KIT | KIT-Bibliothek | Impressum | Datenschutz

End-to-End Deep Learning for Stress Recognition Using Remote Photoplethysmography

Zhou, Kai ORCID iD icon; Schinle, Markus ORCID iD icon; Weimar, Sascha ORCID iD icon; Gerdes, Marius 1; Stock, Simon ORCID iD icon 1; Stork, Wilhelm 1
1 Institut für Technik der Informationsverarbeitung (ITIV), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

With the development of remote Photoplethysmography, contactless measurement of physiological parameters is possible. Several works have investigated stress recognition based on heart rate variability features extracted from cameras. In this paper, we study the application of deep learning networks for end-to-end cognitive stress recognition using remote Photoplethysmography. We compared different network architectures in an experiment with 15 participants at rest and under cognitive stress. The experimental results show that the CNN-based networks can learn stress-related characteristics even from inter-beat-interval signals of short length. The deep network-based approaches outperformed the classical HRV feature-based methods.


Originalveröffentlichung
DOI: 10.1109/BIBM55620.2022.9995577
Scopus
Zitationen: 3
Dimensions
Zitationen: 3
Zugehörige Institution(en) am KIT Institut für Technik der Informationsverarbeitung (ITIV)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2023
Sprache Englisch
Identifikator ISBN: 978-1-66546-819-0
KITopen-ID: 1000155362
Erschienen in 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
Veranstaltung IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2022), Las Vegas, NV, USA, 06.12.2022 – 08.12.2022
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 1435–1442
Vorab online veröffentlicht am 02.01.2023
Nachgewiesen in Scopus
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page