporates the search for a suited
structure g* € G can be defined as follows:

> Definition 8. Pipeline Creation Problem, adopted from [253, 228]:

Let A = {A®M ... AU} be a set of step independent algorithms, and let the hyperpa-
rameters of each algorithm A have a domain AY). Further, let Dirain be a training and
Dyaia be a validation set with D,,,1:4. Let ﬁ(ngj(Dtmm), Dayaiid) denote the metric
that algorghm combination P achieves on D,,;;q When trained on Dy,.4;, With hyperpa-
rameters A . Then the pipeline creation problem is to find a pipeline structure g*, the joint
algorithm combination A* and the hyperparameter setting A * that minimises the metric £
by applying a validation protocol V(-, -, -, -):

—
g*a Z*a A * € arg min V(£7 P X Y7 Dtraim Dvalid) (215)
— 9,4,
geG, AcAlsl NeA

The problem of finding a suitable combination of the presented algorithm steps Acicaning, A feature and
Ajnoder Without considering a variable pipeline structure g € G is often reduced to an algorithm selection and
parametrisation problem. Whereby this reduced approach is in many cases [228, 81, 118] also referred to as
CASH problem and further defined in Definition 9. Instead of solving the pipeline creation problem defined
in Definition 8 that considers the optimisation of the pipeline structure, the majority of AutoML frameworks
solve the CASH Problem. Neglecting the pipeline structure within the CASH Problem dramatically reduces
the complexity of the search problem [253]. However, this relief may also lead to inferior performances for
complex data sets that require multiple, from the fixed structure differing, algorithms steps.

39

2 Foundations

> Definition 9. CASH problem, adopted from [228].
Let A = {AM, ... AU} again be a set of step independent algorithms, and let the
hyperparameters of each algorithm AU) have a domain A, Further, let Dy, be a training

and Dy,iq be a validation set, which is split into K cross-validation folds {Dt(rﬂn, .. Dt(rﬁ}
and {Dgil)ld, . D‘(,gu)j} Let E(P Ve 3 [ram) Dggld) denote the metric that algorlthm

combination () achieves on Dsdfld when trained on 'Dt(m)m with hyperparameters)\ . Then

the CASH problem is to find the joint algorithm combination and hyperparameter setting
that minimises the metric:

Z*,Y* € argmm Zﬁ P A 3 (Dt(fam) Dsgid) (2.16)
Aealsl X AeA

When considering a fixed pipeline structure [228, 134, 223, 81] the pipeline creation problem is reduced to
selecting suitable algorithms A* € Al9/ with their configuration X € A by minimising the loss £ within
a validation protocol V(+, -, -,). In addition to the HPO problem (Definition 7) and the pipeline creation
problem defined in Definition 8, the CASH Problem already incorporates a validation protocol V that split
the data set D into K folds to evaluate a pipeline Pg,Z,Y on the given loss £ on the averaged sum of
losses. However, many AutoML frameworks rely on the CASH Problem and thus are limited to the fixed and
predefined pipeline structure, such as illustrated in Figure 2.4 [253].

The most established frameworks for AutoML are Auto-Weka [228), Auto-Weka 2.0 [135], autosklearn [81],
autosklearn 2.0 [80], TPOT [177] and hyo [147]. Zoller and Huber [253] compare these frameworks by
their (i) underlying solver, their (ii) fixed or variable structure and their (iii) configuration possibilities.
Furthermore, recent developments in DL lead to the integration of NAS into some AutoML solvers. In
Table 2.2, we summarise the differences for most popular AutoML frameworks.

Table 2.2: Comparison of different AutoML frameworks adopted from Zoller and Huber [253]

Framework Solver Structure Ensemble NAS Parallel Time
Auto-Weka [228, 135] SMBO [117] Fixed v X X v
Auto-Sklearn [81, 80] SMBO [117] Fixed v X v v
TPOT [177] GP [85] Variable v v v v
Hypersklearn [134] Hyperopt [20] Fixed X X X v
ATM [223] Bandit Fixed X X v X
hyo [147] Grid Search Fixed v v v v

In Table 2.2, we compare different AuroML frameworks by their solver, whether they consider a fixed or
variable structure g, employ ensemble learning (see Section 2.2.4.6), implement NAS techniques, or whether
they are capable of executing the search for suitable pipelines in a parallel manner or by consideration of a
time budget. These characteristics provide the main differences for the most established AutoML frameworks
[253] considered by the number of citations and stars on GitHub'. To depict further differences, we present

1 www.github.com, accessed January 30, 2023

40

2.3 Automation

in the following a short overview for the the AutoML solver presented in Table 2.2 adapted from Zéller and
Huber [253].

Auto-Weka Thornton et al. [228] introduced in their work not only the CASH problem, but
the framework Auto-Weka that aims to solve the CASH problem. Auto-Weka showed on a
broad range of classification tasks that combined algorithms selection, and hyperparameter
optimisation techniques often perform much better than standard selection and hyperpa-
rameter optimisation methods. It is based on the Weka [104] framework, and in its first
implementation, it considered a subset of 37 applicable classifiers that also incorporates the
selection of ensemble learners. Auto-Weka as well as Weka [104] are implemented in Java
and consider a fixed pipeline structure. Furthermore, Auto-Weka [228] and Auto-Weka 2.0
[135] use the SMAC [117] solver to optimise the search space.

Auto-Sklearn provides in its first version [81] very similar functionalities to Auto-Weka but
is implemented in Python and based on Scikit-learn [185]. ML pipelines are tuned in a
semi-structured design using the SMAC algorithm proposed by Hutter et al. [117].

Auto-Sklearn

Bayesian optimizer

Meta- Data pre- feature pre- . Build
N —> H |—| dict
learning | processor processor predictor | ensemble

ML framework

Figure 2.10: Auto-Sklearn framework [81]

First, the algorithm selects from a fixed set of cleaning steps containing (i) categorical
encoding, (ii) imputation and (iii) scaling an appropriate preprocessing step. An optional
feature preprocessing step and a suited predictor (classifier or regressor) is configured
and executed via the SMAC optimiser. The prediction step incorporates the building of
ensembles. The selection of a suited predictor incorporates the configuration of ensembles,
and since the (i) data preprocessing and (ii) feature preprocessing steps are optional steps,
Auto-Sklearn solves the pipeline creation problem depicted in Definition 8 in a semi-
structured manner. Auto-Sklearn 2.0 [80] enables AutoML to work well on large data
sets under rigid time limits. Figure 2.10 depicts the AutoML framework of Auto-Sklearn
applying BO (SMAC) as solver for the underlying CASH problem.

TPOT is as well as Auto-Sklearn based on sklearn [177] but incorporates GP algorithms to
optimise a ML pipeline with a variable, tree-based structure. The application of GP
as underlying HPO technique has the drawback, that TPOT can only handle categorical
parameters for configuring a ML pipeline. However, to combine the (i) preprocessing,
(i1) decomposition, (iii) feature selection and (iv) modelling operators from the sklearn
environment into a flexible pipeline structure, TPOT processes the initial data set D in a
parallel manner by copying the data set, processing it and merging the data set within a
combination operator. This enables TPOT to handle a variable pipeline structure. Recent
developments in this framework led to the integration of (simple) NAS techniques depicted
in more detail in Section 2.3.3. Furthermore, the GP optimiser enables to control the
complexity and time budget as well as the greediness by configuring a population size, a
number of generations and a time budget.

41

2 Foundations

Hypersklearn was introduced by Komer et al. [134] and was build around the Hyperopt and
sklearn frameworks [20] and implemented in Python. In comparison to Auto-Sklearn
and TPOT Hypersklearn considers a fixed pipeline structure containing exactly one pre-
processing and one classification or regression step. Since Scikit-learn provides a modular
structure, Hypersklearn is a thin wrapper around the Hyperopt framework that follows the
Scikit-learn design principles, as well as a configuration space. The pipeline structure is
fixed to one preprocessor and one classification or regression algorithm. Parallelisation of
the evaluation is not available.

ATM Swearingen et al. [223] propose a bandit based approach with a fixed pipeline structure
based on sklearn. It enables users to simply upload a data set, choose a subset of modelling
methods and execute the underlying AutoML framework. This collaborative approach
enables storing meta-features and thus predetermining suitable ML pipelines before starting
the optimisation procedure. Furthermore. ATM is a distributed approach for AutoML that
allows to simultaneously generating multiple ML pipeline candidates.

ho LeDell and Poirier [147] propose a highly scalable AutoML framework that is available in
R, Python, Java and Scala and can thus be used seamlessly within a diverse team of data
scientists. Furthermore, /1,0 is promoted as ML platform where the underlying grid search
approach evaluates a fixed ML pipeline structure and ranks the pipelines being assessed
within a leader-board, which can be easily exported for use in a production environment.
It further applies Grid Search to build the leader-board.

The differences of frameworks can be summarised by their underlying solver, as well as based on their
ability to optimise ML pipelines with a fixed or variable structure (see Table 2.2). While Auto-Weka 2.0 and
autosklearn use a Random Forest and Gaussian processes [117, SMAC], TPOT employs an EA and hyo a
Grid Search approach, resulting in different features such as ensembles of different pipelines, or a parallel
evaluation. However, their differences also result from the different goals pursued by the frameworks. While
Auto-Sklearn, TPOT, Hypersklearn have the goal to automate the ML pipeline considering a fixed or variable
structure, ATM considers a collaborative approach in order to enable meta-learning techniques and /,0’s
focus relies on the scalability of an entire ML platform that supports end-users by a user interface.

In this section, we formalised the ML pipeline creation problem in Definition 8 and the HPO problem in
Definition 7. Further, we located the CASH problem (Definition 8) as a reduced pipeline creation problem and
highlighted the differences between the problems. With regard to the application of AutoML libraries within
our approach towards a utility-based adaptation, we presented existing AutoML frameworks. In Table 2.2,
we further summarise the differences and similarities of selected AutoML systems. In the following, we
present the foundations NAS (Neural Architecture Search) that enable the optimisation towards suitable
neural architectures.

2.3.3 Neural Architecture Search

The success of AutoML in a broad range of supervised learning tasks, as well as the success of DL, led to the
development of NAS (Neural Architecture Search) as a subfield of AutoML. NAS has gained great attention in
the ML community after Zoph and Le[255] obtained competitive performance on the CIFAR-10 and further
image classification benchmark data sets. Zoph and Le [255] applied in contrast to the HPO techniques
presented in Section 2.3.1 a RL based optimisation technique, where an agent learns to configure a suitable
neural architecture by obtaining an training based on the metric loss of evaluated neural architectures from

42

2.3 Automation

an so called environment. While Zoph and Le [255] used vast computational resources to achieve the results
(800 GPUs), and have pushed the research into more efficient search strategies. A wide variety of methods
have been published in quick succession to reduce computational costs and achieve further performance
improvements on the benchmark data sets. This success has further been accompanied by rising demand for
architecture engineering, where increasingly more complex neural architectures are designed manually [74].
Similar to AutoML, NAS methods can be categorised according to their (i) search space, (ii) strategy and
(iii) performance estimation strategy. As depicted in Figure 2.11, the search strategy selects a model from a
predefined search space (G, Z, A). This model is passed to a performance estimation strategy that returns
the performance (loss) to the search strategy to give a search direction and enable further optimisation.
However, already here, the similarity to AutoML techniques becomes apparent.

Metric Learning Process
Architecture

J—
Search Space /M\A Performance
» Search Strategy Estimation
GAZ -
Strategy
Loss

‘C(fg ,Zz(Dtruin)v Duulid)

Figure 2.11: Illustration of the NAS methodology adapted from Elsken et al. [74] containing the interaction of a search space G, Z, A,
a search strategy, and a performance estimation strategy.

To automate the search for suitable structures, the concept of NAS has been proposed by Pham et al. [188]
and has shown great success on various data sets. Current research in NAS e.g. [125, 5, 122, 11] have
shown that NAS frameworks are able to outperform hand crafted state-of-the-art architectures and to set
new benchmarks on established data sets. We formalise in Definition 10 accordingly to Figure 2.11 and
Definition 5 the NAS problem. As stated in Section 2.2.4.5, Bauer [13] formalise a NN as a DAG that
transforms an input X to an output Y with a set of nodes z € Z. Thus, based on the CASH problem in
Definition 9 and Definition 5 for NNs, we formalise in Definition 10 NAS as follows

> Definition 10. NAS Problem, adopted from Jin et al. [125]:

Let Dyyqin be atrain and D,,4;;4 be a validation data set, which is split into K cross validation
folds {D'V). ... D) 1 and {thd,..., whd} Furthermore, let f _ 5 € F be a
neural network, configured by a graph structure g € G and a set of nodes z € Z, with

a parametrisation A € A* Let £(f 23 (Dt(fa)m) Dgzl)id) denote the loss function a neural
(4)

irain- 1hen the neural architecture

network f 23 achieves on D?)

valiq When trained on D'

search problem is to find the neural network f 23 . that minimises the loss:

K

* £ Vx . A %

g F N € arg min gz £, 3! +(D), DD) (2.17)
9eG, F ez, XeAldl i=1

As already referred to within the CASH problem, Definition 10 splits a given data set D into K - folds to
average the sum of losses and to use all data available within D to train and validate a network fgjj'
By choosing this validation protocol the performance estimation strategy in Figure 2.11 is influenced by
the number of epochs to update the weights of a given model fg,?,i)' Furthermore, NAS approaches differ

43

2 Foundations

in their search space they search in and the underlying search strategy. The differences are depicted in the
following.

2.3.3.1 Search Space

Comparable to AutoML, there can many different search strategies be applied to explore a search space
G, Z, A. However, the choice of the underlying search space has a high impact on the performance and,
thus, on the comparability of the underlying search strategy. In NAS, however, the search space differs in the
connection types of different layers, depicted in Figure 2.12.

Ty Tﬁ Tﬁ] T block,

softmax softmax softmax 'l pooling

)

: : =
n T dense f
1
1

[K]
block,

\ conv
o N \

(a) Chain structured NN (b) Chain structured NN
architecture with skips (c) Block structured NN architecture with skips

Figure 2.12: Illustration of different architectures when a) concatenating different layers, b) concatenating different layers with skip
connections, and c¢) concatenating configurable blocks of layer structures adopted from Elsken et al. [74]. Each architecture
has configurable (black arrows) and fixed (dashed arrows) connections to predict from an input Z an output g by processing
the input within operators associated with nodes z € Z.

When concatenating i.ex. various layers such as fully connected (dense) or CNN layers to a FNN the search
space is parametrised by the (i) maximum number of layers, (ii) the layer type, or the operation of the
layer executes, e.g. normalisation, pooling, convolution and (iii) the hyperparameters (\) associated with
this operation [74]. In Figure 2.12a, we illustrate the approach that concatenates different layers without
skip connections. These approaches optimise mainly CNN architectures [11, 220, 46] by concatenating
CNN layers an configuring e.g. the number of filters, kernel size and strides or the number of units for
fully-connected NN (MLP) networks [167].

However, modern NN architectures are not represented by the simple concatenation of layers and include
additional types of architectures, e.g. skip connections depicted in Figure 2.12b or multi-branch architectures
[74]. These more complex architectures have higher degrees of freedom and thus cover a more extensive
search space G, Z, A. They enable to map complex residual structures, where previous layer outputs are
summed [107] or concatenated [115]. Brock et al. [38] propose a configuration space that consists of a
large set of memory blanks, where each layer reads data from a subset of the memory bank and writes or
overwrites the result back into another subset of the bank. This approach enables the exploration of a broad
range of architectures with variable depth, connectivity patterns and layer sizes. Elsken et al. [75] apply
network morphisms to generate large NN architectures that consider skip connections and yield to competitive
performances on established data sets and to accelerate the convergence of new neural architectures further.

Inspired by hand-crafted architectures that often consist of repeating layers, recent developments in NAS [225,
107, 115] consider a block-wise search space, where blocks of layers are parametrised and concatenated.

44

2.3 Automation

Zoph et al. [256] propose the NASNet search space. In NASNet different convolutional blocks are configured
and stacked to a CNN architecture. By stacking blocks, (i) the size of the search space is reduced while
achieving better performances, (ii) build architectures can easily be transferred to other data sets or included
in other architectures, and (iii) the repetition of patterns in previous architectures is mapped to NAS. The
smaller search space while achieving better performances [198] has led to the adaption of block-wise
architectures [198, 188, 73, 45]. Building architectures from blocks, new design choices arise. While Zoph
and Le [255] build a sequential block-wise CNN architecture, Cai et al. [45] employ a meta architecture,
where blocks can be combined arbitrarily [74]. Splitting the global search space into a micro search space
(configurations of blocks) and a macro search space (links between the blocks) simplifies the search process
but should be carried out simultaneously. The inner structure of the block influences the design choice of the
meta-structure, and a mishandled meta-structure leads to non-performing architectures about the validation
protocol V and the loss L.

However, the choice of the search space G, Z, A indicates the difficulty of the optimisation problem. Zoph
and Le [255] e.g. explore their search space by utilising 800 GPU for 28 days. The difficulty of evaluating
large search spaces with limited computational resources led to the development of benchmark search
spaces, where the search space is commonly fully explored. NAS-Bench-101 [247] was the first benchmark
data set that contained 423k different architectures trained on the CIFAR-10 [137] for 4,12,36 and 108
epochs trained for 900 TPU (Tensor Processing Unit) days. Dong and Yang [68] extended NAS-Bench-
101 by adding learning curves based on the CIFAR-10, CIFAR-100 [137] and ImageNet [62] data sets.
However, NAS-Bench-201 explores a smaller search space that contains 6k different. By building surrogate
architectures Siems et al. propose NAS-Bench-301. It consists of 10! architectures based on a DARTS [153]
search space whereby 60k architectures were trained for 30 epochs. In order to build one interface for several
NAS-Bench data sets the NATS-Bench [67] framework was developed Further, NAS-Bench-NLP [130] was
developed to perform NAS on NLP tasks.

Since more complex architectures tend to perform better and already small search spaces pose the problem
of remaining non-continuous, an efficient search strategy becomes necessary. In the following, we depict
commonly applied search strategies in NAS.

2.3.3.2 Search Strategy

In the previous section, we depicted the variability of architectures and, thus, the variability and complexity
of different search spaces that led to the development of benchmark data sets. In this section, we depict
different search strategies that have been applied in NAS. According to AutoML solvers, random search [147,
164], BO [19, 64, 125, 252], and EA [155, 84, 222, 198, 229, 75, 220] methods are also applied in NAS.
However, additionally RL [55, 255, 256, 226] approaches as well as gradient-based methods are commonly
applied as search strategy [74]. In the following, we briefly present these different search strategies:

Trivial Search Strategies are generally applied to construct benchmark data sets, such as NAS-
Bench [164], or to explore the entire search space with respect to the loss function [147].
While hyo applies grid search to perform NAS based on smaller MLP architectures, random
search is often applied as baseline for new search strategies [198]. However, as the number
of evaluations in NAS is crucial, trivial strategies require an excessive amount of evaluations
and remain therefore unsuitable for NAS.

Evolutionary Algorithm methods have been frequently used for searching not only the optimal
architecture but also searching for optimal weights of neural networks [155]. Optimizing si-
multaneously the architecture as well as the weights of a NN is also termed as neuroevolution

45

2 Foundations

46

[84]. As discussed in Section 2.3.1.2, the success of EA in HPO depends on the encoding
of the individuals within the population. In NAS, these encoding spaces are configured by
the search space whether they encode the layers, blocks or the topology in a fixed, partial
fixed or relatively free architecture encoding [155]. Furthermore, to enable NAS with EA
approaches the (i) initialisation, (ii) selection, (iii) recombination, (iv) mutation, and (v)
evaluation steps need to be specified as illustrated in Figure 2.8.

The population of NN's can be initialised by three types of methods: (i) trivial, (ii) random,
and (iii) rich initialisation. The trivial initialisation starts with a relatively simple architecture
for each individual within the population to explore and exploit more complex architectures
within the evolutions. Random initialisation [221, 229] methods initialise a population by
randomly sampling neural architectures and the rich initialisation [256] uses the knowledge
of already well-performing models to obtain a population at the beginning of the evolution
process. For the evaluation of the population, simple NNs with fewer parameters have
the advantage that they are, compared to more complex architectures, computational less
expensive to train. A trivial initialisation [198, 245, 197] can thus evolve to more and more
complex and performant architectures until a stopping criteria is fulfilled. However, a rich
initialisation can potentially obtain already well-performing architectures at the beginning
of the search process.

The selection the strategies can be grouped as presented in Section 2.3.1.2 into (i) roulette
wheel [245], (i1) rank [198], (iii) steady state [73], (iv) tournament [221] and elitism [229,
75, 220] selection. Real et al. [198] apply an ageing evolution, that discards the oldest
individual in the population.

The existing selection strategies focus on preserving suitable architectures within the popu-
lation by simultaneously fostering the diversity of the population for a better exploration of
the search space. For the recombination step Sun et al. [222] proposed crossover recombi-
nation for NAS. The crossover operation achieved better performances against approaches
without recombination in this method. However, the crossover operation also showed that
it could generate offsprings dramatically different from the parents. Approaches, that skip
recombination and simply mutate a parent architecture [198, 255] let an individual explore
the neighbouring region. The evaluation step is the most time-consuming step in NAS.
To reduce the evaluation time in NAS weight inheritance [198, 75] or an early stopping
policy [222] is commonly applied in EA approaches. One-shot approaches, as proposed by
Zoph et al. [256], train a single over-parametrised network, the one-shot model, where the
structure contains subgraphs for other candidates of the search space. This one-shot model
is used to share the weights, warm start other parametrisations, and thus reduce the required
computational resources to explore a search space. Real et al. [197] propose an ageing evo-
lution (also denoted as regularized evolution) algorithm and compare this search strategy
against the RL approach proposed by Zoph et al. [256] and a random search strategy based
on the NASNet search space. Furthermore, TPOT [177] is as presented in Section 2.3.2 able
to perform NAS based on a EA search strategy and a MLP search space.

2.3 Automation

Baysian Optimization As in AutoML, BO has also been employed in NAS [209, 240] but the
large and non-continuous search spaces of NAS as discussed in Section 2.3.1.3 tend to make
BO unsuitable for NAS. Despite the search space, Bergstra et al. [20] created state-of-the-art
CNN architectures by applying BO. Furthermore, Domhan et al. [64] achieved state-of-the-
art performances by applying the SMAC algorithm. Motivated by the observation that
when neural architectures are created by hand, humans can quickly detect that a NN
performs poorly and terminate the corresponding training; Domhan et al. [64] mimics
this early termination of poorly performing training using a Bayesian surrogate model
that extrapolates the performance of a given architecture at the beginning of the learning
process. Auto-Keras [125] is accordingly to the AutoML frameworks a NAS framework
based on Keras [52] that implements BO as a search strategy and develops a kernel and a
tree-structured acquisition (SMAC [117]) function to efficiently explore the search space.
Another framework developed by Zimmer et al. [252] that applies an adapted BO (BOHB)
technique is Auto-Pytorch.

Reinforcement Learning An approach not commonly applied in AutoML but in NAS is RL
(Reinforcement Learning). Excessive research work to solve the NAS problem with RL
based approaches [255, 11, 256] and heterogeneous search spaces has been applied. RL
approaches generate architectures from an agent’s actions, where the action space of the
agent refers to the search space G, Z, A. The agent’s policy that leads to the actions is
trained on an estimate of the performance of a model fng (also referred to as reward)
configured by the agent. This reward can be represented by the validation protocol V
and a given loss metric £. RL approaches for NAS mainly differ in the agent’s learning
model that learns a policy by optimising the reward obtained by evaluating the given neural
architectures and how the agent’s model is updated within the search procedure. Zoph
and Le [255] use a RNN to sequentially encode an architecture and optimise the agent by
applying a policy gradient algorithm [255]. In a later approach Zoph et al. [256] apply a
proximal policy optimization. Baker et al. [11] propose a g-learning approach, where the
agent interacts with the environment by sequentially building CNN architectures. Other RL
approaches such as [255, 188, 226] use Policy Gradient algorithms.

For practical usability, frameworks have emerged around NAS procedures or that have been explicitly
developed for NAS. In Table 2.3, we provide an overview of the most common NAS frameworks. Contrary
to AutoML frameworks for NAS differ more in the goal they pursue. In order to include NAS into established
AutoML frameworks, TPOT and hyo use a MLP architecture as underlying search space with the goal to
include the configuration of NN into the search space. This enables to combine the search for suited ML
pipelines and DNN search spaces but possibly neglects more suitable architectures such as CNN and RNN.
While TPOT uses PyTorch [184] hyo uses Tensorflow [1] as underlying DL framework.

47

2 Foundations

Table 2.3: Comparison of different NAS frameworks.

Framework Search Strategy Search Space Benchmark
TPOT [177] GP MLP X
hyo [147] Grid Search MLP X
Auto-Keras [125] SMAC [117] Dense, CNN and X
ResNet blocks
Auto-Pytorch [252] BOHB [78] ResNet and MLP X
NASLIb [164] DARTS, Random NAS-Bench? v
Search, Bananas
Retiarii [250] EA Variable -
Keras-Tuner Random Search Variable -

Further frameworks depicted in Table 2.3 are Auto-Keras [125], Auto-Pytorch [252], NASLib [164] and
Retiarii [250]. These frameworks differ in the goal they pursue in that Auto-Keras and Auto-Pytorch are
frameworks that aim to find suitable neural architectures based on new image, text, or tabular data sets a
user provides and wants to have processed. In Auto-Keras the underlying HPO (SMAC [117]) searches
within fully connected (Dense), CNN and ResNet blocks for a suitable model fg,?,Y' The generated blocks
are surrounded by input and output blocks to maintain compatibility with other data sets and formats. As
the name of the framework suggests the underlying DL library is Keras [52] and implements BO as HPO
technique. Auto-PyTorch [252] relies on PyTorch [184] and stacks based on BOHB [78] various fully
connected and ResNet blocks. In comparison to the other frameworks Auto-PyTorch provides a smaller
variety of neural structures but concatenates further preprocessing steps and thus bridges a ML pipeline and
NAS for tabular data sets. Retiarii [250] as well as Keras-Tuner [178] aim to tune already predefined models
by the user. While Retiarii relies on PyTorch and a mutation based EA search strategy, Keras-Tuner uses
the Keras library to optimise a architecture by a Random Search strategy. Both Retiarii and Keras-Tuner
pursue the goal of tuning already existing architectures. The search space in Retiarii is given by possible
mutations in each layer of the architecture. In Keras-Tuner, the search space is specified by the user prior to
the optimisation process.

Summary

To automate a ML pipeline, we defined in this section the automation of the search for suitable ML pipelines
and neural architectures. We depicted in Section 2.3.1 optimisation strategies that aim to heuristically apply
HPO on different search spaces. In order to automate the search for suitable ML pipelines, we formalised
the pipeline creation problem and highlighted the differences to the CASH problem defined in Section 2.3.2.
Section 2.3.2 further highlights the tools and frameworks that aim to optimise ML pipelines based on different
underlying solvers and pipeline structures. These frameworks were compared based on their characteristics,
e.g. whether they support ensembles, parallel and time constraint optimisation, or if they support NAS
techniques. Building on AutoML we present in Section 2.3.3 NAS as an optimization problem with large and
distinct search spaces G, Z, A and common but from AutoML different search strategies to optimise neural
architectures.

2 including NAS-Bench-101 [247],NAS-Bench-201 [68], NAS-Bench-301 [213], ASR [163] and NLP [164]

48

2.4 Learning to Rank

2.4 Learning to Rank

In order to enable a utility driven AutoML or NAS framework, we introduce in this section LTR (Learning
To Rank) techniques. Thus, within this section, we will first take a step back from AutoML and NAS and
introduce LTR by its initial aim, namely to rank documents. In the course of this work, the ranking of
documents will be applied to the problem of ranking and thus ordering ML pipelines and NNs towards an
underlying utility. First, we formalise LTR as a general optimisation task in Definition 11 and then depict
different possibilities to solve this problem. The motivation for LTR techniques lies within the overwhelming
flood of information; LTR’s aim is to construct a ranking model that can rank this information according
to its relevance. Especially in information retrieval and information filtering i.ex. document retrieval,
collaborative filtering, product ratings, sorting objects based on certain factors poses a central problem. A
well-known approach to ranking documents is PageRank developed by Page [182] (Google) for ranking
websites accordingly to their relevance. It works by counting the number and the quality of links to a
document to determine an estimate of how relevant a document (website) is. Thereby Page [182] assumes
that relevant documents are likely to have more links from other websites or documents. However, LTR
can be seen as both a supervised and unsupervised learning problem. As Page[182] does not consider
any response but is based on a graph including an adjacency matrix that represents the links connecting
the different websites (documents), this approach can be considered as an unsupervised learning approach.
Ranking problems can, thus, be systematically categorised by (i) the available data and by the (ii) type of
response. The available data, at the top level, categorises the ranking problem into label ranking, object
ranking and instance ranking [51]. In label ranking the training data consists of features 7 € X and the
task is to learn a Permutation 77(2') € Perm(1 : t) [239] where

Perm(1 : d) := {r|r is a permutation of {1,...,t}}. (2.18)

The permutation 7(7’) can be interpreted in that (7(’)); denotes the most preferred document. In instance
ranking the training data considers a tuple (7, y) € D, where 7 eX represents the features and y € Y
the ordering of a document. In object ranking the goal is to learn a ranking function that produces a ranking
based only on the features 7 of a document. Based on object ranking Cheng [51], we define the general
LTR problem as follows:

> Definition 11. Learning to Rank, adapted from Werner [239]:

Consider D as set of ¢ documents D = { 2, .., ?t}, where each document is represented
by a vector 7 € X. The documents in D can by ordered in that T 7 ;j and the goal is to
find a ranking function f that assumes as input a set of documents and returns a permutation
of this set.

Based on object ranking defined in Definition 11, we assume an instance ranking setting where in order to
develop a supervised learning task (see Definition 1) labels are available.

Ranking problems can further be characterised by the type of the response [239]. These responses can be
a binary indication of whether a ranked document is relevant or not, ordinal for this indication of an index
{1,...,t} or continuous for a scoring based ranking function. A binary or ordinal indication of relevance
can be a binary or multi-class classification problem. The number of classes within the multi-class case
corresponds to the number of documents to rank. Considering a continuous measurement for the relevance
of documents has the advantage that an ordinal ranking can be derived. With a given threshold of relevance,

49

2 Foundations

a binary indication can be modelled. We assume a continuous measurement for relevance scoring in the
following, which maps to a regression problem.

LTR can further be categorised into pointwise [58, 151] , pairwise [102, 44, 176, 207] and list-wise [46,
120] approaches. In the following, we derive, based on Definition 11, the pointwise, pairwise and list-wise
indications of preferences and provide common approaches.

2.4.1 Pointwise

The pointwise approach assumes that each training document or observation with features 7 is associated
with a ranking measurement. Thus the problem can be reduced to a regression problem. However,
considering a pointwise indication of a relevance score, the question of a suitable data collection method
arises. Pointwise approaches assume that one can rate documents with absolute ratings. To train such a
ranking model, a user has to be aware of all documents in Dy,..;,, to construct a suitable data set that assigns
the correct relevance score to each document. To train the pointwise ranking problem, it can be formalised
as follows:

> Definition 12. Pointwise Ranking, based in Definition 1:

LetD = {(Z1,91),-.., (¢, y:)} be a set of documents, where each document has a label
y € R, then the task is to learn a function f* : X — R (also referred to as ranking model),
that transforms a document by it’s feature vector Z € X into a relevance score y € R.
Furthermore, let £(f (7)7 y) be a loss function that quantifies the correctness of a series
of predictions of f trained on Dyy.qin, C D for 7. Denote that {?,y} ¢ Dirain and
Dirain N Dyaria = 0. Then the goal to is similar to Equation 2.1 to minimise the loss £ on
Dyaiia using a validation protocol V(-, -, -, -).

In Definition 12 we define the pointwise ranking problem as a supervised regression problem, where the
task is to learn a ranking model f : X — R that predicts from a feature vector 7 of a document a
relevance score. A number of existing supervised ML algorithms (see Section 2.2.4) can be readily used for
this purpose. Prominent examples are PRank [58], which performs the ranking by an ordinal regression,
and McRank [151], which employs multi-class classification and Gradient boosting techniques. However,
pointwise approaches are not advantageous for our problem setting, as it is difficult for end-users to assign
an absolute target value for the suitability of a machine learning model.

2.4.2 Pairwise

Pairwise ranking approaches are trained based on pairwise ranked documents. Based on this information, a
ranking model learns a global ranking for all documents in D. The model is trained based on a document
tuple with the corresponding label (?Z, 7 j»y). The label y states the order of both documents in that
y € {—1,0,1} and thus if a document ¢ with its corresponding features Z; is more, equal or less relevant
than document j with features z j- Again, pairwise ranking models can be characterised by their response
type independent of training. The response type of common models is either following the pairwise training
process, the comparison of two documents (i.ex. - 7j), or a relevance scoring that enables the
ranking of documents in D. Considering a comparison based response, the model’s input requires two
documents. In contrast, the relevance scoring method (see Definition 12) only requires one document to

50

2.4 Learning to Rank

predict a document’s relevance score. In Definition 13, we define the pairwise ranking problem based on
pairwise comparisons.

> Definition 13. Pairwise Ranking

Let {71, ey 7,5} again be a set of documents, where each document is characterised by
2 € X. Further, let D = {(Z1, Z1,01),...,(Ze, Zo,u)} € X x X x {~1,0,1}
be a set of document pairs labelled by y € {—1,0,1}. The label y indicates whether
document ¢ is more relevant than document j (71- -7 j) vice versa (71 <7 ;) or ranked
equally as favourable. Based on a training data set D4, the task is to learn a function
f*: X x X — {~1,0,1}. Furthermore, let £(f(Z';, ';),y) be a loss function that
quantifies the correctness of a series of predictions of f trained on Dy,.4;, C D. Denote that
(71', ?j, Y) & Dirain and Dyrgin N Dyaria = 0. Then the goal to is similar to Equation 2.1
to minimise the loss £ on D,4;;4 using a validation protocol V(-, -, -, -).

Considering that the ranking models response is a ranking score f (?) € R predicted based on one document
the loss of the trained model can be modelled by a surrogate function

1, f(3@) > f(7)
9@ T =5 0, f(T)=fT;) (2.19)
-1, f(T) < f(T))

that is then used to calculate the loss £(g(@;, @ ;),) based on a previously defined ranking . Common
approaches for pairwise ranking are Ranking SVM [102], RankNet [44], LambdaRank [43] and Lamb-
daMART [89]. Ranking SVM [102] uses a support vector machine to maximise the span between the
classes correctly and incorrectly ranked to solve the pairwise ranking problem. RankNet [44] uses NN to,
on the one hand, learn a relevance score f (<§) for both documents in a pair within a Siamese architecture
and, on the other hand, to maximise the cross-entropy between the predicted relevancies (g(?i, Yj)).
LambdaRank [43] extends RankNet by not using the actual costs (number of inversions in ranking) but their
gradients for training. Lastly, LambdaMART [89] combines LambdaRank and multiple additive regression
trees. In comparison to pointwise approaches, pairwise ranking approaches have the advantage that the
training data set Dy,.q;, can be generated without global knowledge about other documents to indicate a
relevance score.

2.4.3 Listwise

Listwise ranking approaches learn to rank documents by partial lists of documents that are already ordered.
Similar to the pairwise ranking approach, the output of listwise ranking models can either be a relevance
score for each document (7) whereby the documents are ordered separately based on the predicted relevance
score or the output of the model can directly be an ordering for the selected documents i.ex. a tuple with the
document indices, where the tuple is sorted based on their predicted relevance. In Definition 14, we define
the listwise ranking problem.

51

2 Foundations

> Definition 14. Listwise Ranking

Let {71, R 7,5} again be a set of documents, where each document is characterised by
7 € X. Further, letD = {(71@7 LT yeres (71‘7 . 7J)} be a set of sorted document
tuples of length n, whereby (?i, NN ?j) € X V4,5 <t. Based on D the task is to learn a
function f* : X™ — Y that indicates the ranks 3/ € Y of unsorted tuples {(@, ..., 7;)}.
Furthermore, let £(f((@;,..., ' ;)),) be a loss function that quantifies the correctness
of a series of predictions of f trained on Dy,.q;, C D. Denote that (?i, e 7 ;) & Dirain
and Dyyain N Dyaria = 0. Then the goal is to similar to Equation 2.1 to minimise the loss £
on D, using a validation protocol V(, -, -, -).

To train the listwise ranking approach, Cao et al. [47] propose in ListNet a loss function that enables to
train NNs based on listwise rankings of documents. In NDCG Valizadegan et al. [232] approach this
problem by breaking the list of documents down into pairwise comparisons and optimising the normalised
discounted cumulative gain. Ibrahim and Landa-Silva [120] propose in ES-Rank a ES based approach to
rank documents based on seven different evaluation metrics. In SerRank, Pang et al. [183] learn based on the
already for the training process ranked lists an encoding function that encodes and ranks lists of documents
of any size. As stated in [232] the listwise ranking approach can be reduced to a pairwise ranking approach.
Consider a ranked and thus sorted list of documents i.ex (73, 71, 74) where the most relevant document
is represented by 2’5 and the least relevant document by 2 4, then this list can be reduced to a set of pairwise
comparisons {(Z's, '3,0), (2’3, Z1,1), ... }. This enables to apply approaches presented in Section 2.4.2
for the listwise ranking scenario.

Summary

In this section, we introduced pointwise, pairwise, and listwise ranking approaches that enable the ranking
documents and to obtain their relevance compared to other documents. We presented the pointwise ranking
approach that can be reduced to a supervised learning problem depicted in Definition 1 and the pairwise
ranking approach, where the task is to learn absolute rankings (or relevance scores) based on pairwise
comparisons. The listwise ranking approach, where the ranking model is trained based on sublists to predict
a global ranking of documents, can be reduced to a pairwise ranking scenario by splitting sorted sublists
into pairwise comparisons of documents. For the moment, the added utility of ranking models in the context
of AutoML remains unclear; however, in the course of this work, we will replace the ranking of documents
by the ranking of ML pipelines generated by AutoML instances and neural architectures generated by NAS
instances. The connection of ranking algorithms to HPO in NAS and AutoML is addressed and established
in part III.

2.5 Learning on Data Streams

The purpose of this section is to provide the foundations for ML algorithms that are able to adapt to changes
in the underlying data patterns. The current literature in the field of ML focuses its primary emphasis on
algorithms that can learn from large amounts of data that are already available at the beginning of the learning
process. Within the DM process in Section 2.1, we motivated a traditional, iterative approach towards a ML
pipeline trained on a given data batch. Online learning, however, implies that we are no longer referring
to data sets D that are already available, but rather to data streams S on which an ML algorithm adapts

52

2.5 Learning on Data Streams

incrementally on continuously incoming data instances. As this section moves from batch learning to an
online learning setting, the differences in terminology are illustrated below according to Frochte [90]:

Online learning: Learning a ML model based on data streams without storing the data.

Offline learning: The entire data set D is known from the beginning and can be retrieved at any time.
Incremental learning: Learning of individual data points (instances) one by one.

Batch learning: The model is trained based on subsets of a data set D.

It becomes clear that in an offline learning scenario, a ML model can be trained with a batch of data points
as well as incrementally. Denote that the order of the data points within a given data set D can also have
significant relevance in offline learning. The setting where the underlying data points’ ordering is relevant
is also referred to as a univariate or multivariate time series. However, in an online learning scenario,
the boundary of storing no data is often blurred, as the storage of mini-batches is often considered as an
online learning method [23]. In Figure 2.13, we illustrate based on the ML pipeline and the DM process
the transition from an offline learning approach developed within a DM process under the assumption of
evolving data streams.

Data Stream

..091
$ ¥

Actions,
Data Ingestion Predictions » Sink,
Visualization

______________ . ONUne

OFF Line

Data pre- feature pre- :
@ » processor » processor W | predictor

Past Data

Datamining Pipeline

ON Line

Figure 2.13: From Batch to Online Learning: An illustration for adaptive learning on data streams.

When considering ever-evolving data streams within a DM process, it remains clear that the generation of data
and the application of the model are integrated into the actual process, while the development of the model
takes place separately, starting from an isolated data set. As Figure 2.13 shows, the development and thus the
learning of a DM pipeline takes place outside (offline) of the incoming data points. Further, it is evident that
in the meantime, new data is already being generated, which had not been taken into consideration during
the offline learning process but which could also contain relevant information or changes in the underlying
data distribution can occur. This inability to iteratively integrate new and more recent data into an existing
model is probably the most critical drawback of offline learning approaches. Instead, the generation of a
new data set within the data ingestion step is required, and the already developed DM pipeline might be
inappropriate for the newly generated data set and thus for the problem at hand. Furthermore, the larger
and higher-dimensional the data set, the more critical the scalability and efficiency of offline algorithms in
terms of time and memory [112]. However, this does not concern the predictive performance but also the
training process. Since the training process is computationally more expensive than the model usage, the
exploitation of computer resources is concentrated during offline learning at a time when all data points
from the generated data set are processed. Concerning Figure 2.13, it would be desirable to skip the data

53

2 Foundations

ingestion step and to design a system where no separation between the evolving data stream and the model
development is made and thus where new data is immediately processed by a defined ML pipeline. To enable
the immediate processing of the incoming data stream, we formalise in Section 2.5.1 the online learning
problem, depict the requirements for an online learning system and in Section 2.5.2 we introduce the change
of data patterns and distributions within the data stream, which is referred to as concept drift. According to
the steps of an offline ML pipeline presented in Section 2.2, we depict in Sections 2.5.3 to 2.5.4 the steps
required to build online ML pipelines. Since online ensemble methods are closely related to online AutoML
in that they train sets of homogeneous or heterogeneous models to perform a prediction on changing data
streams, we discuss online methods as part of related work for online AutoML in Section 3.4.

2.5.1 Online Learning

Advancing an adaptive ML framework, it becomes clear that it is crucial to have algorithms at hand that can
process data that arrives continuously in the form of data streams. However, online analysis brings challenges
and aspects that need to be considered. First, online learning has to deal with potentially real-time data
rather than previously known data sets. We refer to an incremental online learning system that enables
the adaptation to data streams, which leads to some requirements for the learning process. This includes
differences from offline learning in evaluating and monitoring the model’s performance, which is addressed
in Section 2.6. Further, Bifet et al. [23] depict the requirements for online learning as follows:

Requirements I. Online Analysis Algorithms, adopted from Bifet et al. [23]:

R I-1. Process an instance at a time, and inspect it (at most) once.
R I-2. Use a limited amount of time to process each instance.

R I-3. Use a limited amount of memory.

R I-4. Be ready to give an answer (e.g. prediction) at any time.

R I-5. Adapt to temporal changes.

Since data streams are potentially infinite and new observations may arrive with a high frequency, stream
algorithms should be efficient in terms of resource usage, i.e. time (see R /-2) and memory (see R I-3)
consumption. The Requirement R /-] stems directly from the main characterisation of data streams and
describes the nature of incremental learning. Data points might come one at a time and in a sequence,
so they must also be processed in this order by a corresponding streaming algorithm. Each instance is
considered exactly once and then discarded. Therefore, no storage takes place, whereby this restriction is
blurred by approaches that consider mini-batches and that are also referred to online learning approaches.
Including a model into a real-time environment, Requirement R I-2 and R I-3 become relevant, but above
all the algorithm must also be capable to give a response at any time (Requirement R /—4). This can be
achieved when the complexity at runtime of the algorithm is linear to the number of data points processed.
When the frequency of the incoming data points exceeds the time required to process a data instance from
the stream, the process over time potentially leads to data loss and unavailability of the model. Thus, R
14 gets infringed. A significant difference compared to offline learning comes with Requirement R I-5.
While in offline learning, there is a clear distinction between the training phase and the prediction phase, in
online learning, the model handles evolving data streams that may never end. Thus a separation between the
training and the prediction phase is not possible. Furthermore, the underlying data distribution or concept

54

2.5 Learning on Data Streams

might change over time. Changes in the data concept over time are also referred to as concept drift. However,
Requirement R I-5 refers to the capability of a model to adapt to data streams.

stream
labeled data
i get data unlabeled data |
i train ready predict i
i updated model prediction '

Figure 2.14: Illustration of an online learning system, following [172]

Figure 2.14 exemplary shows how an online learning framework is able to comply with the stream require-
ments depicted within the Requirement I [23] for a supervised learning task depicted in 1. If the data point
in the data streams is a labelled data point (?, y), then the model processes the instance by updating the
model. When the data point is an unlabelled instance 2, the task is to predict a label g. Thus, the model
processes each instance from an evolving data stream, updates the underlying model and is ready to predict
at any time.

In Definition 15 we define, following the supervised offline learning problem in Definition 1 the online
learning problem.

> Definition 15. Supervised Online Learning

LetS =eq,...,6,... be an ordered sequence of examples of possibly infinite length and
let e; be the current observed examples. Each example ¢; (e.g. e; = (z;,y;)) is a tuple of p
predictive attributes =; = (z;1,...,%;p) and in the supervised learning setting a label y;.
Further, let S~ = ey, ..., e; be an ordered sequence of past examples. Then the task is to
learn a function f* : X — Y (also referred to as model) that minimises the loss £, based
on training Stqin € S~ and validation Sy, € S~ samples. Denote that Syyqin N Syatid-

A* = min V(£7 f7 Strain’ Svalid) (220)

Instead of referring to a set D of labelled data points (7, y), we refer in Definition 15 to an ordered sequence
S of data instances e; = (7, y). Furthermore, it differentiates between past S~ and future instances,
whereby the model is validated and trained on past data. In the following, we discuss the arbitrary of changes
in evolving data streams on which a model f should react and adapt.

2.5.2 Concept Drift

Changes in the pattern of the data stream over time are also referred to as concept drift [242]. Shifts of the
underlying distribution or pattern occur especially in dynamically changing and non-stationary environments,
e.g. the change in users’ interests when following an online news stream [92]. However, concept drifts can

55

2 Foundations

occur in the form of changes within the characteristic of the input features Z, but also the relation between
the input data and the target y. Gama et al. [92] define this change by changes in (i) the prior probabilities
for a label y p(y), (ii) the target probability with regard to the features p(’|y) or the posterior probabilities
of the target value p(y|7) that may change. This shift of the underlying distribution of the data stream can
therefore proceed in different forms that are depicted in the following [23]:

Sudden concept drifts occur when the distribution or pattern changes in a few steps of the data
stream. It is also referred to as shift. A model should, in this case, detect the shift and adapt
as rapidly as possible to this shift. For instance, sudden concept drifts may occur when
the mode of operation of an IloT or IoT sensor changes due to external influences such as
movements.

Gradual changes are shifts that occur incrementally over a more extended period. Therefore, the
model’s challenge is to adapt to the continuously changing data stream. An example is the
abrasion of production machines measured by various sensors.

Partial concept drifts might affect only instances of certain forms i.ex. the change of the data
stream concerns a few classes in a classification task, or only a part of the features processed
by the model f are affected by the shift that is either sudden or gradual.

Recurrent concepts are changing distributions that have already appeared in the past and tend
to reappear later in the stream. The challenge of a ML model is, therefore, to remember the
different data patterns and to select the proper function that transforms the features into the
target value.

In the context of concept drifts, outlier or anomaly detection algorithms are also to be mentioned and
distinguished from concept drifts. While the change in data patterns are true changes within the data stream,
anomalies or outliers are limited to very few data points that do not comply with the data pattern to be
learned. Thus a change detector such as ADWIN [22] is commonly applied to detect changes within the data
patterns [21]. ADWIN is a popular window based change detector, that holds and compares two sub-windows
to detect changes within the data distribution. Further popular change detectors are based on the models
error rate, such as DDM [91], EDDM [8] or on Hoeffding’s bounds HDDM [29].

2.5.3 Preprocessing

Besides the learning process itself, there are also differences in the preprocessing of the data. As discussed
in Section 2.2, in offline learning it is common to preprocess features 7 from a data set D at the beginning of
DM process. While the data preparation step can be applied similar to the data preparation step depicted in
Section 2.2.2. However, in online learning, possible errors within the data stream can be filtered or repaired
by predefined rules and thus directly be applied to the data stream. Thus, it is assumed that possible errors
within the data stream are known in advance in this environment. The data preprocessing, however, differs
from the offline learning scenario since not all information of the data stream is available at the beginning
of the stream. Relevant features must be defined in advance, or dimensionally reduction algorithms that
automatically extract and select valuable features and that fulfil the Requirements I need to be applied. When
it comes to normalisation and standardisation mechanism to enable an online ML pipeline, the differences
to an offline learning approach become apparent. Normalisation is achieved by considering the smallest and
largest value per feature, while standardisation involves using the mean and standard deviation of the training
samples. In both cases, the data set must be known at the beginning to extract the corresponding values [90].
However, to enable normalisation and standardisation in an online learning environment, running statistics

56

2.5 Learning on Data Streams

can be calculated. In this case, the mean and variance are updated every time a new instance arrives and
is then used to scale the features of the new data point from the data stream S. For example the CMA
(Cummulative Moving Average) ﬁt can be updated incrementally at a point in time ¢ for all features in z
as follows:

o=+ T di _tﬁ” 2.21)

and thus, the MSTD (Moving Standard Deviation) 7t can be calculated by applying the Welford’s [238]
method to estimate the variance for all features in 2 in an online manner:

GE=02 (T~ W) x (T~ i) (2.22)

By considering the differences between the sums of squared differences for ¢ and ¢ — 1 the Welford’s method
enables incremental updates of the MSTD as well as the variance. Accordingly, the informative value of
the mean and the variance increases with the rising number of instances. For selecting suitable features
from a data stream, as discussed in Section 2.2.2, a drawback of online learning methods becomes apparent.
Since the data stream evolves, the correlation and the information gain of individual features remain unclear.
Here, features that might be useful are commonly selected by hand at the beginning of the data stream. The
question for adaptivity within the feature selection process remains open in online learning and is addressed
in more detail in Part IV.

2.5.4 Online Learning Models

In this section, we present the foundations for different online algorithms that are capable to minimise
the loss metric £ using a validation protocol V(- -, -, -) (see Definition 15) based on the Requirements I.
Further, some approaches presented in Section 2.2.4 are by nature fully comparable with the online learning
requirements. By presenting different concepts of models used for online learning, we concentrate on
the differences to offline learning. In Section 2.5.4.1, we depict Decision Trees as commonly applied
classification algorithm and in Section 2.5.4.3 we present the foundations for applying NN’s to an online
learning setting. Since online NN’s are also part of related work, we refer to Section 3.4 for a profound
overview of approaches in training NN’s in an online manner. NB (Naive Bayes) is also a broadly applied
approach in online learning and is presented in Section 2.5.4.5. To conclude the foundations for online
algorithms, we present in Section 2.5.4.4 Neighbourhood based approaches. Contrary to offline ensemble
learning models discussed in Section 2.2.4.6 and due to the fact that ensemble techniques are closely related
to AutoML techniques, online ensemble techniques are discussed as part of the related work in Section 3.4.

Some algorithms have been specifically created and adapted to operate on data streams. For instances, HT
[65], HAT [21] or Logistic Regression. Other algorithms require adaption so that they can be used in an
online fashion, such as creating mini-batches or introducing a sliding window [10, 180]. In the following,
we depict the main concepts for online learning models.

2.5.4.1 Decision Tree

Following the decision tree approach presented in Section 2.2.4.1, Domingos and Hulten [65] propose an
incremental, anytime decision tree assuming that the distribution of the underlying data stream does not
change over time. HT is based on the idea that it is helpful to consider only a small subset of the training
samples at a node to find the best attribute test for that node. This means that the first incoming samples
of the data stream are used to determine the attribute test at the root node. Subsequent data instances are

57

2 Foundations

passed through the node to different leaves according to their attribute values and used to determine the next
attribute test. The whole process continues recursively, whereby HT uses a Hoeffding bound that quantifies
the number of nodes to be changed to estimate the underlying distribution. While HT approaches are suitable
for incremental learning, changes within the constructed tree structure and, thus, changes in the underlying
data pattern are not considered. With HAT (Hoeffding Adaptive Tree) Bifet and Gavalda [21] propose an
adaptive approach by introducing an ADWIN change detector. The change detector in HAT is used as an
indicator of whether an alternate tree should be applied to adapt to an occurring concept drift. Also based on
HT, Domingos and Hulten [65] propose in addition to HT a CVFDT (Concept-adapting Very Fast Decision
Tree), where a decision tree is kept consistent based on a sliding window, whereby alternate sub decision
trees are created and replaced within the data stream when the data pattern changes at a node of the tree.

2.5.4.2 Support Vector Machine

SVM (Support Vector Machine) have been successfully applied in offline learning with high dimensional data
sets since the generated support vectors only depend on a minimal subset of the training data. As discussed
in Section 2.2.4.2, the main disadvantage of SVM is when training on noisy data, where a good separation
of the training data by the support vector becomes difficult or impossible. Syed et al. [224] propose an
approach based on mini-batches and empirically show the ability of handling concept drifts. Since a SVM
builds on support vectors that consider only a small subset of the training data points, the question of how
to decide whether an instance from the data stream is used as a support vector or not without the knowledge
of all data within a data stream & arises. This question, however, is tackled by Duan et al. [69] in a separate
Lagrangian optimisation problem without considering concept drifts. Regarding the Requirements I, SVM's
are suitable for incremental learning [69] by applying mini batches but infringes Requirement R I~/ (one
instance at a time). However, the approach proposed by Syed et al. [224] does have the possibility to adapt
to concept drifts. Still, it needs mini-batches to decide if new (computationally expensive) support vectors
should be created.

2.5.4.3 Neural Networks

NNs can range from simple linear or logistic models to complex MLP, CNN and RNN structures with
several layers (see Section 2.2.4.5) and are due to their variability in general well suited for incremental
and online learning. However, not all architectures and optimisation techniques are appropriate to fulfil
the Requirements I. Larger CNN’s such as AlexNet [138] or VGGNet [215] violate the Requirements R I-2
(limited time) and R /-3 (limited memory) and cannot always yield to good performances, as the deeper
layers require more time to convergence. Further, the optimiser that optimises the weights of a NN influences
the capability to be suitable for online learning. While SGD processes each instance at a time (Requirement R
I-1) by nature, Adam or AdaGrad that in batch learning have prevailed for many problems, the weight updates
of a NN is affected by the batch size as the distribution of gradients for larger batch sizes has a much heavier
tail. Baydin et al. [14] propose a general online method for improving the convergence rate of gradient
based optimisers used in NNs. The approach extends SGD and Adam by dynamically updating the learning
rate during optimisation and thus improving the adaptivity of NNs when concept drifts (Requirement R I-5)
occur.

Besides the optimiser, the choice of architecture is crucial. Linear regression or logistic regression as simplest
NNs are already commonly used as baselines in online learning that are, due to their simple architecture and
large throughput of instances, suitable to adapt to changes within the data stream. Most approaches applied
in deeper online learning models are MLPs [123, 100]. However, the larger the model becomes, the more

58

2.5 Learning on Data Streams

difficult it is to converge and adapt to a dynamic environment. Further, they consume more memory for
storing the weights and are computationally more expensive. Lobo et al. [156] propose the usage of spiking
neural networks to model the behaviour and learning potential of the brain and, thus, to adapt to data streams
when drifts occur. Jain et al. [123] provide an overview for NNs with online learning capabilities, that is
further discussed as part of the related work in Section 3.4.

2.5.4.4 Neighbours

k-NN (k-Nearest Neighbors) based approaches are by nature suitable for incremental learning. As discussed
in Section 2.2.4.3, the training is performed by storing the labelled data points to then estimate the closest
relation within the feature space X on unseen data points. The fact that the basis of this approach is the
memorisation of data points from the data stream raises the question about the online learning capabilities.
Further, the data stream is possibly infinite, and thus the memory consumption of k-NN approaches likewise
grows to an unlimited size. Especially it violates the memory Requirement R I-3 as well as the ability
to adapt (Requirement R I-5) to concept drifts. To adapt k-NN based approaches to the Requirements I, a
sliding window is introduced that, on the one hand, limits the memory consumption to the size of the window
of data points and, on the other hand, enables the adaption to concept drifts. The adaption to concept drifts
is ensured since the sliding window stores recent data points from the data stream and deletes the oldest data
points. However, the capability of adaptation to the data stream is highly influenced by the window size as
the adaptation is carried out with the delay of the size of the window and a too-small window size restricts
the ability to learn the underlying data patterns within the sliding window. This windowed k-NN approach
can further be extended with an ADWIN change detector to decide which samples to keep and which ones to
forget. The prediction is applied similar to the offline learning k-NN approach, discussed in Section 2.2.4.3,
by applying a majority voting in the case of classification or a uniform or weighted average in the case of
regression based on k nearest neighbours.

2.5.4.5 Naive Bayes

As discussed in Section 2.2.4.4 NB (Naive Bayes) is a classification algorithm based on the assumption of
conditional independence between the features Ei given the label y. In order to meet the online learning
requirements, the estimation for the probabilities P(x1,...,2,|y) and P(y) needs to be calculable and
thus updated in an online learning manner. As stated in Equation 2.6, P(x1, ..., 2,|y) is estimated by the
product of the conditional probabilities for each feature in z given the label y. This probability P(x;|y), as
well as the class probability P(y), can be incrementally updated by increasing the feature counts given the
label y for each feature in z. Despite the strong assumption of conditional independence for the features
and thus its ineptitude for real-world applications, approaches based on Bayes are by nature suited for online
learning. Thus extensions to this approach, e.g. GNB (Gaussian Naive Bayes) [199], augmented NB Zhang,
or multinomial NB can be applied for this scenario.

Summary

In this section, we provided the foundations for ML algorithms that can adapt to changes in the data, also
referred to as concept drifts. Further, we switched from an offline learning scenario to an online learning
approach where we assume instead of a data set D a possibly infinite data stream S. By distinguishing
between online learning, offline learning, incremental learning and batch learning, and by defining the

59

2 Foundations

requirements for online learning, we were able to examine the preprocessing and further algorithms for their
suitability to an online learning scenario.

2.6 Evaluation Protocols

In this section, we cover the final necessities that enable a utility-based adaptation and the adaptation to data
streams of AutoML as well as NAS. Within the previous sections we introduced the offline (Definition 1),
as well as the online supervised learning task (Definition 15) by minimising a function f based on a metric
L(-,-) and a validation protocol V(-, -, -, -) without giving a more detailed explanation which metrics might
be considered, how a validation protocol may be implemented within the presented definitions and how the
differ regarding an online or offline learning scenario. In Section 2.6.1, we present different loss metrics
that can be used to train and to evaluate a singe model f, but also to steer an AutoML or NAS optimisation
process. Considering an offline learning scenario, we present in Section 2.6.2 different evaluation protocols
that evaluate a model f or a pipeline P on a metric £ based on data batches D. Finally, in Section 2.6.3, we
present different from the offline learning scenario differing evaluation techniques assuming a data stream

S.

2.6.1 Metrics

Supervised ML models, AutoML (Definition 9) or NAS (Definition 10) approaches, presented in the previous
sections aim at optimising the predictive performance based on a true label, a model f and a given metric
L. Therefore, this (predefined) metric guides the optimisation process and is crucial to obtain suited results
related to the metric. Furthermore, it indicates the performance of the model based on given data instances
and thus enable the monitoring of models regardless if they were trained in an offline or online learning

scenario.

> Definition 16. Supervised Learning Metric, adopted from Kulis [142]

Given a set Y where y € Y refers to a label and € Y refers to the predicted label (i.ex of
a model f), then a metric is a function £ : Y x Y — R, where R is a set of real numbers,
and for all y, y, z € Y the following conditions are satisfied:

1. L(y,9) > 0 (non-negativity)
(]

)
o

Y, 0, if and only if y = ¢ (coincidence axiom)

w
o

L(y,y) (symmetry)
> L(y,9) + L(Y, 2).

3

(¥, 9)
(¥, 9)
(4.9)
(,)

4

y

Y,z

In Definition 16, we define a supervised learning metric that assumes a label y; however, denote that a
metric, in general, can be seen as a distance measure between two data points and thus is not necessarily
bound to the supervised learning setting. It can be used on the one hand to train and optimise a ML system
or, on the other hand, to evaluate and monitor the system’s performance. In the following, we depict several
commonly applied metrics for the classification, the regression task and for measurements going beyond the
predictive performance. We first confine the introduction of the metrics to an already given data set D and
finally show the adaptability to data streams.

60

2.6 Evaluation Protocols

2.6.1.1 Classification

Within the classification task, we consider that the label y from a data point (7, y) is categorical and thus has
k finite many degrees of maturity. For the sake of simplicity, we will initially deal with a binary classification
case with k = 2. The metrics can simply be extended to a multi-class classification metric by treating each
class separately as a binary classification problem. Accordingly to Russell et al. [202] the performance of a
model can be estimated by:

TP (True Positive): Items (7', y) where the true label y is positive and the predicted
class g is correctly classified as positive.

FP (False Positive): Items where the true label y is negative and the predicted class ¢ is
wrongly classified as positive.

TN (True Negative): Items where y is negative and the predicted class § is correctly
classified as negative.

FN (False Negative): Items where y is positive and the predicted class § is wrongly
classified as positive.

Considering a multi-class classification as a set of many binary classification problems, the defined metrics
can be estimated separately for each class by y and y. Further, metrics based on the TP, FP, TN and FN
considering multi-class classification can be estimated on a (i) macro-level or (ii) micro-level [202, 170].
Within the macro-level each class is given a uniform distributed weight to estimate a combined metric (e.g.
F-Score) from all classes. On the micro-level all items within D are weighted equally and thus classes with
more observations will have more influence on the combined metric. Following the optimisation problems
defined within the definitions for supervised offline learning, AutoML and NAS that minimise a loss based
on a validation protocol, we invert the search direction by multiplying each metric by —1 to comply with the
optimisation problems. We consider in the following a micro-level averaging to define common classification
metrics as follows:

Precision The precision metric measures the proportion of positive identifications that were
correctly predicted over the number of FP plus the number of FP and is defined as follows:

k
E(precision) - _ Zi:l rp; (2.23)
Zf:l TP+ FP;

Recall The recall score is also known as sensitivity and measures the proportion of relevant
instances that were correctly classified. In other words it measures the effectiveness of the
model and is defined by:

k
(recall) __ Zi:l TP
[lrecall) _ T (2.24)
i=1 i i

61

2 Foundations

F-Score The Fj3 metric combines the Recall and Precision metric with a given parameter (3.
It measures the effectiveness of a model by weighting the Recall score [times as much
importance as the Precision score. It can in dependence of [be defined as follows:

L*(precision) * AC(reca]l)
(62 * E(precision)) + L(recall)

L£Fs) — —(1+ 52) (2.25)

Commonly the harmonic mean (F1) is applied, where the importance of Recall and Preci-
sion are equally distributed.

Accuracy The accuracy metric measures how close a model predicts y values to the labelled
data point y and can be defined as follows:

Zk TP, +TN;
[(accuracy) =1 TPi+Tki\7i+FN'i+TN'i (2.26)

Comparing the Accuracy metric with the Precision metric, the Accuracy measures the
closeness to a given target (correctness), whereas Precision measures the closeness to a set
of labels (exactness).

Besides the presented metrics, other metrics, such as the ROC (Receiver Operating Characteristic) and its
area under the curve, are popular measurements for binary classification to visualise the trade-offs between
sensitivity (Recall) and specificity (FP-rate).

2.6.1.2 Regression

The regression task considers that the label y from a labelled data point (7, y) € Dor € S is continuous.
Thus it is necessary to measure the performance of a model based on some distance measure. Contrary to
the classification task in Section 2.6.1.1, the error measures in regression are already directed toward the
introduced optimisation problems. For the sake of simplicity, we limit the regression metrics to single output
values, where a single value represents the label y. Commonly used metrics in regression tasks are MAE
(Mean Absolute Error), MSE (Mean Squared Error), R? and MAPE (Mean Average Percentage Error) [94,
170].

MAE The MAE calculates as the name states the mean absolute error between the true label y
and the predicted label § and can thus be measured as follows:

t
1 .
LMAE) — n E lyi — Uil (2.27)
i=1

MSE The MSE estimates the models performance by a quadratic error estimation. This has
the effect that stronger deviations of the prediction are more weighty in the error measure.
Gradient-based methods in particular can thus better incorporate stronger deviations into

the training.
t
1
(MAE) _ 2
LM = 2 (i~ 90) (2.28)

i=1

62

2.6 Evaluation Protocols

MAPE One disadvantage of both, MAE and MSE, is that they are not normalised. However,
the MAPE is defined as the percentage mean of the absolute difference between predicted
values and true values divided by the true value y:

t

1 lyi — il
LMAPE) — 2% © 12 = (2.29)

2 mar(e Iy
In Equation 2.29, the variable ¢ << 1 ensures that the division by zero is prevented. The
application of the MAPE metric, however, has some significant drawbacks. If predictions
¢ are too high in comparison to the ground truth y, the MAPE metric can exceed 1 and
thus has theoretically no upper bound. Further, the MAPE metric penalises negative errors

heavier when considering considering that y and § > 0.

Coefficient of variance The R? metric computes the coefficient of determination and is calcu-
lated as follows: . .
LR = Zfl(y—_y) ~1 (2.30)
> izt (Wi — piy)?
In Equation 2.30, 1, denotes the mean of all y € D or € S. It indicates how well unseen
samples are likely to be predicted by the model and has a lower bound of 0 but can possibly
be greater than 1. The best value is achieved with a R? score of 0.

2.6.1.3 Further Metrics

We defined performance metrics based on the previous section’s classification and regression task. The
input of the metric L(-,-) in both cases was a set of ground truth y and predicted ¢ labels. When it comes
to the application and deployment of ML algorithms, additional metrics become necessary that go beyond
the characteristics of the differences between y and y. For this purpose, instead of defining the input of
the loss by the true label y and the prediction ¢, the input can be extended to (i) the true label y, (ii) the
corresponding features 7 and (iii) the model f. The loss metric is then defined by L(y, z, /) and enables
to measure performances that go beyond the pure estimation of the error based on the difference between y
and y. Exemplary, the following metrics can thus be modelled:

Latency By passing the features 7 and a model f to the metric, it is possible to measure time
relevant metrics i.ex. the time the model needs to compute a prediction ¢ usually measured
in [ms] or [s] that is then used for training.

Training time Considering an online learning scenario, the model’s training time can be mea-
sured by updating the model within the metric function by considering the inputs y and z
as a training sample. The time the model requires to update can again be measured within
the function.

Memory Usually, the models are instantiated within classes. Based on these classes, the memory
consumption can be extracted within the metric. By adding the model’s latency or the
training time for an instance, the deployed RAM hours for a model f can be calculated and
used as a metric.

In this section, we discussed several classification, regression or metrics that go beyond the error estimation
based on a ground truth label y and the predicted label . The ability to apply the metrics shown in an online
learning environment can be achieved through a similar approach to the CMA in Equation 2.21 [23]. The

63

2 Foundations

question about the presented metrics’ application remains open and is discussed in the following within the
evaluation protocols.

2.6.2 Batch Evaluation

In terms of measuring a model’s performance by a validation protocol V(f, £, Dirain, Diest), it is essential to
decide which part of the data is used for learning and which examples should be used to evaluate the model’s
performance. Knowing in advance which data is available offers some advantages when training and testing
a model, such as enabling the flexible design of training and test data sets. To evaluate the generalisation
of a model in an offline learning scenario, the model is first trained and then evaluated, whereby the data
used for the evaluation was not considered within the training process. For this purpose, different methods
of splitting the data into a training data set Dy, and a validation set Dy,q;iq-

The nearest option is the holdout evaluation, where the data set D is split into a training and a validation
data set. The model is first trained on Dy,..;,, and then evaluated based on a held-out data set D,,4;;4. NAS
or AutoML would be performed by training different model configurations on the same data set Dy,.q;,, and
evaluate them on identical validation splits. Usually the data set is split into 80% Dyyqin and 20% Dyaiia-
However, this method has the drawback that the measurements £ based on D,,,;;4 tend to be statistically
non-representative and thus, tuning hyperparameters on fixed training and validation splits tend to overfit on

Dvalid~

To overcome this problem, the k-fold cross-validation protocol shuffles the data set D and splits it into &
subsets of equal size. By shuffling D, it is assumed that the data set is IID (Independent and Identically
Distributed). For each subset of the k-folds, we train a model f on the remaining & — 1 splits and evaluate
the performance based on the k' split withheld for evaluation. The score of all k results is averaged to
obtain a final metric score [202].

In the case where D;,q;p is relatively small, Iferated k-fold cross-validation repeats the k- fold cross-
validation protocol to further shuffle the subsets for each fold and averages again the scores obtained by each
run of the k-fold cross-validations. However, the k- fold cross-validation protocol already trains k different
models, which is already expensive. The Iterated k-fold cross validation trains and evaluates based on ¢
iterations ¢ X k models, which is even more expensive to compute. In Sections 2.3.2 and 2.3.3, we already
presented that the definitions for CASH (Definition 9) and NAS (Definition 10) are based on a k-fold cross
validation protocol. However, this validation protocol does apply to an online learning environment since
the entire data set D has to be available in k-fold cross-validation. In the following, we depict evaluation
protocols that are compatible with data streams S.

2.6.3 Online Evaluation

In the case of data streams, not all data is available at once. Furthermore, the instances are often correlated
with each other, which is referred to as time series and makes the use of batch validation protocols that
shuffle the data set inappropriate to measure a model’s performance. Further, when concept drifts occur,
more recent data are more relevant than data points that occurred at the beginning of the data stream or
beforehand of the concept drift. Despite the assumption that the data within the stream S is /ID and k-fold
cross-validation could be applied by caching data points from the stream, this approach is expensive to
evaluate and thus infringes the memory and time requirements for online learning [23].

64

2.6 Evaluation Protocols

As the data stream is possibly infinite, the continuous learning of a model and the development of a metric £
over time is of great importance. Furthermore, to measure the performance when concept drifts occur, recent
data points within S might be more important than data points at the beginning of the process. Considering
the online learning capabilities of a model f and a metric £, the following evaluation procedures have
become established [23] in online learning environments:

Holdhout: Similar to the holdout method in an offline learning scenario, small holdout data sets are
generated from the data stream that is exclusively used to evaluate a model trained on the data stream.
Thus, the evaluation of a model is performed periodically when a certain number of instances are
available within the newly generated and updated data set. Nevertheless, this approach can lead to
non-representative results if important change events cannot be captured due to the holdout. Further,
a concept drift can only be identified within the evaluation metric £ when a new data set has been
generated from the data stream and held out from training.

Interleaved Test-Then-Train: The interleaved test-then-train method aims to solve the problem of held-
out data sets and is applied to use all the data available for training and to evaluate a model f on a
data stream. Following the online learning system in Figure 2.14, whenever a new instance arrives,
it is first used to incrementally evaluate the current model based on £ and then the instance is used
for training the model f. On the one hand, all labelled data points within the data stream are used for
both learning and evaluation. Moreover, no data needs to be held out and thus memorised from the
data stream to obtain a model’s performance.

Prequential: Assuming an infinite data stream, the interleaved test-then-train evaluation protocol is becom-
ing increasingly resistant to deviations and, thus, in measuring concept drifts. Dawid [61] introduced
the prequential evaluation protocol, which is composed of the terms predictive and sequential. How-
ever, the prequential evaluation protocol extends the interleaved test-then-train approach. It introduces
a window size (e.g. sliding window or a decay factor) to assign a higher relative significance to recent
data points. The size of the window and the decay factor are configurable at the beginning of the data
stream and control the sensitivity to changes.

Interleaved chunks: Following the interleaved test-then-train approach, interleaved chunks stores small
data batches in the sequence of the data stream, whereby the sizes of the chunks to evaluate a model
f can be of different sizes.

Referring to the online learning requirements, the general interleaved test-then-train, as well as the prequential
evaluation protocol operates as follows given a metric £, a model f and features 7 with their corresponding
label y from a data stream S [23]:

1. Get a labelled instance ¢; = (7,5, y¢) from the data stream S.
2. Predict §j = f(7).

3. Update £ based on ¢ and y or on f, 7 and Y.

4. Train f incrementally based on the labelled data point (?, y)
5. Proceed to the next instance e; 1.

It becomes clear that different evaluation techniques exist in the streaming context, which depends on the
application and the properties to be evaluated. This, however, must be determined individually and in
dependence on the area of application.

65

2 Foundations

In this section, we depicted two areas essential for this work. First, we introduced metrics that measure
classification and regression model’s predictive and further performances. These metrics aim to represent
the utility of a model based on its predictive performance or metrics that go beyond the differences between y
and y. Further, these metrics aim to represent different features and characteristics of a model’s performance.
However, end-user’s or domain expert’s utilities are diverse in that they may follow combinations of metrics.
Thus, the question of a user-based adaptation remains open. Second, we introduced different validation
protocols for an offline and online learning scenario and highlighted their differences. However, these
validation protocols emphasise the influence of the choice of validation protocol.

2.7 Summary

Summarising the foundations of this work, we started from a DM point of view by defining a ML pipeline in
Section 2.2 and introducing commonly used pipeline components for the offline learning setting. Following
the concatenation of these pipeline elements, we formalised and introduced the concepts behind AutoML as
well as NAS. For the subsequent personalisation of AutoML and NAS approaches, we presented in Section 2.4
ranking approaches and switched in Section 2.5.1 from an offline learning setting to an online learning point
of view. Within an online learning environment further requirements defined by Bifet et al. [23] emerged
to apply ML algorithms on data streams. To finalise the foundations of this work, we defined in Section 2.6
metrics and validation protocols for both online and offline learning scenarios that enable the evaluation of
models f as well as ML pipelines, AutoML, and NAS approaches. Building on the foundations, we depict
the research relevant to this work in the following.

66

Related Work

In this chapter, we provide the research work that is related to (i) utility-centric and to (ii) online learning
based AutoML system. In Section 3.1, we discuss Metric Learning as research field that is related to the
utility-based adaptation. The field of Metric Learning incorporates research around HGML (Human Guided
Machine Learning). A further related research field towards a utility-centric adaptation is Multi-Objective
ML, where the goal is to learn a model based on multiple target functions. Section 3.2 provides the work
for Multi-Objective ML systems. Both research fields are related in that they incorporate multiple metrics
and thus implicitly enable the optimisation towards a certain utility. To present the related of an online
AutoML system, we present in Section 3.3 techniques for ensemble learning. Online ensemble methods are
related to online AutoML in that they consider various (homogeneous or heterogeneous) models to adapt to
the underlying data distribution of the data stream. Further, in Section 3.4, we depict the related work that
applies NNs by assuming an online learning scenario and show the diversity in its application. However,
the related work towards the applicability of NNs in online learning further motivates the development of
an online DL framework, that aims to unify and foster the research on NN within online learning.

3.1 Metric Learning

In this section, we investigate metric learning, but also HGML (Human Guided Machine Learning) that aims
to guide ML models towards a certain utility that might be pursued. The research field of metric learning
aims to learn a metric £* that is especially in this research field, also referred to as distance metric or
similarity measurement. Further, metric learning, as well as HGML, are related in that they aim to provide a
metric £ that performs better than the initially selected metric [142]. Metric learning aims to optimise this
metric toward a specific task, such as the supervised offline learning task defined in Definition 1. While we
aim to learn a metric that represents an end-users or domain experts utility of a ML model, metric learning
is broadly explored in unsupervised learning tasks, such as clustering, where the aim of metric learning
is to find a suitable distance measure that separates features 2 within a data set. Thus, approaches that
adopt a metric can be distinguished by the task they aim to solve or the similarity they seek to measure.
Further, common approaches that incorporate a ML model can be distinguished whether they learn a new
underlying metric based on the given data set D or on (human) feedback. In Figure 3.1, we illustrate
the common process for metric learning and refer to a (human) feedback Uy,.qin. This commonly human
feedback is often referred to as HGML (Human Guided Machine Learning) [33]. It goes beyond pure metric
learning approaches in that not only the metric but also the data, and thus the underlying model is adapted.
Furthermore, HGML often incorporates a user interface that enables end-users or domain experts to interact
with the underlying system.

3 Related Work

Metric Learning Process
Deest Metric
LD prgin) Deest) Metric-based

Metric learning

- o train._fest;) . = Y
algorithm algorithm Prediction

Figure 3.1: Common process for metric learning

Assuming feedback-based approaches the feedback can be (i) implicit, (ii) explicit or (iii) mixed feedback
[33]. Implicit feedback influences the features 7 of an underlying data set D and thus the performance of
the underlying model. For instance, for image classification tasks, some image parts might be more relevant
than others and based on feedback that highlights these areas, e.g. by cropping the image towards the relevant
parts of the image. Explicit feedback influences the metric by giving feedback based on the model’s output
y. For example, an end-user or domain expert gives feedback on whether a model’s output is correct or
not. Mixed feedback methods combine both implicit and explicit feedback methods, e.g. by giving explicit
feedback on a model’s performance and implicit feedback based on whether the explicitly given feedback
follows a specific pattern [33].

Furthermore, these approaches can be differentiated based on their evaluation. The performance of a metric
learning approach can be measured based on subjective or objective measures. Objective performance
evaluations evaluate "how well the [...] machine co-operations performs to achieve a task is to compare
the ML system with its [non-modified] counterpart.” [33, p. 346 f.]. Subjective metrics are based on
questionnaires, surveys or interviews that contain subjective information about the suitability of a newly
learned metric.

Table 3.1: Selected related work for metric learning (upper part) based on Bellet et al. [15] and Xing et al. [246] as well as for HGML
(lower part) based on Boukhelifa et al. [33]. The Task column indicates which learning task is addressed by the related work
and the Model indicates the underlying model that is used for evaluation. The column Data Centric indicates whether the
metric learning approach is learned based on a given data set or on external feedback (HGML). The Feedback column states
if the approach incorporates implicit and explicit feedback. Finally, the Metric relates to the utility (subjective or objective)
used for evaluation purposes.

Approach Task Model Data. - Feedback Metric -
Centric impl. expl. subj. obj.
Xing et al. [246] clustering k-NN v X X X v
Goldberger et al. [97] classification k-NN v X X X v
Qietal [191] classification k-NN v X X X v
Weinberger and Saul [237] classification k-NN v X X X v
Gil et al. [95] - - v v X X X
Azuan et al. [7] classification - X v X v X
Heimerl et al. [108] classification SVM X v X v v
Ehrenberg et al. [72] classification - X X v v v
Endert et al. [76] clustering - X v X X X
Bryan et al. [40] classification PCA X X v v v
Koyama et al. [136] reduction BFGS! X v/ v/ v/ v/
Dabek and Caban [60] clustering k-NN X X v v v
Boukhelifa et al. [34] reduction EA X v v v X

' Broyden—Fletcher—-Goldfarb—Shanno optimisation

68

3.1 Metric Learning

To depict the basic commonalities and differences for metric learning and HGML, we present in Table 3.1
selected work that builds the preliminary related work towards utility-based adaptation where the metric is
modified. However, metric learning emerged in 2002, where Xing et al. [246] formulated metric learning as
an optimisation problem and measures the difference between a ground truth label y and the prediction ¢ by

£(9.9) = Lar = ly — illar =/ (y — 9T M (y —). (3.1)

The goal becomes to optimise based on a data set D a semi definite matrix M under the restriction that
L2(y,9) < 1 (see Definition 18). Since this data-centric modification includes the data set D, it can be set
as a hyperparameter or be integrated within the underlying model and thus implicitly learns the underlying
metric. Further, these approaches are mainly based on &-NN models. k~-NN models have the advantage that
they store the data set and choose the k nearest neighbours based on the underlying metric £. This makes
it a suitable algorithm for searching for appropriate metrics for evaluation purposes. Goldberger et al. [97]
propose a stochastic k-NN approach where the underlying metric is optimised based on the expected error
of the k-NN model. Qi et al. [191] propose an efficient sparse metric learning approach that is specifically
useful in the case of high-dimensional data and Weinberger and Saul [237] suggest a large margin nearest
neighbours classifier that as well as a SVM classifier minimise the distance of data points that share the same
label and maximises the margin between data points of different labels within Dy, 4, .

HGML goes beyond pure data-centric meta learning approaches in that it aims to guide based on a learned
metric (see Figure 3.1) a ML model. While the data-centric approaches are mainly evaluated based on
k-NN methods, HGML is often assessed based on a gold standard metric (objective) or the impact on
user (subjective) satisfaction. Thus, HGML goes one step further and evaluates the entire system depicted
in Figure 3.1. This enables the evaluation of the metric’s impact on the underlying ML model and the
construction of utility-specific distance metrics. Further, the field of HGML compromises different goals,
where Gil et al. [95] present the requirements for a ML system, where domain experts use their knowledge
to affect how ML systems work. Azevedo and Santos [6] showed that implicit feedback inferred from
user corrections could be as impactful as explicit feedback by modifying the underlying data set without
applying ML models. For text classification, Heimerl et al. [108] propose an interactive approach in order
to complement search and filter techniques and evaluate their approach based on SVMs. While Heimerl
et al. and Azevedo and Santos integrate an implicit feedback, where the ML model’s output is influenced by
modified data, Ehrenberg et al. [72] present an explicit feedback system denoted as DDLite. This framework
provides a platform for creating, evaluating, and debugging labelling functions based on predefined metrics
and is assessed based on k-NN clustering. Within a user study, Endert et al. [76] propose a semantic
interaction method to support analytical reasoning. However, this study does not incorporate an evaluation
of the impact for ML models. Within ISSE Bryan et al. [40] incorporate human feedback to separate recorded
speech from a cell phone based on a time-frequency visualisation and evaluate their approach by applying
PCA. Based on images, Koyama et al. [136] propose an iterative and interactive approach to support colour
enhancement based on images. By applying a non-linear optimisation technique (BFGS), the proposed
system enhances images to a user’s intention. Dabek and Caban [60] present a method for modelling
user interactions within a ML model to automatically generate suggestions in a visualization system and
Boukhelifa et al. [34] present a user guided ES approach that combines predefined metrics and user’s input
to visualise pertinent views to the user.

In this section, we presented the related work towards data-centric metric learning as well as HGML that
mainly incorporates implicit or explicit human feedback. However, while data-centric metric learning
approaches can be integrated as a hyperparameter configuration of the underlying model, HGML approaches
that enable the adaption of ML systems towards a desired utility are evaluated on isolated algorithms and
neglect the hyperparameter configuration.

69

3 Related Work

3.2 Multi-Objective AutoML

A line of research strongly related to a utility-driven AutoML system that enables to take into account
multiple objectives within the search process is multi-objective AutoML Instead of learning a metric that
guides the ML system in the direction of a particular utility or stating a preference based on human feedback
HGML, the idea of multi-objective AutoML and NAS is to optimise a set of metrics and thus to fulfil a utility
by optimising a Pareto frontier. The search goal in multi-objective NAS is, therefore, to approximate the
Pareto-frontier, which expresses the degree to which available objectives can be jointly met. We define the
multi-objective AutoML problem as multi-objective CASH problem as follows:

> Definition 17. Multi-Objective CASH Problem

LetL = {£® ..., £} be a set of available and complementary metric functions. Further,
let
% ? K3
A N e arg min ZIJ (P, % 3 (D). D) (3.2)
ZGAW\ hY eA

be the single-objective CASH problem defined in Definition 9 with a set of step independent
algorithms A = {A™M ... AU} their parametrisation domain A and a structure g that
defines a ML pipeline as PQ,X,X” then the goal of multi-objective AufoML is to optimise the
single-objective CASH problem for all £ € L. Further, a ML pipeline P(1) Pareto-dominates
another pipeline P2 if the following applies to Vj € 1, ... 1:

K
1) i 1) (o (2
7 Z 'C(] P(Dt(ram) \(/a?id) < ? Z ﬁ(]) (,P;,)Z7 (Dt(rd)m) D\(/dl)ld) (33)
i=1
Pareto-optimal pipeline configurations are those configurations that are not Pareto-dominated
by any other configuration. The set of all Pareto optimal configurations is denoted as Pareto-
frontier [73].

With the definition of the multi-objective CASH problem, we can simply extend this definition to a multi-
objective NAS problem, where a ML pipeline mathcangij is exchanged with a neural architecture fgjj)
defined in Definition 10. In Table 3.2, we present the related work for multi-objective AutoML and multi-
objective NAS approaches. While AutoML systems are carried out on commonly available resources without
GPU or TPU acceleration, NAS and especially multi-objective NAS are computational very expensive. This
need for accurate and computational cheap neural architectures has led to intensified research in the field
multi-objective NAS.

70

3.2 Multi-Objective AutoML

Table 3.2: Selected related work for Multi-Objective AutoML (upper part) and Multi-Objective NAS (lower part). The Solver column
indicates the underlying solver or algorithm used to search within the search space (Structure). Ensemble indicates, whether
the approach uses ensembles for prediction and Parallel indicates whether the algorithm is executed in a parallel manner.
The Benchmark column indicates if the approach uses or introduces a Benchmark and 7ime of the approach is sensitive to
the runtime of the system during training.

Approach Solver Structure Ensemble Parallel Benchmark Time
Olson et al. [177] GP Variable v e X v
Pfisterer et al. [187] BO XGBoost v X X X
Gardner et al. [93] GP - v X X X
Olson et al. [177] GP MLP v v X v
Hsu et al. [114] RL AlexNet X X X ~
Elsken et al. [73] EA Variable X v v X
Kim et al. [128] EA Variable X v X v
Chu et al. [53] EA Variable v X X ~
Mendoza et al. [167] BO FNN X X X ~
Luetal. [159] GP VGG X X v ~
Dong et al. [66] BO Variable X X X ~

To configure ML pipelines based on multiple metrics, Olson et al. [177] extend TPOT in that the GP creates
a set of Pareto-optimal ML pipelines that is retrieved from the populations of each generation. However,
TPOT is capable of building, based on the created Pareto-frontier, an ensemble of pipelines and searches
the configurations space in a parallel manner. Since it is a framework that is implemented to find suitable
ML pipelines for unseen data sets, it does not incorporate benchmark data sets. The time sensitivity while
training implicitly includes the complexity of the ML pipeline created. To optimise the ML pipelines towards
their complexity, e.g. their length or the size of the ensemble, TPOT proposes to integrate a time-sensitive
metric. Another approach for multi-objective AutoML is proposed by Pfisterer et al. [187] which uses BO
extended by sub-evaluations to include multiple metrics and thus to build a Pareto-frontier. This approach
is build on Autoxgboost [227], whereby it automatically configures a XGBoost instance and thus do not
incorporate a ML pipeline as defined in Definition 3. However, Pfisterer et al. [187] do not incorporate a
time sensitive evaluation for their proposed approach. Finally, Gardner et al. [93] propose a multi-objective
and constrained approach that builds on a EA approach. It creates a Pareto-frontier based on different 7P
and FP rates and thus does not consider time restrictions. As Pfisterer et al., Gardner et al. do not consider
a ML pipeline but a search space based on various different models.

Especially for real-world applications, multi-objective NAS is a central tool for balancing available constraints,
such as sufficiently high predictive accuracy, low energy consumption, or fast execution. This led to the
development of various works towards multi-objective NAS that incorporate the training time in the form of
FLOPS (FLoating point Operations Per Second). As TPOT [177] supports NAS in form of the automatic
configuration of MLP networks, it is listed in Table 3.2 twice. In NAS it uses the same underlying GP
algorithm as for AutoML. However, it differs from other NAS approaches in that it searches MLP network
architectures of variable size and thus is commonly used on tabular data sets used for classification and
regression tasks. A large part of the related work relates to image classification and consider data sets such
as CIFAR-10, CIFAR-100 or ImageNet. Existing approaches aim at efficiently maximizing sets of objectives
L by exploiting RL [114], EA [73, 128, 53, 159] or BO [167, 66]. Within MONAS, Hsu et al. [114] use a
RL agent that propose based on an encoding different neural architectures. It varies the structure based on
AlexNet [137] different neural architectures. The reward for the RL agent is given by a linear combination of

71

3 Related Work

prediction accuracy and other metrics that incorporate FLOPS. Elsken et al. [73] propose within LEMONADE
an approach that searches a Pareto-frontier by applying lamarchian EA. Further, it introduces a Benchmark
search space for further researches in multi-objective NAS. However, LEMONADE does not consider a time
or resource-sensitive evaluation but utilises a warm-stating mechanism incorporating weight sharing. Nemo,
proposed by Kim et al. [128], optimise simultaneously time and accuracy for CNN architectures and Chu
et al. [53] propose within MONAS a multi-objective NAS approach that applies NSGA-II on a cell-based
search space and incorporate FLOPS as well as the number of trainable parameters of the neural architecture.
Mendoza et al. [167] use fixed FNN parameter configuration space and evaluate their approach based on
the training time and error rate on tabular data sets. Further, the approach uses a SMAC as the underlying
optimiser. NSGA-Net, proposed by Lu et al. [159] propose as Chu et al. [53] NSGA-II as underlying solver to
handle trade-off among multi-objectives. Further, it uses BO to profit from the search history. Finally, Dong
et al. [66] propose in PPPNet an EA approach that incorporates a RNN to regress a pursued multi-objective
metric and thus to select in each generation suitable neural architectures.

Comparing the proposed multi-objective AutoML and NAS approaches the drawback of Pareto-optimization
comes apparent. Considering large Pareto-frontiers, that already in single-objective NAS approaches are
computationally expensive, comparisons as stated in Definition 17 become even more expensive. A further
drawback is that it assumes that the end-user is fully aware of all objectives and is capable of interpreting
the Pareto-front.

3.3 Online Ensemble Learning

In this section, we present the related work towards online ensemble learners. Ensemble techniques are
related to AutoML in that they use, accordingly to Definition 6 a set of models to learn a joint function 7
that performs better than an individual model. However, these models can either be single models or ML
pipelines without the goal of optimising their configuration. While Definition 6 is applicable on online
ensemble algorithms, not all ensemble techniques defined in 2.2.4.6 are applicable on data streams. In
Table 3.2, we provide an overview of the related work towards ensemble learning techniques. We divide the
proposed ensemble techniques into the underlying model used within the evaluation and the strategy to build
the ensemble. Further, we investigate whether the ensemble technique uses homogeneous or heterogeneous
underlying models and whether they use a sliding window or a change detector to adapt to data streams.
While Voting [133, 21, 26, 169] , Bagging [181] and Boosting are commonly applied ensemble techniques,
Stacking, where different models are aggregated by training new models based on the predictions made, is not
applied within online learning environments. However, in [180], Oza and Russell provide an experimental
comparison towards online and batch-based bagging and boosting methods and show the superiority of
online ensembles. The nature of data streams even opens new ensemble techniques such as proposed by van
Rijn et al. [233].

72

3.3 Online Ensemble Learning

Table 3.3: Related work for online ensemble learning techniques, considering the underlying (i) Model for evaluation, the ensemble
(ii) Strategy, whether the ensemble is capable of using (iii) Heterogeneous Models and if the ensemble applies (iv) Sliding
Windows or (v) Change Detectors.

Heterogen Sliding Change

Approach Model Strategy Models Window Detector
Oza and Russell [181] MLP & NB bagging & X X X
boosting
Kolter and Maloof [133] NB voting X X X
Bifet et al. [26] HT voting X v v
Bifet et al. [24] HNBT? voting X v v
Minku and Yao [169] Decision Tree voting v v v
Brzezinski and Stefanowski [41] HT - X v v
van Rijn et al. [233] - last best v v X
Gomes et al. [98] Random Forest voting X v v
Gomes et al. [99] HT voting X v v
Babhri et al. [9] k-NN - X v v

Oza and Russell [181] propose OB (Online Bagging) and Online Boosting as ensemble techniques on data
streams. OB updates a set of models by weighting each instance from the stream with a Poisson(1)
distributed number. In order to illustrate the similarities and differences between our approach presented in
Section 9.3 and OB, we depict in Algorithm 1 the OB algorithm.

Algorithm 1 Online Bagging, adopted from Oza and Rus-
sell[181]

: Input:

Data stream S, Set of models P,

Output:

Prediction: g

if ¢; then > Start Data Stream
for f € Pdo > Update each model
k < Poisson(1)
loop > Repeat k times
f.ﬁt(et)
end loop
end for
. end if

R AN A R i e

— s ok
B e

The Online Boosting algorithm proposed by Oza and Russell [181] simulates sampling with replacement
from the batch learning approach. Further, it updates the weights for each model’s error and estimates
the prediction ¢ based on these weights. Kolter and Maloof [133] propose a dynamic weighted majority
voting that creates and removes base algorithms in response to changes in performance. This dynamic
weighted majority voting is evaluated on VB classifiers but supports similar to online bagging and boosting,
heterogeneous models, without using sliding windows or change detectors. In “New Ensemble Methods
for Evolving Data Streams” [26], Bifet et al. propose to use a bagging ensemble of HT with different tree

2 Hoeffding Naive Bayes Tree

73

3 Related Work

sizes. Further, LB (Leveraging Bagging) is proposed in [26] and refined in [24], where the sampling &
(see Algorithm 1) follows a Poisson(6) distribution and an ADWIN change detector is applied to remove
the worst model of the ensemble and to replace it with a new model. Minku and Yao [169] propose with
DDD an ensemble method that operates in two modes: prior and posterior drift detection. Instead of an
ADWIN change detector an EDDM is applied. The modes of operation are switched, whether the EDDM
detector detect a concept drift or not. The approach is evaluated based on 25 decision trees. A generic
block ensemble is proposed by Brzezinski and Stefanowski [41], where the data stream is partitioned into
blocks to train each model within the ensemble accordingly to a models quality measure. An ensemble
method that builds on OB and uses heterogeneous ensembles is BLAST (Best Last) proposed by van Rijn
etal. [233]. BLAST selects from an ensemble of models an active model that is used for prediction. However,
the active model is determined by the past performances of each model of the ensemble. ARF (Adaptive
Random Forest), proposed by Gomes et al. [98] use an ensemble of Random Forests models that is trained
and adapted regarding an ADWIN change detector and a warning detector. Further, Gomes et al. propose
in “Streaming Random Patches for Evolving Data Stream Classification” [99] Streaming Random Patches
(SRP) that combines random subspaces and bagging while using a strategy to detect drifts similar to the one
introduced in ARF [98]. Bahri et al. [9] adapt k&-NN models to data streams, whereby the disadvantage of
storing the data is reduced by random projection

Concluding the related work for online ensembles, most approaches employ homogeneous algorithms with
identical configurations. Further, they do not consider pipeline configurations. Assuming algorithm and
hyperparameter search spaces, such as employed in autosklearn (|A| = 110 possible configurations) in an
offline learning environment, training all possible base algorithms within ensembles (e.g., OB [181] and
LB [24]) becomes increasingly inefficient. Further, they do not consider search heuristics to determine a
combination of suitable algorithms within the algorithm search space. However, to consider larger search
spaces, the related work provides some concepts that lead to online AutoML.

3.4 Online Deep Learning

In Section 2.5.4.3, we already depicted the general applicability of NNs as part of the Foundations. This
section, however, presents the related work for approaches that apply NN's in an online learning environment
and illustrates the broad range of applications for NN in online learning. Further, the related work for online
learning NN’s illustrates the heterogeneity of the applications that we aim to homogenise within the online
DL framework. However, we base this part of the related work on the survey papers Jain et al. [123] and
Pérez-Sanchez et al. [186] and limit to NN for supervised learning scenarios. Jain et al. [123] presents
the related work published between 2003 and 2013 and highlights the used architecture types as well as
the application domains. Pérez-Sanchez et al. [186] provide a review of techniques that adapt to concept
drifts and states the main strategies to face concept drifts are (i) sliding windows, (ii) instance weighting
and (iii) ensembles. This review includes concepts and strategies toward structural adaption (NAS) methods.
However, empirical evaluations are pending, and the suitability of NAS to face concept drifts is not presented.
In Table 3.4, we provide an overview of selected approaches that are related to the application of NNs in an
online learning environment. For a complete overview we refer to the survey provided by Jain et al. [123]
and Pérez-Sanchez et al. [186].

74

3.4 Online Deep Learning

Table 3.4: Selected related work for online DL techniques, considering the (i) Application, the (ii) Architecture, the
underlying (iii) Optimiser and whether the evaluation of the approach is sensitive to (iv) concept drifts.

Approach Application Architecture Optimiser Change
Lee et al. [148] Evacuation FNN - v
Sheng Wan and Banta [210] Medicine MLP PIL X
Akhbardeh et al. [3] Medicine ART - X
Zhou and Lai [251] Finance MLP SGD v
Ergen and Kozat [77] Finance LSTM SGD X
Lobo et al. [157] - SNN - v
Sahoo et al. [204] - MLP HBP X
Baydin et al. [14] - MLP SGD, Adam X
Nose et al. [175] Mobility CNN SGD X
Lobo et al. [156] - SNN - X
Liu et al. [154] - RBF SGD v

Considering the related work for NNs in an online learning environment, recent approaches either focus on
new neural architecture types [153, 3] or the application of new optimizers for specific neural architectures
[148, 236, 157]. Both are crucial for the application in real-world scenarios. As data streams often have
the characteristics of time series where the instances of the data stream are not stationary but partially
dependent on their order of arrival. For instance, this requires a neural architecture that can account for time
dependencies. Further, when concept drifts occur, a fast strategy to adapt to the changing pattern is necessary.
This, however, compromises the development of optimisers that adapt the weights of a neural architecture
when concept drifts occur. Lee et al. [148] propose a General Regression Neural Network (GRFNN) that is
applicable on data streams. This approach was developed to predict the evacuation time of a karaoke centre
in the event of a fire and employed incremental learning to reduce its computational requirements. Sheng
Wan and Banta [210] propose a PIL (Parameter Incremental Learning) approach where the strategy is that in
the process of adapting the network to training data by adjusting its parameters, the past learning steps of the
networks are also explicitly required to be perceived to a certain extent. In comparison to SGD, PIL shows
in [210] a faster convergence of a MLP architecture to the data stream. Another architecture used in online
learning is the ART (Adaptive Resonance Theory) network, where a central feature is a pattern matching
process that compares an external input with the internal memory of a network. Akhbardeh et al. [3] use
ART networks to classify cardiac cycles. However, ART networks are commonly used in health care [123]
in an unsupervised learning scenario. Zhou and Lai [251] present a model based on EMD that incrementally
learns and forecasts gold markets. EMD is used to divide a time series into different subsets and then to
perform a back-propagation step on a MLP network. Ergen and Kozat [77] evaluate LSTM architectures
and predict stock prices as well as the exchange rates in an incremental manner. Besides SGD, Ergen and
Kozat applies particle swarm optimisation techniques in order to incrementally update the weights of the
LSTM architecture. Referring to the functioning of the human brain and the premise that we are exposed
to constant streams of data, Lobo et al. [157] propose a SNN architecture that evolves over the data stream.
SNNs incorporate the concept of time in that they do not transmit information at each propagation step of
the data stream. In this approach, the SNN architecture and the weights of the architecture evolve based on a
sliding window and a ADWIN drift detector. Lobo et al. evaluate their approach based on various real-world
data streams that range from electricity to weather forecasts. In “Spiking Neural Networks and Online
Learning: An Overview and Perspectives”, Lobo et al. [156] further present an overview of applications of
SNN architectures in an online learning environment. In this review, the ability to adapt to the concept drifts
is addressed.

75

3 Related Work

Recent approaches address the adaptation of the NN underlying optimiser to data streams [204, 14]. Sahoo
et al. [204] further addresses the vanishing gradient problem in DL networks with multiple layers and
proposes an approach that dynamically evolve the depth of the FNN. The HBP (Hedge Backpropagation)
optimiser optimises the weights as well as the smoothing parameters of Softmax functions inserted in each
layer of the network. In “Online Learning Rate Adaptation with Hypergradient Descent”, Baydin et al. [14]
extend SGD and Adam to a hyper-gradient learning rate that reduces the time and resources needed to tune
the learning rate by simultaneously showing faster convergence. This optimiser is applied to MLP networks
in an online learning scenario, as well as on CNN architectures in an offline learning setting. Another
approach that applies CNN but in an online learning setting is proposed by Nose et al. Nose et al. [175]. The
goal is to train a lane-keeping assistant incrementally, where the input is a sequence of images annotated by
adriver’s steering input. While Baydin et al. takes the resource consumption into account and thus considers
the requirements defined by Bifet et al. [23], Nose et al. gives a structural approach without considering
the resource consumption. Finally, Liu et al. [154] propose a NN architecture based on RBF (Radial Bias
Function) that automatically replaces the worst performing hidden nodes within the NN and compares this
approach against LSTM architectures. It considers changes within the data stream based on a synthetic
Rossler chaotic time-series data stream but does not incorporate drift detection algorithms such as ADWIN.

In order to enable NAS in an online learning environment, Liu et al. and [157] propose first systems, that
dynamically adapt a specific network type to a data stream. However, considering multiple network types or
a framework that enables the simple application of NAS on different data sources as depicted in Section 2.3.3,
further research needs to be conducted. The related work, presented in Table 3.4, also shows the different
areas of applications, whereby each application is an isolated solution and does unfortunately not consider
a generic framework to open research across the application, architecture and the underlying optimiser.

3.5 Summary

This chapter presented the related work towards a utility- and stream-based adaptation of ML and AutoML
systems. For a utility-based adaptation, we presented in Section 3.1 Metric Learning and Human Guided
Machine Learning as concepts that enable the adaptation of ML systems or pipelines towards a certain utility
by implicitly or explicitly learning a metric function £* Further, in Section 3.2, we presented Multi-objective
ML approaches that are related in that they aim to optimise a set of objectives by retrieving a Pareto-frontier
and thus reflecting the end-user’s or domain expert’s utility. Searching a Pareto-frontier, however, might
remain computationally expensive. As stated in Definition 17, the larger the Pareto-front becomes, the more
solutions need to be considered and evaluated regarding all metrics within L in each iteration for possible
improvements. Mainly when the pursued utility comprises many metrics, the advantage of metric learning
approaches becomes clear.

Towards stream adaptation, Section 3.3 presents the related work towards online ensemble learning methods.
This part of the related work shows that recent developments in ensemble learning for online learning
scenarios showed impressive results in terms of performance and adaptivity to concept drifts. However,
only a few approaches consider heterogeneous base models to build an ensemble, and none considers online
learning ML pipelines. Finally, in Section 3.4, we presented, following the foundations for online NN
depicted in Section 2.5.4, the related work towards online DL models. A common framework is required to
consolidate the research that has been conducted and make research in this area perspectively comparable.
The presentation of the related work in this chapter supports the research questions presented at the beginning
of this thesis in Section 1.3 and shows the significance of the contributions toward utility- and stream-based
adaptation of ML and AutoML systems incorporating DL methods.

76

Part IlI

Utility Adaptation

"All models are wrong, but some are useful.”

—Box [35], 1979

77

Preference Learning

This chapter investigates preliminarily Hypothesis I and is about learning preferences that combine differ-
ent already available metrics and thus about the adaption to a particular utility. It mainly builds on the
publications “Personalized Automated Machine Learning” (ECAI - 2020) and “Personalized Neural Archi-
tecture Search” (ICDMW - 2021), where the general approach towards utility adaption in both publications
is similar but both investigate different systems (AutoML and NAS) and require thus different metrics and
evaluations.

Hypothesis I (Utility Adaptation)

Existing approaches for AutoML and NAS aim efficiently maximising individual or sets of
objectives L. By variation of the target function L, the output of AutoML systems can be
adapted and tailored to the needs of the user and thus to a utility.

With a retrospective of the provided foundations and the related work, this chapter aims to provide an
approach that is able to vary the underlying target function of a AutoML or NAS system. Within the
foundations, we systematically defined a ML pipeline and showed the vast configuration space of AutoML
but also NAS systems. Further, we presented in Section 2.6 different metrics that might be pursued and
showed the heterogeneity of these metrics that, in the first place, measure the distance between two data
points. To include resource-sensitive goals, we stated in Section 2.6 an extension to the formalisation of
a metric £(-,-) that incorporates not only two instances (2’ or ¥), but also the model f (£(-,-)) that can
with regard to the aim of this thesis be a neural architecture or a ML pipeline P. In Chapter 3, we depicted
the related work and presented different approaches that incorporate different metrics within the learning
process, namely (i) metric learning, (i) HGML and (iii) multi-objective ML. The related work showed that
metric learning is commonly applied on ML models that incorporate a distance metric (e.g. k-NN), HGML
is mainly applied on user interaction tasks and multi-objective AutoML and NAS frameworks aim at taking
a small number of metrics into account. Thus, the goal is to depict an system that might answer, how an
AutoML (RQ) or NAS (RQ II) system can be adapted to a utility an end-user or domain expert might pursue.
In order to depict a utility-based adaptation, we assume in this chapter again an offline learning scenario,
where all data is available at the beginning of the learning process. Assuming an online learning scenario for
preference elicitation, the underlying utility might evolve over time as a data stream. This further increases
the complexity and blurs the evaluation.

First, we formalise in Section 4.1 the problem following the CASH problem (see Definition 9) and the NAS
formalisation (see Definition 10) defined within the Foundations in Section 2. We introduce the general
approach in Section 4.2 by its components for learning new metrics £* based on a pairwise ranking model
and introduce its components within the Sections 4.2.1 - 4.2.4. In the following chapters of this part, we
then present an AutoML and NAS sensitive evaluation.

4 Preference Learning

4.1 Problem Formalisation

In this section we formalise the problem towards a utility-based adaptation of AutoML and NAS. While the
goal of HGML is to create systems that allow domain experts to use domain knowledge to steer the search for
a suitable model, the aim of metric learning is to learn a metric that measures the distance (or performance)
of data points and thus the model’s performance. Derived from both research fields, HGML and metric
learning, we can set the following requirements, which were already roughly depicted at the beginning of
this work.

Requirements II. Utility-based ML, derived from Gil et al. [95] and Li and Tian [150] :

RII-1. Certain variables and parameters of the underlying model may be given more priority
by an end-user.

R II-2. The end-users utility should reflect within the metric.

R II-3. A utility-based metric should influence the optimisation of an underlying model in
the direction of the utility

R II4. The utility score should follow a symmetry.

R II-5. The utility score should be non-negative.

The first requirement (Requirement R [I-1) describes the ability of an end-user to be able to state their
preference towards their priority [95] (or utility). This requirement thus concerns the access to a system that
can be adapted to the user’s needs. Requirement R I/-2 is about the metric that should reflect the utility.
To measure the fulfilment of this requirement, we can measure the performance regarding the distance of
a predefined utility and the predicted utility by the newly generated metric. In order to steer an AutoML,
NAS or ML system, the newly generated metric should not only reflect the end-user’s or domain expert’s
utility, but also it should have an impact on the optimisation process of the underlying optimisation process
(Requirement R /I-3). The Requirements R II-4 and R II-5 are derived from Li and Tian [150] and are
general requirements to a metric. However, these metrics are often neglected in practice, but compliance
with these has advantages in certain circumstances. A symmetric metric (Requirement R //-4) where the
order of the metric’s inputs has no impact on the metric’s score (£(y;, y;) = L(y;,y:)) has the advantage,
when considering a metric £(-,-) and one input y as ground truth and one input g, that differences in
prediction and ground truth are symmetric and also evaluated symmetrically. Considering a metric as
distance measurement, Requirement R /-5 becomes apparent. To avoid questioning whether a score of 1 is
equal, better or worse than a score of —1, the advantages of a non-negative metric become apparent.

With regard to the Requirements II, the advantages and disadvantages of different approaches towards utility
adaptation presented in this work (HGML, metric learning and multi-objective ML), we base our utility-based
AutoML and NAS system on a metric learning approach. In Definition 18, we formally define our metric
learning approach that learns a metric based on a set of heterogeneous metrics.

80

4.1 Problem Formalisation

> Definition 18. Metric Learning
Let L = {£M), ... £®} be a set of available metric functions, then the goal becomes to
learn a novel (metric) function:

L LM % ox W 5 RT “.1

By assuming that one can model a function ¢ : L — R! which generates a feature vector
for the available set of metrics, we can reduce learning a novel metric £L* to a regression
problem, where we attempt to learn

hee : ¢(L) = RY (4.2)

As in Definition 17 for the multi-objective CASH problem, our metric learning approach receives a set of
available metric functions L. The goal is to learn a new metric function £* where hp- is an approximated
regression model for the novel metric function £*. We have to learn weights # € RIFI e.g. hpe = H(L)TH
for the linear case. This learning task can further be integrated within the CASH as well as the NAS problem.
In Definition 19, we define the utility-based CASH problem based on the metric learning definition in
Definition 18, we aim to solve within this chapter.

> Definition 19. Utility-based CASH and NAS problem.
Combining the CASH problem from Definition 9 and the metric learning problem from
Definition 18, then the resulting utility-based CASH problem can be defined as follows.

-~ i 7
g, Z*, ALY e arg min Z hes(P Dt(m)m) D\(/al)id) 4.3)
Aealsl XeA, /:eL
Extending the NAS problem (see Definition 10) where a loss function £ is assumed to be
given with the metric learning problem from Definition 18, then the resulting utility-based
NAS problem can be defined as follows.

T M ()

g ,7 , ALY € argmin he«(f i), Dotia) (4.4)
9€G,Z€Z,LCL K Z Puain): Puai

where g~ is the approximated regressor for the novel metric function £* for which we have

to learn weights 6 € R, e.g. hoe = ¢(L)76 for the linear case.

In Definition 19 the search for an optlmlsed metric £* is integrated within the search for an optimal
parametrisation of AutoML (g* ,X and)\) in Equation 4.3 and of NAS (g*, Z* and)\ *) in Equation 4.4.
However, the integration of the metric learning problem into the CASH or NAS system does not necessarily
mean a simultaneous optimisation of all parameters. In the following, we provide a system that aims to solve
the Problems defined within this section.

81

4 Preference Learning

4.2 Approach

In this section, we depict the overall system towards the utility-based adaptation of AutoML and NAS that
is designed to consider (human) feedback. We consider a metric learning approach and inject a pairwise
ranking model as metric function £* into the AutoML and NAS system as shown in Figure 4.1.

First, we present the interactions between the system’s components, as well as the overall algorithm. Then
we depict the components of the systems accordingly to the in and outputs of the components defined in
Algorithm 2 in more detail.

. - Automated Machine ML Layer
Evaluation Initiator > .
Learning
v m
Metric Learner | I Evaluation Generator I
A T
Preference Interface <J

Figure 4.1: Approach towards an utility-based adaptation of AutoML, incorporating NAS.

The system depicted in Figure 4.1 consists of five components and takes as stated in the foundations in
Section 2.3.2 a data set D as well as a set of metrics L. Furthermore, accordingly to the process for metric
learning systems, depicted in Figure 3.1, our approach incorporates (human) feedback from a Preference
Interface. The main components of the system are an Evaluation Initiator, a single objective AutoML
system, an Evaluation Generator, a Preference Interface and a Metric Learner. The Evaluation Initiator
component generates a diverse set of ML pipelines or NAS systems by calling AutoML instances regarding
different metrics within L. The AutoML component is referred to a single-objective AutoML system, that
searches for suited ML pipelines or neural architectures following one predefined metric £. ML pipelines
or neural architectures created and trained by the AutoML (incorporating NAS) system are further processed
by the Evaluation Generator. This component processes the ML pipelines in that it evaluates the pipelines
regarding all metrics £ € L or generates user interpretable visualisations. We refer to these visualisations
that contain all information an end-user or domain expert requires to state their preference to as Segments
U (see Figure 3.1). Within the Preference Interface, an end-user or domain expert states their preference by
rating the proposed Segments in a pointwise, pairwise or list-wise manner. Rated Segments are referred to
as U749¢d and processed within the Metric Learner component. The Metric Learner learns accordingly
to Definition 18 a new metric £*. This utility-based metric is then passed in a last step to the AutoML
system, which then optimises the underlying ML pipeline or neural architecture towards the utility of the
end-user or domain expert stated within the Preference Interface. To learn an underlying metric, we base
our approach on pairwise comparisons. This approach is, in comparison to the other proposed ranking
approaches in Section 2.4 preferable, as within pointwise preference elicitation approaches, an end-user or
domain expert is assumed to be able to state the metric score of a pipeline configuration without knowledge
about the performances of other pipeline configurations. Further, a list-wise approach, where an end-user
or domain expert, states his or her preference based on ordered sublists, can be reduced to multiple pairwise
comparisons.

82

4.2 Approach

Algorithm 2 Utility-based AutoML

Input:

Dataset Diin = {Xlraim ytrain}7
Dataset Dyaiia = { Xvatias Yvatid }»
Set of Metrics L,

Number of pairwise comparisons w

Output:
Fitted ML pipeline P*

R A A ol S s

—
e

\\ Generate set of pipeline configurations P :

P+ > Initialise set of pipeline configurations
12: S« > Initialise set of segments
13: for £ € L do

14: |+ AutoML(L, Xitain, Yirain) > Fit AutoML instance
15: P+ AutoML.get_pipelines() > Get all evaluated P 2
16: P+ PUP,

17: end for

18: \\ Generate segment pairs UP%"" :

19: UPY" < SegmentGenerator(P, Dyatid, w) > see Algorithm 4
20: \\ Get users preference U749¢

21: UIudged « User Preference(UP®") > see Section 4.2.3
22: \\Train learning to rank, see Section 4.2.4

23: XM XY SampleComparisons(Uudoed)

24: L* < RankNet. fit(XM, X(=1)

25: f* < AutoML(L*, X rain, Yirain) > Train AutoML instance on L£*
26: Return P*

—
—_

In Algorithm 2, we depict the overall process towards an utility-based adaptation of AutoML. This adaptation
can be extended to NAS by replacing a pipeline configuration Pg,X,Y with a neural architecture fg_?,?'
However, within Chapter 6, we propose in Algorithm 5 an integrated NAS optimisation process based on
ES that is sensitive to the number of generated neural architectures in that it uses an initial population of
neural architectures for the generation of pairwise segments UP%" and for the evolutionary process. As for
the multi-objective case of AutoML, Algorithm 2 takes as AutoML systems a data set D, split into Dy,.qin
and D, ;4. Furthermore, it takes a set of metric L that of metrics and a predefined value w for the number
of pairwise comparisons. The output of the algorithm is a to a utility suited ML pipeline P*. The different
phases of Algorithm 2 are depicted within the components in the following sections.

4.2.1 Evaluation Initiator

Within the initialisation phase (Algorithm 2, 1.11ff.) the Evaluation Initiator generates different pipeline
configurations ngj. In order to obtain a diverse set of pipeline configurations for each metric £(¥) € L
an AutoML instance is trained on Dy, 4;,. We denote the pipeline configurations obtained by an AutoML
instance based on a specific metric as P, and the set of all generated configurations as P. Denote that
within the initialisation, we obtain not only the best pipeline configuration P, of an AutoML instance
fitted on £, we obtain all evaluated pipeline configurations evaluated during training. Thus the number
of pipeline configurations obtained by the AutoML system is significantly higher than the number of metric
functions |L|. The aim of the Evaluation Initiator is thus to generate a set of pipeline configurations that is as
diverse as possible for the later preference elicitation approach. We now describe the Evaluation Generator,

83

4 Preference Learning

which is called after the initialisation phase (Algorithm 2, 1.19), and that takes the generated set of pipeline
candidates P, a validation data set, and the number of segments to generate.

4.2.2 Evaluation Generator

The aim of the Evaluation Generator component is to process the generated pipeline configurations and to ob-
tain Segments that can be visualised within the preference interface component. Thus, this component takes
the generated pipeline configurations P and the number of segments w that should be generated. We denote
asegment s; as tuple (Xyaiid, Yvalid, P;i)X ?) that contains the data set D, ;4 in form of the features X ;4

and the ground truth labels y,4;;4 as well as pipeline configuration P 3 A segment enables to obtain
all performance measurements or metrics an end-user or domain expergt, n{ight pursue. For example, perfor-
mance metrics such as the accuracy can be obtained by performing £(@ccuracy) (Yvalids P(i)z X)(Xtmi"))
(see Equation 2.26). As we pursue a pairwise preference elicitation approach, where an endg:usér or domain
expert states their preference by pairwise comparisons (see. Section 2.4), the question of which segments
to compare for ranking also takes part. In Algorithm 3, we depict the process for generating segment pairs
UP" Tt executes a random generation of segment pairs. However, to train a metric learning algorithm
with preferences, it might be favourable to choose within the pairwise setting segments that are ranked
relatively close to each other. Techniques that train an algorithm based on the uncertainty of the algorithm
are called active learning techniques. These could further boost the performance of the metric learner in
order to converge faster to the underlying utility. However, to avoid losing the scope of this work and putting
the general framework and function into perspective, we base ourselves on a naive, random approach. In
Algorithm 2, the Evaluation Generator is executed in line 9.

Algorithm 3 Segment Generation

Input:

Set of configurations P,

Number of segment pairs to be generated w,
Validation dataset D, ;g = {X valid s yvalid}a

Output:
Set of segment pairs UP**"

R e A A S > e

while |[UP¥| < w do
i,j < Selectrandom ¢, j € P
5i = (Xvatid, Yvalid P;)Z,Y)

—_ =
—_— O

()
12: 55 4— (Xvalidayvallimtpg,X’Y)
133 if (si,5;) ¢ UP“ then
14: Upar = Urary {(s;, s;)}
15: end if
16: end while
17: Return UP%"

In Algorithm 3, we first select two random pipelines (or architectures) configurations from a set of config-
urations. For both configurations, a segment s is generated and combined to a tuple (s;, s;). A segment
contains all the information necessary to make a preference selectable for the end-user or domain expert.
If the tuple (s;, s;) is not already in the set of segment pairs UP%" the tuple is appended to the set UP*",
This process is repeated until the number w of necessary segment pairs UP%" is reached. Denote that the

84

4.2 Approach

maximal number of segment pairs is given by all possible combinations of P(*) € P, without taking into

account the order of segments within the segment pairs UP",

4.2.3 Preference Interface

Considering the generated segment pairs UP*" from the Segment Generation component, the Preference

Interface component is the interface between the end-user and the domain expert. Thus, this component
visualises the generated segment pairs UP%" so that the user is capable of judging which segment in UP%"

is preferred to the other one in the pairwise setting. The tuple (Xyaiid, Yvalids P(i)) of each segment is
visualised in that metrics, labels, or other performances are generated based on the configuration P(). In

Figure 4.2, we provide an exemplary visualisation of segment pairs, where the end-user or domain expert
could decide whether to choose the left or right segment and thus the preferred pipeline or architecture

configuration.

Confusion Matrix

>50K-|

I
<=50K

y predicted y ground truth

<=50K

——

PREVIOUS ‘ NEXT

A True value
v
(=]
~
|

Confusion Matrix

>50K-|

True Value

A
I
v
=]
=~
|

workclass

y predicted y ground truth

©.7290693886415464

=~ =~ =~

PREVIOUS ‘ NEXT

workclass

©.7290693886415464

CHOOSE THIS ONE

CHOOSE THIS ONE

EVALUATE METRIC

Figure 4.2: Visualisation Preference Interface for AutoML based on the OpenML 179 [124] data set, where the task is to classify
whether a person’s yearly income is over 50K or not.

85

4 Preference Learning

The exemplary Preference Interface in Figure 4.2 is based on the OpenML 179 data set. The task
in this data set is to classify whether a person’s income is over 50K a year or not. The visualisa-
tion contains a confusion matrix as well as a tabular visualisation of the ground truth label 474, the
predicted label § from the configuration. Further, it contains on which features X,,;;4 these predic-
tions have been executed. The interface enables the end-user or domain expert to state their preferred
configuration based on the provided information or to calculate on the already judged segment pairs
Uiudged 3 new metric. Besides the computation of performance metrics, such as the accuracy, the
Preference Interface component can compute latency metrics or in NAS architecture-specific features,
which enables a user-centric comparison of pipeline or architecture configurations. Performing NAS on
image data sets, further, enables i.ex. the integration of explanations of the underlying configuration.
Such a visualisation that explains why a configuration works
the way it does is exemplarily provided by Grad-Cam [208].
In Figure. 4.3, Grad-Cam [208] visualises regions that a CNN
architecture configuration payed attention on. Grad-Cam esti-
mates important regions of an image by considering activation
layers of a NN’s configuration before the output layer. Based
on the visualisation of the performance metrics, as well as the
activation functions, the end-users or domain experts can state
their preference within pairwise comparisons as depicted in
Figure 4.2. However, suggesting the domain expert or end-user
suitable visualisations is a separate field of research we explic-
itly excluded from this work. Instead, we provide through the

notation of a segment S; = (Xyatid, Yvalids P(% Y) the possi-
gA,
bility to generate all kinds of visualisations an end-user might

Figure 4.3: Illustration for feature importance on
NASNet based on Grad-Cam.

find helpful and thus offer a clearly defined system boundary.
As depicted in Algorithm 2, the Preference Interface retrieves
judged segment pairs, denoted to as U7%%9¢¢ where all judgments from an end-user are stored as triples
(si,sj,c¢). The variable ¢ corresponds to the end-users or domain experts preference, where ¢ € {—1,1}.
When the left segment was chosen, ¢ equals —1, and when the right segment was selected, ¢ equals 1.
Considering the Requirements II, the Metric Learner component and the segments within UP%'" enable
Requirement R -1, in that an end-user is able to give pipeline or neural architecture configurations based
on their parameters and variables more priority.

Given the judged segment pairs U749 the Metric Learner component is called to learn based on the
judg g p p
judgements, a new utility-based metric £*

4.2.4 Metric Learner

Within the Metric Learner component a new metric £* is trained based on the judged segment pairs UP%".
Thus, this component is the core component towards a utility-based AutoML and NAS system. It gets a set of
judgments U7%9¢ a5 input to generate a new, utility-based metric function £*. Since we assume a pairwise
metric learning approach, we chose RankNet [44] as the underlying ranking approach (see Section 2.4.2),
where a siamese NN takes the segment pairs as input to maximise the span between the judged segment
pairs. Further each segment s € U7%%9¢? contains a pipeline or architecture configuration P(Y) € P and thus
we can compute for all configurations P() € P all predefined metric scores £ € L. The metric scores are
then used for the pairwise LTR (Learning To Rank) approach. To use an already trained LTR model within
this component as a utility-based metric function £, it generates, based on the calculated metric scores, a

86

4.2 Approach

new set of features x. In Algorithm 4, we depict the scoring function £*, where a set of predefined metrics
are used to generate the features for the underlying RankNet metric function.

Algorithm 4 Rank based Scoring function £*

Input:

Ground truth y, and prediction g

Trained RankNet model NNRaniNet

Set of metric functions L = {£1), ..., £V}

Output:
Metric L*(z)

R AN A i e

Initialize X < ()

10: Initialize £* <— NNRankNet
11: for L9 € L do

12: x < xULD(],y)

13: end for

14: Return £*(z) \\prediction

However, to train the underlying RankNet LTR approach (see Algorithm 2, 1.21), two data sets X () and
X (=1 needs to be generated. Similar to an already trained scoring function in Algorithm 4, the data sets are
generated based on the pipeline configuration of each segment s in U74%9¢?, Thus, both data sets X 1) as
set of the preferred configuration and X (—1) as set of the corresponding non-preferred configurations have
the same shape.

Following a supervised offline learning setting, the RankNet algorithm is

trained on training data sets X 75(:()1271 and X t(falzzt The structure of RankNet Gudged)
(U

is divided into a siamese base structure and a meta-network. The base

network proposed by Burges et al. [44] is a CNN architecture evaluated on v

NLP tasks. As in our case, we aim to rank pipeline or neural architecture SampleComparisons
configurations by a set of metrics L; we chose a MLP architecture with one ¥ x(-1)
hidden layer and a ReLU activation layer to comply with the non-negativity

requirement of metrics. The output of the base network takes a data set X . MLP

It is used in Algorithm 4 to score based on L, D,4;;4 and the pipeline or N
neural architecture configurations the performance of the configuration.

The meta-network connects two siamese base networks that share their Base Networks

(1) and ¢ i

train

weights simultaneously. However, on base network scores on X

the other on X t(i Zm The difference between both scores distinguishes if | Substract |
the predicted scores provides a correct ranking within Xt(r;i)n and Xt(r;nl) I Signtoi r I

or not. While training, the aim of RankNet is to maximise within the
Meta Network

meta-network the difference between the scores of X (1) and X (=1)

train train RankNet
achieved within the base networks that share their weights. Considering
. 1) ()
e.g. ajudgement (s1, s2, —1) we calculate for s; L; = {Lg oo L7} Figure 4.4: Integration of RankNet [44]
and for s9 all metrics Lo = {ES), cey £§”} [139]. From the Preference within the Metric Learner.

Interface we know, that s; is ranked lower than s;. To generate the

training data set the features of so, generated on basis of L are added to Xt(r;i)n and the generated features of
s1 are added to X[(r;r}). The resulting data sets from all judgements U7%%9¢¢ of the Preference Interface are
then used to train a RankNet instance. Since both base networks share their weight, it is irrelevant which base

network is later used as a scoring function of £*. Regarding the last layer of the base network, we full-fill the

87

4 Preference Learning

metric Requirement R [I-5, that £* cannot become negative. Furthermore, the RankNet model follows by
definition and due to its siamese architecture a symmetry in that £*(X), X(=1) = £(X(D X1)) n
Algorithm 4, we defined following the metrics presented in Section 2.6.1 the input as £*(-, -). This input can,
as also discussed in Section 2.6.1, be extended in that the function takes three (X,y and the configuration
‘P) inputs.

The generated metric function £ that is trained towards an end-user or domain expert utility is in Algorithm 2
finally used to train an AutoML or NAS instance towards the utility.

4.3 Summary

In this section, we presented our approach toward a utility-based adaptation of an AutoML or NAS system.
To incorporate a diverse set of metrics, we base this system on a metric learning approach, where we
integrate a pairwise LTR system, namely RankNet, into our system. Around a single-objective AutoML or
NAS system, we depicted the Evaluation Initiator, that generates based on a predefined set of metrics L a
diverse set of configurations. These pipeline or neural architecture configurations are preprocessed for the
Preference Interface within the Evaluation Generator component. Within Section 4.2.3, we illustrated the
broad possibilities of the Preference Interface but also excluded the graphical preparation of segments from
this work. The Metric Learner component takes the preferences from the Preference Interface and trains
a RankNet LTR algorithm. The RankNet model learns a utility-based metric and is finally used to execute
a AutoML instance towards the utility-based metric £*. Regarding the Requirements for utility-based ML
an end-user is able to give certain variables or parameters of a AutoML or NAS system more priority by
indicating his preference in a pairwise manner. Further, the Metric Learner component follows a symmetry
(Requirement R /I-4) and is non-negative (Requirement R //-5) owing to the RankNet architecture. However,
the requirements, whether a utility is reflected by the RankNet approach (Requirement R II-1), as well as
the impact of a utility-based metric on the underlying AutoML or NAS system (Requirement R /I-3) are part
of the following evaluation.

88

Automated Machine Learning

This chapter provides an empirical evaluation of our approach toward a utility-based adaptation of AutoML.
Considering the requirements for utility-based ML, the Requirements R II-1, R II-4 and R II-5 are already
fulfilled by the systems architecture. To answer RQ I, we provide in Section 5.1 a brief recap of the research
questions and in Section 5.2 the experimental setup depicting the data sets and predefined metrics used for
evaluation. In Section 5.3, we evaluate whether the Metric Learner component is capable to learn a certain
metric (RQ I.1) as well as if this newly generated metric is steers an AutoML instance into the direction of
the metric (RQ 1.2).

Datamining Pipeline
+—| Bayesian optimizer |<—|
Meta- Data pre- feature pre- - Build
N — redictor
learning M processor processor P ensemble
ML framework
S~a -
-~_ -
~a - _ - -
—~— . - _ - -
i " Automated Machine ML Layer
Evaluation Initiator >

pXA—— Learning
Yirains >
Xtestr

v

L
I I Evaluation Generator I

Metric Learner
3 |
Preference Interface <J

L
Figure 5.1: Approach towards a utility-based AutoML System

In Figure 5.1, we depict the overall system incorporating an AutoML system such as autosklearn, TPOT or
hyo0. The AutoML system takes besides the training data set Dy,.q;, and a metric L that steers the ML pipeline
creation process into the metrics direction. The results of this chapter have been published in “Personalized
Automated Machine Learning” [139].

5.1 Recap Research Questions

Within the foundations provided in Chapter 2 it has become clear that AutoML systems are diverse in their
functionality, but their potential is enormous. They generate ML pipelines considering data preprocessing,
feature engineering as well as model selection. Further, they consider pipelines of variable length and thus
go beyond pure HPO. However, the search for suitable ML pipelines needs a search direction to find pipelines

5 Automated Machine Learning

that fit the requirements and expectations an end-user or domain expert might pursue. In particular, we
investigate in this chapter the following main research question through the experiment:

RQ I How can an AutoML system be adapted to a utility an end-used might pursue?

Regarding the requirements towards a utility-based adaptation of ML derived from Gil et al. [95] and Li and
Tian [150], RQ I is two-folded and can be split into the research questions:

RQ LI.1 How can a new target function £* be learned?

RQ L.2 How can we optimise an AutoML system for metrics beyond established metrics?

The first research question, RQ 1.1, is elementary for a utility-based AutoML. In Chapter 4, the overall system
was already depicted. Within this system the Metric Learner component (see Figure 5.1) takes a key role to
steer an AutoML system into the direction an end-user or domain expert might pursue. Within the Metric
Learner component, proposed in Section 4.2.4, we already referred to a LTR approach that learns a ranking
of ML pipelines created from an AutoML instance. However, pursuing RQ I.1 will shed light on whether the
proposed RankNet LTR approach is able to learn a new target function £*. Further, this research question
can be answered in several directions. One direction is, whether the underlying LTR approach is able to
learn linearly or even more complex connections between predefined metrics. Another direction concerns
the parameter w in Algorithm 2 and the question about how many pairwise comparisons are necessary to
learn these connection and thus the underlying utility. An empirical evaluation towards the Metric Learner
component is presented in Section 5.3.1.

RQ L.2 concerns the overall system and aims to investigate the influence of different learned metrics on the
performance of the system. This includes the influence of a learned metric on a diverse set of predefined
metrics and investigates the sensitivity of AutoML systems towards the underlying metric. If, for example, the
choice of the metric has only a minor influence on the ML pipelines performance, the additional components
of our approach, including the Metric Learner component, would be redundant. This could be the case
when the search space of the AutoML system is too small or does not bring any changes in performance
when changing the configuration. To measure the impact of a learned metric on the optimisation process of
the AutoML system, we provide in Section 5.3.2 an empirical evaluation of the overall system depicted in
Figure 5.1. The overarching research question (RQ I) can finally be answered by combining both evaluations
and thus showing the capability of our approach in adapting to a specific utility.

5.2 Experimental Setup

This section aims to provide the experimental setup for our approach. As depicted in Figure 5.1, our approach
takes, besides a data set D, a set of metrics or preferences that an end-user might pursue. In Section 5.2.1, we
present the data sets and in Section 5.2.2 we define the set of metrics L on which we evaluate our approach.
We executed all experiments on an Intel(R) Xeon(R) Platinum 8180M CPU with 2.50 GHz base clock and
1.5 terabytes of RAM without consideration of further GPU acceleration.

5.2.1 Data Sets

We base the evaluation of our approach on five different data sets retrieved from the OpenML [234]. The data
sets are chosen based on the evaluation data sets from the autosklearn [81, 80] and TPOT [177] frameworks.

90

5.2 Experimental Setup

Further, we assume in all data sets a classification task, where the set of labels y is categorical and finite. All
data sets are accessible based on the OpenML API'. The data sets range from real-world healthcare (thyroid
disease) to artificially generated and simulated tasks.

Thyroid Disease: The thyroid disease data set was first introduced by Quinlan et al. [194]. It
has 9172 data points containing 15 categorical and six continuous attributes. The features
range from age, sex, and sickness to medical treatments. The task is to determine whether
a patient is hypothyroid referred to the clinic. However, the data set contains three classes
referring to a healthy functioning thyroid gland, a subnormal functioning and a hyper-
function. Further, the data set is corrupted because it contains 5.4% missing values. As in
OpenML, we refer to this data set by its id 38.

Quake: The Quake data set (OpenML id 772) is a binary classification data set that contains
2178 instances. The data set is provided by the National Earthquake Information Center,
which determines the location and the size of all significant earthquakes worldwide. Thus,
it has three features, where the task is based on the longitude, latitude and focal depth
to determine whether the eruption source is an earthquake or another source. Since
earthquakes are proportionally much more frequent in this data set than other sources in
this data set, the AutoML instance has to cope with highly imbalanced data.

Friedman: The Friedman data sets are artificially generated data sets [88] that contain linear and
non-linear relations between the features and the output label. Further, it adds noise (e) to
the output of the function in that the friedman function is defined as follows:

y = f(7) = 10sin(rz122) + 20(x3 — 0.5)% + 1024 + 55 + €

It thus contains five continuous features, where X € [0, 1]. To test whether the underlying
model is capable of selecting important features, other random features can be randomly
added to the feature space X. The OpenML id 917 contains 1.000 instances and adds 20
random features to the relevant ones. The target is to determine if the label is under or
above a given threshold.

PC4: This data set (OpenML id 1049) was proposed by Shirabad, Menzies, et al. [211] and
contains data from earth orbiting satellites, where the task is to detect defective software.
The data contains 1.458 instances and 38 features ranging from the number of lines and a
number of operators to the percentage of comments within the software code. The features
were defined to characterise code features associated with software quality objectively. As
a result, the features are retrieved by the feature extractors proposed by [59].

Telescope: This data set (OpenML id 1120) simulates within a Monte Carlo process gamma
particles in a ground-based Cherenkov telescope using imaging techniques. The task is
to identify gamma-ray events hidden in charged cosmic ray background in Cherenkov
telescopes. The available information consists of pulses left by incoming and simulated
photons and allows the discrimination of the information caused by the gamma signals. It
consists of 19.020 instances and 11 continuous features.

I www.openml.org, last accessed January 30, 2023

91

5 Automated Machine Learning

5.2.2 Preferences

In order to evaluated our approach for AutoML, we define in this section the set of metrics used within our
system. Although we focus on classification tasks, we have used all available metrics from the Scikit-learn
library [185] that support numerical inputs and also that go beyond the classification task. This is due
to the reasoning that the underlying utility cannot be initially determined based on a metric and that this
is originally unclear. We choose for the set of metrics L the following metrics and refer for an in-depth
description to the Scikit-learn library. For classification, we choose the Precision, Recall, F1 metrics and
additional for regression the MSE, the maximal error and the log loss. Additionally, we use the hamming
loss, which estimates the fraction of labels that are incorrectly predicted and the jacquard score, which is
defined by the size of the intersection divided by the size of the union of two label sets. Denote that the
direction for some metrics in L is distinct. Thus, the Metric Learner’s task becomes more difficult in that
important metrics may need to be weighted in the opposite direction of other metrics.

For the general setup we used TPOT [177] as AutoML component to (i) create pipeline configurations for
the subsequent preference elicitation and (ii) to perform the optimisation process based on a learned metric
L*. For each metric function £(*) € L we fitted an AutoML instance for one hour and extracted all evaluated
pipeline configurations. Since the execution of the first AutoML instances only serves to generate segments,
whereby the evaluation time for each pipeline configuration depends on the size of the training data set X i,
we can set a tight time limit. Within one hour TPOT generated on a small data set, such as OpenML 38 up
to 19452 different configurations and thus different segments. Considering larger data sets (OpenML 179)
with a high number of instances TPOT still generated 2349 segments. In this case 2349 leads to 2.757.726
possible segment pairs UP%". Based on the generated segments and predefined preferences we evaluate in
Section 5.3.1 the chosen learning to rank approach and in Section 5.3.2 its integration into a new AutoML
instance.

5.3 Evaluation

This section evaluates the proposed LTR approach towards its application on AutoML. First, we evaluate in
Section 5.3.1 the Metric Learner component and thus give answer to the question how a new target function
L* can be learned considering the performance metrics in Section 5.2.2. The second part of this evaluation
concerns the overall system and the impact of the learned metric £*. We show that our approach is capable
of taking preferences stated within the Preference Interface into account. Further, it suggests based on an
integrated single-objective AutoML instance ML pipelines that can outperform AutoML instances trained on
a static, predefined metric.

5.3.1 Metric Learner

Within the Evaluation Generator and the Metric Learner component in Sections 4.2.2 and 4.2.4 we propose
to use different metrics as features to build a new metric function an end-user or an domain expert may want
to pursue. However, to evaluate whether the proposed approach can learn a utility-based metric besides the
performance of the underlying RankNet LTR learner, also the number of needed pairwise comparisons is an
indicator for the Metric Learners capabilities to learn a utility.

For evaluation, we assumed three different utilities. First, we assumed that the utility follows a selective
metric, the accuracy metric. Thus the task for the RankNet model becomes to select from a set of metrics L
the accuracy metric. Within a linear combination, we assume that the utility follows a linear combination of

92

5.3 Evaluation

metrics, where each metric in L has with consideration of the direction of the metric a predefined and equally
distributed weight. The F1 score shows whether the RankNet model can learn a metric that goes beyond
a linear combination. To evaluate the RankNet model regarding the number of pairwise comparisons, we
generate from the set of pipeline configurations for each data set 1, 250 segment pairs UP%". This set is split
into an 80/20 train-test-split, where up to 1, 000 segment pairs are used for training, and 250 pairs are used
to evaluate the model. In Table 5.1, we present the achieved results of correct predicted rankings regarding
different training data set sizes.

- OpenML Training Size
Utility D
10 | 100 | 250 | 500 | 1000
38 0.913]0.9630.972(0.975|0.977
179 0.913]0.945|0.960 | 0.966 | 0.967
772 0.963]0.956 | 0.966 | 0.975 | 0.977
Accuracy

917 [0.943|0.9740.981|0.984 | 0.986
1049 |0.890(0.966 |0.977|0.978 |0.979
1120 0.917]0.9580.9670.971|0.973
38 10.896]0.935]0.935/0.935]0.935
179 |0.791|0.825]0.810|0.810|0.805

Linear 772 0.593]0.687|0.888|0.933|0.937
Combination | 917 0.949|0.965 | 0.968 | 0.968 | 0.969
1049 | 0.861]0.943(0.957|0.967 |0.972
1120 |0.913]0.961|0.968 |0.974|0.979
38 10.937]0.972]0.97110.977]0.978
179 10.889/0.931(0.961|0.974|0.977
772 10.876]0.966 [0.972|0.972|0.974
917 |0.964(0.982|0.982(0.983 | 0.985
1049 | 0.883|0.932(0.970|0.980|0.981
1120 0.940|0.951 |0.964 |0.977|0.990

Table 5.1: RankNet - Percentage of correct predictions on test judgements [139]

F1

In the following, we discuss, based on the results in Table 5.1, the results achieved for the different predefined
utilities.

5.3.1.1 Accuracy

The aim of this experiment was to show, whether RankNet is capable to learn to select the set of metrics L.
We set the accuracy metric as a predefined metric and ranked 1, 250 segments based on the accuracy. The
results show that RankNet is capable, accordingly to the accuracy metric, of ranking correctly 222 out of
the 250 segment pairs held out for testing after only ten pairwise comparisons. Considering more than ten
pairwise comparisons, the percentage of correctly ranked segment pairs increases. In this setting, it shows
that RankNet can learn to select metrics within ten pairwise comparisons. However, increasing the number
of judgements increases the percentage even more. Still, here the question is whether a percentage of at least
89% on the Friedman data set is sufficient to steer an AutoML instance.

93

5 Automated Machine Learning

5.3.1.2 Linear Combination

Within the second experiment, we tested whether RankNet is capable of learning a metric out of a linear
combination. The sum of all weights is one. However, this task results in a more complex setting in that
some metrics, e.g. MSE, are unbounded in that they possibly can get infinite. In Table 5.1, we see that in
the case of a linear combination, the RankNet mode performs slightly worse than in the case of a selective
metric. In general, this can be compensated by considering more pairwise comparisons. However, within
ten pairwise comparisons, at least 59.3% (OpenML 772) are correctly ranked, and when considering 100
judgements, at least 68.7% pairwise judgements are correctly ranked on the test set.

5.3.1.3 F1

In this experiment, we show that our experiment can learn preferences that go beyond a linear combination.
We remove from the set of metrics L the F1 metric and set it further as the metric that should be pursued. As
shown in Section 2.6.1, the F1 score can be expressed by a combination of precision and recall. Assuming
a F1 metric, the equation for the F score (Equation 2.25) can be reduced to

9 precision * recall

F1(precision, recall) = (5.1)

precision + recall
By following the F1 metric, we show, on the one hand, similar to the selective case, that RankNet is capable
of neglecting metrics and, on the other hand, that RankNet can learn complex correlations in the form of
non-linearity. Table 5.1 shows that RankNet is capable of achieving at least a score of 87.6% on all data sets
after 10 pairwise comparisons.

Summarising the capabilities of the RankNet model within the metric learning setting, this section clearly
shows that it can learn an underlying metric in about ten pairwise comparisons. However, it is also necessary
to point out the weaknesses of this approach. Within Section 5.2.2, we depicted the metrics that were limited
to the performance metrics. Thus, the mapping range of the benefits is now also limited to the metrics in L.
Until now, we did not consider utilities such as the latency or the complexity of the ML pipeline, and thus
these can not be mapped within the Metric Learner component. However, to answer RQ 1.1, we showed in
this evaluation that a RankNet model can learn a new metric within 10 to 100 comparisons considering a set
of predefined metrics L.

5.3.2 System Evaluation

Another important aspect is the impact of the learned metric on the performance of an AutoML regarding
the predefined utilities. This section aims to evaluate this impact and thus answer RQ 1.2. As depicted in
Figure 5.1 and similar to Section 5.3.1, we created based on the metric functions in L various ML pipelines.
Following Algorithm 3 within the Evaluation Generator component, we randomly created segment pairs and
judged them based on the predefined utility (accuracy, linear combination and F1-score). The judgements
are as stated in Section 5.3.1 used to train a RankNet model with the Metric Learner component.

In this section, we execute the RankNet models as utility-based metrics within an AutoML instance and
measure the difference in performance and whether it leads to better performances regarding the predefined
utility. To further compare the differences, we trained accordingly to the utility metrics for each metric a
AutoML instance directly based on the predefined metric. We split each data set into a 80 / 20 train-test split
and passed it together with the trained RankNet metric or directly with the assumed utility.

94

5.3 Evaluation

OpenML | AutoML Metric

Utility ID Utility | RankNet
38 1.00 | 0.874
179 0.710 | 0.611
772 0.714 | 0.686
Accuracy

917 | 1.00 | 0.984
1049 | 0.774 | 0.618
1120|0922 | 0.899
38 10790 | 0.951
179 2207 | 1.100
Linear 772 0.481 | 0474
Combination | 917 | 4861 | 3.395
1049 | 6261 | 2.023
1120 | 1.692 | 1.067
38 | 0971 | 0.966
179 | 0.706 | 0.700
772 10793 | 0.754
917 | 1.000| 0.978
1049 | 0978 | 0.733
1120 | 0.984 | 0.963

Table 5.2: Evaluation utility-based AutoML [139]

Fl1

In Table 5.2, we present the results achieved accordingly to the utility metric. Since we compare the approach
with a Metric Learner component against AutoML instances directly fitted on the utility, the aim of this
experiment is not to surpass the utility metric but to get as close as possible to the performance of the
AutoML instance directly fitted on the utility. The scores presented for each utility were achieved on the 20%
test split Dy4¢. In the following, we present as in Section 5.2.2 the evaluation for each predefined utility.

5.3.2.1 Accuracy

Considering the selective case, where we assume that the utility is represented within the accuracy metric,
the RankNet model achieved after ten comparisons a score of at least 89.0%. However, for the overall system
evaluation, it shows that in Table 5.2 RankNet manages to steer AutoML into the direction of the utility. In
some cases (OpenML 38 and 1049) the AutoML instance with RankNet predicts significantly worse than the
the AutoML instance directly fitted on the underlying utility. For the OpenML data sets 772 and 1120 the
AutoML instance with Metric Learner component show, that RankNet is capable to steer the optimisation
process closely into the direction of the utility. In average the AutoML instance with the RankNet Metric
Learner component performance in average 7.4% worse than the instance directly fitted on the utility. These
performance differences show preliminary the impact of choosing different metrics and that the approach
with Metric Learner component is capable of steering AufoML optimisation processes in the direction of
the utility.

95

5 Automated Machine Learning

5.3.2.2 Linear Combination

Considering the case of a linear combination of metrics from the set L, the task for the RankNet model
becomes more difficult. Denote that the combination of metrics i.ex. the MSE is highly dependent on the
data set and thus can possibly be infinite. However, Table 5.2 shows, that in the linear case the AutoML with
the Metric Learner component is in some cases (OpenML 38) able to exceed the achieved performances of
an AutoML instance directly fitted on the underlying metric. Since the range of this metric is undefined, the
complexity of evaluating utility-based metrics becomes apparent. For example, the MSE score may have,
due to its possibly higher value range than an accuracy metric, also higher importance when searching for
suitable ML pipelines.

5.3.2.3 F1

In the last experiment, where we consider an F1 score as a utility to pursue, the task for the RankNet
model was to neglect irrelevant metrics from L and to learn from the precision and recall metrics of the F1
metric score. Apparently, already in Section 5.3.1, we noticed that RankNet metric was capable to learn
unexpectedly well this complex utility. However, this result is also reflected within Table 5.2, where the
RankNet model is capable of steering the AutoML model in the direction of the utility and thus results in
intimate performances to the AutoML instance directly fitted on the utility. On average the AutoML instance
directly fitted on the predefined utility achieved 5.6% better performances than the AutoML instance fitted
on the Metric Learner component.

In Table 5.2, we depicted the different performances of AutoML instance trained on the Metric Learners
metric or directly on the underlying utility. However, the F1 score depends on precision and recall, which
enables the visualisation of ML pipelines created by AutoML instances fitted on precision, recall and the
learned F1 metric.

1.09 1.0 4
=
X x
0.8 0.8 \
. I.
g 06 scorer g 0.6 scorer Y
8‘ ® precision_score $| ® precision_score N 5
2!
= * recall_score . . = * recall_score . u
8 ® ranknet_scorer - 8 ® ranknet_scorer
=044 =044 x)
. ™ (X
e Lo ®
] ° e .
0.2 . . 0.2 . .
° ° L) .
L] . - x ®x . .
" x . X . .
0.0 T T T T T 0.0 T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
precision_score precision_score

(a) AutoML instances on OpenML 38 - Precision, Recall curve [139] (b) AutoML instances on OpenML 1049 - Precision, Recall curve [139]

Within the Figures 5.2a and 5.2b, we visualise the last 50 ML pipeline configurations created by AutoML
instances following a precision, recall or learned F1 metric. The F1 metric is plotted as a function of
precision and recall, where a higher colour intensity means a better F1 metric score. This experiment
aims to show that the Metric Learner component is capable of steering the optimisation process of an
AutoML instance in the direction of the F'/ score depending on Precision and Recall scores. Denote that the
RankNet scorer does additionally learn from all metrics within L without considering the F1 score within

96

5.4 Summary

this set. In Figure 5.2a, we can see that the AutoML instances fitted on the precision or recall metric point
in the direction of the respective metric. Further, it shows that the RankNet model can steer the AutoML
optimisation process in the direction of the learned F1 score. While the ML pipeline configurations created
by AutoML instances following the precision and recall scores optimise along the x and y-axis, the pipeline
configurations optimised towards the learned F1 metric optimise towards the F1 metric. Thus, would an
end-user’s or domain expert’s preference be the F1 metric but fits an AufoML instance based on the precision
or recall metric, the AutoML instance would search for pipeline configurations that perform best on the x or
y-axis. The AutoML instance fitted on the learned F1 score leads to better results than only fitting AutoML
on the precision or recall metric when following the F1 score as a utility. The evaluation on OpenML 1049
depicted in Figure 5.2b demonstrates even clearer, that when an AutoML instance is trained on a metric an
end-user or domain expert wants to pursue partially, the AufoML instance trained on a metric the user defined
within pairwise judgements outperforms the other AutoML instances. Regarding RQ 1.2, we showed, that
the Metric Learner component is able to steer AutoML instances beyond a set of predefined metrics. This is
particularly evident in evaluations depicted in Figures 5.2a and 5.2b.

5.4 Summary

In this chapter, we evaluated our approach proposed in Chapter 4 based on AutoML. We proposed a system
that enables the integration of an end-users or domain experts utility and provided an empirical evaluation
by assuming three synthetically generated utilities. Within the Metric Learner component, we integrated
a RankNet model and showed that this model is capable of learning a new metric (RQ I.1) based on a few
pairwise comparisons. Furthermore, the Metric Learner component steers an AutoML (RQ 1.2) instance in
the direction of the utility learned within the RankNet model. The RQ I.1 and RQ 1.2 defined at the beginning
of this work, can be answered within the evaluations in Sections 5.3.1 and 5.3.2 in that the RankNet model
is able to learn a new target function £* within a few pairwise comparisons and it steers the optimisation
process of an AutoML system into the direction an end-user or domain expert may want to pursue. However,
the limitations of our approach are the dependency on the set of already predefined metrics L. It constrains
the expressibility of the utility stated within the pairwise comparisons to this set. However, the set of
available metrics can be extended with less effort. Further, we based our evaluation on randomly chosen
pairwise comparisons. Here, the Evaluation Generator could improve the performance in that it actively
selects pairs of segments where the RankNet model is uncertain.

97

Neural Architecture Search

This chapter provides an empirical evaluation of our approach toward the utility-based adaptation of NAS.
In Chapter 5, we showed for AutoML that the general approach towards utility-based adaptation is capable
of learning performance metrics by a few pairwise comparisons and thus that it is capable of steering the
optimisation process of AutoML. However, as the underlying optimisation process is switched from a search
towards the best suited ML pipeline to the best suited neural architecture, the search becomes more complex.
The high variability and applications of NNs lead to enormous search spaces. Furthermore, the expensive
computational training of NNs requires an efficient search in that only a few architectures are explored to
find a suitable neural architecture. Even further, the high resource consumption implies that the underlying
utility may not only rely on performance metrics such as the accuracy, precision but also on recall or the F1
score; It may incorporate metrics that go beyond the predictive performance and include, e.g. the latency
of a NN. Thus in this chapter, we base our evaluation on metrics that go beyond the predictive performance
and evaluate our approach against state-of-the-art multi-objective NAS approaches. As in Chapter 5, we
provide in Section 6.1 a brief recap of the research questions, we aim to answer in this chapter. Further, we
present in Section 6.2 an integrated utility-based NAS process, that considers the computational expensive
evaluation of neural architectures and thus integrates an ES based NAS approach (following Real et al.
[197] and Saltori et al. [205]) into the general utility-based system depicted in Figure 4.1 to reduce the
number of needed evaluations. In Section 6.3, we depict the experimental setup by presenting the used
data sets as well as the utility metrics that we aim to follow within the optimisation process. Finally, in
Section 6.4, we evaluate whether the Metric Learner component is capable of learning a metric that goes
beyond the predictive performance and whether the search for NAS system based on a learned metric is
competitive against multi-objective NAS approaches. The results of this chapter have been published in
“Personalized Neural Architecture Search” [140]. Furthermore, the implementations for the baselines as
well an OpenAl-Gym environment for NATS-Bench [67] are made publicly available on Github *.

6.1 Recap Research Questions

The search for suitable NN’ is technically similar to the search for suitable ML pipelines. Further, they even
incorporate similar HPO techniques. However, the architecture of NNs is diverse, complex and brings new
challenges. As stated in the foundations (Chapter 2), NAS can take several days or weeks to find suitable
neural architectures and thus opens a new dimensionality in complexity, compared to AutoML frameworks
where the task is to find suitable ML pipelines. The optimisation process’s emphasis may not lie in the
predictive performance but in metrics that go beyond. While the main research question for NAS remains
similar to the research question of utility-based AutoML systems, namely:

' https://github.com/kulbachcedric/, accessed on January 30, 2023

6 Neural Architecture Search

RQ II How can an NAS system be adapted to an end-user’s needs?

The complexity as well as the possibilities of architectures and thus the enormous search spaces lead to the
following sub research questions:

RQ II.1 How can a new target function £* beyond predictive performance measurements
be learned?

RQ II.2 How does a tailored target function influence NAS towards the pursued utility?

While for AutoML the research question was about the learning of a target function (RQ L1, the first sub-
question in NAS asks for a target function £* that goes beyond the predictive performance measurements.
An efficient search in NAS is crucial. Since an end-user or domain expert may not only retrieve a NN
that has a good performance as well as a low latency, but also a suitable neural architecture that does not
require training and testing the entire search space. Thus the impact of the learned metric needs to steer the
optimisation process even better than in AutoML. RQ I1.2 asks accordingly to the influence of the learned
metric on the NAS optimisation process.

6.2 Integrated Utility-based Process

In this section, we present accordingly to Algorithm 2 an integrated approach towards utility-adaptation of
NAS. This is motivated by the complexity of NAS. Thus, the aim is to minimise the number of NN's that need
to be evaluated within the optimisation process. As in the AutoML setting, where the Evaluation Initiator
component is part of a ML layer, that was not further addressed, in our approach the Evaluation Initiator as
a single-objective NAS component part of a NAS layer (see Figure 6.1). As depicted in Section 4.2.1, the

NAS

1 HPO fe—

Evaluation
» NN) Convi Conv; metrics
Initialization

ndu|
W3S
AUOD

. - Neural Architecture NAS Layer
Evaluation Initiator >

Xtruinl Search
Ytrainl T
Xtest:

Y

L
I I Evaluation Generator I

Metric Learner
A T

Preference Interface <J

Figure 6.1: Utility-based NAS System

Evaluation Initiator generates a set of ML pipelines or neural architectures to create then a set of segments
that are judged by an end-user or domain expert. However, considering an evolutionary approach, the initial
generation of a population does not require an underlying metric. Thus, the generated set PP can be used to
(1) generate segments for the Metric Learner component and as (ii) initial population for the evolutionary
NAS algorithm.

100

6.2 Integrated Utility-based Process

Algorithm 5 Utility-based NAS, following [197, 205]
: Input:

: Data set Dygin = {Xtraina ytrain}7

: Data set Dyaiig = { Xvatid, Yvalid }»

Set of Metrics L,

: Number of pairwise comparisons w,

. Population Size p,

Sample Size s,

: Cycles ¢

o I AN IS

Ju—
(=]

. Output:
11: Neural Architecture f* _,
g,?, A
12:
Ensure: p>s & ¢>p
13 PH <« (
14: for : = 0 to p do > Generate Population P
15: fg,?,Y < RandomArch(G, Z,\)
16: fg >3 Fit(Xieains Yurain) > Train architecture
17: P+« PU fg’?j
18: H+ HU fgjj
19: end for
20: UPr + SegmentGenerator(P, Dy,jiq, w) > see Algorithm 3
21: U4« Preferencelnterface(UPr) > see Section 4.2.3
22 XM XD SampleComparisons(U1ed)
23: L* « RankNet. fit(X, X (1) > see Algorithm 4
24: while iter < c do > Start NAS iterations
25: S « sample s architectures f() C P
26: f(parenl) < argmaXyseg ‘C*(f(Xvalid)v yvalid)
27: flehild) o (parent) mytate()
28: f(Child)-fit (Xtraina ylrain)
29: P+ PU fchild
30: H « H U fchid
31: P« P\ P.oldest
32: end while
33: f;?j cargming _, en £7(f, 5 5 (Xvatid), Yvatia)
*
34: Return fg’ 23

Based on this idea, we depict in Algorithm 5 the overall process for an integrated utility-based adaptation
of NAS. As ES we follow the regularised evolutionary single-objective NAS proposed by Real et al. [198].
In Algorithm 5, a population P of size p is randomly generated and trained in lines 13-19. Accordingly to
Figure 6.1, in lines 20-23 the Segment Generator generates a set UP%" of segment pairs that are judged by
the end-user or domain expert within the Preference Interface. The Segment Generator component uses the
initially generated population P to create the set of segment pairs. In lines 22-23 of Algorithm 5, the Metric
Learner component learns the underlying utility and passes it to the single-objective NAS optimiser. Within
Algorithm 5, the regularised evolutionary algorithm proposed by Real et al. [198] uses in line 24 the initial
population P and generates new populations by drawing individual architectures out of the population P,
mutating and training them. In each cycle the oldest architecture is removed from the population. We denote
the proposed approach in the following as regularised evolutionary algorithm.

101

6 Neural Architecture Search

6.3 Experimental Setup

In this section, we provide as for AutoML the experimental setup for an algorithm-centred evaluation. First,
we present in Section 6.3.1 the data sets on which we evaluate our approach. We base our evaluation on the
NATS-Bench [67] data set, that provides besides the data sets CIFAR-10, CIFAR-100 and ImageNet16-120 a
unified search space. Further, it supports a broad range of underlying optimisation techniques, and in total,
it contains 32.8% unique neural architectures distributed over the three data sets. NATS-Bench is split into a
topology search space and a size search space, where the topology search space aims to represent different
cell structures and the size search space seeks to optimise the number of cells in each layer. However, both
search spaces are part of a fixed macro skeleton structure for the architecture candidates.

Considering a unified search space enables the comparison of different NAS approaches. Regarding RQ 1.2
we integrated the regularised evolutionary algorithm, LEMONADE [73] and MONAS [114]. To measure the
influence of a learned metric on NAS, we evaluate in Section 6.4.2 the regularised evolutionary algorithm,
as well as MONAS with and without Metric Learner. In MONAS, Hsu et al. [114] considers a RL agent
that learns to configure neural architectures based on a reward. This reward, however, is composed of
different predefined metrics, and thus MONAS uses a single-objective optimiser (agent) to search for suitable
architectures. It enables the integration of MONAS into our general utility-based approach. For this
purpose and to foster the research on RL based optimisation techniques in NAS, we provide an OpenAl-Gym
environment that contains the NATS-Bench search space as environment and returns based on a predefined
metric £ a reward. Furthermore, we use the predefined metrics proposed by Hsu et al. [114] depicted in
Section 6.3.2 as utility for the evaluation of the Metric Learner component. LEMONADE, proposed by
Elsken et al. [73] learns via Lamarckian evolutions a Pareto-frontier based on a set of metrics L. Since
it already optimises a Pareto-frontier, our LTR approach is not applicable. However, since it takes as our
approach a set of metrics L, it is comparable and thus part of our evaluation. Based on the unified NATS-
Bench data set, we published the implementations of LEMONADE, the regularised evolutionary algorithm,
MONAS and as well the OpenAl-Gym environment on Github.

In the following, we depict the data sets on which NAS is performed within the NATS-Bench data set and
then the synthetic utilities accordingly to Hsu et al. [114].

6.3.1 Data Sets

For evaluation purposes we evaluate our approach based on the NATS-Bench [67] benchmarking data set.
This technique has the advantage that we have access to a broad database of already trained NN's, and thus,
it fosters research towards effective search strategies for NAS. In comparison to other NAS benchmark data
sets such as NAS-Bench-101 [247], NAS-Bench-201 [68] and NAS-Bench-301 [213], NATS-Bench contains
besides the performance metrics fine grained information in different states of the training process of the
neural architecture, further parameters such as the test/train accuracy and loss, the number of parameters
and the latency.

The used data sets within NATS-Bench are presented in the following:

Cifar 10 The CIFAR-10 data set contains 60k colour images, where the task is to classify the images into
10 classes. The images have 32 x 32 pixels, where each pixel has three colour channels, and thus, an
image contains 3, 072 features to classify it, ranging from aeroplanes to animals. It was collected by
Krizhevsky [137] in 2009.

102

6.3 Experimental Setup

Cifar 100 Similar to the CIFAR-10 data set the CIFAR-100 data set has 60k colour images and was also
collected by Krizhevsky [137]. However, it contains 100 classes (600 images per class) that can be
grouped into 20 superclasses.

ImageNet 16-120 The ImageNet [62] data set contains 14M/ images that are annotated accordingly to
the lexical database WordNet [168]. It contains 20, 000 different classes, whereby ~ 1,20/ images
have bounding boxes and contain information about the location of the class within the image. In
NATS-Bench, however, the images are downsampled to a size of 16 x 16 pixels (768 features) and
filtered in that the images containing the first 120 classes (151, 7k images) are considered.

Comparing the data set with the data sets used within the evaluation of AutoML in Chapter 5, the image
data sets contain significantly more features. This large number of image features is one reason why neural
network training needs many computing resources. However, it emerges that the number of features and the
complexity of NNs reinforce the necessity for an efficient optimisation strategy.

6.3.2 Metrics

We evaluate the Metric Learner component, as well as the performance of the state-of-the-art multi-objective
NAS approaches in accordance with the metrics defined in “Efficient Multi-Objective Neural Architecture
Search via Lamarckian Evolution” by Elsken et al. [73]. As in for the evaluation of AutoML, these metrics
are divided into selective and combined metrics. Further, we normalise each metric £V € L so that the
point in the same direction and to [0, 1]. Thus, higher return values for each £(?) € LL are better than lower
return values.

Selective Metrics: The NATS-Bench benchmark data set provides for each NN the model’s test/train
accuracy and loss, the latency and the number of parameters are given. Considering a selective utility,
one or few metrics £(9) € L are pursued. The utility hgccuracy (Equation 6.1) pursues the test
accuracy, higtency (Equation 6.2) pursues the networks latency and hpqrqms (Equation 6.3) follows
the number of trained parameters [140].

haccuracy (L) _ E(accuracy test) 6.1)
hlatency (L) = ﬁ(latency) (62)
hparams (L) = E(params) (63)

Combined Metrics A combined utility can be a weighted metric as in the evaluation towards a utility-
based AutoML, where each metric £(*) € L is weighted by a parameter a(*) (Equation 6.4). Further,
we integrated constraint metrics, where the return is zero if the number of FLOPS or the accuracy
exceeds a certain threshold. In Equation 6.5, we constrain the the FLOPS in that the metric returns the
accuracy metric until the FLOPS do not exceed the median value of all neural architectures within the
NATS-Bench data set. Further, in Equation 6.6, we constrain the accuracy in that the metric returns
the FLOPS as values until the median accuracy of all neural architectures within the NATS-Bench data
set is not exceeded.

hweighted<L) = Z a(z)ﬁ(?) (64)
LB eL
Llaceuracy) - if £U1°0) > threshold
hﬂop constraint(L) = (65)
0, else

103

6 Neural Architecture Search

)C(flop)’ lfﬁ(accurucy) > threshold

haccurac constrain. L)= (66)
v consai (L) {O, else

In addition to the evaluation towards utility-based AutoML, we add in the evaluation of an utility-based NAS
system the assumption of constraint metrics. This has primarily a practical purpose. Since NN are relatively
resource-intensive and in we want to provide a prediction in a limited amount of time and thus FLOPS, we
consider that NN's that exceed a specific number of FLOPS are not applicable and thus have no utility.

6.4 Evaluation

In this section, we provide accordingly to the evaluation of AutoML an evaluation of the Metric Learner
component in Section 6.4.1 that is sensitive to the number of pairwise judgments. The new requirements in
NAS require as stated in Section 6.3.2 different metrics take the complexity of NNs into account. However,
these metrics go beyond the predictive performance as evaluated in Chapter 5 for AutoML and may be
constrained in that a certain threshold of FLOPS is not allowed to be exceeded or the end-user requires a NN
with a minimum of accuracy. These new utility assumptions are evaluated in the Section 6.4.1 Further, we
present in Section 6.4.2 the evaluation towards the impact of the Metric Learner component in comparison
to other state-of-the-art multi-objective NAS approaches. While in AutoML we based the evaluation on one
AutoML framework, namely TPOT, the research in NAS enables with benchmarks such as NATS-Bench [67]
and the proposed approaches towards multi-objective NAS, the integration and comparison towards our
general approach. This overall evaluation is presented in Section 6.4.2 based on the regularised evolutionary
algorithm (see Algorithm 5 and [197]), MONAS [114] with and without Metric Learner component, as well
as LEMONADE [73].

6.4.1 Metric Evaluation

To evaluate the Metric Learner component we randomly sampled 100 architectures fg,?,Y € P within
the Evaluation Initiator component. The architectures are accordingly to Algorithm 3 processed to 1, 2,
3, 4, 5, 10, 25, 50 and 100 segment pairs Ufr‘fffn within the Evaluation Generator component. As for
the Metric Learner in AutoML, we use the predefined metrics from Section 6.3.2 to judge the segment
pairs synthetically. Further, we repeat this process for all data sets within the NATS-Bench data set and
all predefined metrics (Equation 6.1 - 6.6). In contrast to the evaluation of AutoML in Chapter 5, we
evaluate applied the top-10 precision metric. This metric measures whether the RankNet model manages
to rank the top 10 architectures out of 100 test architectures. Thus, a top-10 precision of 0.3 means that
the ranking algorithm can recommend from the 100 generated test architectures three correctly within the
top-10 architectures. In Table 5.1, we present the results for each data set and predefined utility accordingly
to a variable number of training comparisons. It qualitatively shows that ~ 10 — 25 pairwise comparisons
are needed to learn a utility an end-user or domain expert might pursue. However, Table 6.1 also shows
that the constraint metrics (accuracy constraint and flop constraint) are more difficult to approximate. We
assume that a rough knowledge of the underlying utility is necessary to steer the NAS optimisation process.
Comparing the learning process considering a weighted utility of the AutoML approach, we note within the
experiments of the Metric Learner component for NAS that it performs better than the constraint metrics.
Furthermore, the selective metrics are well approximated after 10 pairwise comparisons, while the constraint
metrics achieve their maxima in top-10 precision after ~ 50 comparisons. Concluding the evaluation of
Metric Learner considering a NAS environment, the results are approximately the equivalent of those of

104

6.4 Evaluation

Table 6.1: RankNet - Top - 10 precision on test architectures

Data set metric train comparisons
1 2 3 4 5 10 25 50 100

accuracy constraint | 0,216 0,265 0,284 0,269 0,206 0,382 0,285 0,394 0,369
accuracy 0,105 0,617 0,570 0,471 0,705 0,746 0,692 0,622 0,833

Cifar-10 flops constraint 0,282 0,215 0,288 0,168 0,234 0,241 0,232 0,294 0,419
latency 0,713 0,696 0,512 0,770 0,703 0,753 0,659 0,671 0,665
weighted 0,642 0,703 0,663 0,740 0,810 0,735 0,766 0,898 0,858
params 0,321 0,312 0,428 0,418 0,308 0,682 0,577 0,539 0,565
accuracy constraint | 0,275 0,239 0,234 0,250 0,226 0,212 0,235 0,354 0,265
accuracy 0,417 0,244 0,623 0,640 0,594 0,783 0,683 0,727 0,826

Cifar-100 flops constraint 0,296 0,206 0,236 0,199 0,236 0,236 0,194 0,297 0,265
latency 0,539 0,527 0,494 0,611 0,557 0,569 0,572 0,600 0,566
weighted 0,349 0,494 0,483 0,527 0,474 0,546 0,677 0,679 0,770
params 0,227 0,369 0,434 0,324 0,400 0,610 0,509 0,630 0,527
accuracy constraint | 0,257 0,257 0,159 0,162 0,184 0,144 0,240 0,265 0,317
accuracy 0,242 0,696 0,637 0,679 0,698 0,527 0,803 0,790 0,832
flops constraint 0,217 0,213 0,226 0,227 0,119 0,232 0,275 0,337 0,326

ImageNet16-120

latency 0,391 0,310 0,323 0,340 0,322 0,148 0,191 0,268 0,421
weighted 0,421 0,572 0,573 0,576 0,594 0,616 0,628 0,742 0,685
params 0,331 0,489 0,351 0,545 0,444 0,688 0,571 0,759 0,604

AutoML. We can answer RQ II.1 in that the proposed LTR approach is capable of learning a new objective
that goes beyond the predictive performance within ~ 20 pairwise judgements. In the following, we evaluate
the impact of the learned utility on the NAS optimisation process.

6.4.2 System Evaluation

Following the evaluation of the Metric Learner component and to further reduce the amount of necessary
NN evaluations, we assume that only a rough knowledge of the underlying utility is required to steer the
NAS optimisation process. In the following evaluation, when training the Metric Learner component, we
set the number of pairwise comparisons to 10. Thus, we set for the regularised evolutionary algorithm (see
Algorithm 5) as well as for LEMONADE a population size p = 10 and a sampling size of s = 5. As stated
in Section 6.3, we evaluate the regularised evolutionary algorithm and MONAS with and without Metric
Learner component, whereby the regularised evolutionary approach without Metric Learner corresponds
to the algorithm proposed by Real et al. [197]. The MONAS evaluation without Metric Learner component
evaluated on the different metrics defined in Section 6.3.2 corresponds to the approach proposed by Hsu
et al. [114]. Denote, that the results are due to the unified search space intra comparable but not comparable
with results reclaimed in original publications [197] and [114]. Since LEMONADE searches a Pareto-
frontier, we performed the search based on all metrics available within L. We limited for each algorithm and
data set the number of epochs to 100, whereby the generation of the population is included within the number
of epochs. In Figure 6.2, we depict the the results of LEMONADE, as well as for MONAS and the regularised
evolutionary algorithm with and without Metric Learner component when pursuing a selective accuracy
metric. It shows that the pairwise ranking model can steer the population of the regularised evolutionary
approach in the direction of the predefined utility. However, when evaluating the NAS algorithm without
Metric Learner component, the regularised evolutionary approach achieves within 100 epochs a score of
99.7% on CIFAR-10, 99.6% on CIFAR-100 and 99.8% on ImageNet16-120 the best performances. Denote
that the utility is based on normalised metrics. Thus, the scoring is relative to the best possible neural
architecture and means that the NAS algorithm found an architecture that has 99.7% of the performance from
the best architecture within the NATS-Bench data set. LEMONADE achieves with 99.4% on CIFAR-10,
96.6% on CIFAR-100 and 99.8% on ImageNet16-120 comparable results to the regularised evolutionary

105

6 Neural Architecture Search

cifarl0 cifar100 ImageNet16-120

o TSR U R
AT B TR
;‘.gg,:,»m SeCe

1.0

© 5.
OO Lo® S0q
@0 SO,
o ot

& % X, SR
R
0 xx E

0.9

0.8

0.7

score

0.6

Algorithm 0
® LEMONADE M
0.5 i
® Regularized Evolution Xee 3 o
® MONAS e ey O
5 xey o x o
0.4 Scorer ° xg
® Accuracy Scorer °
% RankNet Accuracy Scorer
0.3
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

epoch epoch epoch

Figure 6.2: Utility scores based on a selective accuracy for MONAS, LEMONADE and the regularized evolutionary algorithm evaluated
on CIFAR-10, CIFAR-100 and ImageNet16-120

approach. For CIFAR-100 and ImageNet16-120, MONAS performs significantly inferior and achieves 58.7%
on ImageNet-120 and 64.9% on Cifar-100.

Considering the approach with Metric Learner component MONAS achieves 91.5% and the regularised
evolutionary approach 99, 8% on CIFAR-10 within the selective accuracy utility setting. However, for
CIFAR-10, as well as for ImageNet16-120, MONAS performs as well as in the setting without Metric
Learner component significantly inferior (64.8% on CIFAR-100 and 58.8% on ImageNet16-120) considering
the NATS-Bench search space. The regularised evolutionary approach achieves with Metric Learner similar
results (99.2% on CIFAR-100 and 97.1% on ImageNet16-120) as without Metric Learner component.
Since the difference between the approach with Metric Learner component and without LTR approach are
marginal in both cases, MONAS and the regularised evolutionary algorithm, it shows that the Metric Learner
component is capable to steer the optimisation process into the direction of the desired (selective accuracy)
utility. Considering a weighted utility, where all metrics in L are equally weighted (Equation 6.4), the

cifar100 ImageNet16-120

cifarl0

0.75

0.70
o
ox® x
Pl T
o nX¥ o x X %

o 2% o
o5%g Rxyex , oX X 6dNo% I g
Eoxet TR Ty 0
% e
x % ¢ x

%

bed o X
N, s
R, Ko xx % 3
O L R St Tt
xR Ery ST KR

0.604 Algorithm .
@ LEMONADE & x
® Regularized Evolution .'

055] @ MoNas x

Scorer

@ Weighted Scorer
RankNet Weighted Scorer .

[20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
epoch epoch epoch

Figure 6.3: Utility scores based on an equally weighted preference for MONAS, LEMONADE and the regularized evolutionary algorithm
evaluated on CIFAR-10, CIFAR-100 and ImageNet16-120 [140]

experiments show similar results. In Figure 6.3, we present the evaluation considering this weighted utility.
For CIFAR-10, MONAS achieves a score of 79.3% and can compete against LEMONADE (79.5%) as well
as the regularised evolutionary algorithm (79.4%). It is noticeable that the weighted utility is generally
more complex to approximate than the selective accuracy utility. Both are due to the normalisation of all
metrics in £ comparable. The regularised evolutionary approach, as well as LEMONADE, perform within
the 100 epochs similarly well. Furthermore, the differences between the approaches trained directly on the

106

6.5 Summary

underlying utility and trained with the Metric Learner component are negligible for CIFAR-10 and CIFAR-
100. Differences coma apparent when training the regularised evolutionary approach on ImageNet16-120.
Here, the regularised evolutionary approach achieves better results when directly trained on the predefined
underlying metric. However, a central motivation was to empirically prove that the proposed LTR approach
is capable of steering a NAS optimisation process (RQ II) in the direction of the utility an end-user or
domain expert might pursue. Since the evaluation of the Preference Executor component has shown that
pairwise comparisons can learn a suitable metric and thus lead to an appropriate recommendation of neural
architectures (RQ II.1), we can answer the overall RQ II for NAS in that our proposed approach enables the
steering of the optimisation process beyond predictive performance metrics.

6.5 Summary

In this chapter, we provided utility-based adaption of NAS. We empirically showed that NAS systems could be
adapted to an end-user’s or domain expert’s utility that goes beyond predictive performance. We implemented
state-of-the-art (multi-objective) approaches, as well as an OpenAIl-Gym environment to evaluate various
NAS approaches based on a unified benchmark search space (NATS-Bench). Our results for CIFAR-10,
CIFAR-100, and ImageNet16-120 from the NATS-Bench data set are promising in that our L7R approach
depicted in Chapter 4 is capable to steer the search process into the direction an end-user or domain expert
might pursue. This, however, enables the consideration of key figures such as latency and FLOPS and thus
an optimisation that searches in the direction of an underlying utility. In summary we can answer RQ II in
that our LTR approach proposed in Chapter 4 is able to adapt to the utility of an end-user or domain expert.

However, since we provide an algorithm-centred evaluation towards a utility-based adaptation of AutoML
and NAS, a human in the loop evaluation as often conducted in HGML is an exciting research field. However,
these approaches are highly dependent on an adequate interface to allow the end-user to express their
utility and thus represent a research field itself. As in Chapter 5 discussed, an active learning approach
within the Evaluation Generator component, where the pairwise segments are chosen based on the expected
information gain of a judgement, would possibly result in better steering of the underlying optimisation
process.

107

Part 1V

Stream Adaptation

109

Online Learning

In the previous chapters, we investigated the adaptation of a utility-based system in a batch learning setting.
We focused on the beginning of a DM process, where the task is to understand the business and the data and
thus define the underlying goal of the DM process. In this chapter, we investigate the continuous adaptation,
where the underlying goal is already defined, but the data and the underlying patterns change over time.
Thus, we investigate the evaluation and modelling steps at the end of the DM process. In Hypothesis II we
assume that (i) the configuration of AutoML and NAS systems is according to the requirements defined by
Bifet et al. [23] possible in an incremental manner and that the this adaption (ii) enables better performances
in form of adaptation to potentially infinite data streams and changing patterns of AutoML and NAS systems.

Hypothesis II (Stream Adaptation)

In an online learning environment, the incremental adaptation of hyperparameters enables
superior performance on data streams by aligning the learning process by following the
online learning requirements defined by Bifet et al. [23].

To evaluate AutoML and NAS systems under the assumption of changing data patterns, we presented in
Chapter 3 the related work for online ensembles and online deep learning approaches. Furthermore, we
depicted in Section 2.5 the foundations for an adaptation to data streams and thus the concept of online
learning. These foundations contained according to the ML pipeline for the batch learning case the adaptation
of preprocessing steps as well as different established online learning models and approaches. Building on
the foundations and the related work, we present in this chapter an overview over the frameworks that are
developed and evaluated within Chapter 8 (Contribution II - Online Learning framework) and in Chapter 9
(Contribution III - Online Automated Machine learning Framework). Additionally, we present the data
streams used to evaluate the capabilities toward stream adaptation and the general evaluation setup.

While frameworks such as MOA [25], Scikit-Multiflow [172] and river [173] enable the straightforward
application of online learning algorithms, the research towards online deep learning techniques is as stated
within the related work in Chapter 3 diverse and does not necessarily follow the online learning requirements
defined by Bifet et al. [23]:

R I-1 Process an instance at a time and inspect it (at most) once.
R I-2 Use a limited amount of time to process each instance.

R I-3 Use a limited amount of memory.

R I-4 Be ready to give an answer (e.g. prediction) at any time.

R I-5 Adapt to temporal changes.

7 Online Learning

Furthermore, these frameworks incorporate building ML pipelines, but an automated pipeline configuration
is not considered yet. The related work showed that online learning ensembles enable the exploitation of
the different advantages of homogeneous and heterogeneous algorithms but do not incorporate an automated

configuration during the data stream.

7.1

In this section, we present an overview of existing online learning frameworks As stated within the foun-
dations the application of ML models on data streams require a evaluation and monitoring of the model’s
performance, as well as preprocessing and ML algorithms, that are different from traditional batch learning.
Frameworks with a growing community are MOA, creme, Scikit-multiflow and river that are presented in

Frameworks for Online Analysis

detail in the following:

Creme

MOA! stands for Massive Online Analysis and was developed at the University of Waikato

by Bifet et al. [25] in 2010. It provides a broad collection of classification, regression,
clustering, outlier detection and recommender system algorithms. It is written in Java and
provides for evaluation purposes a Graphical User Interface as well as an API for further
developments and extensions. The aim of MOA is to provide a benchmark suite for stream
mining [25] and thus to foster research in the area of online learning.

Scikit-multiflow? was developed by Montiel et al. [172] in 2018 based on the ideas of Scikit-

learn [185], MOA [25] and MEKA [196] as multi-label learning framework. As MOA
it features a broad range of classification, regression and clustering algorithms. Further,
it follows the Scikit-learn design principles (depicted in Section 7.2) and is designed to
inter-operate with the Python NumPy and SciPy packages. It is implemented in Python
follows a similar API to Scikit-learn and incorporates various evaluation protocols (see
Section 2.6).

3 is another Python library for online ML that focusses on algorithms that can be updated

with a single observation at a time (Requirement R /-1). While Scikit-multiflow [172]
and Scikit-learn preliminary use Numpy arrays to interoperate with other frameworks or
components, creme uses Python dictionaries. This is advantageous for interpretability since
it enables to access features within a developed ML pipeline by their name.

River® emerged in 2021 by the fusion of creme and Scikit-multiflow and is actively developed

and maintained by Montiel and Halford [173]. It compromises a the broad range of
algorithms from Scikit-multiflow and the API from creme. While the aim of MOA is to
provide a benchmark suite, the objective of river is to foster the applicability of streaming
algorithms in real-world scenarios. Thus, the ability to orchestrate preprocessing and ML
algorithms simplify the usage of developed algorithms. Like Scikit-multiflow and creme it
is implemented in Python.

1

https://moa.cms.waikato.ac.nz/, last accessed January 30, 2023

2 https://scikit-multiflow.github.io/, last accessed January 30, 2023
3 https://github.com/MaxHalford/creme, last accessed January 30, 2023

112

https://moa.cms.waikato.ac.nz/
https://scikit-multiflow.github.io/
https://github.com/MaxHalford/creme

7.2 Scikit-learn Principles

Since river is easy to extend and provides the capability of concatenating algorithms to ML pipelines, we
base our implementations on river and extend it by an online AutoML and DL framework. Furthermore, it
follows the Scikit-learn design principles, that we aim to base on our framework and on which are depicted
in more detail in the following.

7.2 Scikit-learn Principles

With the development of Scikit-learn in 2011 by Pedregosa et al. [185], the application of (offline) ML
algorithms became easy accessible. Nowadays, it is the most widely used Python library for ML and
provides a vast number of algorithms to perform tasks such as classification, regression, but also clustering
or dimensionality reduction. In Scikit-learn, each model is subject to the same API, which essentially fulfils
five main design principles. One key driver for the success of this framework are these design principles,
depicted in the following:

Requirements ITI. Scikit-Learn’s design principles following [42, 185, 94]:

R III-1. All objects share a consistent and simple interface.
R I1I-2. All hyperparameters are directly accessible and exposed as public attributes.

R III-3. Algorithms are the only objects to be represented using custom classes. Data sets
are represented as sparse matrices and hyperparameter names as well as their values are
expressed as standard Python strings or numbers.

R I1I-4. Many ML tasks are expressible as sequences or combinations of transformations to
data. Whenever feasible, algorithms are implemented and composed from existing building
blocks.

R III-5. Whenever an operation requires a user-defined parameter, the library defines an
appropriate default value.

Subsequently, we apply these requirements to the aforementioned online learning frameworks.

7.2.1 Consistency

The first requirement R I11-1 targets the consistency in that all objects share a consistent and simple interface.
In river, as well as in Scikit-learn these are Estimators, Transformers and Predictors. Any object in
river or Scikit-learn is based on an estimator, which it implements a learn() or £it () method that adapts
the estimator to the learning setting. To emphasise the incremental training in river an estimator additionally
implements a 1learn_one () method. Some estimators can also transform data and data streams. Typically
these are transformers and used to preprocess the data according to the steps depicted in Section 2.2. In
addition to the estimators they implement a transform() method that transforms a given input into a
defined or learned output. The prediction (classification or regression) is executed within a predictor that is,
as well as the transformer, an estimator. It implements, in addition to the estimator, a predict () method,
which is used to return a class or a value based on the previously seen training instances. Considering our

4 https://riverml.xyz/latest/, last accessed January 30, 2023

113

https://riverml.xyz/latest/

7 Online Learning

framework that integrates DL models, a NN (based on Tensorflow or PyTorch) can be integrated as predictor
for both supervised- as well as unsupervised learning problems. Since the emphasis of this thesis lies
within supervised learning problems, we confine the description of the framework to supervised learning,
predominately classification problems.

7.2.2 Accessibility

The second requirement R [I]-2 targets the accessibility of parameters of an estimator. To perform HPO
and to understand the principles of operation, the parameters of the estimators need to be accessible. That
incorporates getting and setting parameters in a uniform interface. In river this is achieved by passing a
Python dictionary with key-value pairs to the estimator, which then works with the underlying model. This
enables, in principle, the adaption of parameters while the model is consuming data from the underlying
data stream. Since parameters, like the optimiser to be used, are often categorical, finding suitable values
and adapting them during operation is another challenging tasks which we address in Chapter 9. For our
frameworks, this design principle mainly considers simple access and configuration of the neural architecture
as well as the underlying optimiser for the DL framework and an easy configuration of the AutoML estimator.

7.2.3 Classes

The third requirement R ///-3 targets the non-proliferation of classes. In Scikit-learn data sets are represented
and exchanged in between the estimators as NumPy arrays. In river due to the nature of data streams, Python
dictionaries are used to represent instances of the stream and to be exchanged between the estimators. Relying
on rudimentary objects lowers the barrier of entry, avoids framework code and keeps the number of different
objects to a minimum [185]. Furthermore, hyperparameters are regular strings or numbers, which eases the
application of HPO techniques.

7.2.4 Composition

The fourth requirement R [/I-4 targets the composition of estimators. Considering different estimators
within Scikit-learn or river, ML pipelines are mapped by concatenating estimators. In Scikit-learn and
river, these pipelines are mapped by an arbitrary created sequence of transformers followed by a final
classification or regression estimator. As depicted in Section 2.2 the aim of AutoML is to automatically
build ML pipelines. The composition of estimators enables building ML pipelines and is thus the basis
for AutoML. The application of NNs as Predictor within river as part of our frameworks enables the
concatenation of further estimators such as cleaning and normalisation steps are possible.

7.2.5 Default Variables

The last requirement R [II-5 targets the default parametrisation of an estimator. A reasonable default
parametrisation enables a simple usage and a rapid development of ML pipelines. Furthermore, it reduces
the complexity of the underlying model. This design principle is crucial for the application of NN in online
learning considering the heterogeneous related work in this research field. Furthermore, established default
values in offline learning may not be applicable in online learning, particularly not, when considering the
online learning requirements (R I).

114

7.3 Framework Design Overview

7.3 Framework Design Overview

As we aim according to Hypothesis II to perform AutoML and enable NAS on data streams, we depict in this
section the overall framework and evaluation design. This design also reflects the structure and the ordering
of the evaluation. As depicted in the previous section, we build our frameworks (AutoML and DL) on the
river library. In Figure 7.1 we depict the framework dependencies, whereby the frameworks are depicted
in more detail in Chapter 8 (online DL) and Chapter 9 (AutoML and NAS). Besides the algorithms that are
categorised in Transformers and Predictors, the river library provides different data streams (depicted
in Section 7.4) and evaluation protocols.

Online Learning Framework Dependencies

River Online Neural Networks
| Data Streams | | Algorithms . | Classifiers | | Regressors
Automated Machine Learning > Neural Architecture Search

Figure 7.1: Illustration of the online learning framework dependencies.

In Figure 7.1 the boxes in dark grey are referred to as the frameworks that are part of the contributions of this
thesis. While the online DL and the AutoML libraries are implemented as separate frameworks, NAS utilises
the online DL framework as search space and the AutoML framework as underlying streaming HPO optimiser.
The online DL framework is implemented separately to river, since NN and especially their architectures
are diverse in their configuration opening a separate research field to river. In batch learning Scikit-learn
incorporates only a small fraction of NNs (e.g. logistic regression) and frameworks such as PyTorch and
Tensorflow allow the development of complex neural architectures. According to this development, we
separate the development of online NNs from the river library. To implement neural architectures, we base
our framework on PyTorch and follow the river API. This combination of both frameworks aims to simplify
the application of online learning models within a unified stream processing APl and to design complex
neural architectures within the capabilities of PyTorch.

Accordingly AutoML systems in batch learning that rely on Scikit-learn (e.g. autosklearn [81, 80] or
TPOT [177]) and to the development of Scikit-learn and PyTorch or Tensorflow we build our online AutoML
framework separate from river, which it follows as the online DL library the river API.

7.4 Data Streams

In this section, we provide an overview over the data streams used to evaluate the online DL and the AutoML
framework. In comparison to offline learning tasks, where huge data sets are collected and labelled (e.g.
CIFAR), in online learning synthetically generated data streams are commonly applied to evaluate online
learning algorithms. Furthermore, the generated streams have the advantage that they can be parametrised.
However, besides these synthetically generated data streams, possibly infinite, some real-world data sets
are iteratively processed and thus used as data streams. These data streams are depicted in the following,
whereby their configuration is part of the experimental setup of the respective evaluation.

115

7 Online Learning

7.4.1 Real-world Streams

Real-world data sets that are commonly applied in online learning to evaluate new algorithms are preliminary
the Covertype and the Electricity data set. Both are considered can be depicted as follows:

Covertype [28] The Covertype data set contains forest cover type information collected
by the US Forest Service. It contains 581,012 samples with 54 attributes ranging
from binary variables such as the soil to continuous values such as the elevation
of 30m x 30m cells. The task is to classify the cell into one of 7 possible cover
type classes. In online learning applications, the data set is iteratively processed and
contains dependencies within the order of the input sequence [27].

Electricity [25] The electricity data set with 45, 312 instances, is a relatively small set that
is used to evaluate algorithms on data streams. It contains six continuous features
of the Australian New South Wales Electricity Market. The goal is to identify the
electricity price change relative to the moving average of the last 24 hours. The data
stream is thus a binary classification task. As the electricity market price evolves, it has
a time dependency and can, like, the Covertype data stream, be seen as multivariate
time series.

7.4.2 Synthetic Streams

In contrast to synthetic data streams, real-world data streams have the advantage that they can be parametrised
and assume a particular function or distribution to be learned. Furthermore, they are possibly infinite, and
by changing the underlying distribution or the pattern, concept drifts can be implemented artificially at a
point in time or in a time range. Due to their infinite nature, they are also referred to as generators.

Agrawal [2]: The Agrawal generator was proposed by Agrawal et al. [2] in 1993. Based on
6 numerical and 3 categorical features that compromise e.g. salary, age or education
level the task is to predict whether a loan will be approved or not. This ground
truth of this binary classification is based on ten predefined functions. The generator
calculates attribute-values according to value-ranges appropriate for the respective
features. A concept drift can be implemented within the stream by changing the
underlying classification function.

SEA [219]: The Streaming Ensemble Algorithm contains 3 features ranging between 0 and
10. Two of the features are relevant and classify the features as true if:

Variant 1: f(?) =x1+x9 > 8
Variant 2: f(?) =x1+x9>9
Variant 3: f(?) =x1+x2>7
Variant 4: f(?) =x1+x9>95

The third feature is irrelevant. A concept drift can be implemented by switching the
variant during the data stream.

116

7.4 Data Streams

Hyperplane [116]: The Hyperplane data stream creates as the name states a hyperplane
that splits an n-dimensional space and thus classifies n features according to if they
are above or under the hyperplane. The hyperplane is defined by:

d
Zwixi = Wy (71)
i=1

This generator supports setting the number of features, whereby all features are
relevant. Furthermore, drifts can be implemented by changing a predefined number of
features from the feature set according to a preset magnitude of change. The features
ranges from O to 1.

LED [98]: This generator produces a stream with 24 binary attributes of which 17 are
irrelevant for classification. The goal is to predict a digit displayed on an LED panel
with seven segments. Thus it contains ten different classes, classified by seven binary
labels. The features are randomly created, whereby each attribute has a 10% chance
of being inverted. The structure of this data stream does not allow for synthetically
inserted concept drifts.

Sine [91]: The Sine generator is likewise the Hyperplane generator a binary classification
stream that classifies whether a generated feature set is above or under a certain
function. However, the stream consists of 4 features, where only two are relevant and
classified as true if:

Variant 1: (') < sin(z;) — 22
Variant 2: f(7') > sin(z1) — 22
Variant 3: f(7') < x; — 0.5 — 0.3sin(3ms)
Variant 4: f(2') > x; — 0.5 — 0.3sin(3m)

A concept drift can be introduced by changing the underlying classification variant.

Random RBF: The Random RBF produces a radial basis function by a number of cen-
troids. Each centroid has a random initial position and a weight. Every new instance
is assigned randomly to one of the centroids according to its weight. A concept drift
is implemented by randomly shifting the initial position of a centroid by a Gaussian
distributed length.

While the RBF and the Hyperplane generator support continuous concept drifts, generators with different
variants can change their distribution at a certain point. To detach this binding to a certain point p by a
change width w a concept drift can be introduced by following a sigmoid function:

- 1
14t

f) (7.2)

The sigmoid function defines the probability that each new instance x; of the stream belongs to the new
concept after the drift.

117

Online Deep Learning Framework

To foster research in online deep learning in a unified and reproducible form we depict in this chapter an
online deep learning framework that builds on river [172] as online learning and PyTorch [184] as commonly
used DL library. Furthermore, it follows the Scikit-Learn’s design principles, depicted in Section 7.2, that
have proven to be the key drivers of a broad adoption by the ML community. Within the foundations
(Chapter 2), Section 2.5.4.3 briefly addressed the theoretic applicability of NNs in online learning. Further,
the related work presented in Section 3.4, showed that NN's are applied in an online learning environment in
a broad range of applications (see. Table 3.4). However, these approaches are insular in that they are limited
to their domain and developed isolated in their application to other approaches. As the applicability of
NNs was already addressed the question of suitability of NNs regarding the requirements of online learning
remains open:

RQ III.1 Are neural networks suitable for online learning?

Locating the application of NN on data streams in the context of this thesis towards the adaptivity of AutoML
and NAS techniques; this research question is fundamental for the application of NAS techniques. However,
the aim of this chapter is to answer the suitability of NN regarding the requirements defined by Bifet et
al. [23] which results in an online DL framework published on Github !. Therefore, we depict in Section 8.1
the underlying mode of function of the proposed framework by also considering the Scikit-learn’s design
principles. In Section 8.2, we provide the experimental setup towards an evaluation that shows that NN's are
suitable for online learning. One requirement of the Scikit-learn’s design principles is to provide reasonable
default values (Requirement R I11-5) for all algorithms. To answer research question RQ III.1 based on a
suitable parametrisation, we evaluate our approach against different single algorithms and present the results
in Section 8.3. The idea for this framework emerged within a research stay at Télécom ParisTech together
with Professor Albert Bifet, Jacob Montiel and Maroua Bahri. It predominately aims to foster research in
DL techniques for online learning.

8.1 Approach

In this section we depict the approach towards an online DL framework developed in Python. While the
frameworks MOA [25], Scikit-Multiflow [172] and river [173] simplify the application of online learning
algorithms, frameworks such as PyTorch [184] or Tensorflow [1] provide large capabilities in designing and
executing deep learning models based on a given data set. In online Learning, however, river is becoming
the leading Python platform for ML applications on data streams. Further, most of the design principles

I https://github.com/kulbachcedric/, last accessed on January 30, 2023

8 Online Deep Learning Framework

of Scikit-learn are adopted in river in that it is developed according to the Requirements III depicted in
Section 7.2.

In offline learning, PyTorch developed by Paszke et al. [184] in 2016 and Tensorflow Abadi et al. [1] are two
broadly used open source Python frameworks for DL. Both rudimentary support online learning techniques,
but they are designed for batch learning. When considering e.g. requirement R I1I-5, the default parameters
in a offline learning may not be suitable to online learning. For instance, the sequential processing of
instances within the stream or the adaptation to concept drifts may require a higher learning rate. We
base our implementation on PyTorch, as it is capable to dynamically change neural architectures while it is
executed and it relies on Torch, which aligns with R I1I-1 as lightweight interface. In comparison, Tensorflow
requires a defined Graph structure at the beginning of the data stream and wraps each instance of the data
stream into a Tensor class. Thus, PyTorch is capable to processes data in form of streams in comparison
to Tensorflow faster (R I-2) and with less memory (R [-3) consumption as it does not require to wrap each
instance into a separate class. Further, the related work that proposes optimisers or architectures that are
specifically designed to adapt to data streams (e.g. [204]) may not be applicable in offline learning and
thus are often not considered in these frameworks. Thus, from a technical point of view, another aim of
our framework is to merge the stream focussed river framework with the frameworks that allow an eased
implementation of NNs. In the following, we depict the merge of PyTorch with the river API within a
separated framework. The integration of DL models is achieved by implementing compatibility wrappers as
river Predictors for PyTorch.

This integration has the advantage of merging the large capabilities of river in that we follow the consistency
requirement R [II-1 and enable the composition R II]-4 of already existing estimators within the river
environment out of the box. Furthermore, it opens the broad capabilities of designing NN in established
frameworks and thus contributes to the non-proliferation of classes R III-3. In Listing 8.1, we depict the
integration of a logistic regression using PyTorch as underlying DL library.

Listing 8.1: Application classification model

from river import compat
from river import datasets
from torch import nn

from torch import optim

def build_torch_logistic_regression(n_features):
net = nn.Sequential (
nn.Linear (n_features , 1),
nn. Sigmoid ()
)

return net

model = compat.PyTorch2RiverClassifier (
build_fn= build_logistic_regression ,
loss_fn="bce’,
optimizer_fn="sgd’,
learning_rate=le—3

)

In Listing 8.1 it emerges, that the wrapper class PyTorch2RiverClassifier is imported in line 2 from
the river framework and thus is part of the river framework. As Scikit-learn integrates basic functionalities
for DL, we integrated the PyTorch2RiverClassifier into the river framework. This allows according to
the Scikit-learn design principles basic functionalities in implementing NNs. However, for the development

120

8.1 Approach

of a broad variability of NNs, as well as to build a library that includes architecture solutions for a wide
range of applications, we created a separate framework. This framework includes beside the wrapper
functionalities of PyTorch into river custom optimisers and architecture modules (e.g. LSTM) to perform
not only supervised classification and regression tasks, but also to perform anomaly detection. To meet the
requirement of a simple interface (R III-1), we integrated the wrappers that enable rudimental FNN neural
architectures into the river framework and refer to our framework for the application of sophisticated NNs.
To avoid losing the scope of this work, we will rely in this thesis on the classification and regression task for
NN that enable the application of NAS on data streams.

8.1.1 Configuration

Listing 8.1 depicts the configuration of the wrapper predictor to execute it within river. While parameters
are configured as strings or numbers, the neural architecture is passed as a function into the wrapper class.
These architectures can range from simple linear logistic regression or MLP to complex CNN and RNN
architectures. Passing a function instead of a string or number violates requirement R [/I-2; however, due to
simplicity and in accordance with an existing (batch learning) Tensorflow wrapper within the Scikit-learn
framework, we define a neural architecture within a function and pass this function into the wrapper function.
Note that other parameters are set by the requirements R I7]-2. Additional features for the neural architecture
required within the initialisation can be specified as a function parameter of the NN build function (see
Listing 8.1) and passed to the wrapper class within the initialisation. To automatically set the number of
features that the data stream contains, the NN build function includes a n_features parameter that is set
within the first instance of the data stream when the NN is initialised within the wrapper class. In the
following we depict the training process as part of the learn_one () function from the river API.

8.1.2 Training Process

The general training process for NNs on data streams, considering a (gradient-based) back-propagation
technique, iteratively updates the weights of a neural architecture by predicting a label for each instance of
the data stream and performing on the prediction made an optimisation step. In Algorithm 6, we depict this
general process and consider that additionally to the neural model and the data stream, an optimiser optim
(e.g. SGD or Adam) as well as a loss metric £ are given. Furthermore, we consider that the optimiser is
preconfigured in that parameters such as a learning rate are already parametrised within the initialisation of
the PyTorch2RiverClassifier class. The back-propagation steps are applied based on on a prediction of
the features 7', that are part of a streaming instance e;.

121

8 Online Deep Learning Framework

Algorithm 6 Back-propagation on Data Streams

: Input:

: Data stream S,

: Neural quel fgjj’
: Loss metric £,

: Optimiser optim

. if e; then > Start Data Stream
g fgy—g,j’(l’t)

~ . L N

A"« optim.optimise(X, L(y:, 7))

fg,7,Y < fg,7,Y*
: end if

-
220 XU kLo

Considering a streaming based back-propagation enables to process an instance at a time (Requirement R
I-1), however, this comes with the cost of performance. In offline learning all data instances are available
at a time in form of a data set D. Processing data in a batch, however, enables an efficient and parallel
processing of large matrices within the optimizer optim that is often accelerated by the use of GPUs or TPUs .
The iterative processing when considering data streams prevents the calculation of data batches and thus
the acceleration of GPUs and TPUs. Furthermore, the iterative processing might have a significant impact
on the models performance. When updating the weight according to a over the data instances leveraged
gradient (batch), the model might generalise better, since it considers more data points at once. Updating
the weights of a NN iteratively with the data stream has in consequence that e.g. a too small learning rate
does lead to convergence with the underlying distribution or a too slow adaptation to concept drifts and a
too high learning rate leads to too large weight updates and thus to a non learning NN. Another challenge is
the underlying optimiser, as data streams often occur in real-world applications with time dependencies, an
optimiser that considers the momentum of the data stream might be beneficial towards the evaluation.

While Algorithm 6 is applicable on tasks where the output might not change over time, e.g. regression,
for classification, the number of classes may change over time. For example, the first instance of a data
stream only considers the information for the label y; of one class. The second instance may consider the
information for a second class or may even have the same label as y;. Thus, at the beginning of the data
stream, the number of class labels is unknown, which means for a NN that, the number of outputs needs to
be adapted over time.

O O O
O O oo O

b1 b2 P1 ... Diclasses|

(a) NN with two outputs p; and p2 before a new class occurs within the (b) Adapted NN with averaged weight initialisation after new classes
data stream occurred within the data stream.

Figure 8.1: Schematic view for the adaptation of the last layer of an NN to new classes that occur within the data stream.
Pls---sP|classes| indicate the output of the last layer and thus the probability for the classes 1,.. ., |classes|. The
grey arrows denote the weights of the already existing NN and the black arrows denote the new weights initialised by
averaging the old weights (see. Algorithm 7) of the algorithm.

Considering the case, where the number of labels or classes is unknown, we provide a class adaptive wrapper
in Algorithm 7.

122

8.1 Approach

Algorithm 7 Class Adaptive Back-propagation on Data Streams

Input:

: Data stream S,

: Neural quel fgj,Y’
: Loss metric £,

: Optimiser optim

: classes < () > Set of classes
. if e; then > Start Data Stream
9: classes + yi

10: while |classes| > | f(Z)| do

11: W — f.get_layer(—1) > Weights of last layer
12: pw — mean(wW D)

13: W append(piy,)

14: f.set_layer(—1, 6 "))

15: end while

16: 7 <+ fgj’y(xt) > See Algorithm 6

0NN AW N —

— —
17: A" <« optim.optimise(X, L(y+, §))

18: jfg?,Y < fg,7§>*
19: end if

In Algorithm 7 the class adaption is applied in lines 9ff and further illustrated in Figure 8.1 In accordance
to the data stream the classes, that occur within the stream are tracked within the classes set. When the
number of classes (|classes|) is higher than the number of output nodes of the underlying NN f, then the
class adaption is applied in lines 11-14. In Algorithm 7 this is determined by a forward pass through the
model (f (E})), but can in practice efficiently be called by the current underlying architecture at a time step
t. The class adaption step takes the last trainable layer of the model (f.get_layer(—1)) and appends a new
(linear) node to this layer by leveraging the weights of the previously trained weights from the last layer (line
12) and appending it to the weights of the last layer. The new weights o (out) replace with an additional
output node the last trainable layer of fgj,Y' By leveraging the weights of the last layer to initialise the
additional node for the new occurring class within the data stream, we assume that the initial new class’s
probability is equal to the average of all other classes in this last layer. Whereby according to the instance e;
all weights of the new NN are updated by Algorithm 8.

8.1.3 Prediction Process

As stated in the training process, the model performs predictions according to the NN’s output. Considering
a regression task, where the output of the model is fixed by the first instance of the data stream, the NN’s
width of the output layer can also be set by the first instance of the stream. The value based on the forward
pass on 7, can be used as the regression value for the prediction. In the case of classification, the output of
the NN’s forward pass is used as a probability for each class. Denote that the sum of all layer outputs is not
necessarily equal to 1 as it depends on the chosen activation layer.

In this section, we presented the extension of a well-known machine learning framework, river, to train neural
networks in an online setting. It is the foundation for performing online NAS. We presented the consistent
and simple API (R IlI-1 and R III-2) according to the river framework that enables the concatenation with
other estimators from this framework (R III-4). However, a contribution, which was developed during
the process of this thesis, is a separate online learning framework for DL, mainly based on PyTorch that
simplifies and unifies the execution of DL models in an online learning setting. This incorporates a broad

123

8 Online Deep Learning Framework

variability of predictors and transformers (e.g. auto-encoders), as well as predefined neural architectures.
The framework aims to make DL approaches that prevail easy to apply and bring the success that NN have
in batch learning to online learning. Furthermore, this framework is intended to simplify and unify research
in this area. To define appropriate default values and thus investigate the requirement R III-5, we provide in
the following an empirical evaluation of the learning rate as well as a suitable optimiser.

8.2 Experimental Setup

In the previous section we preliminary investigated the requirements R III-1 to R III-4. In this section we
investigate Requirement R III-5 as well as a general evaluation towards the suitability of NN (i.ex. MLP) in
online learning. While PyTorch provides reasonable default parametrisations, as well as established neural
architectures in the case of batch learning, they might not be appropriate for online learning. When assuming
an online learning scenario, a further challenge is an adaptation to concept drifts, where a too small learning
rate leads to non-convergence with the underlying distribution or a too slow adaptation to the concept drifts.
However, a too high learning rate might lead to over sensibility regarding an occurring concept drift. Another
challenge in online DL is the underlying optimiser; as streams often occur in real-world applications with
time dependencies, an optimiser that considers the momentum of the data stream might be beneficial towards
the application of NN. Thus, a reasonable parametrisation in online learning is crucial. Therefore we present
in the following an empirical evaluation for the (i) learning rate as well as the underlying (ii) optimiser. Note
that these values can be set in addition to the search for a suitable architecture as a hyperparameter within
NAS. According to Algorithm 6, the learning rate and the underlying optimiser are preset when applying
NNs on data streams and thus require a reasonable default parametrisation when following requirement R
1I-5.

First, we depict the parametrisation of the used data streams in Section 7.4. We then present in Section 8.2.2
the experimental setup towards a reasonable default parametrisation, which also shows the first indications
of the suitability of NN in online learning. This experimental setup includes the evaluation of a broad
range of learning rates and different available optimisers. Based on the estimated default values, we evaluate
different neural architectures against a selection of algorithms implemented within the river library. We
executed all experiments on an Intel(R) Xeon(R) Platinum 8180M CPU with 2.50 GHz base clock and 1.5
terabytes of RAM without consideration of further GPU acceleration.

8.2.1 Data Streams

We base our evaluations in this chapter on a subset of the data streams depicted in Section 7.4. The
configuration of the data stream generators is presented in Table 8.1. In Table 8.1, we depict the configurations
of the data stream generators. The SEA generator is implemented with three drifts considering a predefined
drift width of w. The first drift occurs at 1/4, the second at 1/2 and the third at 3/4 of the data stream. The
Agrawal stream is configured considering one drift at half of the stream and is configured likewise the SEA
generator by a drift width of w.

124

8.2 Experimental Setup

Table 8.1: Configuration of Data Stream Generators with Concept Drifts

Data Stream Setting

SEA Generator 3 Features, 2 classes

Drifts three drifts are assumed with a change width of w, denoted as SEA(w)
First Drift:

Drift Position: 1/4 of instances

Original Drift: SEA Variant 2

Drift Stream: SEA Variant 3
Second Drift:

Drift Position: 1/2 of instances

Original Drift: SEA Variant 3

Drift Stream: SEA Variant 4
Third Drift:

Drift Position: 3/4 of instances

Original Drift: SEA Variant 4

Drift Stream: SEA Variant 0

Agrawal Generator 9 Features, 2 classes
Drift one drift is assumed with a change width of w, denoted as Agrawal (w)
Drift:

Drift Position: 1/2 of instances
Original Drift: Agrawal Variant 1
Drift Stream: Agrawal Variant 5
Random RBF Generator 10 Features, 2 classes, a centroids, denoted as RBF (a, b)

Drift continuous change magnitude of b, whereby half of the centroids are consid-
ered to change within the drift

Hyperplane Generator a Features, 2 classes, denoted as HYP(a, b)
Drift continuous change magnitude of b

The Random RBF generator considers ten features and is configured as a binary classification stream, where
the magnitude of change and the number of centroids are kept variable. The Hyperplane generator is
configured with different magnitudes of change. Within the experiments, we set the number of centroids of
the RBF generator to 10 and the number of features of the hyperplane generator to 10.

Besides the configurable generators, we evaluate our framework on the non-configurable synthetic streams
LED and Sine and the real-world data sets Covertype and Electricity. Each experiment is evaluated on a
stream with a length of 100, 000 instances.

8.2.2 Default Parametrisation

With regard to the framework’s default parametrisation, we consider the learning rate and the underlying opti-
miser as parameters that are configured besides the neural architecture within the PyTorch2RiverClassifier.

Table 8.2: Experimental Setup Default Parametrisation

Parameter Setting

Stream Generators Agrawal (50, 000), Agrawal(50), Covertype, Electricity,
HYP(50,0.0001), HYP(50,0.001), LED, RBF(10,0.0001),
RBF(10, 0.001), SEA(50000), SEA(50), Sine

Metric Rolling Accuracy with a window size of 1, 000 instances
Preprocessing Standard Scaling
Models River Logistic Regression (only learning rate), Torch Logistic Regression,

Torch Static MLP, Torch Dynamic MLP
Experiment Configurations
Learning Rate optimizer: SGD
learning rates: 10’9, 1078, 1077, 1076, 10’5, 1074, 1073, 1072,
1071, 1, 10, 25, 50, 100
Optimiser optimizer: SGD, SGDHD, RMSProp, Adam, AdamW
learning rates: 0.01

125

8 Online Deep Learning Framework

In Table 8.2, we depict the experimental setup for the evaluation of the sensitivity of the learning rate
and the choice of the optimiser. Both experiments are evaluated based on a prequential test-then-train
evaluation with a window size of 1, 000 instances, and all instances of the data stream are passed through an
online standard scaling algorithm included from the river library. We apply for both experiments identical
neural architectures, whereby within the experiments for the learning rate, we add the implementation of
a logistic regression from the river framework. Furthermore, to depict eventual differences between the
implementation of the logistic regression in river and our wrapper class, we implement a logistic regression
architecture according to Listing 8.1. To measure the influence of different learning rates and optimisers, we
implement a static MLP architecture that contains two hidden layers with five neurons, each followed by a
Softmax layer. The Dynamic MLP architecture implements its architecture according to the number of input
features, where the first hidden layer contains five times the number of features neurons and the second layer
two times the number of features. The last layer is, similar to the static MLP architecture, a Softmax layer.

For the evaluation of the impact of the learning rate, we choose learning rates ranging from 10~ to 100.
This range origins from commonly applied learning rates in batch learning that range between 0.1 to 10~°
[101] that we enlarged for our evaluation. We base this experiment on a traditional SGD optimiser since it
establishes the weight adaption solely on the learning rate and is not influenced by other parameters such as
the momentum.

The evaluation for the choice of the underlying optimiser is performed based on the optimisers SGD and
Adam presented within the foundations in Section 2.2.4.5. The iterative processing of instances depicted in
Algorithm 6, as well as the nature of data streams regarding time dependencies, may favour optimisers with
decay factors or momentum. The SGDHD optimiser was introduced by Rumelhart et al. [201] in 1986 and
adds a momentum to SGD that remembers the weight update at each iteration. It determines the next weight
update as a linear combination of the gradient and the previous update. This momentum might be beneficial
in online learning, especially for the adaptation to concept drifts. As Adam is an extension to RMSProp,
AdamW is an extension to Adam, proposed by Loshchilov and Hutter [158] where the Lo regularisation factor
of Adam is decoupled from the optimisation process and thus improves the generalization performance. The
experiments with different underlying optimisers are performed based on the results of the experiments with
a variable learning rate and thus set to 0.01.

8.2.3 Suitability of Neural Networks

The experiments towards the general suitability of NNs are based on the results of the HPO experiments. We
evaluate in this section the suitability of NNs on data streams, that are similar configured to the data streams
depicted in Section 8.2.2 Further, we base the evaluation on an evolving accuracy metric. To show the
general suitability of NNs in online learning, we present in Table 8.3 the configuration for this experiment.

126

8.3 Results

Table 8.3: Experimental Setup suitability of NN

Parameter Setting

Stream Generators Agrawal (50, 000), Agrawal(50), Covertype, Electricity,
HYP(50,0.0001), HYP(50,0.001), LED, RBF(10,0.0001),
RBF(10, 0.001), SEA(50000), SEA(50), Sine
Metric Accuracy
Memory consumption in Mb
Time efficiency
Preprocessing Standard Scaling
Models
River Logistic Regression learning rate: 0.01
optimiser: SGD
Hoeffding Tree split criterion: information gain
max depth: no
max size 100Mb
Gaussian Naive Bayes
Torch Logistic Regression learning rate: 0.01
optimiser: SGDHD
Torch Static MLP learning rate: 0.01
optimiser: SGDHD
architecture: 2 hidden layers, 5 neurons each final Softmax layer
Torch Dynamic MLP learning rate: 0.01
optimiser: SGDHD
architecture: 5x #features, 2 X #features, final Softmax layer

We consider in this experiment different algorithms from the river library to evaluate the competi-
tiveness of different neural architectures. Additionally to the MLP networks implemented within the
PyTorch2RiverClassifier, we select GNB, HT and the Logistic Regression from the river library. As
the Logistic Regression implementation in river supports only a small fraction of optimisers, we chose SGD
as the underlying optimiser. For the NNs we select the identical architectures as depicted in Section 8.2.2,
whereby we use the results of the experiment towards a reasonable default parametrisation in that we set a
learning rate of 0.01 and a SGDHD optimiser. Furthermore, we evaluate in this experiment not only the
Rolling Accuracy but also the memory consumption in Mb and the avg. time needed to evaluate 100, 000
Instances.

8.3 Results

In this section, we discuss the results achieved by the conducted experiments. The first experiment inves-
tigated the search for a suitable learning rate and optimiser for an underlying NN. This experiments aim is
to investigate according to the Scikit-learn design principles the requirement R //I-5. Within the second
experiment, we show the general competitiveness of NNs applied on data streams and thus substantiate a
possible application of NAS.

8.3.1 Default Parametrisation

The experiment towards a reasonable default parametrisation (R I1I-5) is two-folded. We identified within the
implementation of the PyTorch2RiverClassifier class, besides the neural architecture, two parameters
that need to be set; (i) the learning rate and the (i) underlying optimiser. In Figure 8.2, we depict the box-plots
of the measured rolling accuracies over the evolving SEA(50) data stream of the different learning rates and
models. We depict a detailed view of the results for this experiment within the Appendix in Table A.3 for
the Logistic Regression as smallest NN and in Table A.4 for the static and dynamic MLP classifier.

127

8 Online Deep Learning Framework

1.0

0.9 1

0.6

0.5 4

o 3
S 0.8 A g
g g
=3 =1
o I~
o O
< <
o o
£ 0.7 £
3 3
o< -4

T T T T T T T

Qq th 0« Qb @) Q@,Q@, BTSN o <> G)e
S v
NN AT AT AT

Learning Rate

(a) River Logistic Regression

T
Q

T
Q

S

1.01

0.94

e
N
L

Rolling Accuracy
o
o
L

Q)
'y’\,’\,’\,’\,

T T T T T T T

H PPN 0 Q Q
NN Q 5*
& () () Q" AN ,\,Q L)

Learnlng Rate

(¢) Torch Static MLP Classifier

T
Q
(,’Q

.
()“Q
~

Rolling Accuracy

Learning Rate

(b) Torch Logistic Regression

Learning Rate

(d) Torch Dynamic MLP Classifier

Figure 8.2: Impact of Learning Rate for SEA(50) Concept Drift Stream

Figure 8.2 shows exemplarily on the SEA data stream that lower learning rates perform worse than higher
learning rates. The results furthermore show that the average performance of the NN increases from a
learning rate of 10~ for all classifiers. But also, the variance decreases significantly as the learning rate
increases. For the Logistic Regression models, the peak performance is achieved with a learning rate of
0.01. However, it is noticeable that the performance of the Logistic Regression model implemented in river
drops stronger from a learning rate of 0.1 than that of the PyTorch implementation. The MLP classifiers act
similarly to the Logistic Regression models. The peak performance is achieved at a learning rate of 0.01,
whereby again, besides the performance, the variance of the rolling accuracy decreases significantly. While
the static MLP model starts to decrease in performance and increase in variance at a learning rate of 0.1 to
a plateau at 60%, the performance of the dynamic MLP classifier drops to a performance of 30%. Similar
results are obtained for the other data streams in Tables A.3 and A.4. However, we assume 0.01 as a learning
rate best suited as the default parameter as the average rolling accuracy is the highest. The low variance,

however, indicates a better adaptation to concept drifts.

128

8.3 Results

Table 8.4 shows the results regarding the choice of a suitable optimizer. In Figure 8.3, we depict further
the learning curves for the SEA(50) data stream. As for the results for the experiments towards a suitable
learning rate, depict according to Table 8.4, the results for the PyTorch Logistic Regression in Table A.1 and
for the static MLP classifier in Table A.2 within the appendix.

Table 8.4: Rolling Accuracy comparison Torch Dynamic MLP classifier considering the optimisers Adam, AdamW, SGD, SGDHD
and RMSprop Accuracy is measured as the average rolling percentage of examples correctly classified. The best model
accuracies are indicated in boldface

Torch Dynamic MLP Classifier
Data Stream
Adam AdamW RMSprop SGD SGDHD

Agrawal(50,000) 76.28 +0.05 75.5 +0.05 75.47 £0.06 75.25 +0.07 75.3 £0.07
Agrawal(50) 91.5 0.1 91.6 +0.05 90.75 +0.08 88.98 +0.12 85.32 +0.11
Covertype 80.15 +0.11 78.04 +0.1 91.34 +0.1 91.27 £0.09 85.73 £0.22
Electricity 81.54 £0.06 79.37 0.08 90.85 +0.03 86.72 £0.07 85.37 £0.08
HYP(50, 0.0001) 78.71 £0.04 81.89 £0.04 84.09 £0.05 92.02 +0.06 92.22 +0.06
HYP(50,0.001) 80.06 £0.04 81.22 £0.04 85.19 £0.04 91.4 £0.06 91.52 +0.06
LED 74.37 £0.05 72.48 +0.05 73.48 £0.04 74.26 0.1 74.53 0.1
RBF(10,0.0001) 99.52 +£0.01 99.31 £0.01 99.5 +0.02 99.37 +0.05 99.38 +0.05
RBF(10,0.001) 97.99 +0.01 97.86 +0.02 98.52 +0.02 98.93 +0.05 98.89 +0.05
SEA(50) 98.65 +0.01 97.39 +0.01 98.52 +0.01 97.73 £0.06 97.77 +0.06
SEA(50000) 93.39 +0.02 92.6 +0.02 93.09 +0.02 91.65 +0.06 91.7 £0.06
Sine 98.59 +£0.02 97.56 £0.02 98.7 £0.01 95.7 £0.12 95.75 +0.12
Avg. Accuracy 87.56 87.07 89.96 90.27 89.98
Avg Rank 2.67 3.92 2.53 3.25 2.33

Table 8.4 shows, proximate results over changing optimisers. While the choice for the learning rate influenced
the model’s rolling accuracy in the order of magnitude of up to 70%, the choice of the underlying optimiser
influences the rolling accuracy in the order of magnitude of ~ 5%. In addition to the the average rolling
accuracy for each data set, we depict in Table 8.4 the averaged rolling accuracy over all data streams and the
average rank achieved by the underlying optimiser. These results show, that SGD achieves for the dynamic
MLP classifier in average better accuracy scores, however, SGDHD achieves the best average rank. In case
of the other classifiers it turns out, that SGDHD performance marginally better than the other optimisers.

= Adam e———+———{CH Em Adam e———+———{0H
I AdamW -~ e——t———{ T "H [AdamW -———————t——H
Torch Static | E=E RMSprop ooy Torch Static | E=E RMSprop ooy
MLP Classifier | pmm sGD MLP Classifier | pmm sGD
[0 SGDHD [SGDHD
e S s
—~—H
_ — - +—
9] - [J] -
3 Torch Logistic | 3 Torch Logistic | —————— [
= Regression = Regression
— [TTTTH
S
- - - - T
- e ——
Torch Static | Torch Static J R — s T
MLP Classifier MLP Classifier
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Rolling Accuracy Rolling Accuracy
(a) SEA(50) (b) SEA(50000)

Figure 8.3: Impact of the underlying optimiser on SEA(50) and SEA(50000) evaluated on 100, 000 instances

129

8 Online Deep Learning Framework

In Figure 8.3, we illustrate the impact of the underlying optimiser on SEA(50) and SEA(50000). As depicted
in Section 8.2.2, the SEA stream contains three drifts that are applied within a width of w = 50 (abrupt drift)
and w = 50,000 (continuous drift) Comparing both figures shows that the underlying optimiser performs
equally well in both change widths. Furthermore, it shows that the optimiser only marginally influences
the performance of the Logistic Regression model. The impact of the optimiser for the static as well as
the dynamic MLP is higher in that RMSProp shows, compared to the other optimisers, a comparably lower
variance. However, taking the results in of the other architectures in Table A.1 and A.2 into account it turns
out that SGDHD is a suitable optimiser for NNs in online learning. By evaluating the models based on a
rolling accuracy, we furthermore showed that NN are capable of adapting to temporal changes (R I-5) In the
following, we base our evaluations on SGDHD.

Concluding the results for a default parametrisation of NN, we showed in this section that a learning rate of
0.01 and SGDHD as underlying optimisers are suitable default configurations. Furthermore, it emerges that
the DL models (dynamic and static MLP) achieve a higher average rolling accuracy.

8.3.2 Suitability

In this section we evaluate the general suitability of NN and compare according to the experimental setup
depicted in Section 8.2.3 an evaluation considering various models from the river framework, as well as the
requirements for online learning. While NN follow the online learning requirements R I-1, R I-4] by nature
and the adaptivity of NN can be derived from the experiments based on the evaluations towards a reasonable
default parametrisation, we investigate in this evaluation the requirements R I-2 and R [-3. In Figure 8.4,
we present a resource aware evaluation of the SEA(50) data stream.

1.0 4 —
9
® 0.8 A
3
9
< 06 T
0 20000 40000 60000 80000 100000
~ 0.3 1
m
z
= 0.2 1
o
€ 0.1 1
[]
Z T
O'O B ;-' T T T T T
0 20000 40000 60000 80000 100000
Instances
— HT —— Torch Dynamic MLP Classifier
—— River Logistic Regression —— Torch Logistic Regression
—— GNB —— Torch Static MLP Classifier

Figure 8.4: Accuracy curve and memory (in Mb) for various NNs and river algorithms

Looking at accuracy, we see that NN models show competitive performance compared to HT, GNB and the
Logistic Regression model implemented in river. However, the dynamic MLP model adapts comparably
slower to the underlying distribution, but it emerges that all models are resistant to the concept drifts
implemented within SEA. Denote that we evaluate this experiment based on an accuracy metric that gets

130

8.3 Results

insensitive to performance changes over time. We choose in this experiment an accuracy metric since the
emphasis lies on the model’s performance rather than on its adaptation. Furthermore, we depict in Figure 8.4
the memory consumption of each algorithm. Overall, the results indicate that the HT model increases its
memory consumption in comparison to the other algorithms. This brings additional advantage of NN in
online learning. While the HT builds a decision tree that increases over time, the neural architecture when
applying NN remains fixed, and thus the memory consumption does not increase over time. To solve the
issue of HT’s memory consumption, a HAT can be applied, or a maximum depth of the tree can be set.

Table 8.5: Accuracy comparison of EvoAutoML against baselines. Accuracy is measured as the final percentage of examples correctly
classified. The best individual accuracies are indicated in boldface

Data Stream GNB HT River Logistic Dynamic MLP Torch Logistic Static MLP
Regression Classifier Regression Classifier

Agrawal(50,000) 60.37 £0.06 77.06 £0.02 59.87 £0.02 75.33 £0.04 59.03 £0.02 74.98 +0.03
Agrawal(50) 62.51 £0.09 90.55 +£0.03 63.90 £0.03 89.10 £0.08 63.44 +0.03 80.71 £0.04
Covertype 37.35 £0.07 79.39 £0.11 22.03 £0.04 91.42 £0.08 87.90 £0.05 87.25 £0.11
Electricity 76.14 +0.03 79.78 £0.03 83.70 £0.01 87.03 £0.06 85.51 £0.01 87.11 £0.06
HYP(50, 0.0001) 93.38 £0.02 83.95 +0.01 92.81 +0.02 92.20 +0.07 91.57 £0.02 92.51 £0.07
HYP(50,0.001) 85.29 £0.02 82.40 +0.01 92.17 +£0.02 91.59 +0.06 91.37 £0.01 91.94 +0.07
LED 76.60 £0.02 63.62 +0.07 13.91 £0.01 74.56 £0.12 76.63 £0.02 72.86 +0.11
RBF(10,0.0001) 94.34 +0.02 88.18 £0.03 30.35 +0 99.64 £0.06 99.77 0 96.03 +0.08
RBF(10,0.001) 63.60 +0.11 71.81 £0.07 29.99 £0 99.19 £0.05 97.33 £0.01 97.51 £0.08
RBF(50,0.0001) 67.74 +0.08 84.13 +0.02 41.17 0 98.49 +0.1 96.64 +£0.02 94.79 £0.12
RBF(50,0.001) 35.41 £0.13 58.38 £0.06 36.69 £0.01 96.12 £0.09 83.71 £0.02 74.64 £0.09
SEA(50,000) 94.72 +0.01 95.67 £0.01 96.78 0 95.53 £0.07 96.79 +0.01 96.34 +0.04
SEA(50) 95.52 +0.01 96.88 +0.01 99.41 £0.01 98.03 £0.07 99.44 +0.02 98.78 +0.05
Sine 93.83 £0.01 98.77 £0.01 98.39 +0.01 95.90 £0.12 98.40 £0.01 98.78 +0.03
Avg. Accuracy 74.06 82.18 61.51 91.72 87.68 88.87

Avg. Rank 4.79 4.00 4.21 2.57 2.79 2.64

In Table 8.5, we depict the achieved results on all data streams. It shows that the dynamic mlp classifier
achieved the best-averaged accuracy with 91.72% and the best rank (2, 57). Furthermore, the results indicate
that NNs implemented within the PyTorch2RiverClassifier perform better on the selected data steams.
Looking at each individual data stream, the dynamic MLP model dominates with 91.42% on Covertype,
and the static MLP dominates with 87.11% on the Electricity data stream against the other models. Overall,
the results indicate that NN are competitive to other models in their predictive performance. To evaluate the
time (R I-2) and memory (R I-2) consumption of NNs, we depict in Table 8.6 the memory consumption,
the average time needed to iterate over the data streams and the RAM-hours (in Mb hours) employed during
iteration.

131

8 Online Deep Learning Framework

Table 8.6: Comparisons of memory consumption (in Mb) and Avg. Time (in s) of NNs against different baselines. One RAM-Hour
equals to 1 Mb of RAM deployed for 1 hour.

Data Stream GNB HT River Logistic | Dynamic MLP Torch Logistic Static MLP
Regression Classifier Regression Classifier

Agrawal(50,000) 0.016 0.933 0.006 0.045 0.023 0.037
Agrawal(50) 0.016 0.920 0.006 0.045 0.023 0.037
Covertype 0.263 1.750 0.018 0.057 0.036 0.050
Electricity 0.015 0.466 0.006 0.044 0.023 0.037
Hyperplane(50, 0.0001) 0.078 3.710 0.015 0.054 0.032 0.046
Hyperplane(50,0.001) 0.078 3.710 0.015 0.054 0.032 0.046
LED 0.051 0.346 0.005 0.045 0.023 0.037
RBF(10,0.0001) 0.145 2.740 0.016 0.055 0.033 0.047
RBF(10,0.001) 0.145 6.210 0.016 0.055 0.033 0.047
RBF(50,0.0001) 0.178 3.730 0.016 0.055 0.033 0.047
RBF(50,0.001) 0.178 2.390 0.016 0.055 0.033 0.047
SEA(50,000) 0.007 0.268 0.005 0.043 0.022 0.036
SEA(50) 0.007 0.316 0.005 0.043 0.022 0.036
Sine 0.006 0.210 0.004 0.043 0.022 0.036
Avg. Time 168.729 217.456 116.585 360.329 161.667 191.442
RAM-Hours 0.109 1.614 0.007 0.078 0.020 0.034

Considering the time efficiency (R I-2) of the underlying models, Table 8.6 shows that the Logistic Regression
implemented in river consumes the least time, followed by the Logistic Regression implemented within the
PyTorch2RiverClassifier. This behaviour is expected as the model wraps the data stream and passes it
through a PyTorch model. It is rather remarkable that the NN's is capable of processing the data stream at the
same magnitude of speed as the HT classifier. Another expected result in Table 8.6 is that the time required
increases with the size of the NN as the number of operations increases. However, comparing the time
consumption with regard to the fulfilment of R /-2) it shows that NN are more complex in the computations
and thus need more computation time. This increased time consumption, however, is decent, which makes
smaller NNs quite suitable for data streams.

Considering the memory efficiency (R I-3) of the underlying models, it again shows that the Logistic Re-
gression implemented in river employs with 0.007 Mb hours the least RAM-hours. Followed by the Logistic
Regression implemented within the PyTorch2RiverClassifier with 0.020 Mb hours. Accordingly to
Figure 8.4, the dynamic and static MLP classifier consume less memory than GNB or HT. The HT classifier,
in particular, shows its disadvantages when it is not restricted in its tree depth.

To conclude the suitability of NN regarding R I-2 and R -3, this section showed, that NNs are suitable
models for online learning. Due to their versatile possibilities in their underlying architectures, they can be
adapted to the processing time and memory requirements and are thus well suited for data streams.

8.4 Summary

This chapter presented and evaluated an online DL framework that wraps the popular PyTorch DL library into
a river Predictor in case of a supervised learning task. This framework aims to simplify the development
of DL models specially designed for data streams. This is achieved by following the Scikit-learn design
principles that we think are an enabler towards the application of NN in online learning. As we rely in this
thesis on supervised learning (preliminary classification) tasks, we emphasise the training and prediction of
NNs in a supervised online learning manner. In the second part of this chapter, we focused on the fulfilment
of the requirements in online learning and presented a resource-aware evaluation of the NNs in general. We
further show in an empirical evaluation that incorporates the smallest NN, the Logistic Regression, as well as
MLPs that the general application of (architectural smaller) NNs in online learning can be beneficial. Since

132

8.4 Summary

we restrict the evaluation to simple neural architectures that showed the competitiveness in online learning
and concerning the versatile development of neural architectures in offline learning, a fruitful direction
towards the adaptation of NN in online learning is shown.

133

Incremental HPO

This chapter investigates the automated configuration of ML pipelines and NNs on data streams. Within
Chapter 7, we presented Hypothesis II and depicted the overall framework design towards the adaption
of AutoML and NAS. Chapter 8 lays the foundation for online NAS by providing a framework for online
application of NNs. We propose in this chapter an AutoML framework (Contribution III) that enables a
continuous adaption to data streams by as well following the river API and the Scikit-learn design principles.
Following the river API design within an incremental HPO enables in combination with the proposed online
DL framework the application of NAS in an online learning environment. Thus, derived from Hypothesis II,
we aim to answer in this chapter the following research questions.

RQ III.2 How can the hyperparameters of ML pipelines (AutoML) and NNs (NAS) incre-
mentally be adapted to data streams?

RQ IIL.3 Does an incremental adaptation of hyperparameters in AutoML or NAS systems
enable better performances on data streams?

In the research question (RQ II1.2), we propose a general approach that enables the adaptation of hyperparam-
eters concerning the automated configuration of ML pipelines and neural architectures on the data streams.
Following the CASH definition from Feurer et al. [81] for batch learning, we formalise in Section 9.1 an
online CASH problem. To solve the online CASH problem, we propose in Section 9.2 an ensemble approach
that aims to solve the online CASH problem that can be applied on NAS. In Section 9.3, we evaluate our
approach towards the search for suitable ML pipelines. And in Section 9.4, we apply the incremental HPO
approach to a NAS search space and evaluate it with respect to the online learning requirements (I). Parts
of this chapter have been published in “Evolution-Based Online Automated Machine Learning” [141] by
Cedric Kulbach, Jacob Montiel, Maroua Bahri and Albert Bifet on PAKDD 2022.

9.1 Problem Formalisation

As part of the related work we presented in Section 3.3 online ensemble techniques that aim to to adapt
to data streams by training a set of homogeneous (e.g. LB [24], OB [181] , SRP [99]) or heterogeneous
(e.g. BLAST [233]) model configurations. However, the configuration of heterogeneous models during the
evolving data stream has not been part of the research. The configuration of models during the stream entails
multiple difficulties. The underlying models are mostly configured at the beginning of the data stream, and a
reconfiguration leads to a new model that needs to adapt to the data stream. Furthermore, the configuration
of ML pipelines accordingly to the offline CASH problem that concatenate different algorithms in online
learning has yet not been part of the research. Thus, the question of changing and adapting the configuration
of an algorithm as well as the orchestration of models without infringing the requirements [23] for online
learning remains open. Following the definition from [253], a ML pipeline structure g € GG can be modelled

9 Incremental HPO

as an arbitrary DAG, where each node represents an algorithm A € A. The online CASH problem is defined
in Definition 20.

> Definition 20. Online CASH, adapted from [81]

Let A= {AM ... AU} be a set of step independent algorithms, and let the hyperparam-
eters of each algorithm AU) have a domain AU). Further, let S = ey, ea,...,¢eq,...be an
ordered sequence of examples of possibly infinite length and let ¢ be the current observed
example. Further, let S~ = eq,...,e; be an ordered sequence of past examples. Each
example e; = {x;,y;} is a tuple of p predictive attributes 2; = (x; 1, ..., 2; p) and the cor-
responding label y;. Let L(Pg,X,Y(ST)7 SV denote the loss that algorithm combination
PU) achieves on a_§ubset of validation examples SV C S~ when trained on ST C S~ with
hyperparameters X . Denote that ST NSV = ().

Then the Online CASH problem is to find the joint algorithm combination and hyperparam-
eter setting that minimises based on a validation protocol V the loss:

%
g AT N e arg min V(LP, ++5.87.8Y) ©9.1)
P EP AEAD), Ac A geC 95

The changes to the offline CASH problem in comparison to Definition 20 do not appear to be major at first
glance. Whereby the nature of data streams poses new challenges in that the order of the data instances is
crucial. This ordering entails a new dimension to the CASH problem in that the question arises when to
adapt to the configuration of the underlying model. The change from data sets to data streams, thus, excludes
k-fold cross-validation (see Section 2.6) and includes evaluation protocols suitable for online learning,
such as test-than-train or prequential evaluation. In ensemble learning (e.g. ARF [98] or HAT [21]) or
in conceptual approaches towards the application of offline AutoML approaches on data streams such as
proposed by Imbrea [121] concept drift detectors are used to determine when to change the underlying
configuration. The formalisation in Definition 20 reveals two major tasks towards the application of AutoML
to data streams; The determination of (i) when to adapt the underlying ML pipeline or neural architecture as
well as (ii) a variable concatenation of algorithms in the context of AutoML. In the following, we propose
our approach that aims to solve the defined online CASH problem.

9.2 Approach

Inspired by the CASH problem, a GA approach and online ensemble techniques OB [181, 180] we propose in
this section an approach that enables online training in a high-dimensional algorithm- and hyperparameter-
search spaces. However, the CASH solution does not consider the adaption of parameters in an evolving data
stream environment so far; on the other hand, the established online ensemble algorithms are only capable
of processing a small set of homogeneous algorithms. Whence, our proposal uses a GA approach, which
naturally adapts its configurations within a small ensemble (population) to enable the adaption of a large
algorithm- and hyperparameter-search space to evolving data streams. The core of our training and adaption
procedure depicted in Algorithm 8 is a GA inspired by Real et al. [197]. Accordingly, to the underlying GA
approach, we refer to our approach as EvoAutoML (Evolution-based Online Automated Machine Learning).

The algorithm takes a data stream S, a population size p, a sampling rate fgg as well as a loss function £
and a configuration space A, A, G. When considering a data stream of a fixed length, the number of cycles

136

9.2 Approach

of the underlying GA can be referred to as |t/ fss|. However, due to the unbound nature of data streams,
the number of cycles is infinite, and thus the GA evolves as the data stream does. Whereby the sampling
rate fgg estimates how many instances are processed without evolution and mutation steps. Following the
AutoML system design in offline learning, the loss function L is externally set. Regarding NAS, we assume
furthermore that the search space that contains all possible configurations g € G, algorithms A € A and
algorithms configurations A is set externally and additionally required. In Algorithm 8, we present the
training procedure of EvoAutoML.

Algorithm 8 EvoAutoML Training
1: Input:

: Data stream S, population size p, sampling rate fgg, loss function L,
configuration space A, A, G

: Output:

. Set of suited algorithms configurations:

pr={PW, . .. PP}

s}

P+ > Initialization
: while |P| < p do

P + Random(G, A, A)

10: P+ PUP

11: end while

12: t<+0

13: if e; then > Start Data Stream
14: if £ mod fssg == 0 then

15: Pbest « minpep LF)(P(ST),SY)

16: Preak « maxpep LP)(P(ST),SY)

17: Pmut < Mutate(Pbes?)

18: P« puypmut

19: P+ p\pweak

20: end if

21: w 4= Poisson(6)

22: for P € pdo > Update Population
23: loop w

24: P fit(er)

25: end loop

26: end for

27: t+—t+1

28: end if

_>
In Algorithm 8, we refer to ML pipelines P that are configured by g, X and A . This notation cangs: adapted
or replaced to the search space of neural architectures, where a NN f is configured by g, Zand X.

The population of the underlying GA in Algorithm 8 is initialised within lines 7 - 12, where configurations
are picked randomly from the search space and appended to a population set P. Notice that by initialising
P with random online learning pipelines before the data stream starts, the algorithm is able to predict at any
time (R I-4). The data stream and thus the evolutionary steps of the GA start in line 13 of Algorithm 8. The
evolution steps are applied with a sampling rate of fgg (line 14). The mutation incorporates a mutation step
that is applied based on the best pipeline configuration within P. The mutated pipeline P! replaces the
weakest pipeline configuration. The applied mutation step follows the implementation of Real et al. [197]
where one parameter of the search space is randomly changed. Since the metric £ evolves with the data
stream and the model’s performance, each pipeline configuration in P requires a separate metric function

137

9 Incremental HPO

LP). To follow the test-than-train protocol, the population is trained after the mutation step based on
the new instance e; in lines 21-25. Accordingly to Oza and Russell [181], we repeat the training on the
instance e; following a Poisson distribution. Whereby the number of trainings is not separately chosen for
each model in P and for the expected value of the Poisson distribution we follow Bifet et al. [24] with a
Poisson(6) distribution.

Considering the online learning requirements, our approach follows R I-4 by initialising a set of online
learning algorithms and further processing one instance of the stream at a time R /-I/. Our approach
aims to continuously adapting an ensemble of algorithms to the data stream (R I-5) accordingly to Oza
and Russell [181] and Bifet et al. [24], but also considers the underlying configurations and heterogeneous
models. However, the adaptation towards the memory and time consumption of EvoAutoML is shown
within the results for AutoML in Section 9.3 and NAS in Section 9.4. EvoAutoML trains a population of
ML pipelines, or NNs and is thus an ensemble learner that has access to a population of trained pipelines
at each point of the data stream. This leads to a further advantage that EvoAutoML predicts an unlabelled
instance based on a majority voting. During the evaluation and development of Algorithm 8 it emerged that
a hard majority voting performed best on the evaluated data streams. A hard majority voting predicts for a
classification task an instance ¢ based on

9; = mode{P.predict(e;) € P} 9.2)

where the class with the most votes is elected as prediction value. Under the assumption that the configuration
of the underlying ML pipeline or NN evolves accordingly to the never ending data stream, we approach a GA
and presented within Algorithm 8 an automated configuration strategy towards stream adaptation. Further,
we implemented the framework likewise the PyTorch2RiverClassifier depicted in Chapter 8, river
Estimator that implements Algorithm 8 within the 1learn_one method and the majority voting within the
predict_one method. The underlying configuration space (G, A, A) is defined within the initialisation of
the EvoAutoML estimator, whereby the graph structure g € G and the algorithm space are combined within
a Python dictionary. The parametrisation space A is as well a configurable Python dictionary, whereby
possible configuration candidates are represented within iterables. In the following, we evaluate EvoAutoML
on ML pipelines.

9.3 Online AutoML

In this section, we evaluate the approach depicted in Section 9.2 based on ML pipelines. Besides the predictive
performance and thus the capabilities in adaptation, we investigate within the evaluation the time (R I-2)
and memory (R /-3) requirements. In Section 9.3.1, we depict the experimental setup that incorporates the
used data streams as well as the search space to build ML pipelines. Based on the experimental setup, we
present the achieved results in Section 9.3.2.

9.3.1 Experimental Setup

This section provides the experimental setup for the evaluation of EvoAutoML. As in Chapter 8, we apply a
test-then-train evaluation. In addition to the fulfilment of the requirements R I-4 and R I-1, we evaluate our
approach against state-of-the-art single and ensemble algorithms. We show that EvoAutoML is compatible
with recent online algorithms and thus fulfils for AutoML all requirements of [23] (R I). In Table 9.1, we
present an overview of the experimental setup to evaluate the predictive performance and as well the time
and memory consumption of EvoAutoML. We executed all experiments on an Intel(R) Xeon(R) Platinum

138

9.3 Online AutoML

8180M CPU with 2.50 GHz base clock and 1.5 terabytes of RAM without consideration of further GPU
acceleration.

Table 9.1: Experimental Setup EvoAutoML

Parameter Setting

Stream Generators Agrawal(50, 000), Agrawal(50), Covertype, Electricity, HYP(50, 0.0001), HYP(50, 0.001),
LED, RBF(10,0.0001), RBF(10, 0.001), RBF(50, 0.001), RBF(10, 0.0001), SEA(50),
Sine

Metric Accuracy
Memory consumption in Mb
Time efficiency

Preprocessing Standard Scaling (except for AutoML)
Models
ARF #models: 10
max memory: 32 Mb
OB #models: 10
base model: HT
GNB -
k-NN #neighbors: 5
window_size: 1000
HT max memory: 32 Mb
EvoAutoML population: 10
fg S 1000

Preprocessing: Standard Scaling, Missing Value Cleaner, Min-Max Scaler
Models: GNB, HT, k-NN, Logistic Regression

According to Chapter 8, we evaluated EvoAutoML on data stream generators as well as real-world data sets
that are iteratively passed to the underlying algorithms. We sampled within the generators 1M instances,
considering all available instances for the real-world data streams. Further, we evaluate EvoAutoML against
state-of-the-art single as well as ensemble learners. The reference models use standard scaling to preprocess
the data stream and are executed on their default configuration. The ARF [98] classifier uses ten random
forest models and a ADWIN change detector to adapt the underlying ensemble to concept drifts. Further,
we limit the memory consumption to 32 Mb. The OB [181] model builds its ensemble based on ten HT
algorithms, that are limited in their memory consumption to 32 Mb. The OB ensemble has thus a maximal
memory consumption of 320 Mb. For the evaluation against single models, we choose GNB, k-NN and HT
as reference models, that are also part of the EvoAutoML models step.

The configuration of EvoAutoML can be depicted by the configurations space (G, A, A), whereby it uses
two algorithm types that can be categorised into (i) preprocessors A% and (ii) predictors AU, and can
be variably linked with each other. The preprocessing step A(*) can either be a Missing Value Cleaner,
Min-Max Scaler, ot a Standard Scaler (|A")| = 3). Within the prediction step EvoAutoML can configure
four different algorithms, namely GNB, HT, k-NN, and Logistic Regression, that have been chosen for their
different modes of operation. Thus in total EvoAutoML is capable of configuring 3 x 4 = 12 different
algorithm pipelines.

However, all algorithms Ain.A can furthermore be parametrised by their domain A. While the preprocessors
A® do not differ in the parametrisation, the predictors A(“) can be parametrised according to their underlying
modes of operation. For example, the k-NN model varies by the number of neighbours and its window size
or the HT model by its maximal depth or on which basis the underlying tree splits should be applied. In
total the configuration space of EvoAutoML considers of 174 possible ML pipeline, whereby the pipeline
structure G is fixed by A(*) followed by A(%).

Considering this configuration space shows already the advantage of EvoAutoML. While the ensemble
learning techniques are based on homogenous models or ML pipelines that do not consider different or
changing configurations, EvoAutoML is parametrised by a configuration space and thus is capable of handling

139

9 Incremental HPO

a diverse set of pipeline configurations .4, A. Furthermore, as for ARF and OB, we set the population size to
10 ML pipelines that are evaluated at once and a sampling rate of fsg = 1000. Denote that both parameters
have a mutual influence on the predictive and time and memory performance. A high population number
and a low sampling rate lead to a broad exploration but also to computational expensive training updates.
It also leads to low exploitation, as the child pipeline configuration (see Algorithm 8) has no prospect of
prevailing against the already established algorithms within the population. During the implementation
and evaluation, the configuration P = 10, fgs = 1000 was accordingly to Requirement R ///-5 found to
be a compromise between predictive performance and the number of resources required. Regarding the
computational complexity for large search spaces, we evaluated the related algorithms in their proposed
configuration to pursue the question of the best performing approach.

9.3.2 Results

In this section, we present accordingly to the proposed approach in Section 9.2 and the experimental setup
in Section 9.3.1 the results of EvoAutoML with regard to the automated configuration of ML pipelines.
The results show that EvoAutoML is capable of outperforming state-of-the-art algorithms not only in their
predictive performance but also in their memory and time consumption. We present, according to the
evaluation of the online DL framework, the results against single algorithms. However, as EvoAutoML is a
ensemble learning algorithm, we consider within the results ensemble learning algorithms as comparative
models. Following Requirement R /-5, we depict in Figure 9.1 the development of the accuracy curve over
the course of the Covertype data stream.

0.8

0.6 1

Accuracy

0.4 1

0 100000 200000 300000 400000 500000 600000

Time (seconds)
=
o
o
o
o

5000 A
0- T T T T T T T
0 100000 200000 300000 400000 500000 600000
Instances
—— EvoAutoML — LB — HT KNN
ARF — OB —— GNB

Figure 9.1: Accuracy curve and time (in seconds) for EvoAutoML and baseline algorithms on Covertype.

Comparing the single and ensemble learning algorithms, Figure 9.1 shows significant differences within the
development of the accuracy curve. While both adapt within the first ~ 50, 000 instances to the underlying
data distribution and reach a performance plateau, the ensembles performance is significantly higher than the

140

9.3 Online AutoML

performance of the single algorithms. Further, the performance of some algorithms (GNB, LB, ARF) drops
after ~ 225, 000 instances, which could be due to a concept drift within the Covertype data set [27]. LB and
ARF achieve at the beginning of the stream the best peak performances, but decreases slightly at ~ 225, 000
instances; however, the accuracy curve of EvoAutoML remains stable over the stream and achieves with
91.09% marginally better performances than ARF (89.70%) and LB (90.41%). OB achieves with 83.66%
better performances than the single best algorithms, HT (66.67%), GNB (63.64%) and k-NN (73.74%), but
performs worst within other ensemble learners on Covertype.

A significant drawback of ensemble learners comes apparent when considering the time needed to process
the Covertype data stream. The ensembles need considerably more time to process incoming data instances.
While EvoAutoML needs at the beginning of the data stream in comparison to the other models the most time,
itincreases as LB linearly within the time consumption depicted in Figure 9.1. OB, however, increases super-
linear and considering the unbound nature of data streams, it might lead to runtime problems. Furthermore,
the single algorithms show that they are capable of processing the underlying data stream multiple times
faster. For Covertype EvoAutoML achieves on a processor with 2.5 GHz (Intel(R) Xeon(R) Platinum 8180M)
a throughput of 36 Hz, OB 32 Hz and LB 38 instances per second. The single algorithms, however, are
with 431 Hz (HT), 1447 Hz (GNB) and 903 Hz k-NN a multiple times faster than the ensemble techniques.
Considering both accuracy and the time consumption, the ARF ensemble model returns with 89.7% accuracy
and a throughput of 283 Hz, the best compromise between predictive performance and time consumption
on Covertype. However, for a low-frequency data stream, EvoAutoML returns the highest accuracy score.

In Table 9.2, we depict the final percentage of instances correctly classified by the single as well as the
ensemble learning techniques on various stream generators and the real-world data sets Covertype and
Electricity. Furthermore, we measure the average rank over the data streams by comparing all evaluated
models. Table 9.2 shows that EvoAutoML achieves with 2.08 the best rank averaged over all data streams.

Table 9.2: Accuracy comparison of EvoAutoML against baselines. Accuracy is measured as the final percentage of examples correctly
classified. The best individual accuracies are indicated in boldface

Data Stream EvoAutoML HT GNB KNN ARF LB OB
Agrawal(50) 99.02 +0.01 98.09 +0.01 62.31 £0.09 55.73 £0.02 94.98 +0.95 99.69 +0.00 98.46 +0.01
Agrawal(50000) 94.43 +0.02 91.84 +0.02 62.33 +0.09 55.52 +0.02 93.03 +0.93 97.52 £0.01 92.89 +0.02
HYP(50,0.0001) 87.51 £0.02 84.38 £0.00 91.61 £0.01 67.93 0.00 71.19 £0.71 84.54 £0.01 87.14 £0.01
HYP(50,0.001) 83.69 £0.01 81.79 £0.01 80.83 £0.02 68.01 =0.00 71.67 £0.72 83.95 +0.01 84.43 £0.01
LED 76.49 +0.01 75.95 +0.01 76.48 +0.01 66.6 £0.00 76.47 +0.76 76.48 +0.01 76.42 +0.01
RBF(10,0.0001) 99.82 +0.00 89.32 £0.03 65.86 £0.09 100 +0.00 99.85 +0.01 99.64 +0.00 98.07 £0.00
RBF(10,0.001) 99.63 +0.00 77.61 £0.02 39.75 #0.11 99.99 +0.00 99.22 +0.99 99.01 +£0.00 93.68 +0.01
RBF(50,0.0001) 97.51 £0.01 83.05 £0.03 35.26 +0.13 99.83 +0.00 98.21 +0.98 98.71 £0.01 96.17 £0.01
RBF(50,0.001) 96.99 £0.01 48.15 +£0.04 25.32 +0.07 99.80 +0.00 94.31 £0.94 93.56 £0.01 71.87 £0.03
Sine 99.87 +0.00 99.63 +0.01 93.62 +0.00 98.75 +0.00 99.74 +0.01 99.68 +0.00 99.77 £0.01
SEA(50) 98.99 +0.00 97.78 +0.01 95.65 +0.00 97.23 +0.00 99.64 +0.01 99.67 +0.01 98.34 +0.01
Electricity 88.09 +0.01 79.61 +0.02 72.87 +0.03 79.53 +0.01 87.79 £0.88 87.32 £0.01 81.74 £0.02
Covertype 91.09 +0.07 66.67 £0.10 63.64 £0.11 73.74 £0.12 89.7 £0.09 90.41 +0.08 83.66 £0.12
Avg. Acc. 93.32 82.61 66.58 81.74 90.45 93.09 89.43
Avg. Rank 2.08 5.31 5.92 4.77 3.46 2.54 3.85

Furthermore, it achieves with 93.32% the best averaged percentage of instances correctly classified. Similar
to Figure 9.1, EvoAutoML is followed by LB with an averaged rank ranging from of 2.54 and an accuracy
of 93.09%. Again, Table 9.2 supports the results stated within the Covertype data set in Figure 9.1 in
that the ensemble techniques perform with an average rank from 2.08 to 3.85 significantly better than the
single algorithms (4.77 to 5.92). Comparing EvoAutoML against the single baseline approaches shows that
EvoAutoML outperform the single algorithm by at least 10.71%. While the ensemble LB and EvoAutoML
perform complainingly well. The OB and ARF ensembles achieve ~ 3% worse average accuracy than
EvoAutoML or LB. To further depict the memory and time consumption, we present in Table 9.3 the

141

9 Incremental HPO

memory consumption (in Mb), as well as the avg. time required to process the data streams. To compute

Table 9.3: Comparison of memory consumption (in Mb) and avg. Time (in s) of EvoAutoML against different baselines. One RAM-
Hour equals to 1 Gb of RAM deployed for 1 hour.

Data Stream EvoAutoML HT GNB KNN ARF LB OB
Agrawal(50) 17.609 0.604 0.013 0.455 11.093 12.205 6.008
Agrawal(50000) 56.854 2.223 0.013 0.455 12.920 37.600 21.501
HYP(50,0.0001) 104.576 18.287 0.066 2.020 229.900 528.847 180.870
HYP(50,0.001) 127.877 18.516 0.066 2.020 356.600 395.203 187.146
LED() 35.954 2.104 0.048 0.379 10.133 39.723 18.570
RBF(10,0.0001) 24.527 13.359 0.133 2.020 25.803 22.897 134.988
RBF(10,0.001) 36.107 30.530 0.133 2.020 11.668 4.893 291.346
RBF(50,0.0001) 64.458 24.165 0.166 2.020 27.117 35.643 236.124
RBF(50,0.001) 29.288 9.173 0.166 2.020 25.453 8.023 98.340
Sine 9.760 0.421 0.004 0.169 14.622 11.128 4.211
SEA(50) 17.833 0.716 0.005 0.205 8.408 14.070 7.454
Electricity 12.697 0.205 0.012 0417 6.850 1.729 1.938
Covertype 12.082 0.125 0.080 2.170 4.750 15.549 19.368
Avg. Time 33,638 4,635 1,489 2,119 56,786 58,347 35,243
RAM-Hours 7.19 0.32 0 0.01 50.38 44.55 24.35

the RAM-hours consumed by the underlying model, we multiply with a granularity of each 1,000*" step
the memory with the time required. Whereby one RAM-hour equals to 1 Gb of RAM memory deployed
for one hour. In accordance with Figure 9.1, Table 9.3 shows that the single algorithm approaches are
a multiple faster in processing the data streams depicted in Section 9.3.1. While the single algorithms
are in a magnitude of a few hours (< 5 h), the ensemble approaches require up to 16 h on average to
process 1M instances within the data stream generators. Notably, the Hyperplane data stream with 50
features is computationally expensive. Comparing EvoAutoML with the other ensemble learners, it takes,
on average, the least time. Considering the memory (R /-3) consumption a similar pattern is emerging as in
the evaluation of the time consumption. The single algorithm learners consume a fraction of the memory
compared to the ensemble learners. Combining the time required and the memory consumed within the
employed RAM-hours, EvoAutoML requires for the ensembles with 7.19 RAM-hours the least resources
and only a fraction of the RAM-hours. Concluding the results of this section, it emerges that the ensemble
learners perform best concerning the final percentage of correctly classified instances. Including the time
and memory requirements in the evaluation, it is shown that the single algorithms consume only a fraction of
the resources in comparison to the ensemble learners. Within the ensemble learners, EvoAutoML achieved
marginally better results than LB, ARF and OB, whereby it required the fewest resources when considering
the time (R I-2) and memory (R [-3) requirements.

In summary, we show beside the requirements R /-4 and R I-1 in this section that EvoAutoML meets the
requirements R I-2, R I-3 and R I-5 defined by [23] by consuming less time and memory as state-of-the-
art ensemble learners and adapting to the underlying data patterns. We presented within EvoAutoML an
approach that evolves the underlying ML pipelines configurations as the data stream evolves and thus answer
RQ II1.2 for AutoML by applying EvoAutoML on the online ML pipelines. Regarding RQ III.3 the predictive
performance of AutoML increases slightly in comparison to ensemble learning approaches and significantly
in comparison to single algorithms. Further, it consumes less time and memory than the compared ensemble
learning techniques.

142

9.4 Online NAS

9.4 Online NAS

This section investigates the application of NAS in an online learning environment. As basis, we proposed
within Chapter 8 an online DL framework and showed the suitability of NNs in online learning environments.
In Section 9.2, we proposed in EvoAutoML an incremental HPO framework that configures underlying models
and ML pipelines in an online learning manner. Within the previous section, we applied this framework on
ML pipelines that are configured by a search space (G, A, A) and showed that the identically named AutoML
(EvoAutoML) approach outperformed state-of-the-art ensemble models. Another outcome in this section is
the greater consumption of computing resources of ensemble learners, whereby EvoAutoML required the
least amount of time and the least amount of memory to process the data streams when considering only
ensemble learners. In this section, however, we aim to perform NAS by combining the online DL and the
EvoAutoML framework.

The structure of this section starts accordingly to Section 9.3 with the description of the experimental setup
in Section 9.4.1 followed by the presentation of the results in Section 9.4.2.

9.4.1 Experimental Setup

The experimental setup follows the experiment design of the previous sections, whereby we choose a fest-
than-train evaluation protocol and similar data streams with 1M instances as in the earlier evaluations.
Furthermore, we evaluate the accuracy and the time and memory efficiency. For the baseline models, we
chose the identical single and ensemble learners as implemented for the evaluation of EvoAutoML in Section
9.3. The experimental setup is summarised in Table 9.4.

Table 9.4: Experimental Setup EvoNAS

Parameter Setting

Stream Generators Agrawal(50, 000), Agrawal(50), Covertype, Electricity, HYP(50, 0.0001), HYP(50, 0.001),
LED, RBF(10, 0.0001), RBF(10, 0.001), RBF(50,0.001), RBF(10, 0.0001), SEA(50),
Sine

Metric Accuracy
Memory consumption in Mb
Time efficiency

Preprocessing Standard Scaling
Models
ARF #models: 10
max memory: 32 Mb
OB #models: 10
base model: HT
GNB -
k-NN #neighbors: 5
window_size: 1000
HT max memory: 32 Mb
EvoNAS population: 10
fss: 1000

optimizer: SGDHD

learning rate: 0.01

architecture: MLP

width: 1,2,3,10,15 or 20 neurons

depth: 1,2,3,4,5 or 6 layers

activation: LeakyReLU, ReLU, Sigmoid, Softmax or None

To combine the EvoAutoML framework and the online DL framework, the EvoAutoML estimator is initialised
with a single algorithm type A(); the online DL estimator. As depicted in Chapter 8, this estimator can be
parametrised by various NN functions, optimisers or learning rates. We consider within our NAS approach

143

9 Incremental HPO

only structural changes within the NN and thus build the evaluation on a MLP search space. The MLP
structure has the significant advantage that the structure can be relative to other architecture types such
as CNN and LSTM relatively simple to be manipulated. The width of the MLP ranges from 1 to 20 (see
Table 9.4) neurons and the MLP’s depth from 1 to 6 layers Each layer can be followed by a LeakyReLU,
ReLU, Sigmoid, Softmax or no activation layer. The neural architecture’s configuration space A can be set
accordingly to the Scikit-learns design principles within a build function. The build function that is passed
for initialisation to the online DL estimator is depicted in Listing 8.1. However, considering the search space
of the underlying MLP, EvoNAS searches within 6 x 6 x 5 = 150 different neural architectures.

Listing 9.1: MLP build function with variable depth, width and activation function

from torch import nn

def build_nn(n_features , depth, width, activation):
modules = []
modules . append(nn. Linear (n_features , width))
for d in range(depth):
modules . append(nn. Linear (width, width))
if activation == 1:
modules . append (nn.LeakyReLU ())

elif activation == 2:
modules . append (nn.ReLU())
elif activation == 3:

modules . append (nn. Sigmoid ())
elif activation ==
modules . append (nn. Softmax ())
else :
pass

modules.append (nn. Linear (width, 1))
modules . append (nn. Sigmoid ())

net = nn.Sequential (modules)

return net

In Listing 9.1, the NN’s configuration (g, 7, Y) is created within a list ("modules"), whereby the architecture
can vary in its depth (g), it its activation and thus in its node types 7. Each neural network of the NAS
search space takes within the first layer the number of features (determined within the first instance of the
data stream) and converts it to the MLPs width. Within each step of the loop over the depth of the NN, a
new layer with the according activation is added to the structure of the NN. The MLP’s last layer summarises
the width in one layer to the output of the NN, followed by a Sigmoid activation function. This output
layer is accordingly to Algorithm 7 adapted to the different classes occurring within the data stream. The
MLP structure, allows to show the capability to EvoAutoML to fully configure a NN by its structure g, its
node types Z and their configurations A . According to the results achieved within the evaluation of online
DL in Section 8.3, the NAS optimiser searches in comparison to offline learning NAS search spaces (e.g.
NATS-Bench) for relatively small NNs. Furthermore, this experimental setup answers research question
R III-2 technically in that it illustrates the simplicity towards the combination and configuration of the
EvoAutoML and the online DL frameworks to a online NAS system.

144

9.4 Online NAS

9.4.2 Results

This section aims to answer research question RQ IIL.3 for the application of NAS in an online learning
environment. Accordingly to the evaluation of EvoAutoML, we present in Figure 9.2 the accuracy curve and
time consumption of the evaluated instances for EvoNAS against the baseline approaches on the Covertype
data stream. It again shows the superiority in the predictive performance of the ensemble learners, but also
their exhaustive time consumption.

0.8 A

>

o

©

5 0.6

(9}

[}

<

0.4 A
0 100000 200000 300000 400000 500000 600000
2 20000 -
C
o -
o] —
(0] L —
a J
o 10000 + ////,//
£ ——
= —
O) T ‘77/7/7/ T T T T T T
0 100000 200000 300000 400000 500000 600000
Instances
— ARF —— OB —— GNB EvoNAS
— LB — HT —— KNN

Figure 9.2: Accuracy curve and time (in seconds) for EvoNAS and baseline algorithms on Covertype.

In contrast to the evaluation of EvoAutoML, EvoNAS performs inferior on the evolving accuracy against
the other ensemble learners and shows within the time plot the complexity of NAS. The time required to
train ten NN in a parallel manner remains computational expensive. Comparing further the time plot of
EvoAutoML in Figure 9.1 with the time consumption of EvoNAS it is noticeable, that the consumption
of EvoNAS remains linear from the first instance, while the time consumption of EvoAutoML increases
super-linear within the first instances and then increases linearly. While the linear increase of EvoAutoML
is slower than the increase of the other ensemble learners, EvoNAS requires the most time to process the
Covertype data stream. A similar results can be seen in Table 9.5 for the other data streams. Accordingly to
the evaluation of EvoAutoML, we present in Table 9.5 the final percentage of examples correctly classified,
the averaged final accuracy of all evaluated data streams and the average rank in comparison to the other
approaches.

145

9 Incremental HPO

Table 9.5: Accuracy comparison of EvoNAS against baselines. Accuracy is measured as the final percentage of examples correctly

classified. The best individual accuracies are indicated in boldface

Data Stream EvoNAS HT GNB KNN ARF LB OB
Agrawal(50) 89.03 £0.07 98.09 +0.01 62.31 £0.09 55.73 £0.02 94.98 +0.95 99.69 +0 98.46 +0.01
Agrawal(50,000) 88.07 £0.06 91.84 +0.02 62.33 +0.09 55.52 +£0.02 93.03 +£0.93 97.52 +£0.01 92.89 +0.02
HYP(50, 0.0001) 94.58 +0.05 84.38 +0 91.61 £0.01 67.93 0 71.19 +0.71 84.54 +0.01 87.14 £0.01
HYP(50,0.001) 93.85 +0.02 81.79 £0.01 80.83 £0.02 68.01 0 71.67 £0.72 83.95 +0.01 84.43 £0.01
LEDDrift() 73.95 +0.11 75.95 +0.01 76.48 £0.01 66.6 0 76.47 £0.76 76.49 +£0.01 76.42 +£0.01
RBF(10,0.0001) 98.83 £0.07 89.32 £0.03 65.86 +0.09 100 =0 99.85 1 99.64 +0 98.07 +0
RBF(10,0.001) 94.46 £0.07 77.61 £0.02 39.75 £0.11 99.99 +0 99.22 £0.99 99.01 0 93.68 +0.01
RBF(50,0.0001) 83.86 +0.09 83.05 +0.03 35.26 +0.13 99.83 +0 98.21 +0.98 98.71 £0.01 96.17 +0.01
RBF(50,0.001) 43.82 +0.05 48.15 +0.04 25.32 +0.07 99.8 +0 94.31 £0.94 93.56 +0.01 71.87 £0.03
SINE() 98.27 +£0.03 99.63 +0.01 93.62 0 98.75 +0 99.74 +1 99.68 +0 99.77 +£0.01
SEA(50) 99.57 +0.03 97.78 £0.01 95.65 =0 97.23 +0 99.64 1 99.67 £0.01 98.34 +0.01
Elec 79.78 £0.07 79.61 £0.02 72.87 £0.03 79.53 £0.01 87.79 £0.88 87.32 £0.01 81.74 £0.02
Covtype 69.11 £0.09 66.67 +0.1 63.64 +0.11 73.74 £0.12 89.7 0.9 90.41 +0.08 83.66 £0.12
Avg. Acc. 85.17 82.61 66.58 81.74 90.45 93.09 89.43
Avg. Rank 4.23 4.92 5.92 4.62 2.85 2.15 3.31

Table 9.5 shows, that EvoNAS is with an averaged accuracy of 85.17% in average the weakest ensemble
learner, but performs better than the best evaluated single algorithm, HT with 82.61%. Only on the
Hyperplane data streams, EvoNAS shows the best performances against the single and the ensemble learners.
The results show furthermore, that when not considering EvoAutoML, LB performs best on most data streams,
followed by ARF. Comparing the results of EvoNAS (on 1M instances) with the predictive results achieved
within the evaluation of the online DL framework (on 100, 000 instances), EvoNAS performs in average
worse than the static or dynamic MLP classifiers. Within the experimental setup in Section 9.4.1, we
defined a search space that configures regarding the complexity small NNs, with up to 6 layers (depth).
EvoNAS mutates these architectures by changing accordingly to Real et al. [197] on parameter of a parents
configuration. This child configuration is reinitialised and thus trained from scratch. The evaluation of
the online DL framework showed in Figure 8.4, that the MLP configurations require more instances to
learn the underlying data distribution. The slower adaptation to the data stream of MLP and the changing
configuration within EvoNAS might lead to the lower predictive performance of EvoNAS. In Table 9.6, we
depict the memory consumption accordingly to the evaluation of EvoAutoML in Section 9.3.

Table 9.6: Comparison of the avg. memory consumption (in Mb) and avg. time (in s) for EvoNAS. One RAM-Hour equals to 1 Gb of
RAM deployed for 1 hour.

Data Stream EvoNAS HT GNB KNN ARF LB OB
Agrawal(50) 0.541 0.604 0.013 0.455 11.093 12.205 6.008
Agrawal(50,000) 0.546 2223 0.013 0.455 12.920 37.600 21.501
HYP(50, 0.0001) 0.496 18.287 0.066 2.020 229.900 528.847 180.870
HYP(50,0.001) 0.468 18.516 0.066 2.020 356.600 395.203 187.146
LED 0.430 2.104 0.048 0.379 10.133 39.723 18.570
RBF(10,0.0001) 0.644 13.359 0.133 2.020 25.803 22.897 134.988
RBF(10,0.001) 0.642 30.530 0.133 2.020 11.668 4.893 291.346
RBF(50,0.0001) 0.567 24.165 0.166 2.020 27.117 35.643 236.124
RBF(50,0.001) 0.509 9.173 0.166 2.020 25.453 8.023 98.340
Sine 0.489 0.421 0.004 0.169 14.622 11.128 4.211
SEA(50) 0.403 0.716 0.005 0.205 8.408 14.070 7.454
Electricity 0.451 0.205 0.012 0.417 6.850 1.729 1.938
Covertype 0.655 0.125 0.080 2.170 4.750 15.549 19.368
Avg. Time 62,564 4,635 1,489 2,119 56,786 58,347 35,243
RAM-Hours 3.64 0.32 0 0.01 50.38 44.55 24.35

Table 9.6 shows even clearer the computational complexity of EvoNAS. While the memory consumption
in comparison with the other single algorithms remains comparable and in comparison with the ensemble

146

9.5 Summary

learners the consumption remains a multiple lower, the average time to process the data stream is the
highest. In accordance with the evaluation of online DL and EvoAutoML these results are expected in that
the evaluation showed already a comparable memory consumption and a lower throughput (time measure)
for single NNs, EvoNAS multiplies this result, since it trains an ensemble of ten NNs. This results in the
highest time consumption in comparison to the other approaches. Considering the consumed R AM-hours,
EvoNAS requires a fraction of the RAM-hours compared to the ensemble learners. Due to the time required
to process the underlying data stream of EvoNAS the required RAM-hours are a multiple times higher than
the RAM-hours required by the single algorithms.

For the application of EvoAutoML in the context of NAS, we defined a search space that configures small NNs
wrapped within the online DL estimator. Already small MLP architectures showed in Section 8.3 comparable
results and substantiate the application of NNs in an online learning environment. The application of
NAS with an underlying evolutionary HPO, however, showed inferior results concerning the predictive
performance, but also the time and memory requirements for online learning. The results presented in
this section show the applicability of NAS in an online learning environment, its complexity, and also
new challenges. While in offline learning the search process is decoupled from the application of the NN,
the application within online learning environments integrates the search for suitable architectures with the
application. The idea similar to the application of AutoML on data streams was that the configuration evolves
with the underlying data stream. The conflation of the search for neuronal architectures and the simultaneous
use of found NNs, however, also shows that it negatively influences the latency and, thus, the throughput of
the underlying algorithm. A further disadvantage is the slower convergence of larger NN (see. Figure 8.4),
influences the performance of EvoNAS negatively in that it is not suitable A viable solution to this problem
is the application of network morphisms; that reuse the weights of already trained architecture components
and thus achieve a faster adaptation of the data distribution. Considering research question RQ III.2 towards
the application of NAS we presented an approach to perform NAS with an underlying evolutionary approach
on data streams. The presented approach showed, in comparison to the state-of-the-art approaches, inferior
results considering the online learning requirements. However, the possibilities in varying the underlying
optimisation process, using network morphisms or expanding the search space for other neural architectures,
such as LSTMs, show a vast range of possibilities for the adaptation of data streams.

9.5 Summary

In this chapter, we introduced an incremental HPO framework that enables the automated configuration of
ML pipelines (AutoML) and NNs (NAS). We first formalised accordingly to the CASH problem definition
for offline learning an online CASH problem in Definition 20, presented the EvoAutoML framework that
incrementally adapts configuration spaces based on an evolving population of algorithms and algorithm
pipelines. The application of a ML pipeline search space showed that EvoAutoML is capable of outperforming
state-of-the-art single learners, as well as ensemble learners in predictive performance. Regarding the
memory and time requirements and thus the throughput of the algorithms, it emerged that EvoAutoML
outperformed the ensemble learner. Still, the application of single algorithms requires a fraction of the
resources for processing a data stream. The application of NAS on data streams showed that the proposed
evolutionary approach does not lead to better performances in predictive accuracy but also in the time and
memory requirements when executing on data streams. With both empirical evaluations for AutoML and
NAS, we tested Hypothesis II and showed that the incremental adaption of hyperparameters enables better
performances on data streams by following the online learning requirements for AutoML but not for NAS.
Thus we can answer the research questions RQ II1.2 and RQ III.3 in that we proposed with EvoAutoML
an evolution-based approach to incrementally adapt a configuration space to data streams. Regarding the

147

9 Incremental HPO

performance EvoAutoML leads to better performances for the configuration of ML pipelines, but to inferior
performances for NAS. The search for neural architectures under the online learning assumption leads to new
challenges,For the incremental adaptation of NAS, To this end, we have introduced an online DL framework
that merges the vast capabilities of PyTorch for NNs and the simple application of algorithms in an online
learning environment. This framework fosters further research towards the application of NAS.

148

Part V

Synthesis

149

Conclusion and Outlook

This thesis investigated the adaptivity of AutoML and NAS systems towards certain utilities that go beyond
the predictive performance and the adaptivity to data streams in online learning environments. Motivated by
a traditional KDD process, we locate the adaptation towards a specific utility of AutoML and NAS techniques
at the beginning and the adaptation to data streams at the end of the process, whereby AutoML aims to
automate the steps in between by building a ML pipeline. Accordingly to the adaptivity of AutoML, we
evaluate our approaches on the to AutoML related research field NAS, where the task is to search for suitable
neural architectures. To this end, we provide in Part III a LTR system that learns an underlying metric to
steer the search for suitable configurations of ML pipelines and neural architectures. And in Part IV, we
present two frameworks, that aim to enable and simplify the application of NNs and AutoML systems in
online learning environments by following the Scikit-learn design principles. This chapter summarises and
synthesises our main findings regarding the adaptivity to a specific utility and the adaptivity to data streams.
We conclude this thesis with an outline of promising future research topics.

10.1 Summary

Recent systems, incorporating the search for suitable neural architectures (NAS), have shown impressive
results by concatenating and configuring ML pipelines and NNs on predefined objectives and data sets.
However, it is often challenging to design objectives well-suited to the particular data and task of interest.
Further, recent AutoML and NAS systems assume that all data are available at the beginning of the learning
process and do not change over time. This assumption often contradicts the way data is produced. IloT
and IloT sensors, for example, continuously produce a vast amount of data, where the underlying data
distribution might change due to changing environments over time, or real-time data analysis is required.
The term "adaptive” in this thesis was thus manifold in that it aimed to (i) steer the search process of AutoML
and NAS systems toward a specific utility (Part III) that goes beyond the predictive accuracy and (ii) to adapt
the search process to data streams (Part IV) within an online learning environment.

Part I provides the foundations and the related work for this work. Starting from the KDD process, we build
the concept of a ML pipeline and depict various HPO techniques that aim to automate based on the CASH
problem the search for suitable pipeline configurations. To adapt this search process to a specific utility, we
introduce LTR approaches that enable the estimation of a ranking for ML pipelines or neural architectures
based on pointwise, pairwise and list-wise comparisons. For the adaptation of AutoML and NAS, we present
within the foundation the online learning concept, the differences for the evaluation setup and the principal
algorithms that provide incremental adaptation, but also online learning capabilities. Within the related
work (Chapter 3), we depict the state-of-the-art approaches towards (i) LTR, incorporating HGML that
includes human interfaces for ML applications, the related work for (ii) multi-objective AutoML and NAS,
(i1) mphonline ensemble learning approaches, and finally approaches that include (iv) online DL.

10 Conclusion and Outlook

Part III was driven by the research questions that asked for a system that adapts AutoML (RQ I) and NAS
(RQ II) to a certain utility an end-user might pursue. We derived from the research questions Hypothesis I:

Existing approaches for AutoML and NAS aim efficiently maximising individual or sets
of objectives L. By variation of the target function L, the output of AutoML and NAS
systems can be adapted and tailored to the needs of the user and thus to a certain utility.

Based on the CASH problem, we formalised and integrated the search for a suitable goal, also known as
metric learning. To test Hypothesis I, we depicted, based on the formalisation, a metric learning system
that incorporates pairwise rankings to learn the underlying preference and ordering of ML pipelines created
by AutoML systems or neural architectures created by NAS systems. We divided the evaluation for AuroML
and NAS into two parts. The first evaluation concerned the capability of learning an objective £ by pairwise
comparisons that express a utility an end-user might pursue. We assumed a predefined metric and showed
within the evaluation that the underlying RankNet approach is capable of learning a utility metric within
~ 10 pairwise comparisons. For AutoML systems, we assumed a set of metrics that are based on the
predictive performance of the underlying ML pipeline and thus calculated based on the prediction the model
makes and the available ground truth label. For NAS systems, we assumed, due to the broad variability and
thus complexity, utilities that incorporate the latency and the complexity of the underlying architecture and
thus utilities that go beyond the predictive performance of the underlying neural architecture. We showed
in both cases that a utility-based metric could be approximated within a few pairwise comparisons. The
second evaluation for the AutoML and NAS systems concerned the impact of the learned metric on the
performance regarding the underlying utility that is pursued. For AutoML, we based our approach on TPOT.
We showed that the utility learned within ten pairwise comparisons can steer the optimisation process of
TPOT in the direction of the underlying utility. Considering NAS, we based our evaluation on the NATS-
Bench benchmark data set and compared our evolution-based optimisation approach against state-of-the-art
multi-objective approaches. With the evaluation of the utility-based adaptation for AutoML and NAS, we
showed that both are capable of steering the optimisation process toward a certain utility (Hypothesis I).

Part IV investigates the adaptation of AutoML and NAS to data streams. Based on the main research question
of this part, whether HPO techniques can be applied in an |online learning environment and leads to better
performances, we derived the following hypothesis

Considering an online learning environment, the incremental adaptation of hyperpa-
rameters enables better performances on data streams by following the online learning
requirements [23].

To test this hypothesis for NAS and AutoML, we provide two main frameworks in this part. In order to
enable NAS, we provide a online DL framework, that combines the vast possibilities of the batch learning
DL framework PyTorch and the simple online learning API of the river framework. This framework aims
to unify and foster the research in online learning for NNs and to simplify the application and engineering
of DL models on data streams. To follow the Scikit-learn design principles, we show the general suitability
and competitiveness of NN with the evaluation of the smallest possible NN, the logistic regression and of
smaller MLP architecture on established data streams and data stream generators. The second framework,
EvoAutoML, introduced in this part, aims to enable the incremental adaptation of configuration spaces and
thus the application of AutoML and NAS on data streams. Based on the assumption of possibly infinite and
evolving data streams, it is based on an evolutionary strategy that develops a population of configuration
candidates over the instances of the stream. As the online DL framework it follows the Scikit-learn design
principles and the river API. We present on a small configuration space that EvoAutoML follows the
requirements for online learning and is capable of generating ML pipelines in an ensemble that outperform

152

10.2 Discussion

state-of-the-art approaches in predictive performance but also in memory and time consumption. In order
to perform NAS on data streams, we combined the EvoAutoML and the online DL framework within a
predefined MLP search space. The evaluation showed the complexity of applying NAS on data streams,
as it achieved inferior performances and lower throughput of instances when evaluating the data streams.
Considering Hypothesis II, we showed that the incremental adaptation of hyperparameters leads to better
predictive and less computational requirements for AutoML when compared against other ensemble learners.
This, however, does not apply to the application of NAS. The evaluation of the proposed systems and the
frameworks are made publicly available on Github !

10.2 Discussion

In this section, we discuss the results of the utility and data stream based adaptation of AutoML and NAS.
The results of the utility-based adaptation of AutfoML and NAS showed that the pairwise ranking approach
aims to learn an underlying utility within a few comparisons and steers the system in the direction of
the utility. Within this LTR approach, we assumed predefined human feedback and based the evaluation
on synthetic pairwise comparisons. A central motivation for this synthetic evaluation was to empirically
prove that learned metrics can be utilised for improving the AutoML and NAS search process concerning
predefined targets. Since a human evaluation is dependent on an adequate interface, it is essential to first
develop and evaluate such an interface on its own. However, the evaluation of a utility-based system showed
the influenceability of data-centric approaches and the complexity when incorporating multiple and diverse
objectives. However, a limitation of our approach is the dependency on the learned objective on a set of
predefined metrics, as it constrains the utility to weighted combinations of individual metrics. The set of
metrics is easily extensible. It may require more comparisons to learn the underlying utility but has no
computational influence on the search process than approaches that search a Pareto-frontier.

Within the results for the adaptation of AutoML and NAS systems to data streams, we propose two frameworks,
the online DL and EvoAutoML framework. The online DL framework fosters research and simplifies the
application of NNs in an online learning environment. While in an offline learning scenario, the architectural
complexity increased over time (e.g. in image processing tasks) to solve more and more complex tasks, the
application of NNs remained unsuitable in an online learning environment as the architectural complexity.
The back-propagation optimisation process tended to infringe the requirements for an efficient and fast
processing of data streams. Within this framework, we empirically show that architectural simple and
lightweight neural architectures achieve comparable results on data streams to established single online
learning algorithms. This finding fosters further research for DL architectures such as RNN (e.g. LSTM)
or small CNN architectures and is further supported by the online DL framework that builds a connection
between the established offline DL library PyTorch and the simple to use API of the online learning
library river. A particular drawback of merging the PyTorch and the river library for straightforward
development of neural architectures in online learning is the emerging overhead in complexity which
inhibits the throughput of the data stream. The second framework, EvoAutoML, enables the application
of incremental HPO techniques and thus the application of AutoML and NAS on data streams. It trains
an ensemble of ML pipelines or neural architectures and evolves over a predefined configuration space by
applying evolutionary strategies. EvoAutoML outperformed state-of-the-art ensemble learning algorithms,
respectively, their predictive performance but also their memory and time consumption by searching for
online ML pipelines consisting of preprocessing and prediction steps. This, however, did not apply to NAS
as the training of multiple NNs requires a considerable amount of time to process an instance of the data

I https://github.com/kulbachcedric, last accessed January 30, 2023

153

10 Conclusion and Outlook

stream. Further, within the evaluation of the online DL framework, it emerged that larger neural architectures
require more instances to learn the underlying data pattern and thus adapt slower, which results in an inferior
accuracy over the processed data streams.

Given the title "Adaptive Automated Machine Learning", we presented in this thesis the adaptation of
AutoML and NAS towards a utility that goes beyond the predictive performance and the adaptation of
AutoML and NAS to data streams. The utility-based configuration of ML models and algorithm pipelines
in AutoML or NAS during a data stream entails multiple difficulties in that the question towards the best
suitable configuration gets accordingly to the utility adaptation of AuroML and NAS presented in Chapter 4
an additional time dimension. This additional dimension incorporates that the underlying data patterns may
change within concept drifts of the data stream, but also the underlying utility might change due to changing
environments.

10.3 Outlook

The utility-based adaptation of AutoML and NAS showed a fruitful direction to extend the search for suitable
ML pipelines and neural architectures. A possible direction is to warm-start the utility-based system with
preferences that other end-users pursued. Such a warm-start would also be directly applicable to the Metric
Learner component of the proposed system, which could then converge with fewer samples. Further, the
system boundaries of the proposed system enable to development of different user interfaces for various ML
tasks. As metric learning incorporates approaches with and without (human) feedback, data-centric metric
learning approaches that integrate the search for a suitable utility within the optimisation process of the
underlying ML algorithm could be integrated within the search for suitable AuroML and NAS configurations.
This, therefore, excludes the possibility of steering the optimisation process of the AutoML or NAS system
more independently from the underlying data distribution. Within the Evaluation Initiator, we proposed,
for the sake of simplicity, a random selection of The random choice of candidates could be extended in the
form of active learning to gradually choose candidate comparisons that lead to faster convergence to the
underlying utility.

Concerning the adaptation of AutoML and NAS, we build with the EvoAutoML and online DL frameworks
a fruitful direction for further research. For the application of AufoML on data streams, the underlying
optimisation process while the data stream is executing is crucial for the predictive performance, but also
for the memory and time consumption and thus for the throughput of the algorithm. Furthermore, the
search space could be further extended in that feature engineering algorithms are applied feature-wise. As
some features might be categorical within the data stream, further encoding steps (e.g. one-hot-encoding)
could be automatically applied to this data stream feature. Such an extension would massively increase the
search space but also the capabilities of executing AutoML on data streams. While NAS showed inferior
performances when considering the online learning requirements, an incremental HPO technique that uses
network morphisms would accelerate the adaptation of NNs. An optimisation technique that does not rely on
ensembles of NN's might further lead to better predictive performances but also to a better time and memory
consumption. At this end, the proposed online DL framework enables the search for neural architectures that
are suitable for online learning. Network architectures and parametrisations that work well on data streams
can be discovered within the framework and are standardised for further use and applications. At this end,
DL techniques showed not only impressive results for supervised learning but also for unsupervised learning
tasks such as anomaly detection with auto-encoders. The detection of anomalies within the data streams is
essential for the processing of, e.g. IoT and IloT sensor data as it identifies malfunctioning data sources in

154

10.3 Outlook

early stages and may protect downstream steps from significant damage. Here, the online DL framework will
provide auto-encoded anomaly detection approaches that learn the underlying distribution of a data stream.

155

Appendix

A.1 Results Online Deep Learning

This section provides additional results achieved within the proposed online DL framework. Table A.1
depicts the rolling accuracy with an window size of 1,000 instances for a logistic regression classifier
implemented within the online DL framework for different optimisers. And Table A.2 provides the rolling
accuracies with a similar window size for the static MLP implementation regarding different optimisers.

Within Tables A.3 and A.4, we depict the results for the Logistic Regression and MLP models on different
learning rates and data streams.

Table A.1: Rolling Accuracy comparison Torch Logistic Regression considering the optimisers Adam, AdamW, SGD, SGDHD and
RMSprop. Accuracy is measured as the average rolling percentage of examples correctly classified.

Torch Logistic Regression

Data Stream

Adam AdamW RMSprop SGD SGDHD
Agrawal(50,000) 57.8 £0.06 57.74 £0.06 57.83 £0.06 58.99 +0.06 59.08 £0.06
Agrawal(50) 62.2 £0.09 62.14 +0.09 62.18 £0.09 63.39 £0.09 63.5 +£0.09
Covertype 84.61 £0.08 84.25 £0.08 89.34 £0.07 87.82 £0.08 90.38 +0.08
Electricity 83.48 £0.05 82.96 £0.06 87.99 £0.03 85.46 £0.04 88.54 £0.03
HYP(50, 0.0001) 88.18 £0.02 87.53 £0.02 88.42 £0.02 91.49 +0.02 91.62 +0.02
HYP(50,0.001) 88.2 £0.02 87.52 £0.02 88.41 £0.02 91.3 £0.02 91.37 £0.02
LED 76.57 £0.02 76.6 £0.02 76.59 £0.02 76.52 £0.02 76.52 £0.02
RBF(10,0.0001) 99.83 +0 99.47 0 99.82 £0 99.76 +0 99.76 0
RBF(10,0.001) 98.73 +0.01 97.6 +0 98.45 +0.01 98.95 +0.01 97.52 +0.01
SEA(50) 99.19 +0.01 98.86 +0.01 99.11 £0.02 99.06 +0.02 99.06 +£0.02
SEA(50000) 92.65 +0.02 92.59 +£0.02 92.65 +0.02 92.55 +0.02 92.55 +0.02
Sine 98.32 £0.01 98.15 +0.01 98.38 0 98.35 +0.01 98.35 +£0.01
Avg. Accuracy 85.81 85.45 86.60 86.97 87.35
Avg. Rank 3.00 4.42 2.53 2.83 2.42

A Appendix

Table A.2: Rolling Accuracy comparison Torch Static MLP classifier considering the optimisers Adam, AdamW, SGD, SGDHD and
RMSprop. Accuracy is measured as the average rolling percentage of examples correctly classified.

Data Stream Torch Static MLP Classifier

Adam AdamW RMSprop SGD SGDHD
Agrawal(50,000) 75.72 +0.06 76.84 +0.05 74.95 +0.06 74.91 +0.05 75.22 +0.06
Agrawal(50) 92.31 +0.08 89.79 +0.08 89.5 +0.08 80.61 0.11 80.77 #0.11
Covertype 76.25 £0.13 80.66 £0.11 84.52 £0.12 87.08 £0.14 83.23 £0.14
Electricity 77 £0.1 74.64 £0.13 91.48 £0.03 86.8 £0.07 84.9 +0.08
HYP(50, 0.0001) 92.53 +0.03 89.62 £0.02 92.42 +0.03 92.32 £0.06 92.43 +0.06
HYP(50,0.001) 91.98 +0.03 89.74 £0.02 91.8 £0.03 91.75 +0.06 91.82 +0.06
LED 71.94 +£0.05 72.38 £0.05 70.6 £0.05 72.58 £0.09 72.84 +0.1
RBF(10,0.0001) 99.65 +0.01 99.53 +0.02 99.51 +0.02 95.75 +£0.08 96.07 +0.08
RBF(10,0.001) 97.36 +0.02 99.25 +0.01 96.94 +0.02 97.24 +0.06 97.15 +0.06
SEA(50) 98.7 £0.01 97.8 £0.01 98.67 +£0.01 98.42 +0.04 98.49 +0.04
SEA(50000) 93.41 £0.02 92.82 £0.02 93.31 £0.02 92.92 £0.04 92.92 +0.04
Sine 98.77 +0.01 97.79 +0.01 98.8 £0.01 98.63 +0.03 98.63 +0.03
Avg. Accuracy 88.80 88.41 90.21 89.08 92.71
Avg. Rank 3.08 3.58 2.83 3.50 2.80

158

A.1 Results Online Deep Learning

809 0¢9 €L €9 oWy wT 8S°¢ wy 0S9 80°6 o1 0011 ST STI1 Suey 3y
780 80 ¥8°0 780 S8°0 98°0 L8O S8°0 08°0 99°0 050 6£°0 9¢°0 9¢°0 Kemooy “Say
10°0¥ 860 10°0F 860 10°0F 860 10°0¥ 860 10°0F 860 0F86°0 10°0¥ 860 €0°0F 86°0 80°0F S6°0 PI'0F 6L°0 20°0F ¥S°0 20°0F ¥S°0 200F ¥S°0 200F ¥S°0 QuIg
200F 160 200F 160 200F 160 200F 160 200F 160 200F €60 200F €60 SO'0F T6'0 11°0F 88°0 TO0F 190 ¥0°0F #€°0 ¥0°0F #€°0 ¥0°'0F ¥€°0 Y0°0F €0 (00009)V4S
10°0F 660 10°0F 660 10°0F 660 10°0F 660 10°0F 660 10°0F 660 2007 660 90°0F L60 TI'0F 6870 TTO0F 190 60°0F £€°0 60°0F €€°0 60°0F €£€°0 60°0F £€°0 09)v4s
100+ 860 10°0+ 86'0 10°0¥ 860 100+ 86°0 10°0+ 86'0 10°0F 660 1007 L60 90°0F 6'0 ST'0F 69°0 PI0F LSO 80°0F €0 LO'OF 120 100+ S1°0 1007 S1°0 (100°0°0DIgd
0F 1 0F 1 0F 1 0F 1 0F 1 0F 1 0F I 10°0F 66°0 £0°0F 86°0 60°0F 60 PI'0F9L0 ['0F ¥¥°0 10°0F ST°0 100FS1°0 | (1000°0°0DA9d
200990 2007990 20'0¥ 990 200990 20°0F L90 200F9L0 200F LLO 90°0F9L°0 €I0F L0 PI'0F LEO €00F 11°0 [10°0F 1°0 10°0F 1°0 10°0F 1°0 aga
20°0F ¥8°0 20°0F ¥8°0 200F ¥8°0 20°0F S8°0 20°0F ¥8°0 200F S8°0 200F 160 200F 160 Y0°0F LS80 80°0F 1870 600+ 90 200+ S0 200F S0 200F S0 (100°0°0S)dAH
200F ¥8°0 T00F ¥8°0 200F ¥8°0 200F ¥8°0 20°0F ¥8°0 20°0F S8°0 200F 160 200F ¥6°0 SO'0F €60 1'0F 88°0 600+ 90 200+ S0 200+ S0 2007 S0 | (100070 ‘0S)dAH
€007 160 €0°0F 1670 €0°0F 160 €0°0F 16°0 €0°0F 260 €0°0F 160 0°0F $8°0 900+ 8°0 LOOF €L°0 80°0F 99°0 LO'0F 90 90°0F 850 90°0F 850 90°0F 850 Kyommoag
LOOF 160 LOOF 160 LO'OF 1670 LOOF 160 LOOF 160 LOOF 1670 80°0F 880 IT°0F €870 TI'OFLLO YI0F L0 YT 0F 850 60°0F €0°0 60°0F €00 60°0F €00 adf110800))
LO'0F 950 LO'0F 9S50 LO'0F 950 LO'0F 950 LO'0F 950 80°0F 650 60°0F €9°0 80°0F ¥9°0 800790 ['0F €5°0 '0F €50 I'0F €50 1'0F €5°0 I'0F €50 (0S)remeIsy
€0°0F €50 €0°0F €50 £0'0F €5°0 $0'0F €570 €0°0F €50 0'0F SS°0 90°0F 650 90°'0F 19°0 90°0F 65°0 80°0F €50 80°0F €50 80°0F €50 80°0F €50 80°0F €5°0 | (000°0S)eMEISY
001 0s €T 01 I 10 10°0 100°0 - OT g-0T 90T ,- 0T g_OT 6-0T
uoISSaIZAY SIS0 YaI0], weans eied
ST6 'L LYL 869 LT'S L9°€ 86T €e'e ST9 €€'8 80°6 L9°6 §Tol 0501 Suey-3ay
09°0 19°0 19°0 290 £9°0 ¥9°0 £9°0 9°0 650 150 S¥°0 70 70 0 KHeamooy “Say
10°0F 96°0 10°0¥ 96°0 10°0F L6°0 10°0F L6'0 10°0F 86°0 0F86°0 10°'0F 86°0 20'0F 860 80°0F ¥6°0 CroFvL0 20'0F €S0 200F ¥S0 200F ¥S°0 200F ¥S°0 Qulg
€0°0F €8°0 20°0F S8°0 20°0F L8O 20'0F 680 200F 60 200F €60 200F €60 ¥0'0F T6'0 60°0F ¥8°0 €0'0F 89°0 0°0F 99°0 +0°0F 99°0 0°0F 99°0 0°0F 99°0 (00009)VAS
80°0F 98°0 90°0F 88°0 SO'0F 160 €0°0F ¥6°0 20°0F 860 200F 660 2007 660 SO'0F L6'0 1°0F L8°0 80°0FTL0 60°0F L9°0 60°0F L90 60°0F L9°0 60°0F L90 09)vds
100+ €0 100F €0 100 €0 100F €0 100F €0 1007 €0 100F €0 €0°0F 8T0 10°0F91°0 100 ST°0 100F S1°0 10°0F ST°0 10°0F ST°0 10°0F ST°0 (100°0°0DIgd
100+ €0 100F €0 100¥ €0 100+ €0 100F €0 1007 €0 100 €0 100F €0 €0°0F 620 10°0F ST°0 100+ ST°0 10°0F ST°0 10°0F ST°0 100FS1°0 | (1000°0°0DA9d
100+ 11°0 100+ C1°0 10°0F CI°0 100+ €1°0 100+ #1°0 00F ¥1°0 200F¥1°0 200F ¥1°0 CO0FIT°0 100+ 1°0 100+ 1°0 100+ 1°0 100+ 1°0 100+ 1°0 ad1
200+ ¥8°0 20'0F ¥8°0 200F ¥8°0 200+ S8°0 20'0F ¥8°0 20°0F L8O 200F 260 200F 60 S0'0F S8°0 60'0F9L°0 Y0'0F LSO 100+ 1570 200+ S0 200+ S0 (100°0°0S)dAH
20'0F ¥8°0 200F ¥8°0 200F ¥8°0 20'0F ¥8°0 20°0F ¥8°0 20°0F L8O 200F €60 €0°0F ¥6°0 90'0F 260 IT°0F 18°0 SO'0F LSO 10°0F 1S°0 10°0F S0 200¥ S0 | (10000 “0S)dAH
€0°0F 16°0 €0°0F 160 €0'0F 160 €0°0F 16°0 €0°0F T6'0 €0'0F 68°0 SO'0F ¥8°0 LO0OF 6L°0 LOOF IL0 S0'0F €9°0 S0'0F 650 S0°0F 85°0 S0'0F 850 S0'0F 850 ISIGIRTIC|
60°0F TC0 60°0F TTO 60°0F TT0 60°0F TT0 60°0F TT0 60°0F TT0 60°0F TC0 60°0F TC0 60°0F TTO 60°0F TT0 60°0F TC0 600+ TT0 60°0F TCT0 60°0F TC0 adK110r0)
90°0F ¥$°0 90°0F ¥S°0 90°0F SS°0 90°0F SS°0 LO0F 950 60'0F9°0 60°0F ¥9°0 90°0F €9°0 S0'0F 90 90°0F 650 90°0F 650 90°0F 65°0 90°0F 650 90°0F 650 (0S)remeISY
€0°0F TS0 €0°0F TS0 €0'0F TS0 €0°0F €50 Y0'0F €570 S0'0F 95°0 90'0F 9°0 S0'0F 90 +0'0F 8570 SO'0F LSO SO'0F LSO SO'0F LSO SO'0F LSO S0'0F LSO | (000°0S)TemeISY
001 0s ST 01 I o 10°0 100°0 50T g—0T 90T ,-0T g—0T 6—0T

UOISSAIZIY d1ISIS07] JIARY

weaqns ejeq

* payIsse[d A)0a1109 sojduwrexa Jo a3ejuadrad Jur[[o1 9FLIAR) SB PAINSLAW ST AJBINDOY “So)el JUIUIBY[SNOLIBA SULISPISUOD UOISSAISAY oNSISOT L24LL pue Y240 L Jo uostredwod £ovIndoy Sul[joy €'V d[qeL

159

A Appendix

Table A.4: Rolling Accuracy comparison of Static and Dynamic MLP classifer considering various learning rates. Accuracy is measured as the average rolling percentage of examples correctly classified.

Data Stream

Torch Static MLP Classifier

107° 10~% 10~7 10°° 10~° 10~ % 0.001 0.01 0.1 1 10 25 50 100
Agrawal(50,000) | 0.53£0.08 0.53+0.08 0.53+0.08 0.53+0.08 0.53+0.08 0.57£0.05 0.66+0.06 0.750.05 0.63 0.1 0.52+0.03 0.510.02 051£0.02 0.51£0.02 0.51£0.02
Agrawal(50) 0.53 0.1 0.53 +0.1 0.53 +0.1 0.53 0.1 0.53 +0.1 0.58+0.07 0.72+0.11 0.81+0.11 0.81+0.16 0.54+0.04 0.52+0.03 0.52+0.03 0.52+0.03 0.52 0.03
Covertype 022+0.09 022009 022+0.09 022009 022+0.09 061027 0.72+023 0.87%0.14 0.78+0.12 0.86%0.17 0.9+0.16 0.9 £0.16 0.9 0.16 0.9 %0.16
Electricity 0.58+0.06 0.580.06 0.58+0.06 0.580.06 0.58+0.06 0.580.06 0.73%0.11 0.870.07 0.74+0.12 0.81+0.02 0.85+0.02 0.850.02 0.85+0.02 0.85%0.02
HYP(50, 0.0001) | 0.5 +0.02 0.5 0.02 0.5 £0.02 0.5 +0.02 05+0.02 054+0.03 0.85+0.15 092006 0.850.06 0.5=0.02 0.5 £0.02 0.5 £0.02 0.5 0.02 0.5 +0.02
HYP(50,0.001) 0.5 +0.02 0.5 £0.02 0.5 £0.02 0.5 +0.02 05+0.02 053+0.03 0.83+0.16 092+0.06 0.84+0.05 0.5%0.02 0.5 £0.02 0.5 £0.02 0.5 +0.02 0.5 £0.02
LED 0.1 +0.01 0.1+0.01 0.1+0.01 0.1 0.01 0.1+0.01 02+0.07 056%0.17 0.73+0.09 0.16+0.09 0.1+0.01 0.1£0.01 0.1+0.01 0.10.01 0.1£0.01
RBF(10,0.0001) | 0.15+0.01 0.15+0.01 0.150.01 0.15%0.01 0.24 +0.1 055+0.15 0.9=+0.15 096+0.08 0.57+0.18 0.32+0.02 029%0.01 029+0.01 029+0.01 0.29 +0.01
RBF(10,0.001) 0.15+0.01 0.15+0.01 0.15%0.01 0.150.01 0.22 +0.1 034+0.07 0.88%0.16 0.97+0.06 048+0.12 0.32+0.02 029001 029+0.01 029=0.01 0.29 +0.01
SEA(50) 033£0.09 033009 033+0.09 033009 036+0.12 0.71+0.14 096+0.11 0.980.04 098+0.02 0.6%0.08 0.57+0.06 057006 0.57+0.06 0.57 +0.06
SEA(50000) 0.34+0.04 0342004 0342004 034+0.04 036+0.08 0.69+0.13 09+0.09 093+0.04 093+0.02 0.58+0.04 0.56+0.03 0.56+0.03 0.56+0.03 0.56 +0.03
Sine 0.54+0.02 0.54%0.02 0.54+0.02 0.54+0.02 0.54+0.02 0.85+0.15 0.97+0.07 0.99+0.03 0.98 =0.01 0.5 £0.02 0.5 £0.02 0.5 £0.02 0.5 0.02 0.5 0.02
Avg. Accuracy 0.37 0.37 0.37 0.37 0.39 0.56 0.81 0.89 0.73 0.51 0.51 0.51 0.51 0.51
Avg.Rank 8.67 8.67 8.67 8.67 8.33 475 3.42 1.42 3.25 6.42 7.00 7.75 7.33 7.33

Torch Dynamic MLPClassifier

Data Stream —5 —5 — —& =5 —

10 10 10 10 10 10 0.001 0.01 0.1 1 10 25 50 100
Agrawal(50,000) | 0.53 £0.08 0.53+0.08 0.53+0.08 0.53+0.08 0.53+0.08 0.56+0.06 0.57+0.06 0.75+0.06 0.74%0.04 0.53+0.03 0.53+0.04 0.53+0.03 0.53+0.03 0.53 £0.03
Agrawal(50) 0.53 +0.1 0.53 +0.1 0.53 +0.1 0.53 0.1 0.53 +0.1 0.58+0.08 0.59+0.08 0.89+0.09 0.79+0.08 0.53+0.07 0.53%0.07 0.53=0.07 0.53+0.07 0.53 +0.07
Covertype 0.03+0.09 0.030.09 0.03+0.09 0.03+024 050.14 0.66+0.12 0.8220.11 091+0.08 0.04+0.07 0.03+0.07 0.03+0.07 0.03%0.07 0.03+0.07 0.03 £0.07
Electricity 0.58+0.06 0.580.06 0.58+0.06 0.58+0.07 0.58+0.08 0.580.07 0.740.06 0.87=0.04 0.6+0.03 044+0.03 042%0.03 0422003 042+0.03 0.42+0.03
HYP(50, 0.0001) | 0.5 +0.02 0.5 £0.02 0.5 £0.02 0.5 +0.09 0.5 0.1 0.58+0.05 0.87%0.02 092+0.02 0.54+0.02 0.5%0.02 0.5 £0.02 0.5 £0.02 0.5 £0.02 0.5 0.02
HYP(50,0.001) 0.5 £0.02 0.5 £0.02 0.5 £0.02 0.5 +0.09 0.5+0.08 0.58+0.04 0.86+0.02 0910.02 0.55+0.02 0.5+0.02 0.5 +0.02 0.5 £0.02 0.5 0.02 0.5 +0.02
LED 0.1 0.01 0.1+0.01 0.1+0.01 0.1 +0.03 0.1+0.14 0.12+0.13 0.61 £0.06 0.74+0.02 0.35+0.02 0.1 £0.02 0.1 £0.02 0.1 £0.02 0.1+0.02 0.1 0.02
RBF(10,0.0001) | 0.15+0.01 0.15+0.01 0.15 +0.1 0.15+0.14 024%0.09 0.68+0.03 0.97 +0.01 0.99 +0 0.28 +0 0.15 +0 0.15 0 0.15 0 0.15 0 0.15 +0
RBF(10,0.001) 0.15+0.01 0.150.01 0.15+0.07 0.15+0.08 0.23+0.14 0370.15 095006 099+0.01 0.18+0.01 0.15+0.01 0.15+0.01 0.150.01 0.15+0.01 0.15+0.01
SEA(50) 033+0.09 033009 033+0.09 0.33£0.09 0.62+022 0.660.12 0.8920.06 098=0.02 094+0.01 034+0.01 0330.01 033001 033+0.01 0.33+0.01
SEA(50000) 0.34+0.04 0342004 0342004 034%004 0.61£02 0.660.11 0842005 092+0.02 092+0.02 034+0.02 0340.02 0342002 0342002 0.34£0.02
Sine 0.54+0.02 0.5420.02 0542002 0.54+0.02 0.54+0.14 0.54+0.08 0.710.03 0.96 +0.01 0.98 +0 0.49+0.01 0462001 046=0.01 046=0.01 0.46+0.01
Avg. Accuracy 0.36 0.36 0.36 0.36 0.46 0.55 0.78 0.90 0.58 0.34 0.34 0.34 0.34 0.34
Avg.Rank 6.50 6.50 6.50 6.42 5.00 3.58 242 1.17 3.00 9.92 10.42 10.00 9.75 8.58

160

List of Figures

1.1 Scopeofthisthesis e 4
1.2 Structure and overview of thisthesis L o . 12
2.1 KDD e e 15
22 SEMMA e 16
23 CRISP-DM e e 17
2.4 Iustration ML pipeline L 20
2.5 A mathematical model for a neuron adopted from Russell et al. [202]. 26
2.6 Commonly used Activation Functions 27
2.7 Comparison Grid Search & Random Search 34
2.8 EAprocedure e e e 35
2.9 Tterations of BO (Baysian Optimization) 38
2.10 Auto-Sklearn framework e 41
2.11 Tlustration of the NAS methodology 43
2.12 Tllustration of different neural architecture search-spaces 44
2.13 Ilustration of adaptive learning L. 53
2.14 Tllustration of an online learning system e 55
3.1 Common process for metric learning 68
4.1 Approach towards an utility-based adaptation of AutoML, incorporating NAS. 82
4.2 Visualisation Preference Interface for AutoML 85
4.3 Tllustration for feature importance on NASNet based on Grad-Cam. 86
44 RankNet e 87
5.1 Approach towards a utility-based AutoML System 89
6.1 Utility-based NAS System e 100
6.2 Utility scores based on a selective accuracy for MONAS, LEMONADE and the regularized

evolutionary algorithm evaluated on CIFAR-10, CIFAR-100 and ImageNet16-120 106
6.3 Utility scores based on an equally weighted preference for MONAS, LEMONADE and the

regularized evolutionary algorithm evaluated on CIFAR-10, CIFAR-100 and

ImageNet16-120 [140] L o e 106
7.1 Illustration of the online learning framework dependencies. 115
8.1 Class Adaptation of online NN e 122
8.2 Impact of Learning Rate for SEA(50) Concept Drift Stream 128
8.3 Impact of the underlying optimiser on SEA(50) and SEA(50000) evaluated on 100, 000 instances 129
8.4 Accuracy curve and memory (in Mb) for various NNs and river algorithms 130
9.1 Accuracy curve and time for EvoAutoML 140
9.2 Accuracy curve and time for EvoNASo 145

2.1
2.2
23

3.1
3.2
33
34

5.1
52

6.1

8.1
8.2
8.3
8.4
8.5
8.6

9.1
9.2
9.3
9.4
9.5
9.6

Al
A2
A3
A4

List of Tables

Comparison of the correspondences between KDD, SEMMA and CRISP-DM 17
Comparison of different AutoML frameworks 40
Comparison of different NAS frameworks. L oo 48
Selected related work for metric learning and HGML 68
Related work Multi-objective AutoML and NAS, 71
Related work online ensemble learning oo 73
Related work online ensemble learning o 75
RankNet - Percentage of correct predictions on test judgements 93
Evaluation utility-based AutoML [139] 95
RankNet - Top - 10 precision on test architectures 105
Configuration of Data Stream Generators with Concept Drifts 125
Experimental Setup Default Parametrisation, 125
Experimental Setup suitability of NN 127
Rolling Accuracy comparison Torch Dynamic MLP classifier 129
Accuracy comparison of EvoAutoML against baselines 131
Comparisons of memory consumption and Avg. Time of NNs 132
Experimental Setup EvoAutoML e e 139
Accuracy comparison of EvoAutoML against baselines 0. 141
Comparison of memory consumption and avg. Time of EvoAutoML 142
Experimental Setup EvoNAS e 143
Accuracy comparison of EvoNAS against baselines 146
Comparison of the avg. memory consumption and avg. time for EvoNAS 146
Rolling Accuracy comparison Torch Logistic Regression for different optimisers 157
Rolling Accuracy comparison Torch Static MLP classifier for different optimisers 158
Rolling Accuracy comparison of Logistic Regression classifiers for different learning rates . . 159

Rolling Accuracy comparison of MLP classifiers for different learning rates 160

A

AdaGrad Adaptive Gradient Algorithm 30, 58

Adam Adaptive Moment Estimation 30, 58, 75, 76,
121, 125, 126, 129, 157, 158

ADWIN Adaptive Window 56, 58, 59, 74-76, 139

AutoML Automated Machine Learning 3-9, 11, 15—
18, 21, 23, 31, 32, 35-45, 47-49, 52, 54,
57, 60, 61, 64, 66, 67, 70-72, 74, 76, 79—
83, 85, 86, 88-97, 99, 100, 102-105, 107,
111, 113115, 119, 135-139, 142, 143,
147, 151-154, 161, 163

API Application Programming Interface 10, 112,
113, 115, 120, 121, 123, 135, 152, 153

ARF Adaptive Random Forest 74, 136, 139-143,
146

ART Adaptive Resonance Theory 75

ATM Auto-Tuned Models 40, 42

B

BO Baysian Optimization 34, 37, 38, 41, 45, 47, 48,
71,72

BOHB Robust and Efficient Hyperparameter Opti-
mization at Scale 47, 48

C

CASH Combined Algorithm and Hyperparameter
optimization 32, 39-43, 48, 64, 70, 79,
81, 135, 136, 147, 151, 152

CIFAR Canadian Istitute For Advanced Research
42,45,71, 102, 103, 105-107, 115, 161

CMA Cummulative Moving Average 63

CMA-ES Covariance Matrix Adaption Evolution
Strategy 36

CNN Convolutional Neural Network 28, 29, 44, 45,
47, 48, 58, 72, 75, 76, 86, 87, 121, 144,
153

CRISP-DM CRoss Industry Standard Process for
Data Mining 3-7, 16-18, 32, 161, 163

D

DAG Directed Arbitrary Graph 20-22, 29, 39, 43,
136

List of Abbreviations

DDM Drift Detection Method 56

DL Deep Learning 3, 4, 10, 11, 28, 40, 42, 47, 48,
67, 74-76, 113-115, 119, 120, 123, 124,
130, 132, 135, 140, 143, 144, 146-148,
151-155, 157

DM Data Mining 3-5, 15-18, 52, 53, 56, 66, 111

DNN Deep Neural Network 28, 30, 47

E

EA Evolutionary Algorithm 35-38, 42, 45, 46, 48,
68,71, 72, 161

EDDM Early Drift Detection Method 56, 74

EMD Empirical Mode Decomposition 75

EP Evolutionary Programming 35

ES Evolutionary Strategy 35, 36, 52, 69, 83,99, 101

EvoAutoML Evolution-based Online Automated
Machine Learning 10, 11, 131, 137-148,
152-154, 161, 163

EvoNAS Evolution-based Neural Architecture
Search 10, 143-147, 161, 163

F

FLOPS FLoating point Operations Per Second 72,
103, 104, 107

FN False Negative 61

FNN Feed Forward Neural Network 26, 28, 29, 44,
72,75, 76, 121

FP False Positive 61, 62, 71

G

GA Genetic Algorithm 34, 35, 136138

GNB Gaussian Naive Bayes 127,130, 132, 139, 141,
143

GP Genetic Programming 35, 40, 41, 48, 71

GPU Graphical Processing Unit 30, 43, 45, 70, 90,
122, 124, 139

H

HAT Hoeffding Adaptive Tree 57, 58, 131, 136

HBP Hedge Backpropagation 75

HDDM Hoeffding’s Drift Detection Method 56

HGML Human Guided Machine Learning 5, 67-70,
79, 80, 107, 151, 163

List of Abbreviations

HPO Hypterparamter optimization 8-10, 15, 18, 23,
32-34,36-42,46,48,52,89,99, 114, 115,
126, 135, 143, 147, 151-154

HT Hoeffding Tree 57, 58, 73, 127, 130-132, 139,
141, 143, 146

I

IID Independent and Identically Distributed 64
10T Industrial Internet of Things 3-6, 56, 151, 154
IoT Internet of Things 3-6, 56, 151, 154

K

KDD Knowledge Discovery in Databases 3, 4, 11,
15-20, 32, 151, 161, 163

k-NN k-Nearest Neighbors 25, 59, 68, 69, 73, 74,79,
139, 141, 143

L

LB Leveraging Bagging 74, 135, 141, 142, 146

LSTM Long-Short Term Memory 75, 76, 121, 144,
147, 153

LTR Learning To Rank 49, 50, 86-88, 90, 92, 102,
105-107, 151, 153

M

MAE Mean Absolute Error 62, 63

MAPE Mean Average Percentage Error 63

ML Machine Learning 3-5, 7-11, 15, 17-23, 28, 31,
32, 34, 38, 39, 41, 42, 47-50, 52-54, 56,
59, 60, 63, 66-72, 76, 79, 80, 82, 83, 88—
90, 92, 94, 96, 97, 99, 100, 111-114, 119,
135-140, 142, 143, 147, 148, 151-154,
161

MLP Multi-Layer Perceptron 26, 28, 29, 44-48, 58,
71,73,75,76,87,121, 124132, 143, 144,
146, 147, 152, 153, 157, 158, 160, 163

MOA Massive Online Analysis 111, 112, 119

MSE Mean Squared Error 62, 63,92, 94, 96

MSTD Moving Standard Deviation 57

N

NAS Neural Architecture Search 4-11, 15, 16, 18,
26, 29, 32, 34, 36-38, 40-49, 52, 60, 61,
64, 66, 70-72, 74, 76, 79-83, 86, 88, 99—
105, 107, 111, 115, 119, 121, 123, 124,
127, 135, 137, 138, 143-145, 147, 148,
151-154, 161, 163

NB Naive Bayes 25, 26, 59, 73

166

NLP Natural Language Processing 45, 87

NN Neural Network 3, 6,8-11,18,22,23,26,28-30,
32, 43-47, 49, 51, 52, 57-59, 67, 74-76,
86, 99, 100, 102-105, 114, 115, 119-124,
126-128, 130-133, 135, 137, 138, 143
148, 151-154, 161, 163

NSGA-II Nondominated Sorting Genetic Approach
36

(0]
OB Online Bagging 73, 74, 135, 136, 139-143
P

PCA Principal Component Analysis 22, 68, 69
PIL Parameter Incremental Learning 75
PSO Particle Swarm Optimization 35

R

RBF Radial Bias Function 75, 117, 125

RelL U Rectified Linear Unit 27, 87, 143, 144

RL Reinforcement Learning 9, 26, 42, 45-47, 71,
102

RMSProp Root Mean Squared Propagation 30, 125,
126, 130 o

RNN Recurrent Neural Networks 28,47,58,72,121,
153

S

SEA Streaming Ensemble Algorithm 116, 124, 125,
127-130, 139, 143, 161

SEMMA Sample, Explore, Modify, Model, Assess
16-18, 32, 161, 163

SGD Stochastic Gradient Descent 30, 58, 75, 76,

121, 125-127, 129, 130, 143, 157, 158

Sequential Model-based Algorithm

Configuration 38, 41, 42,47, 48, 72

SNN Spiking Neural Network 75

SRP Streaming Random Patches 135

SVM Support Vector Machine 21, 24, 58, 68, 69

SMAC

T

TanH Hyperbolic Tangent 27, 28

TN True Negative 61

TP True Positive 61, 71

TPOT Tree-based Pipeline Optimization Tool 9, 36,
40-42, 46-48, 71, 89, 90, 92, 104, 115,
152

TPU Tensor Processing Unit 70, 122

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

Bibliography

Martin Abadi et al. “TensorFlow: A System for Large-Scale Machine Learning”. In: 12th USENIX
Symposium on Operating Systems Design and Implementation, OSDI 2016, Savannah, GA, USA,
November 2-4, 2016. Ed. by Kimberly Keeton; Timothy Roscoe. USENIX Association, 2016,
pp. 265-283.

Rakesh Agrawal; Tomasz Imielinski; Arun N. Swami. “Database Mining: A Performance Perspec-
tive”. In: IEEE Trans. Knowl. Data Eng. 5.6 (1993), pp. 914-925. DOI: 10.1109/69.250074.

Alireza Akhbardeh; Sakari Junnila; Teemu Koivistoinen; Alpo Virri. “An Intelligent Ballistocar-
diographic Chair Using a Novel SF-ART Neural Network and Biorthogonal Wavelets”. In: Journal
of Medical Systems 31.1 (Dec. 2006), pp. 69-77. ISSN: 0148-5598, 1573-689X. DOI: 10.1007/
$10916-006-9044-x.

Saad Albawi; Tareq Abed Mohammed; Saad Al-Zawi. “Understanding of a Convolutional Neural
Network”. In: 2017 International Conference on Engineering and Technology (ICET). leee. 2017,
pp- 1-6.

Andrew Anderson; Jing Su; Rozenn Dahyot; David Gregg. “Performance-Oriented Neural Archi-

tecture Search”. In: 2019 International Conference on High Performance Computing & Simulation
(HPCS). IEEE. 2019, pp. 177-184.

Ana Azevedo; Manuel Filipe Santos. “KDD, SEMMA and CRISP-DM: a parallel overview”. In:
IADIS European Conference on Data Mining 2008, Amsterdam, The Netherlands, July 24-26, 2008.
Proceedings. Ed. by Ajith Abraham. IADIS, 2008, pp. 182-185.

Nurzety A. Azuan; Suzanne M. Embury; Norman W. Paton. “Observing the Data Scientist: Using
Manual Corrections As Implicit Feedback™. In: Proceedings of the 2nd Workshop on Human-
In-the-Loop Data Analytics, HILDA@SIGMOD 2017, Chicago, IL, USA, May 14, 2017. Ed. by
Carsten Binnig; Joseph M. Hellerstein; Aditya G. Parameswaran. ACM, 2017, 13:1-13:6. DOLI:
10.1145/3077257.3077272.

Manuel Baena-Garcia et al. “Early drift detection method”. In: Fourth international workshop on
knowledge discovery from data streams. Vol. 6. 2006, pp. 77-86.

Maroua Bahri; Bruno Veloso; Albert Bifet; Joao Gama. “AutoML for Stream K-Nearest Neighbors
Classification”. In: 2020 IEEE International Conference on Big Data (Big Data). Atlanta, GA, USA:
IEEE, Dec. 2020, pp. 597-602. ISBN: 978-1-72816-251-5. DOI: 10.1109/BigData50022.2020.
9378396.

Maroua Bahri et al. “Data stream analysis: Foundations, major tasks and tools”. In: Wiley Interdis-
ciplinary Reviews: Data Mining and Knowledge Discovery 11.3 (2021), e1405.
Bowen Baker; Otkrist Gupta; Nikhil Naik; Ramesh Raskar. “Designing Neural Network Architec-

tures Using Reinforcement Learning”. In: 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. 2017.

G Ball et al. “An Integrated Approach Utilizing Artificial Neural Networks and SELDI Mass Spec-
trometry for the Classification of Human Tumours and Rapid Identification of Potential Biomarkers”.
In: Bioinformatics (Oxford, England) 18.3 (2002), pp. 395-404.

Friedrich L Bauer. “Computational Graphs and Rounding Error”. In: SIAM Journal on Numerical
Analysis 11.1 (1974), pp. 87-96.

https://doi.org/10.1109/69.250074
https://doi.org/10.1007/s10916-006-9044-x
https://doi.org/10.1007/s10916-006-9044-x
https://doi.org/10.1145/3077257.3077272
https://doi.org/10.1109/BigData50022.2020.9378396
https://doi.org/10.1109/BigData50022.2020.9378396

Bibliography

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

168

Atilim Gunes Baydin et al. “Online Learning Rate Adaptation with Hypergradient Descent”. In: 6¢h
International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018.

Aurélien Bellet; Amaury Habrard; Marc Sebban. “A Survey on Metric Learning for Feature Vectors
and Structured Data”. In: CoRR abs/1306.6709 (2013). arXiv: 1306.6709.

Richard Bellman. Adaptive Control Processes - A Guided Tour (Reprint from 1961). Vol. 2045.
Princeton Legacy Library. Princeton University Press, 2015. ISBN: 978-1-4008-7466-8. DOI: 10.
15615/9781400874668.

Moshe Ben-Bassat. “Use of Distance Measures, Information Measures and Error Bounds in Feature
Evaluation”. In: Handbook of Statistics. Vol. 2. Elsevier, 1982, pp. 773-791. ISBN: 978-0-444-
86217-4. DOI: 10.1016/80169-7161(82)02038-0.

Yoshua Bengio; Patrice Simard; Paolo Frasconi. “Learning Long-Term Dependencies with Gradient
Descent Is Difficult”. In: IEEE transactions on neural networks 5.2 (1994), pp. 157-166.

James Bergstra; Yoshua Bengio. “Random Search for Hyper-Parameter Optimization™. In: J. Mach.
Learn. Res. 13 (2012), pp. 281-305.

James Bergstra; Daniel Yamins; David Cox. “Making a Science of Model Search: Hyperparameter
Optimization in Hundreds of Dimensions for Vision Architectures”. In: International Conference
on Machine Learning. PMLR. 2013, pp. 115-123.

Albert Bifet; Ricard Gavalda. “Adaptive Learning from Evolving Data Streams”. In: Advances
in Intelligent Data Analysis VIII, 8th International Symposium on Intelligent Data Analysis, IDA
2009, Lyon, France, August 31 - September 2, 2009. Proceedings. Ed. by Niall M. Adams; Céline
Robardet; Arno Siebes; Jean-Francgois Boulicaut. Vol. 5772. Lecture Notes in Computer Science.
Springer, 2009, pp. 249-260. DOL: 10.1007/978-3-642-03915-7_22.

Albert Bifet; Ricard Gavalda. “Learning from Time-Changing Data with Adaptive Windowing”. In:
Proceedings of the Seventh SIAM International Conference on Data Mining, April 26-28, 2007,
Minneapolis, Minnesota, USA. SIAM, 2007, pp. 443-448. DOI: 10.1137/1.9781611972771.42.

Albert Bifet; Ricard Gavalda; Geoff Holmes; Bernhard Pfahringer. Machine Learning for Data
Streams with Practical Examples in MOA. MIT Press, 2018.

Albert Bifet; Geoffrey Holmes; Bernhard Pfahringer. “Leveraging Bagging for Evolving Data
Streams”. In: Machine Learning and Knowledge Discovery in Databases, European Conference,
ECML PKDD 2010, Barcelona, Spain, September 20-24, 2010, Proceedings, Part I. Ed. by José L.
Balcazar; Francesco Bonchi; Aristides Gionis; Michele Sebag. Vol. 6321. Lecture Notes in Computer
Science. Springer, 2010, pp. 135-150. DOI: 10.1007/978-3-642-15880-3_15.

Albert Bifet et al. “MOA: Massive Online Analysis, a Framework for Stream Classification and
Clustering”. In: Proceedings of the First Workshop on Applications of Pattern Analysis, WAPA 2010,
Cumberland Lodge, Windsor, UK, September 1-3, 2010. Ed. by Tom Diethe; Nello Cristianini; John
Shawe-Taylor. Vol. 11. JMLR Proceedings. JIMLR.org, 2010, pp. 44-50.

Albert Bifet et al. “New Ensemble Methods for Evolving Data Streams”. In: Proceedings of the 15th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ’09.
Paris, France: ACM Press, 2009, p. 139. ISBN: 978-1-60558-495-9. DOI: 10.1145/1557019.
1557041.

https://arxiv.org/abs/1306.6709
https://doi.org/10.1515/9781400874668
https://doi.org/10.1515/9781400874668
https://doi.org/10.1016/S0169-7161(82)02038-0
https://doi.org/10.1007/978-3-642-03915-7_22
https://doi.org/10.1137/1.9781611972771.42
https://doi.org/10.1007/978-3-642-15880-3_15
https://doi.org/10.1145/1557019.1557041
https://doi.org/10.1145/1557019.1557041

Bibliography

[27]

(28]

[29]

[30]

(31]

[32]

(33]

[34]

[35]

(36]

[37]

[38]

[39]

Albert Bifet et al. “Pitfalls in Benchmarking Data Stream Classification and How to Avoid Them”.
In: Machine Learning and Knowledge Discovery in Databases - European Conference, ECML
PKDD 2013, Prague, Czech Republic, September 23-27, 2013, Proceedings, Part I. Ed. by Hendrik
Blockeel; Kristian Kersting; Siegfried Nijssen; Filip Zelezny. Vol. 8188. Lecture Notes in Computer
Science. Springer, 2013, pp. 465-479. DOI: 10.1007/978-3-642-40988-2_30.

Jock A Blackard; Denis J Dean. “Comparative Accuracies of Artificial Neural Networks and Dis-
criminant Analysis in Predicting Forest Cover Types from Cartographic Variables”. In: Computers
and electronics in agriculture 24.3 (1999), pp. 131-151.

Isvani Inocencio Frias Blanco et al. “Online and Non-Parametric Drift Detection Methods Based on
Hoeffding’s Bounds”. In: IEEE Trans. Knowl. Data Eng. 27.3 (2015), pp. 810-823. DOI: 10.1109/
TKDE.2014.2345382.

Philip Bohannon; Wenfei Fan; Michael Flaster; Rajeev Rastogi. “A Cost-Based Model and Effective
Heuristic for Repairing Constraints by Value Modification”. In: Proceedings of the 2005 ACM
SIGMOD International Conference on Management of Data - SIGMOD °05. Baltimore, Maryland:
ACM Press, 2005, p. 143. ISBN: 978-1-59593-060-6. DOI: 10.1145/1066157 .1066175.

Mohammad Reza Bonyadi; Zbigniew Michalewicz. “Particle Swarm Optimization for Single Ob-
jective Continuous Space Problems: A Review”. In: Evol. Comput. 25.1 (2017), pp. 1-54. DOL:
10.1162/EVCO_r_00180.

Bernhard E Boser; Isabelle M Guyon; Vladimir N Vapnik. “A Training Algorithm for Optimal
Margin Classifiers”. In: Proceedings of the Fifth Annual Workshop on Computational Learning
Theory. 1992, pp. 144-152.

Nadia Boukhelifa; Anastasia Bezerianos; Evelyne Lutton. “Evaluation of interactive machine learn-
ing systems”. In: Human and machine learning - visible, explainable, trustworthy and transparent.
Ed. by Jianlong Zhou; Fang Chen. Human-computer interaction series. tex.bibsource: dblp computer
science bibliography, https://dblp.org tex.biburl: https://dblp.org/rec/series/hci/BoukhelifaBL18.bib
tex.timestamp: Mon, 26 Oct 2020 08:19:22 +0100. Springer, 2018, pp. 341-360. DOI: 10.1007/
978-3-319-90403-0_17.

Nadia Boukhelifa; Anastasia Bezerianos; Waldo Cancino Ticona; Evelyne Lutton. “Evolutionary
Visual Exploration: Evaluation of an IEC Framework for Guided Visual Search”. In: Evol. Comput.
25.1 (2017), pp. 55-86. DOI: 10.1162/EVCO_a_00161.

George EP Box. “Robustness in the Strategy of Scientific Model Building”. In: Robustness in
Statistics. Elsevier, 1979, pp. 201-236.

Leo Breiman. “Bagging Predictors”. In: Machine Learning 24.2 (Aug. 1996), pp. 123-140. ISSN:
0885-6125, 1573-0565. DOI: 10.1007/BF00058655.

Eric Brochu; Vlad M Cora; Nando De Freitas. “A Tutorial on Bayesian Optimization of Expen-
sive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement
Learning”. In: arXiv preprint arXiv:1012.2599 (2010). arXiv: 1012.2599.

Andrew Brock; Theodore Lim; James M Ritchie; Nick Weston. “Smash: One-Shot Model Ar-
chitecture Search through Hypernetworks”. In: arXiv preprint arXiv:1708.05344 (2017). arXiv:
1708.05344.

Greg Brockman et al. “Openai Gym”. In: arXiv preprint arXiv:1606.01540 (2016). arXiv: 1606 .
01540.

169

https://doi.org/10.1007/978-3-642-40988-2_30
https://doi.org/10.1109/TKDE.2014.2345382
https://doi.org/10.1109/TKDE.2014.2345382
https://doi.org/10.1145/1066157.1066175
https://doi.org/10.1162/EVCO_r_00180
https://doi.org/10.1007/978-3-319-90403-0_17
https://doi.org/10.1007/978-3-319-90403-0_17
https://doi.org/10.1162/EVCO_a_00161
https://doi.org/10.1007/BF00058655
https://arxiv.org/abs/1012.2599
https://arxiv.org/abs/1708.05344
https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1606.01540

Bibliography

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

170

Nicholas J. Bryan; Gautham J. Mysore; Ge Wang. “ISSE: an interactive source separation editor”.
In: CHI Conference on Human Factors in Computing Systems, CHI’ 14, Toronto, ON, Canada - April
26 - May 01, 2014. Ed. by Matt Jones; Philippe A. Palanque; Albrecht Schmidt; Tovi Grossman.
ACM, 2014, pp. 257-266. DOI: 10.1145/2556288.2557253.

Dariusz Brzezinski; Jerzy Stefanowski. “Combining block-based and online methods in learning
ensembles from concept drifting data streams”. In: Inf. Sci. 265 (2014), pp. 50-67. DOI: 10.1016/
j.ins.2013.12.011.

Lars Buitinck et al. “API design for machine learning software: experiences from the scikit-learn
project”. In: CoRR abs/1309.0238 (2013). arXiv: 1309.0238.

Christopher J. C. Burges; Robert Ragno; Quoc Viet Le. “Learning to Rank with Nonsmooth Cost
Functions”. In: Advances in Neural Information Processing Systems 19, Proceedings of the Twen-
tieth Annual Conference on Neural Information Processing Systems, Vancouver, British Columbia,
Canada, December 4-7, 2006. 2006, pp. 193-200.

Christopher J. C. Burges et al. “Learning to Rank Using Gradient Descent”. In: Machine Learning,
Proceedings of the Twenty-Second International Conference (ICML 2005), Bonn, Germany, August
7-11, 2005. 2005, pp. 89-96. DOI: 10.1145/1102351.1102363.

Han Cai et al. “Efficient Architecture Search by Network Transformation”. In: Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applica-
tions of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances
in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018. Ed. by
Sheila A. Mcllraith; Kilian Q. Weinberger. AAAI Press, 2018, pp. 2787-2794.

Fatih Cakir et al. “Deep Metric Learning to Rank”. In: IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019. Computer Vision
Foundation / IEEE, 2019, pp. 1861-1870. DOI: 10.1109/CVPR.2019.00196.

Zhe Cao et al. “Learning to rank: from pairwise approach to listwise approach”. In: Machine Learn-
ing, Proceedings of the Twenty-Fourth International Conference (ICML 2007), Corvallis, Oregon,
USA, June 20-24, 2007. Ed. by Zoubin Ghahramani. Vol. 227. ACM International Conference
Proceeding Series. ACM, 2007, pp. 129-136. DOI: 10.1145/1273496.1273513.

Rich Caruana; Alexandru Niculescu-Mizil. “An Empirical Comparison of Supervised Learning
Algorithms”. In: Machine Learning, Proceedings of the Twenty-Third International Conference
(ICML 2006), Pittsburgh, Pennsylvania, USA, June 25-29, 2006. Ed. by William W. Cohen; Andrew
W. Moore. Vol. 148. ACM International Conference Proceeding Series. ACM, 2006, pp. 161-168.
DOI: 10.1145/1143844 .1143865.

Anup Chalamalla; Thab F. Ilyas; Mourad Ouzzani; Paolo Papotti. “Descriptive and Prescriptive Data
Cleaning”. In: International Conference on Management of Data, SIGMOD 2014, Snowbird, UT,
USA, June 22-27, 2014. Ed. by Curtis E. Dyreson; Feifei Li; M. Tamer Ozsu. ACM, 2014, pp. 445-
456. DOI: 10.1145/2588555.2610520.

Pete Chapman et al. “The CRISP-DM user guide”. In: 4th CRISP-DM SIG Workshop in Brussels in
March. Vol. 1999. sn. 1999.

Weiwei Cheng. “Label Ranking with Probabilistic Models”. PhD thesis. University of Marburg,
2012.

Frangois Chollet et al. “Keras: The python deep learning library”. In: Astrophysics source code
library (2018), ascl-1806.

https://doi.org/10.1145/2556288.2557253
https://doi.org/10.1016/j.ins.2013.12.011
https://doi.org/10.1016/j.ins.2013.12.011
https://arxiv.org/abs/1309.0238
https://doi.org/10.1145/1102351.1102363
https://doi.org/10.1109/CVPR.2019.00196
https://doi.org/10.1145/1273496.1273513
https://doi.org/10.1145/1143844.1143865
https://doi.org/10.1145/2588555.2610520

Bibliography

[53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

Xiangxiang Chu; Bo Zhang; Ruijun Xu. “Multi-Objective Reinforced Evolution in Mobile Neural
Architecture Search”. In: Computer Vision - ECCV 2020 Workshops - Glasgow, UK, August 23-28,
2020, Proceedings, Part IV. Ed. by Adrien Bartoli; Andrea Fusiello. Vol. 12538. Lecture Notes in
Computer Science. Springer, 2020, pp. 99-113. DOI: 10.1007/978-3-030-66823-5_6.

Xu Chu; Thab F. Ilyas; Sanjay Krishnan; Jiannan Wang. “Data Cleaning: Overview and Emerging
Challenges”. In: Proceedings of the 2016 International Conference on Management of Data, SIG-
MOD Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016. Ed. by Fatma Ozcan;
Georgia Koutrika; Sam Madden. ACM, 2016, pp. 2201-2206. DOI: 10.1145/2882903.2912574.

Xu Chu; Thab F. Ilyas; Paolo Papotti. “Holistic Data Cleaning: Putting Violations into Context”. In:
29th IEEE International Conference on Data Engineering, ICDE 2013, Brisbane, Australia, April
8-12, 2013. Ed. by Christian S. Jensen; Christopher M. Jermaine; Xiaofang Zhou. IEEE Computer
Society, 2013, pp. 458-469. DOI: 10.1109/ICDE.2013.6544847.

R. Collobert; K. Kavukcuoglu; C. Farabet. “Torch7: A Matlab-like Environment for Machine Learn-
ing”. In: BigLearn, NIPS Workshop. 2011.

Corinna Cortes; Vladimir Vapnik. “Support-Vector Networks”. In: Mach. Learn. 20.3 (1995),
pp- 273-297. DOI: 10.1007/BF00994018.

Koby Crammer; Yoram Singer. “Pranking with Ranking”. In: Advances in Neural Information
Processing Systems 14 [Neural Information Processing Systems: Natural and Synthetic, NIPS 2001,
December 3-8, 2001, Vancouver, British Columbia, Canada]. 2001, pp. 641-647.

Bill Curtis et al. “Measuring the Psychological Complexity of Software Maintenance Tasks with the
Halstead and McCabe Metrics”. In: IEEE Transactions on software engineering 2 (1979), pp. 96—
104.

Filip Dabek; Jesus J Caban. “A Grammar-Based Approach for Modeling User Interactions and
Generating Suggestions during the Data Exploration Process”. In: IEEE transactions on visualization
and computer graphics 23.1 (2016), pp. 41-50.

A Philip Dawid. “Present Position and Potential Developments: Some Personal Views Statistical
Theory the Prequential Approach”. In: Journal of the Royal Statistical Society: Series A (General)
147.2 (1984), pp. 278-290.

Jia Deng et al. “Imagenet: A Large-Scale Hierarchical Image Database”. In: 2009 IEEE Conference
on Computer Vision and Pattern Recognition. leee. 2009, pp. 248-255.

Ramén Diaz-Uriarte; Sara Alvarez de Andrés. “Gene selection and classification of microarray data
using random forest”. In: BMC Bioinform. 7 (2006), p. 3. DOI: 10.1186/1471-2105-7-3.

Tobias Domhan; Jost Tobias Springenberg; Frank Hutter. “Speeding Up Automatic Hyperparameter
Optimization of Deep Neural Networks by Extrapolation of Learning Curves”. In: Proceedings of
the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos
Aires, Argentina, July 25-31, 2015. Ed. by Qiang Yang; Michael J. Wooldridge. AAAI Press, 2015,
pp. 3460-3468.

Pedro M. Domingos; Geoff Hulten. “Mining high-speed data streams”. In: Proceedings of the sixth
ACM SIGKDD international conference on Knowledge discovery and data mining, Boston, MA,
USA, August 20-23, 2000. Ed. by Raghu Ramakrishnan; Salvatore J. Stolfo; Roberto J. Bayardo;
Ismail Parsa. ACM, 2000, pp. 71-80. DOI: 10.1145/347090.347107.

171

https://doi.org/10.1007/978-3-030-66823-5_6
https://doi.org/10.1145/2882903.2912574
https://doi.org/10.1109/ICDE.2013.6544847
https://doi.org/10.1007/BF00994018
https://doi.org/10.1186/1471-2105-7-3
https://doi.org/10.1145/347090.347107

Bibliography

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

172

Jin-Dong Dong et al. “DPP-Net: Device-Aware Progressive Search for Pareto-Optimal Neural Ar-
chitectures”. In: Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany,
September 8-14, 2018, Proceedings, Part XI. Ed. by Vittorio Ferrari; Martial Hebert; Cristian Smin-
chisescu; Yair Weiss. Vol. 11215. Lecture Notes in Computer Science. Springer, 2018, pp. 540-555.
DOI: 10.1007/978-3-030-01252-6_32.

Xuanyi Dong; Lu Liu; Katarzyna Musial; Bogdan Gabrys. “NATS-Bench: Benchmarking NAS
Algorithms for Architecture Topology and Size”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI) (2021). DOI: 10.1109/TPAMI.2021.3054824.

Xuanyi Dong; Yi Yang. “NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture
Search”. In: 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

Hua Duan et al. “An incremental learning algorithm for Lagrangian support vector machines”. In:
Pattern Recognit. Lett. 30.15 (2009), pp. 1384-1391. DOI: 10.1016/j .patrec.2009.07.006.

John C. Duchi; Elad Hazan; Yoram Singer. “Adaptive Subgradient Methods for Online Learning and
Stochastic Optimization”. In: J. Mach. Learn. Res. 12 (2011), pp. 2121-2159.

Russell C Eberhart; Yuhui Shi. “Comparison between Genetic Algorithms and Particle Swarm Op-
timization”. In: International Conference on Evolutionary Programming. Springer. 1998, pp. 611—
616.

Henry R. Ehrenberg et al. “Data programming with DDLite: putting humans in a different part of the
loop”. In: Proceedings of the Workshop on Human-In-the-Loop Data Analytics, HILDA@SIGMOD
2016, San Francisco, CA, USA, June 26 - July 01, 2016. Ed. by Carsten Binnig; Alan D. Fekete;
Arnab Nandi. ACM, 2016, p. 13. DOI: 10.1145/2939502.2939515.

Thomas Elsken; Jan Hendrik Metzen; Frank Hutter. “Efficient Multi-Objective Neural Architecture

Search via Lamarckian Evolution”. In: 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. 2019.

Thomas Elsken; Jan Hendrik Metzen; Frank Hutter. “Neural Architecture Search: A Survey”. In: J.
Mach. Learn. Res. 20 (2019), 55:1-55:21.

Thomas Elsken; Jan Hendrik Metzen; Frank Hutter. “Simple and efficient architecture search for
Convolutional Neural Networks”. In: 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Workshop Track Proceedings. Open-
Review.net, 2018.

Alex Endert; Patrick Fiaux; Chris North. “Semantic Interaction for Sensemaking: Inferring Analyti-
cal Reasoning for Model Steering”. In: IEEE Transactions on Visualization and Computer Graphics
18.12 (2012), pp. 2879-2888.

Tolga Ergen; Suleyman Serdar Kozat. “Efficient Online Learning Algorithms Based on LSTM Neural
Networks”. In: IEEFE transactions on neural networks and learning systems 29.8 (2017), pp. 3772—
3783.

Stefan Falkner; Aaron Klein; Frank Hutter. “BOHB: Robust and Efficient Hyperparameter Optimiza-
tion at Scale”. In: Proceedings of the 35th International Conference on Machine Learning, ICML
2018, Stockholmsmdissan, Stockholm, Sweden, July 10-15, 2018. Ed. by Jennifer G. Dy; Andreas
Krause. Vol. 80. Proceedings of Machine Learning Research. PMLR, 2018, pp. 1436-1445.

Usama M. Fayyad; Gregory Piatetsky-Shapiro; Padhraic Smyth. “Knowledge Discovery and Data
Mining: Towards a Unifying Framework”. In: Proceedings of the Second International Conference
on Knowledge Discovery and Data Mining (KDD-96), Portland, Oregon, USA. Ed. by Evangelos
Simoudis; Jiawei Han; Usama M. Fayyad. AAAI Press, 1996, pp. 82—-88.

https://doi.org/10.1007/978-3-030-01252-6_32
https://doi.org/10.1109/TPAMI.2021.3054824
https://doi.org/10.1016/j.patrec.2009.07.006
https://doi.org/10.1145/2939502.2939515

Bibliography

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

Matthias Feurer et al. “Auto-Sklearn 2.0: The next Generation”. In: arXiv abs/2007.04074 (2020).
arXiv: 2007 .04074.

Matthias Feurer et al. “Efficient and Robust Automated Machine Learning”. In: Advances in Neural
Information Processing Systems 28: Annual Conference on Neural Information Processing Systems
2015, December 7-12, 2015, Montreal, Quebec, Canada. 2015, pp. 2962-2970.

E Fiesler. “Neural Network Classification and Formalization”. In: Computer Standards & Interfaces
16.3 (July 1994), pp. 231-239. ISSN: 09205489. DOI: 10.1016/0920-5489(94)90014-0.

Evelyn Fix; Joseph Lawson Hodges. “Discriminatory Analysis. Nonparametric Discrimination: Con-
sistency Properties”. In: International Statistical Review/Revue Internationale de Statistique 57.3
(1989), pp. 238-247.

Dario Floreano; Peter Diirr; Claudio Mattiussi. ‘“Neuroevolution: From Architectures to Learning”.
In: Evolutionary intelligence 1.1 (2008), pp. 47-62.

Félix-Antoine Fortin et al. “DEAP: evolutionary algorithms made easy”. In: J. Mach. Learn. Res.
13 (2012), pp. 2171-2175.

William J Frawley; Gregory Piatetsky-Shapiro; Christopher J Matheus. “Knowledge Discovery in
Databases: An Overview”. In: Al magazine 13.3 (1992), pp. 57-57.

Yoav Freund; Robert E Schapire. “A Decision-Theoretic Generalization of On-Line Learning and an
Application to Boosting”. In: Journal of Computer and System Sciences 55.1 (Aug. 1997), pp. 119-
139. ISSN: 00220000. DOI: 10.1006/jcss.1997.1504.

Jerome H Friedman. “Stochastic Gradient Boosting”. In: Computational statistics & data analysis
38.4 (2002), pp. 367-378.

Jerome H. Friedman; Jacqueline J. Meulman. “Multiple Additive Regression Trees with Application
in Epidemiology”. In: Statistics in Medicine 22.9 (2003), pp. 1365-1381. DOI: 10.1002/sim. 1501.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/sim. 1501.

Jorg Frochte. Maschinelles Lernen: Grundlagen Und Algorithmen in Python. Carl Hanser Verlag
GmbH Co KG, 2020.

Jodao Gama; Pedro Medas; Gladys Castillo; Pedro Pereira Rodrigues. “Learning with Drift Detec-
tion”. In: Advances in Artificial Intelligence - SBIA 2004, 17th Brazilian Symposium on Artificial
Intelligence, Sdo Luis, Maranhdo, Brazil, September 29 - October 1, 2004, Proceedings. Ed. by
Ana L. C. Bazzan; Sofiane Labidi. Vol. 3171. Lecture Notes in Computer Science. Springer, 2004,
pp- 286-295. DOI: 10.1007/978-3-540-28645-5_29.

Jodo Gama et al. “A survey on concept drift adaptation”. In: ACM Comput. Surv. 46.4 (2014),
44:1-44:37. DOI: 10.1145/2523813.

Steven Gardner et al. “Constrained Multi-Objective Optimization for Automated Machine Learning”.
In: 2019 IEEE International Conference on Data Science and Advanced Analytics (DSAA). IEEE.
2019, pp. 364-373.

Aurélien Géron. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts,
tools, and techniques to build intelligent systems. " O’Reilly Media, Inc.", 2019.

Yolanda Gil et al. “Towards Human-Guided Machine Learning”. In: Proceedings of the 24th Inter-
national Conference on Intelligent User Interfaces, IUI 2019, Marina Del Ray, CA, USA, March
17-20, 2019. 2019, pp. 614-624. DOI: 10.1145/3301275.3302324.

173

https://arxiv.org/abs/2007.04074
https://doi.org/10.1016/0920-5489(94)90014-0
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1002/sim.1501
https://onlinelibrary.wiley.com/doi/pdf/10.1002/sim.1501
https://doi.org/10.1007/978-3-540-28645-5_29
https://doi.org/10.1145/2523813
https://doi.org/10.1145/3301275.3302324

Bibliography

[96]

[97]

[98]

[99]

[100]

[101]
[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

174

Chaitanya Gokhale et al. “Corleone: Hands-off Crowdsourcing for Entity Matching”. In: Interna-
tional Conference on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27,
2014. Ed. by Curtis E. Dyreson; Feifei Li; M. Tamer Ozsu. ACM, 2014, pp.- 601-612. DOLI:
10.1145/2588555.2588576.

Jacob Goldberger; Sam T. Roweis; Geoffrey E. Hinton; Ruslan Salakhutdinov. “Neighbourhood
Components Analysis”. In: Advances in Neural Information Processing Systems 17 [Neural In-
formation Processing Systems, NIPS 2004, December 13-18, 2004, Vancouver, British Columbia,
Canada]. 2004, pp. 513-520.

Heitor M Gomes et al. “Adaptive random forests for evolving data stream classification”. In: Machine
Learning 106.9 (2017). Publisher: Springer, pp. 1469-1495.

Heitor Murilo Gomes; Jesse Read; Albert Bifet. “Streaming Random Patches for Evolving Data
Stream Classification”. In: 2019 IEEE International Conference on Data Mining (ICDM). Beijing,
China: IEEE, Nov. 2019, pp. 240-249. ISBN: 978-1-72814-604-1. DOI: 10.1109/ICDM. 2019.
00034.

Ana Gonzilez; José R Dorronsoro. “Natural Conjugate Gradient Training of Multilayer Perceptrons”.
In: Neurocomputing 71.13-15 (2008), pp. 2499-2506.

Ian Goodfellow; Yoshua Bengio; Aaron Courville. Deep Learning. MIT Press, 2016.

Thore Graepel; Ralf Herbrich; Klaus Obermayer. “Bayesian Transduction”. In: Advances in Neural
Information Processing Systems 12, [NIPS Conference, Denver, Colorado, USA, November 29 -
December 4, 1999]. Ed. by Sara A. Solla; Todd K. Leen; Klaus-Robert Miiller. The MIT Press,
1999, pp. 456-462.

Isabelle Guyon; Jason Weston; Stephen Barnhill; Vladimir Vapnik. “Gene Selection for Cancer
Classification Using Support Vector Machines”. In: Machine learning 46.1 (2002), pp. 389-422.

Mark Hall et al. “The WEKA Data Mining Software: An Update”. In: ACM SIGKDD explorations
newsletter 11.1 (2009), pp. 10-18.

Mark A. Hall; Lloyd A. Smith. “Feature Selection for Machine Learning: Comparing a Correlation-
Based Filter Approach to the Wrapper”. In: Proceedings of the Twelfth International Florida Artificial
Intelligence Research Society Conference, May 1-5, 1999, Orlando, Florida, USA. Ed. by Amruth N.
Kumar; Ingrid Russell. AAAI Press, 1999, pp. 235-239.

Nikolaus Hansen. “The CMA Evolution Strategy: A Comparing Review”. In: Towards a New
Evolutionary Computation - Advances in the Estimation of Distribution Algorithms. Ed. by José
Antonio Lozano; Pedro Larraiaga; Ifiaki Inza; Endika Bengoetxea. Vol. 192. Studies in Fuzziness
and Soft Computing. Springer, 2006, pp. 75-102. DOI: 10.1007/3-540-32494-1_4.

Kaiming He; Xiangyu Zhang; Shaoqing Ren; Jian Sun. “Deep Residual Learning for Image Recog-
nition”. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las
Vegas, NV, USA, June 27-30, 2016. IEEE Computer Society, 2016, pp. 770-778. DOI: 10.1109/
CVPR.2016.90.

Florian Heimerl; Steffen Koch; Harald Bosch; Thomas Ertl. “Visual Classifier Training for Text
Document Retrieval”. In: IEEE Transactions on Visualization and Computer Graphics 18.12 (2012),
pp- 2839-2848.

Geoffrey Hinton et al. “Deep Neural Networks for Acoustic Modeling in Speech Recognition: The
Shared Views of Four Research Groups”. In: IEEE Signal processing magazine 29.6 (2012), pp. 82—
97.

https://doi.org/10.1145/2588555.2588576
https://doi.org/10.1109/ICDM.2019.00034
https://doi.org/10.1109/ICDM.2019.00034
https://doi.org/10.1007/3-540-32494-1_4
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90

Bibliography

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

Geoffrey E Hinton; Simon Osindero; Yee-Whye Teh. “A Fast Learning Algorithm for Deep Belief
Nets”. In: Neural computation 18.7 (2006), pp. 1527-1554.

Sepp Hochreiter; Jiirgen Schmidhuber. “Long Short-Term Memory”. In: Neural computation 9.8
(1997), pp. 1735-1780.

Steven CH Hoi; Doyen Sahoo; Jing Lu; Peilin Zhao. “Online learning: A comprehensive survey”.
In: Neurocomputing 459 (2021). Publisher: Elsevier, pp. 249-289.

John H Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control, and Artificial Intelligence. MIT press, 1992.

Chi-Hung Hsu et al. “MONAS: Multi-objective Neural Architecture Search Using Reinforcement
Learning”. In: CoRR abs/1806.10332 (2018). arXiv: 1806.10332.

Gao Huang; Zhuang Liu; Laurens Van Der Maaten; Kilian Q Weinberger. “Densely Connected
Convolutional Networks”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2017, pp. 4700-4708.

Geoff Hulten; Laurie Spencer; Pedro Domingos. “Mining time-changing data streams”. In: Pro-
ceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data
mining. 2001, pp. 97-106.

Frank Hutter; Holger H. Hoos; Kevin Leyton-Brown. “Sequential Model-Based Optimization for
General Algorithm Configuration”. In: Learning and Intelligent Optimization - 5th International
Conference, LION 5, Rome, Italy, January 17-21, 2011. Selected Papers. 2011, pp. 507-523. DOI:
10.1007/978-3-642-25566-3_40.

Frank Hutter; Lars Kotthoff; Joaquin Vanschoren, eds. Automated Machine Learning: Methods,
Systems, Challenges. The Springer Series on Challenges in Machine Learning. Cham: Springer
International Publishing, 2019. ISBN: 978-3-030-05317-8 978-3-030-05318-5. DOI: 10. 1007/
978-3-030-05318-5.

Hutter, Frank and Liicke, Jorg and Schmidt-Thieme, Lars. “Beyond Manual Tuning of Hyperparam-
eters”. In: KI-Kiinstliche Intelligenz 29.4 (2015), pp. 329-337.

Osman Ali Sadek Ibrahim; Dario Landa-Silva. “ES-Rank: Evolution Strategy Learning to Rank
Approach”. In: Proceedings of the Symposium on Applied Computing, SAC 2017, Marrakech,
Morocco, April 3-7, 2017. 2017, pp. 944-950. DOI: 10.1145/3019612.3019696.

Alexandru-Ionut Imbrea. “Automated Machine Learning Techniques for Data Streams”. In: CoRR
abs/2106.07317 (2021). arXiv: 2106.07317.

Yesmina Jadfra; Jean Luc Laurent; Aline Deruyver; Mohamed Saber Naceur. “Robust Reinforcement
Learning for Autonomous Driving”. In: Deep Reinforcement Learning Meets Structured Prediction,
ICLR 2019 Workshop, New Orleans, Louisiana, United States, May 6, 2019. OpenReview.net, 2019.

Lakhmi C. Jain; Manjeevan Seera; Chee Peng Lim; P. Balasubramaniam. “A Review of Online
Learning in Supervised Neural Networks”. In: Neural Computing and Applications 25.3-4 (Sept.
2014), pp. 491-509. ISSN: 0941-0643, 1433-3058. DOI: 10.1007/s00521-013-1534-4.

Liangxiao Jiang; Chaoqun Li. “Scaling Up the Accuracy of Decision-Tree Classifiers: A Naive-Bayes
Combination”. In: J. Comput. 6.7 (2011), pp. 1325-1331. DOI: 10.4304/jcp.6.7.1325-1331.

Haifeng Jin; Qingquan Song; Xia Hu. “Auto-Keras: An Efficient Neural Architecture Search System”.
In: ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019,
Anchorage, AK, USA, August 4-8, 2019. 2019, pp. 1946-1956. DOI: 10.1145/3292500.3330648.

175

https://arxiv.org/abs/1806.10332
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-030-05318-5
https://doi.org/10.1007/978-3-030-05318-5
https://doi.org/10.1145/3019612.3019696
https://arxiv.org/abs/2106.07317
https://doi.org/10.1007/s00521-013-1534-4
https://doi.org/10.4304/jcp.6.7.1325-1331
https://doi.org/10.1145/3292500.3330648

Bibliography

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

176

Donald R. Jones; Matthias Schonlau; William J. Welch. “Efficient Global Optimization of Expen-
sive Black-Box Functions”. In: J. Glob. Optim. 13.4 (1998), pp. 455-492. DOI: 10.1023/A:
1008306431147.

Ambika Kaul; Saket Maheshwary; Vikram Pudi. “AutoLearn — Automated Feature Generation and
Selection”. In: 2017 IEEE International Conference on Data Mining (ICDM). New Orleans, LA:
IEEE, Nov. 2017, pp. 217-226. ISBN: 978-1-5386-3835-4. DOI: 10.1109/ICDM.2017.31.

Ye-Hoon Kim; Bhargava Reddy; Sojung Yun; Chanwon Seo. “Nemo: Neuro-evolution with Multi-
objective Optimization of Deep Neural Network for Speed and Accuracy”. In: JMLR: Workshop and
Conference Proceedings. Vol. 1. 2017, pp. 1-8.

Diederik P. Kingma; Jimmy Ba. “Adam: A Method for Stochastic Optimization”. In: 3rd Interna-
tional Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings. Ed. by Yoshua Bengio; Yann LeCun. 2015.

Nikita Klyuchnikov et al. “NAS-Bench-NLP: Neural Architecture Search Benchmark for Natural
Language Processing”. In: CoRR abs/2006.07116 (2020). arXiv: 2006.07116.

Y. Kodratoff. “From machine learning towards knowledge discovery in databases”. English. In: JET
Conference Proceedings (1995), 5-5(1).

Daphne Koller; Mehran Sahami. “Toward Optimal Feature Selection”. In: Machine Learning, Pro-
ceedings of the Thirteenth International Conference (ICML 96), Bari, Italy, July 3-6, 1996. Ed. by
Lorenza Saitta. Morgan Kaufmann, 1996, pp. 284-292.

J Zico Kolter; Marcus A Maloof. “Dynamic Weighted Majority: An Ensemble Method for Drifting
Concepts”. In: The Journal of Machine Learning Research 8 (2007), pp. 2755-2790.

Brent Komer; James Bergstra; Chris Eliasmith. “Hyperopt-Sklearn: Automatic Hyperparameter
Configuration for Scikit-Learn”. In: ICML Workshop on AutoML. Vol. 9. Citeseer. 2014, p. 50.

Lars Kotthoff et al. “Auto-WEKA 2.0: Automatic Model Selection and Hyperparameter Optimization
in WEKA”. In: Journal of Machine Learning Research 18 (2017), 25:1-25:5.

Yuki Koyama; Daisuke Sakamoto; Takeo Igarashi. “Selph: Progressive Learning and Support of
Manual Photo Color Enhancement”. In: Proceedings of the 2016 CHI Conference on Human Factors
in Computing Systems. 2016, pp. 2520-2532.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Tech. rep. 2009.

Alex Krizhevsky; Ilya Sutskever; Geoffrey E. Hinton. “ImageNet Classification with Deep Convo-
lutional Neural Networks”. In: Communications of the ACM 60.6 (May 2017), pp. 84-90. ISSN:
0001-0782, 1557-7317. DOI: 10.1145/3065386.

Cedric Kulbach; Patrick Philipp; Steffen Thoma. “Personalized Automated Machine Learning”. In:
Santiago de Compostela (2020), p. 8.

Cedric Kulbach; Steffen Thoma. “Personalized Neural Architecture Search”. In: 2021 International
Conference on Data Mining Workshops (ICDMW). IEEE. 2021, pp. 581-590.

Cedric Kulbach et al. “Evolution-Based Online Automated Machine Learning”. In: 26th Pacific-Asia
Conference on Knowledge Discovery and Data Mining. Chengdu, China, 2022.

Brian Kulis. “Metric Learning: A Survey”. In: Foundations and Trends® in Machine Learning 5.4
(2013), pp. 287-364. ISSN: 1935-8237, 1935-8245. DOIL: 10.1561/2200000019.

Hugo Larochelle et al. “An Empirical Evaluation of Deep Architectures on Problems with Many
Factors of Variation”. In: Proceedings of the 24th International Conference on Machine Learning.
2007, pp. 473-480.

https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1109/ICDM.2017.31
https://arxiv.org/abs/2006.07116
https://doi.org/10.1145/3065386
https://doi.org/10.1561/2200000019

Bibliography

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

Trang T Le; Weixuan Fu; Jason H Moore. “Scaling Tree-Based Automated Machine Learning to
Biomedical Big Data with a Feature Set Selector”. In: Bioinformatics (Oxford, England) 36.1 (2020),
pp- 250-256.

Yann LeCun; Léon Bottou; Yoshua Bengio; Patrick Haffner. “Gradient-Based Learning Applied to
Document Recognition”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278-2324.

Yann LeCun et al. “Generalization and Network Design Strategies”. In: Connectionism in perspective
19.143-155 (1989), p. 18.

Erin LeDell; Sebastien Poirier. “H20 AutoML: Scalable Automatic Machine Learning”. In: 7th
ICML Workshop on Automated Machine Learning (AutoML) (July 2020).

E.W.M. Lee; Chee Peng Lim; R.K.K. Yuen; S.M. Lo. “A Hybrid Neural Network Model for Noisy
Data Regression”. In: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
34.2 (2004), pp. 951-960. DOI: 10.1109/TSMCB. 2003 .818440.

Stefan Leijnen; Fjodor van Veen. “The Neural Network Zoo”. In: Multidisciplinary Digital Publish-
ing Institute Proceedings. Vol. 47. 2020, p. 9.

Dewei Li; Yingjie Tian. “Survey and Experimental Study on Metric Learning Methods”. In: Neural
Networks 105 (Sept. 2018), pp. 447-462. ISSN: 08936080. DOI: 10.1016/j .neunet.2018.06.
003.

Ping Li; Christopher J. C. Burges; Qiang Wu. “McRank: Learning to Rank Using Multiple Clas-
sification and Gradient Boosting”. In: Advances in Neural Information Processing Systems 20,
Proceedings of the Twenty-First Annual Conference on Neural Information Processing Systems,
Vancouver, British Columbia, Canada, December 3-6, 2007. 2007, pp. 897-904.

Tao Li; Chengliang Zhang; Mitsunori Ogihara. “A Comparative Study of Feature Selection and Mul-
ticlass Classification Methods for Tissue Classification Based on Gene Expression”. In: Bioinform.
20.15 (2004), pp. 2429-2437. DOI: 10.1093/bioinformatics/bth267.

Hanxiao Liu; Karen Simonyan; Yiming Yang. “DARTS: Differentiable Architecture Search”. In: 7th
International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net, 2019.

Tong Liu et al. “Fast Adaptive Gradient RBF Networks for Online Learning of Nonstationary Time
Series”. In: IEEE Transactions on Signal Processing 68 (2020), pp. 2015-2030.

Yugqiao Liu et al. “A Survey on Evolutionary Neural Architecture Search”. In: IEEE Transactions
on Neural Networks and Learning Systems (2021), pp. 1-21. ISSN: 2162-237X, 2162-2388. DOLI:
10.1109/TNNLS.2021.3100554.

Jesus L Lobo; Javier Del Ser; Albert Bifet; Nikola Kasabov. “Spiking Neural Networks and Online
Learning: An Overview and Perspectives”. In: Neural Networks 121 (2020), pp. 88—100.

Jesus L. Lobo et al. “Evolving Spiking Neural Networks for Online Learning over Drifting Data
Streams”. In: Neural Networks 108 (Dec. 2018), pp. 1-19. ISSN: 08936080. DOI: 10.1016/j .
neunet.2018.07.014.

Ilya Loshchilov; Frank Hutter. “Decoupled Weight Decay Regularization™. In: 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019.

Zhichao Lu et al. “NSGA-Net: Neural Architecture Search Using Multi-Objective Genetic Al-
gorithm”. In: Genetic and Evolutionary Computation Conference, GECCO 2019, Prague, Czech
Republic, July 13-17, 2019. Ed. by Anne Auger; Thomas Stiitzle. ACM, 2019, pp. 419-427. DOLI:
10.1145/3321707.3321729.

177

https://doi.org/10.1109/TSMCB.2003.818440
https://doi.org/10.1016/j.neunet.2018.06.003
https://doi.org/10.1016/j.neunet.2018.06.003
https://doi.org/10.1093/bioinformatics/bth267
https://doi.org/10.1109/TNNLS.2021.3100554
https://doi.org/10.1016/j.neunet.2018.07.014
https://doi.org/10.1016/j.neunet.2018.07.014
https://doi.org/10.1145/3321707.3321729

Bibliography

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

178

Sean Luke. Essentials of Metaheuristics: A Set of Undergraduate Lecture Notes; Online Version 2.0.
2. ed. S.1.: Lulu, 2013. ISBN: 978-1-300-54962-8.

Gang Luo. “A Review of Automatic Selection Methods for Machine Learning Algorithms and
Hyper-Parameter Values”. In: Network Modeling Analysis in Health Informatics and Bioinformatics
5.1 (2016), pp. 1-16.

Warren S McCulloch; Walter Pitts. “A Logical Calculus of the Ideas Immanent in Nervous Activity”.
In: The bulletin of mathematical biophysics 5.4 (1943), pp. 115-133.

Abhinav Mehrotra et al. “Nas-Bench-Asr: Reproducible Neural Architecture Search for Speech
Recognition”. In: International Conference on Learning Representations. 2020.

Yash Mehta et al. “NAS-Bench-Suite: NAS Evaluation Is (Now) Surprisingly Easy”. In: International
Conference on Learning Representations. 2022.

Manuel Mejia-Lavalle; Enrique Sucar; Gustavo Arroyo. “Feature Selection with a Perceptron Neural
Net”. In: Proceedings of the International Workshop on Feature Selection for Data Mining. 2006,
pp. 131-135.

Gabor Melis; Chris Dyer; Phil Blunsom. “On the State of the Art of Evaluation in Neural Language
Models”. In: 6th International Conference on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018.

Hector Mendoza et al. “Towards Automatically-Tuned Neural Networks”. In: Workshop on Automatic
Machine Learning. PMLR. 2016, pp. 58-65.

George A Miller. “WordNet: A Lexical Database for English”. In: Communications of the ACM
38.11 (1995), pp. 39-41.

Leandro L. Minku; Xin Yao. “DDD: A New Ensemble Approach for Dealing with Concept Drift”.
In: IEEE Transactions on Knowledge and Data Engineering 24.4 (Apr. 2012), pp. 619-633. ISSN:
1041-4347. DOI: 10.1109/TKDE. 2011 .58.

Tom M. Mitchell. Machine Learning. McGraw-Hill Series in Computer Science. New York:
McGraw-Hill, 1997. ISBN: 978-0-07-042807-2.

Douglas C. Montgomery. Design and Analysis of Experiments. Eighth edition. Hoboken, NJ: John
Wiley & Sons, Inc, 2013. ISBN: 978-1-118-14692-7.

Jacob Montiel; Jesse Read; Albert Bifet; Talel Abdessalem. “Scikit-Multiflow: A Multi-Output
Streaming Framework”. In: The Journal of Machine Learning Research 19.1 (2018), pp. 2915-
2914.

Jacob Montiel et al. “River: machine learning for streaming data in Python”. In: J. Mach. Learn.
Res. 22 (2021), 110:1-110:8.

Michael A Nielsen. Neural Networks and Deep Learning. Vol. 25. Determination press San Fran-
cisco, CA, USA, 2015.

Yohei Nose; Akira Kojima; Hideyuki Kawabata; Tetsuo Hironaka. “A Study on a Lane Keeping
System Using CNN for Online Learning of Steering Control from Real Time Images”. In: 2079
34th International Technical Conference on Circuits/Systems, Computers and Communications
(ITC-CSCC). JeJu, Korea (South): IEEE, June 2019, pp. 1-4. ISBN: 978-1-72813-271-6. DOL:
10.1109/ITC-CSCC.2019.8793348.

Ivo F. D. Oliveira; Nir Ailon; Ori Davidov. “A New and Flexible Approach to the Analysis of Paired
Comparison Data”. In: Journal of Machine Learning Research 19 (2018), 60:1-60:29.

https://doi.org/10.1109/TKDE.2011.58
https://doi.org/10.1109/ITC-CSCC.2019.8793348

Bibliography

[177]

[178]
[179]

[180]

[181]

[182]
[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

Randal S. Olson; Nathan Bartley; Ryan J. Urbanowicz; Jason H. Moore. “Evaluation of a Tree-
Based Pipeline Optimization Tool for Automating Data Science”. In: Proceedings of the Genetic
and Evolutionary Computation Conference 2016. GECCO ’16. New York, NY, USA: ACM, 2016,
pp- 485—-492. ISBN: 978-1-4503-4206-3. DOI: 10.1145/2908812.2908918.

Tom O’Malley et al. KerasTuner. https://github.com/keras-team/keras-tuner. 2019.

Chia Huey Ooi; Patrick Tan. “Genetic Algorithms Applied to Multi-Class Prediction for the
Analysis of Gene Expression Data”. In: Bioinform. 19.1 (2003), pp. 37-44. DOI: 10 . 1093/
bioinformatics/19.1.37.

Nikunj C Oza; Stuart Russell. “Experimental Comparisons of Online and Batch Versions of Bag-
ging and Boosting”. In: Proceedings of the Seventh ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. 2001, pp. 359-364.

Nikunj C Oza; Stuart J Russell. “Online bagging and boosting”. In: International workshop on
artificial intelligence and statistics. tex.organization: PMLR. 2001, pp. 229-236.

Lawrence Page. “Method for Node Ranking in a Linked Database”. In: US Patent 6,285,999 (2001).

Liang Pang et al. “SetRank: Learning a Permutation-Invariant Ranking Model for Information
Retrieval”. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and
Development in Information Retrieval. New York, NY, USA: Association for Computing Machinery,
2020, pp. 499-508. ISBN: 978-1-4503-8016-4.

Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learning Library”. In:
Advances in Neural Information Processing Systems 32. Ed. by H. Wallach et al. Curran Associates,
Inc., 2019, pp. 8024-8035.

Fabian Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: J. Mach. Learn. Res. 12
(2011), pp. 2825-2830.

Beatriz Pérez-Sanchez; Oscar Fontenla-Romero; Bertha Guijarro-Berdifias. “A Review of Adaptive
Online Learning for Artificial Neural Networks”. In: Artificial Intelligence Review 49.2 (2018),
pp- 281-299.

Florian Pfisterer; Stefan Coors; Janek Thomas; Bernd Bischl. “Multi-Objective Automatic Machine
Learning with AutoxgboostMC”. In: CoRR abs/1908.10796 (2019). arXiv: 1908.10796.

Hieu Pham et al. “Efficient Neural Architecture Search via Parameter Sharing”. In: Proceedings of
the 35th International Conference on Machine Learning, ICML 2018. 2018, pp. 4092-4101.

Patrick Raoul Philipp. “Decision-Making with Multi-Step Expert Advice on the Web”. PhD thesis.
Karlsruher Institut fiir Technologie (KIT), 2019. 218 pp. DOI: 10.5445/IR/1000093522.

Gregory Piatetsky-Shapiro. “Knowledge Discovery in Real Databases: A Report on the IJCAI-89
Workshop”. In: Al magazine 11.4 (1990), pp. 68—68.

Guo-Jun Qi etal. “An Efficient Sparse Metric Learning in High-Dimensional Space via /(1)-Penalized
Log-Determinant Regularization”. In: Proceedings of the 26th Annual International Conference on
Machine Learning, ICML 2009, Montreal, Quebec, Canada, June 14-18, 2009. Ed. by Andrea
Pohoreckyj Danyluk; Léon Bottou; Michael L. Littman. Vol. 382. ACM International Conference
Proceeding Series. ACM, 2009, pp. 841-848. DOI: 10.1145/1553374.1553482.

J. R. Quinlan. “Induction of Decision Trees”. In: Machine Learning 1.1 (Mar. 1986), pp. 81-106.
ISSN: 0885-6125, 1573-0565. DOI: 10.1007/BF00116251.

J.Ross Quinlan. C4.5: Programs for Machine Learning. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1993. ISBN: 1-55860-238-0.

179

https://doi.org/10.1145/2908812.2908918
https://github.com/keras-team/keras-tuner
https://doi.org/10.1093/bioinformatics/19.1.37
https://doi.org/10.1093/bioinformatics/19.1.37
https://arxiv.org/abs/1908.10796
https://doi.org/10.5445/IR/1000093522
https://doi.org/10.1145/1553374.1553482
https://doi.org/10.1007/BF00116251

Bibliography

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

[207]

180

John Ross Quinlan; Paul J] Compton; KA Horn; Leslie Lazarus. “Inductive Knowledge Acquisition:
A Case Study”. In: Proceedings of the Second Australian Conference on Applications of Expert
Systems. 1987, pp. 137-156.

Erhard Rahm; Hong Hai Do. “Data Cleaning: Problems and Current Approaches”. In: IEEE Data
Eng. Bull. 23.4 (2000), pp. 3—13.

Jesse Read; Peter Reutemann; Bernhard Pfahringer; Geoff Holmes. “MEKA: A Multi-Label/Multi-
Target Extension to Weka”. In: Journal of Machine Learning Research 17.21 (2016), pp. 1-5.

Esteban Real; Alok Aggarwal; Yanping Huang; Quoc V Le. “Regularized Evolution for Image
Classifier Architecture Search”. In: Proceedings of the Aaai Conference on Artificial Intelligence.
Vol. 33. 2019, pp. 4780-4789.

Esteban Real; Sherry Moore; Andrew Selle et. al. “Large-Scale Evolution of Image Classifiers”. In:
ICML 2017, Sydney, NSW, Australia, 6-11 August 2017. 2017, pp. 2902-2911.

Jason D. M. Rennie; Lawrence Shih; Jaime Teevan; David R. Karger. “Tackling the Poor Assumptions
of Naive Bayes Text Classifiers”. In: Machine Learning, Proceedings of the Twentieth International
Conference (ICML 2003), August 21-24, 2003, Washington, DC, USA. Ed. by Tom Fawcett; Nina
Mishra. AAAI Press, 2003, pp. 616-623.

Roman Rosipal; Mark Girolami; Leonard J Trejo; Andrzej Cichocki. “Kernel PCA for Feature
Extraction and De-Noising in Nonlinear Regression”. In: Neural Computing & Applications 10.3
(2001), pp. 231-243.

David E Rumelhart; Geoffrey E Hinton; Ronald J Williams. “Learning Representations by Back-
Propagating Errors”. In: nature 323.6088 (1986), pp. 533-536.

Stuart J. Russell; Peter Norvig; Ernest Davis. Artificial Intelligence: A Modern Approach. 3rd ed.
Prentice Hall Series in Artificial Intelligence. Upper Saddle River: Prentice Hall, 2010. ISBN:
978-0-13-604259-4.

Y. Saeys; I. Inza; P. Larranaga. “A Review of Feature Selection Techniques in Bioinformatics”. In:
Bioinformatics 23.19 (Oct. 2007), pp. 2507-2517. ISSN: 1367-4803, 1460-2059. DOI: 10.1093/
bioinformatics/btm344.

Doyen Sahoo; Quang Pham; Jing Lu; Steven C. H. Hoi. “Online Deep Learning: Learning Deep
Neural Networks on the Fly”. In: Proceedings of the Twenty-Seventh International Joint Confer-
ence on Artificial Intelligence. Stockholm, Sweden: International Joint Conferences on Artificial
Intelligence Organization, July 2018, pp. 2660-2666. ISBN: 978-0-9992411-2-7. DOI: 10.24963/
ijcai.2018/369.

Cristiano Saltori; Subhankar Roy; Nicu Sebe; Giovanni lacca. “Regularized Evolutionary Algorithm
for Dynamic Neural Topology Search”. In: Image Analysis and Processing - ICIAP 2019 - 20th
International Conference, Trento, Italy, September 9-13, 2019, Proceedings, Part 1. Ed. by Elisa
Ricci et al. Vol. 11751. Lecture Notes in Computer Science. Springer, 2019, pp. 219-230. DOLI:
10.1007/978-3-030-30642-7_20.

Franco Scarselli et al. “The Graph Neural Network Model”. In: IEEE Trans. Neural Networks 20.1
(2009), pp. 61-80. DOI: 10.1109/TNN.2008.2005605.

D. Sculley. “Combined Regression and Ranking”. In: Proceedings of the 16th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, July
25-28, 2010. 2010, pp. 979-988. DOI: 10.1145/1835804 . 1835928.

https://doi.org/10.1093/bioinformatics/btm344
https://doi.org/10.1093/bioinformatics/btm344
https://doi.org/10.24963/ijcai.2018/369
https://doi.org/10.24963/ijcai.2018/369
https://doi.org/10.1007/978-3-030-30642-7_20
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1145/1835804.1835928

Bibliography

[208]

[209]

[210]

[211]

[212]

[213]

[214]
[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

Ramprasaath R. Selvaraju et al. “Grad-Cam: Visual Explanations from Deep Networks via Gradient-
Based Localization”. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice,
Italy, October 22-29, 2017. IEEE Computer Society, 2017, pp. 618-626. DOI: 10.1109/ICCV.
2017.74.

Bobak Shahriari et al. “Taking the Human Out of the Loop: A Review of Bayesian Optimization”.
In: Proc. IEEE 104.1 (2016), pp. 148-175. DOI: 10.1109/JPR0OC.2015.2494218.

Sheng Wan; L.E. Banta. “Parameter Incremental Learning Algorithm for Neural Networks”. In: IEEE
Transactions on Neural Networks 17.6 (Nov. 2006), pp. 1424-1438. ISSN: 1045-9227, 1941-0093.
DOI: 10.1109/TNN. 2006 .880581.

J Sayyad Shirabad; Tim J Menzies, et al. “The PROMISE Repository of Software Engineering
Databases”. In: School of Information Technology and Engineering, University of Ottawa, Canada
24 (2005).

Wojciech Siedlecki; Jack Sklansky. “On Automatic Feature Selection”. In: Handbook of Pattern
Recognition &,; Computer Vision. USA: World Scientific Publishing Co., Inc., 1993, pp. 63-87.
ISBN: 981-02-1136-8.

Julien Siems et al. “NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural Architecture
Search”. In: CoRR abs/2008.09777 (2020). arXiv: 2008.09777.

D. Simon. Evolutionary Optimization Algorithms. Wiley, 2013. ISBN: 9781118659502.

Karen Simonyan; Andrew Zisserman. “Very Deep Convolutional Networks for Large-Scale Image
Recognition”. In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings. Ed. by Yoshua Bengio; Yann LeCun. 2015.

David B. Skalak. “Prototype and Feature Selection by Sampling and Random Mutation Hill Climbing
Algorithms”. In: Machine Learning, Proceedings of the Eleventh International Conference, Rutgers
University, New Brunswick, NJ, USA, July 10-13, 1994. Ed. by William W. Cohen; Haym Hirsh.
Morgan Kaufmann, 1994, pp. 293-301. DOI: 10.1016/b978-1-55860-335-6.50043-x.

Jasper Snoek; Hugo Larochelle; Ryan P Adams. “Practical Bayesian Optimization of Machine
Learning Algorithms”. In: Advances in neural information processing systems 25 (2012).

Jasper Snoek et al. “Scalable Bayesian Optimization Using Deep Neural Networks”. In: Proceedings
of the 32nd International Conference on Machine Learning. Ed. by Francis Bach; David Blei. Vol. 37.
Proceedings of Machine Learning Research. Lille, France: PMLR, July 2015, pp. 2171-2180.

W Nick Street; YongSeog Kim. “A streaming ensemble algorithm (SEA) for large-scale classi-
fication”. In: Proceedings of the seventh ACM SIGKDD international conference on Knowledge
discovery and data mining. 2001, pp. 377-382.

Masanori Suganuma; Shinichi Shirakawa; Tomoharu Nagao. “A Genetic Programming Approach
to Designing Convolutional Neural Network Architectures”. In: Proceedings of the Genetic and
Evolutionary Computation Conference. 2017, pp. 497-504.

Yanan Sun; Bing Xue; Mengjie Zhang; Gary G Yen. “Completely Automated CNN Architecture
Design Based on Blocks”. In: IEEE transactions on neural networks and learning systems 31.4
(2019), pp. 1242-1254.

Yanan Sun et al. “Automatically Designing CNN Architectures Using the Genetic Algorithm for
Image Classification”. In: IEEE transactions on cybernetics 50.9 (2020), pp. 3840-3854.

Thomas Swearingen et al. “ATM: A Distributed, Collaborative, Scalable System for Automated
Machine Learning”. In: 2017 IEEE International Conference on Big Data (Big Data). IEEE. 2017,
pp- 151-162.

181

https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.1109/JPROC.2015.2494218
https://doi.org/10.1109/TNN.2006.880581
https://arxiv.org/abs/2008.09777
https://doi.org/10.1016/b978-1-55860-335-6.50043-x

Bibliography

[224]

[225]

[226]

[227]

[228]

[229]

[230]

[231]

[232]

[233]

[234]

[235]

[236]

[237]

[238]

182

Nadeem Ahmed Syed; Huan Liu; Kah Kay Sung. “Handling Concept Drifts in Incremental Learning
with Support Vector Machines”. In: Proceedings of the Fifth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, San Diego, CA, USA, August 15-18, 1999. Ed. by Usama
M. Fayyad; Surajit Chaudhuri; David Madigan. ACM, 1999, pp. 317-321. DOI: 10.1145/312129.
312267.

Christian Szegedy et al. “Going Deeper with Convolutions”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2015, pp. 1-9.

Mingxing Tan et al. “MnasNet: Platform-aware Neural Architecture Search for Mobile”. In: IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June
16-20, 2019. Computer Vision Foundation / IEEE, 2019, pp. 2820-2828. DOI: 10.1109/CVPR.
2019.00293.

Janek Thomas; Stefan Coors; Bernd Bischl. “Automatic Gradient Boosting”. In: International Work-
shop on Automatic Machine Learning at ICML. 2018.

Chris Thornton; Frank Hutter; Holger H. Hoos; Kevin Leyton-Brown. “Auto-WEKA: Combined Se-
lection and Hyperparameter Optimization of Classification Algorithms”. In: The 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD 2013, Chicago, IL, USA,
August 11-14, 2013. 2013, pp. 847-855. DOI: 10.1145/2487575.2487629.

Haiman Tian; Shu-Ching Chen; Mei-Ling Shyu; Stuart Rubin. “Automated Neural Network Con-
struction with Similarity Sensitive Evolutionary Algorithms”. In: 2019 IEEE 20th International
Conference on Information Reuse and Integration for Data Science (IRI). IEEE. 2019, pp. 283-290.

Tin Kam Ho. “Random Decision Forests”. In: Proceedings of 3rd International Conference on
Document Analysis and Recognition. Vol. 1. Montreal, Que., Canada: IEEE Comput. Soc. Press,
1995, pp. 278-282. ISBN: 978-0-8186-7128-9. DOI: 10.1109/ICDAR.1995.598994.

Eugene Tuv; Alexander Borisov; George Runger; Kari Torkkola. “Feature Selection with Ensembles,
Artificial Variables, and Redundancy Elimination”. In: The Journal of Machine Learning Research
10 (2009), pp. 1341-1366.

Hamed Valizadegan; Rong Jin; Ruofei Zhang; Jianchang Mao. “Learning to Rank by Optimizing
Ndcg Measure”. In: Advances in neural information processing systems 22 (2009).

Jan N. van Rijn; Geoffrey Holmes; Bernhard Pfahringer; Joaquin Vanschoren. “Having a Blast:
Meta-Learning and Heterogeneous Ensembles for Data Streams”. In: 2015 IEEE International
Conference on Data Mining. Atlantic City, NJ, USA: IEEE, Nov. 2015, pp. 1003-1008. ISBN:
978-1-4673-9504-5. DOI: 10.1109/ICDM.2015.55.

Joaquin Vanschoren; Jan N Van Rijn; Bernd Bischl; Luis Torgo. “OpenML: Networked Science in
Machine Learning”. In: ACM SIGKDD Explorations Newsletter 15.2 (2014), pp. 49-60.

Jiannan Wang; Tim Kraska; Michael J. Franklin; Jianhua Feng. “CrowdER: Crowdsourcing Entity
Resolution”. In: Proc. VLDB Endow. 5.11 (2012), pp. 1483—-1494. DOI: 10 . 14778/2350229 .
2350263.

Xinying Wang; Min Han. “Online Sequential Extreme Learning Machine with Kernels for Nonsta-
tionary Time Series Prediction”. In: Neurocomputing 145 (Dec. 2014), pp. 90-97. ISSN: 09252312.
DOI: 10.1016/j .neucom.2014.05.068.

Kilian Q Weinberger; Lawrence K Saul. “Distance Metric Learning for Large Margin Nearest
Neighbor Classification.” In: Journal of machine learning research 10.2 (2009).

BP Welford. “Note on a Method for Calculating Corrected Sums of Squares and Products”. In:
Technometrics : a journal of statistics for the physical, chemical, and engineering sciences 4.3
(1962), pp. 419-420.

https://doi.org/10.1145/312129.312267
https://doi.org/10.1145/312129.312267
https://doi.org/10.1109/CVPR.2019.00293
https://doi.org/10.1109/CVPR.2019.00293
https://doi.org/10.1145/2487575.2487629
https://doi.org/10.1109/ICDAR.1995.598994
https://doi.org/10.1109/ICDM.2015.55
https://doi.org/10.14778/2350229.2350263
https://doi.org/10.14778/2350229.2350263
https://doi.org/10.1016/j.neucom.2014.05.068

Bibliography

[239]

[240]

[241]

[242]

[243]

[244]

[245]

[246]

[247]

[248]

[249]

[250]

[251]

[252]

[253]

[254]

Tino Werner. “A review on instance ranking problems in statistical learning”. In: Mach. Learn.
111.2 (2022), pp. 415-463. DOI: 10.1007/510994-021-06122-3.

Colin White; Willie Neiswanger; Yash Savani. “BANANAS: Bayesian Optimization with Neural
Architectures for Neural Architecture Search”. In: Thirty-Fifth AAAI Conference on Artificial Intel-
ligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence,
IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021,
Virtual Event, February 2-9, 2021. AAAI Press, 2021, pp. 10293-10301.

Darrell Whitley. “An Overview of Evolutionary Algorithms: Practical Issues and Common Pitfalls”.
In: Information and software technology 43.14 (2001), pp. 817-831.

Gerhard Widmer; Miroslav Kubat. “Learning in the Presence of Concept Drift and Hidden Contexts”.
In: Machine learning 23.1 (1996), pp. 69-101.

David H. Wolpert. “Stacked generalization”. In: Neural Networks 5.2 (1992), pp. 241-259. DOLI:
10.1016/50893-6080(05)80023-1.

Eugene Wu; Samuel Madden. “Scorpion: Explaining Away Outliers in Aggregate Queries”. In: Proc.
VLDB Endow. 6.8 (2013), pp. 553-564. DOI: 10.14778/2536354 .2536356.

Lingxi Xie; Alan L. Yuille. “Genetic CNN”. In: IEEE International Conference on Computer Vision,
ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society, 2017, pp. 1388-1397. DOL:
10.1109/ICCV.2017.154.

Eric P. Xing; Andrew Y. Ng; Michael I. Jordan; Stuart J. Russell. “Distance Metric Learning with
Application to Clustering with Side-Information”. In: Advances in Neural Information Processing
Systems 15 [Neural Information Processing Systems, NIPS 2002, December 9-14, 2002, Vancouver,
British Columbia, Canada]. Ed. by Suzanna Becker; Sebastian Thrun; Klaus Obermayer. MIT Press,
2002, pp. 505-512.

Chris Ying et al. “NAS-Bench-101: Towards Reproducible Neural Architecture Search”. In: Pro-
ceedings of the 36th International Conference on Machine Learning. Ed. by Kamalika Chaudhuri;
Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research. Long Beach, California,
USA: PMLR, June 9-15, 2019, pp. 7105-7114.

Lei Yu; Huan Liu. “Efficient Feature Selection via Analysis of Relevance and Redundancy”. In: J.
Mach. Learn. Res. 5 (2004), pp. 1205-1224.

Harry Zhang. “The Optimality of Naive Bayes”. In: Proceedings of the Seventeenth International
Florida Artificial Intelligence Research Society Conference, Miami Beach, Florida, USA. Ed. by
Valerie Barr; Zdravko Markov. AAAI Press, 2004, pp. 562-567.

Quanlu Zhang et al. “Retiarii: A Deep Learning Exploratory-Training Framework™. In: 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20). Nov. 2020.

Shifei Zhou; Kin Keung Lai. “An Improved emd Online Learning-Based Model for Gold Market
Forecasting”. In: Intelligent Decision Technologies. Springer, 2011, pp. 75-84.

Lucas Zimmer; Marius Lindauer; Frank Hutter. “Auto-Pytorch: Multi-Fidelity Metalearning for
Efficient and Robust autoDL”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
43.9 (2021), pp. 3079-3090.

Marc-André Zoller; Marco F. Huber. “Survey on Automated Machine Learning”. In: CoRR
abs/1904.12054 (2019). arXiv: 1904 .12054.

D. Zongker; A. Jain. “Algorithms for Feature Selection: An Evaluation”. In: Proceedings of 13th
International Conference on Pattern Recognition. Vol. 2. Aug. 1996, 18-22 vol.2. DOI: 10.1109/
ICPR.1996.546716.

183

https://doi.org/10.1007/s10994-021-06122-3
https://doi.org/10.1016/S0893-6080(05)80023-1
https://doi.org/10.14778/2536354.2536356
https://doi.org/10.1109/ICCV.2017.154
https://arxiv.org/abs/1904.12054
https://doi.org/10.1109/ICPR.1996.546716
https://doi.org/10.1109/ICPR.1996.546716

Bibliography

[255]

[256]

184

Barret Zoph; Quoc V. Le. “Neural Architecture Search with Reinforcement Learning”. In: 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. 2017.

Barret Zoph; Vijay Vasudevan; Jonathon Shlens; Quoc V Le. “Learning Transferable Architectures
for Scalable Image Recognition”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2018, pp. 8697-8710.

	Abstract
	Contents
	Overview
	Introduction
	Motivation
	Challenges
	Utility Based Adaptation
	Stream Based Adaptation

	Hypotheses & Research Questions
	Contributions
	Outline

	Preliminaries
	Foundations
	Knowledge Discovery in Database
	SEMMA
	Crisp-DM
	Comparison

	Machine Learning Pipeline
	Supervised Machine Learning
	Data Preparation
	Feature Preprocessing
	Learning Models

	Automation
	Optimization Techniques
	Automated Machine Learning
	Neural Architecture Search

	Learning to Rank
	Pointwise
	Pairwise
	Listwise

	Learning on Data Streams
	Online Learning
	Concept Drift
	Preprocessing
	Online Learning Models

	Evaluation Protocols
	Metrics
	Batch Evaluation
	Online Evaluation

	Summary

	Related Work
	Metric Learning
	Multi-Objective AutoML
	Online Ensemble Learning
	Online Deep Learning
	Summary

	Utility Adaptation
	Preference Learning
	Problem Formalisation
	Approach
	Evaluation Initiator
	Evaluation Generator
	Preference Interface
	Metric Learner

	Summary

	Automated Machine Learning
	Recap Research Questions
	Experimental Setup
	Data Sets
	Preferences

	Evaluation
	Metric Learner
	System Evaluation

	Summary

	Neural Architecture Search
	Recap Research Questions
	Integrated Utility-based Process
	Experimental Setup
	Data Sets
	Metrics

	Evaluation
	Metric Evaluation
	System Evaluation

	Summary

	Stream Adaptation
	Online Learning
	Frameworks for Online Analysis
	Scikit-learn Principles
	Consistency
	Accessibility
	Classes
	Composition
	Default Variables

	Framework Design Overview
	Data Streams
	Real-world Streams
	Synthetic Streams

	Online Deep Learning Framework
	Approach
	Configuration
	Training Process
	Prediction Process

	Experimental Setup
	Data Streams
	Default Parametrisation
	Suitability of Neural Networks

	Results
	Default Parametrisation
	Suitability

	Summary

	Incremental HPO
	Problem Formalisation
	Approach
	Online AutoML
	Experimental Setup
	Results

	Online NAS
	Experimental Setup
	Results

	Summary

	Synthesis
	Conclusion and Outlook
	Summary
	Discussion
	Outlook

	Appendix
	Results Online Deep Learning

	List of Figures
	List of Tables
	List of Abbreviations

