Capture the missing: formation of \(\text{(PbBi}_3\text{)}^{\text{−}}\) and \(\text{[AuPb}_5\text{Bi}_3\text{]}_2\text{)}^{\text{4−}}\) via atom exchange or reorganization of the pseudo-tetrahedral Zintl anion \(\text{(Pb}_2\text{Bi}_2\text{)}^{\text{2−}}\)

Fuxing Pan | Lukas Guggolz | Stefanie Dehnen

Abstract

(Pseudo-)tetrahedral p-block atom units have been attracting the interest of many scientists, mainly regarding their use as elegant starting materials for compounds with larger molecular or extended architectures. The isoelectronic four-atomic species that were addressed so far span the range from neutral \(\text{P}_4\), \(\text{As}_4\), and \(\text{AsP}_3\), via the homoatomic \(\text{Si}_4^{\text{4−}}\) anion and its heavier congeners, to heteroatomic Zintl anions \((\text{TrP}_n)_2^{\text{2−}}\) or \((\text{Tt}_2\text{P}_n)_2^{\text{2−}}\) (\(\text{Tr}\) = Ga, In, Tl; \(\text{Tt}\) = Si, Ge, Sn, Pb; \(\text{Pn}\) = P, As, Sb, Bi).

Hence, \(\text{(Pb}_2\text{Bi}_2\text{)}^{\text{2−}}\) in the salt \([\text{K}\text{(crypt-222)}\text{]}_2\text{(Pb}_2\text{Bi}_2\text{)}^{\text{2−}}\) \(\cdot\) \(\text{en}\) (\(\text{en}\) = ethane-1,2-diamine) is isoelectronic and isostructural to white phosphorus, but it exhibits significantly different properties owing to its charge and the different nature of the involved atoms, which affects its stability and reactivity. The recently reported compound \([\text{K}\text{(crypt-222)}\text{]}_3\text{[Au}\eta^2\text{-(Pb}_2\text{Bi}_2\text{)}\text{]}_{\text{2−}}\) (\(\text{A}\)), isolated from reactions of the binary anion with \([\text{AuMePPh}_3]\) in \(\text{en}\), possesses two intact pseudo-tetrahedral \((\text{Pb}_2\text{Bi}_2\text{)}^{\text{2−}}\) moieties. In this work, however, the same reaction of \([\text{AuMePPh}_3]\) with \([\text{K}\text{(crypt-222)}\text{]}_2\text{(Pb}_2\text{Bi}_2\text{)}^{\text{2−}}\) \(\text{en}\) in pyridine instead of \(\text{en}\), and subsequent layering with tetrahydrofuran or toluene, yielded two compounds comprising Zintl anions that have not yet been reported to occur in condensed phase. One of them is the \((\text{PbBi}_3\text{)}^{\text{−}}\) anion, which crystallizes in the triple salt \([\text{K}\text{(crypt-222)}\text{]}_4\text{[(PbBi}_3\text{)}^{\text{−}}\text{(Pb}_2\text{Bi}_2\text{)}^{\text{2−}}\text{(AuMe}_2\text{)}\text{]}\) \(\cdot\) \(\text{6py}\) (1). The second is the Pb/Bi moiety in the cluster anion \([\text{AuPb}_5\text{Bi}_3\text{]}_2^{\text{4−}}\), which was obtained in the compound \([\text{K}\text{(crypt-222)}\text{]}_4\text{[(AuPb}_5\text{Bi}_3\text{]}_2^{\text{4−}}\text{]}\) \(\cdot\) \(\text{2py}\) (2). Density functional theory calculations confirm that the \((\text{PbBi}_3\text{)}^{\text{−}}\) monoanion results from an atom exchange reaction whereas \([\text{AuPb}_5\text{Bi}_3\text{]}_2^{\text{4−}}\) was formed upon more significant reorganization of the reactant \((\text{Pb}_2\text{Bi}_2\text{)}^{\text{2−}}\) in the presence of \(\text{Au(I)}\) ions. The trimetallic cluster is the yet missing, heaviest homolog of a series of isostructural species. The new compounds were accessed by a careful selection of the solvent mixtures used for crystallization, which demonstrates the importance of a thorough control of the reaction space.
INTRODUCTION

White phosphorus, P4, and tetra-t-butyltetrahedrane, (tBuC)4, represent the most prominent tetrahedral molecules, and they have given rise to a tremendous amount of applications in phosphorus chemistry and organic chemistry, respectively. Stepwise “carbon copying” of the C atoms on the tetrahedral vertexes by P atoms resulted in a series of tetrahedral derivatives, such as neutral (tBuC)3P, (tBuC)2P2, and (H2C)P3.5–8 Isoelectronic replacement of one vertex of P4 by another pnictogen atom or by chalcogenide cations Ch+ (Ch = S, Se, Te) has led to the isolation of AsP3 or the corresponding (ChP3)+ cations, respectively.6–8 (Pseudo-)tetrahedral Zintl-type anions from partial or full isoelectronic replacement of vertexes of P4 by group 13–15 element (semi-)metal atoms paved way to a series of main group (pseudo-)tetrahedral anions with overall charges of −8, −5, −4, −3, or −2, which were used as starting materials for the formation of a multitude of binary or ternary (semi-)metal complexes and clusters.9–12 Among them, the solution chemistry of Tt46− (Tt = Si, Ge, Sn, and Pb), (Tt2Pn2)2− (Tt/Pn = Ge/P, Ge/As, Sn/Sb, Sn/Bi, Pb/Sb, and Pb/Bi), and (TtBi2)2− (Tt = Ga, In, and Tl) in liquid ammonia, ethane-1,2-diamine (en), or pyridine (py) has attracted particular attention.1

Upon introducing d-block metal atoms, Tt4– ions usually maintain their overall intact tetrahedral form in the resulting complexes, such as in [[(MesCu)2(η3−P3Tt4)]‡]− (Tt = Si, Ge), [[EtZn2(η3−P3-Ge4)]2−], and [[η3−Sn4]Zn(η3−Sn4)]6−.13–16 This concept can also be extended to p-block element atoms linking the tetrahedral units, which is exemplified by [In(η2−Pb2)2]3− in the A2InPb8 (A = K, Rb) alloy.17

It was shown that (Ge2Pn2)2− ions (Pn = P, As) underwent atom exchange reactions in solution according to Equation (1), thereby forming the new species (Ge2Pn)3− and (GePn3)− in situ in relatively high yield.18,19 The observation of the species on the most right-hand side of this equilibrium as a precursor to the formation of larger heteroatomic clusters has not been made so far starting from binary anions, which is why they are given here in square brackets.

2(Tt2Pn2)2− ⇌ (Tt3Pn)3− + (TtPn3)− + [(Tt4)2− + Pn]1− (1)

The coexistence of (Ge6Pn4−)x− (x = 1 – 4) in solution enhances the flexibility of coordination chemistry with such anions, as they provide a range of different charges and donor atom compositions for d-block metal atoms or ions. This can also afford larger clusters, such as [Cd3(η3−Sn−Ge3)P3]3− and [Au6(η2−Sn−Ge3As)(η2−Sn−Ge2As2)3]3−.19,20

Density functional theory (DFT) calculations confirmed the exo-energetic character of the exchange reactions (Eex) for (Ge2Pn2)2− (−111 kJ mol−1 for Pn = P, −110 kJ mol−1 for Pn = As).20,21 In contrast, the heavier analogs of (Ge2Pn2)2−, such as (Tt2Pn2)2− (Tt = Sn/Pb, Pn = Sb/Bi) and (TtBi2)2− (Tt = Ga, In, Tl), tend to undergo fragmentation and reorganization upon interaction with Lewis-acidic d-/f-block compounds. Consequently, a series of intermetalloid or heterometallic clusters were reported, such as [U@Pb7Bi1]3− and [Th@Bi12]4−, [Bi@Ga8(Bi2)]6− (q = 3, 5), and [[Bi6]Zn3(TlBi6)]4−.22–25 On the other hand, reactions with softer Lewis acids like the Au(I) cation, (Tt2Pn2)2− anions can also stay intact in the resulting complexes [Au(η2−(Tt2Pn2))]3− (Tt/Pn = Sn/Sb, Sn/Bi, and Pb/Bi).21,26,27

To understand the limits of such decisions pro- or contra-deconstruction of the tetrahedral units, it is essential to further explore these heavy atom anions in the context of atom exchange,
RESULTS AND DISCUSSION

In addition to the reported \([\text{AuPb}_5\text{Bi}_3]_2\) anion in \([\text{K(crypt-222)}]_2[\text{AuPb}_5\text{Bi}_3]_2\) \((\text{A})\), which was isolated upon reaction of \((\text{Pb}_2\text{Bi}_2)_2\) and \([\text{AuMePPH}_3]\) in en/tol (tol = toluene) solution, we introduced the same reactants into py/THF (THF = tetrahydrofuran) or py/tol respectively. As a result, we were able to isolate two new anions, \((\text{Pb}_2\text{Bi}_2)_2\) and \([\text{AuPb}_5\text{Bi}_3]_2\) \((\text{B})\), which crystallized as \([\text{K(crypt-222)}]_4[(\text{Pb}_2\text{Bi}_2)_2]_2(\text{AuMe}_2)_2\cdot6\text{py} \((\text{1})\) and \([\text{K(crypt-222)}]_4[(\text{AuPb}_5\text{Bi}_3]_2)_2\cdot2\text{py} \((\text{2})\). Scheme 1 illustrates the formation of the compounds that exhibit an edge-on coordination of two \((\text{Pb}_2\text{Bi}_2)_2\) anions to a central \(\text{Au}^+\) cation while maintaining the intact pseudo-tetrahedral geometry in \(\text{A}\), an atom-exchange reaction in \(\text{1}\), and a fragmentation and reorganization reaction prior to coordination of an \(\text{Au(I)}\) atom in \(\text{2}\).

The importance of the chosen solvent environment for the fragmentation/reorganization process became evident upon changing the solvent from en to pyridine, as this seemed to stabilize the product and two \((\text{Pb}_2\text{Bi}_2)_2\) \((\text{B})\), with a smaller and \((\text{Pb}_2\text{Sb}_2)_2\) \((\text{C})\), with a larger difference of the atomic radii, for a reference study.

\[\begin{align*}
\text{[AuPb}_5\text{Bi}_3]_2\text{−} & \quad \text{anion in 1, with thermal ellipsoids drawn at 50% probability. As Pb and Bi atoms cannot be distinguished from X-ray diffraction experiments, the corresponding atoms are drawn as two-colored atoms (orange–blue), with the assigned atom type being indicated by the dominant color (see text). Selected distances [Å] and angles [°]: Pb(1)–Bi(Pb) 3.0293(13), and Bi(Pb)–Bi(Pb) 3.0159(16); Pb/Br–Bi/Br–Pb/Br 59.71(4), 60.00, 60.144(18). Symmetry codes: i = y, x, –z; ii = –y, x, y, z. Right: asymmetric unit of 1 comprising one \((\text{Pb}_2\text{Bi}_2)_2\) anion, one \((\text{Pb}_2\text{Bi}_2)_2\) anion, one \([\text{AuMe}_2]\) anion, four \([\text{K(crypt-222)}]\) cations, and six pyridine molecules. Organic groups are given in wire mode for clarity. For more details, see Figures S1, S2, S5, and Tables S1, S2, S5.
\end{align*}\]

\([\text{AuSn}_5\text{Sb}_3]_2\text{−} \quad \text{27,28 Although the Pb and Bi atoms are not distinguishable by common X-ray diffraction experiments (which also allows for the trigonal symmetry with the threefold axis running through the pseudo-tetrahedral anions), we can still assign the atom positions based on the following considerations and experimental evidence: the overall –4 charge of the three anions, which is derived from the presence of four \([\text{K(crypt-222)}]^+\) cations, leave three negative charges for the two pseudo-tetrahedral units in the sum. According to the Zintl–Klemm–Busmann pseudo-element concept,29,30 the formal replacement of one \(\text{Pb}^+\) by one \(\text{Bi}^0\) atom will reduce the negative charge by 1. As the presence of a proton for alternative charge compensation was excluded by the use of aprotic solvents and also by NMR studies, there are thus two possible compositions for the two units: (a) either \((\text{Pb}_2\text{Bi}_2)_2\) and \((\text{Pb}_2\text{Bi}_2)_2\) \((\text{B})\), or \((\text{Pb}_2\text{Bi}_2)_2\) and \(\text{Bi}^0\). Both options sum up to a total composition of \((\text{Pb}_2\text{Bi}_3)\), which is in accordance with the result of the energy-dispersive X-ray spectroscopy analysis, being \(\text{Pb}_{2-3}\text{Bi}_{4-5}\). To rationalize the former case (a) to be more likely, we first considered the relative atom sizes. Both \((\text{Pb}_2\text{Bi}_2)_2\text{−}\) and \((\text{Pb}_2\text{Bi}_2)_2\text{−}\) can be viewed as being built up by a triangular base of one atom type, which is then capped by a single atom of the second atom type. As shown in one of our earlier studies, the relative stability of such anions with a 1:3 or 3:1 atomic ratio depend on the respective covalent radii of the involved elements.21 In the case presented here, however, this should play a minor role only, as the difference of the covalent radii of Pb and Bi is negligible. We thus attribute the preference of (a), \((\text{Pb}_2\text{Bi}_3)\) and \((\text{Pb}_2\text{Bi}_2)_2\), to the unfavorable charge distribution in the latter case.

\section*{SCHEME 1}

Illustration of the formation of compounds \(\text{A}\), \(\text{1}\) (this work), and \(\text{2}\) (this work) by reactions of \([\text{K(crypt-222)}]_2\text{(Pb}_2\text{Bi}_2)\text{−}\) en with \([\text{AuMePPH}_3]\), with the results depending on the chosen mixture of a solvent and a layering agent.
Comparison of the energy diagrams of the frontier molecular orbitals of all species indicated in Equation (2): \((\text{Pb}_2\text{Bi}_2)_2^-\) (C\(_{2v}\) symmetry), \((\text{Pb}_2\text{Bi})_3^-\) (C\(_{3v}\) symmetry), \((\text{PbBi}_3)_-\) (C\(_{3v}\) symmetry), \(\text{Pb}_4^4^-\) (T\(_d\) symmetry), and \(\text{Bi}_4\) (T\(_d\) symmetry). The LUMO level is given in gray shade. All structures were calculated in C\(_1\) symmetry first to avoid bias and then re-optimized in the higher symmetries into which the first optimizations converged. All calculations were done applying COSMO.

Remarkably, \((\text{PbBi}_3)_-\) represents the first (pseudo-)tetrahedral anion featuring a single negative charge (−1) that was obtained in condensed phase (Figure 1, left). All other analogous species that were found in crystalline compounds possess different charges, such as \(\text{Tl}_4^8^-\), \((\text{TlSn}_3)_5^-\), \(\text{Pb}_4^{2-}\), \((\text{Ge}_3\text{As})_3^-\), \((\text{Pb}_2\text{Bi}_2)_2^-\), \((\text{TiBi}_2)_2^-\), \(\text{P}_4\), and \((\text{P}_3\text{S})_+\). Thus, the new anion fills a gap in an otherwise seamless series running from charges of +1 to −5. In addition, \((\text{PbBi}_3)_-\) is the first polyhedral anion, in which tetrel and pnictogen metal atoms occur in a 1:3 ratio. Recently, the reactions of \(\text{K}_3\text{Bi}_2\) with \(\text{K}_4\text{Sn}_9\) or \(\text{K}_{12}\text{Sn}_{17}\) in liquid ammonia yielded the planar, \([\text{CO}_3]^2^-\)-type \([\text{SnBi}_3]^5^-\) anion. Further \([\text{CO}_3]^2^-\)-type \([\text{TiPn}_3]^5^-\) anions exist in several alloy compounds, such as \(\text{A}_2[\text{TiPn}_3]\) (A = Na, K, Rb, Cs; Tt = Si, Ge, Sn; Pn = P, As, Bi). Nevertheless, none of the previously reported that \([\text{TiPn}_3]\) compounds show a polyhedral structure.

Attempts to crystallize \((\text{PbBi}_3)_-\) as the only anion have failed so far. We ascribe this to the size of the anion, which is not suited to form a stable crystal together with only one \([\text{K(crypt-222)}]^+\) counterion or similar monocationic complexes. The crystals of \(\text{I}\) are insoluble in en, and using \([\text{AuClPPh}_3]\) as another source of \(\text{Au}(\text{I})\) resulted in the precipitation of a yet-identified amorphous solid only. Despite that, we assume that \([\text{AuMe}_2]^\text{−}\) formed independently in solution, and it co-crystallized with \((\text{PbBi}_3)_-\) and \((\text{Pb}_2\text{Bi}_2)_2^-\) due to its suitable charge and size. We note in addition that electrospay ionization (ESI) mass spectrometry (MS) carried out on the mother liquor that remains upon isolation of the single crystals of compound \(\text{I}\) (see Figures S11–S15) gives a clear hint toward the concomitant formation of \((\text{PbBi})_3^3^-\) as the predominant peak can be assigned to the species \([([\text{K(crypt-222)}]\text{HPb}_3\text{Bi})]^\text{−}\) (see Figures S11 and S13; note that both in situ-protonation and aggregation with counterions is a typical observation under ESI-MS conditions). Investigation of redissolved single crystals of \(\text{I}\) by means of ESI-MS was impossible owing to the high sensitivity of the compound that led to (visible) decomposition of the solution in the injection syringe before injection into the mass spectrometer.

We additionally performed DFT\(^{32,33}\) studies for the new \((\text{PbBi}_3)_-\) anion in \(\text{I}\), using the program system TURBOMOLE\(^{34}\) and employing the TPSS functional\(^{35}\) and dhf-TZVP basis sets\(^{36,37}\) with auxiliary
bases and effective core potentials for all atoms. The anion has a reasonably large HOMO–LUMO gap of 2.67 eV, rationalizing the likeliness of its existence. Our calculations showed that the Bi–Bi bonds are 3.00 Å, and thus slightly shorter than the heteratomic Pb–Bi bonds with 3.05 Å. For the (Pb₂Bi₂)²⁻ anion, the trend is the same: Bi–Bi, Pb–Bi, and Pb–Pb distances are 3.01, 3.06, and 3.08 Å, respectively. Taking into account the typical elongation of bonds in DFT calculations (by 0.01–0.05 Å relative to solid-state structures), the calculated data are in very good agreement with the experimental values (Pb–Bi=3.015(16) and 3.029(13) Å), which cannot be assigned to the different types of interatomic connections occurring in compounds (Pb–Pb, Pb–Bi, Bi–Bi), though, owing to the nearly identical electron count of both metals, which prevents their differentiation by X-ray diffraction. Natural population analyses showed that the single negative charge is delocalized over all four atoms (Table S7), and localization of the molecular orbitals (MOs) according to Boys’ method showed only regular two-center bonds (Figure S8). Hence, the calculations confirm that the (PbBi₃)³⁻ anion is reasonably stable, and that the observed structural parameters are in full agreement with those of an anion of the given composition.

To rationalize that this heretofore unprecedented anion actually forms, we compared the MO schemes of the frontier orbitals (Figure 2) and also the contours of the frontier MOs (Figure 3) of all species indicated in Equation (1), which for the elemental combination of Pb and Bi reads in the following equation:

\[
2(Pb₂Bi₂)^{2-} = (Pb₂Bi₃)^{3-} + (PbBi₃)^{2-} \quad \text{(2)}
\]

Corresponding reaction energies \(\Delta E_R\) for the two steps are \(-48\) and \(+153\) kJ mol\(^{-1}\), respectively, confirming that the second step is unlikely to occur under the given reaction conditions.

Notably, the HOMO energy along the series of anions increases with increasing Pb content and decreases with increasing Bi content. The development is not absolutely symmetric though, which also holds for the development of the total energies of the species and is reflected in the clearly exoenergetic formation of the (Pb₂Bi₂)^{2-}/(PbBi₃)^{2-} pair versus a significantly endoenergetic formation of the Pb₄^{4-}/Bi₄ pair. Actually, the 1:3 (PbBi₃)^{3-} anion observed in compound 1 seems to be more favorable overall than the inverted 3:1 anion that has not yet been observed in the condensed phase. We attribute this to a much better orbital overlap both of the Bi atoms of the triangular basis (as opposed to a Pb₃ basis) and of Bi and Pb atoms—especially in the HOMO and HOMO-1, see Figure 3. Although not of relevance for the anion in 1, we note in passing that the comparably high instability of Pb₄^{4-} is well visible in the only little overlap of the atomic orbitals in the HOMO (4e₂g) and HOMO-1 (8t₂g), which host a total of 10 electrons whereas only the HOMO-2 (5a₁g) contributed markedly to bonding of the tetrahedron. This is in sharp contrast to the situation in Bi₄, in which all highest occupied MOs indicate significant orbital overlap and thus reasonable bonding interactions. Hence, Bi₄ should be an isolable molecule—and fairly stable as compared to the experimentally observed (Pb₂Bi₂)^{2-} and now (PbBi₃)^{2-}. We look forward to seeing this unprecedented Bi modification realized in future work.

We anticipated that the fragmentation/reorganization process would get even more complex, as the crystalline yield of 1 allowed for more compounds to form. We therefore altered the crystallization conditions by changing the solvent for layering from THF to toluene, whereas all other reaction conditions were kept the same. The observation of a different product to crystallize indicated the high tendency for Pb₄^{4-}/Bi₄ to form. We therefore altered the crystallization processes, which in turn renders the observation of the new anion in 1 a lucky circumstance.

Compound 2 as black needles in the monoclinic crystal system, space group type \(P2_1/n\) (approx. 40% yield). It is based on the ternary cluster anion \([AuPb₃Bi₃]^{4-}\) (Figure 4). \([AuPb₃Bi₃]^{4-}\) represents the yet-missing heaviest homolog of an isostructural series of...
such dimers of trimetallic 9-vertex cages, \([\text{AuTt}_5\text{Pn}_3]_2^{4-}\) (Tt = Sn, Pb; Pn = Sb, Bi) and \([\text{CuSn}_3\text{Sb}_3]_2^{4-}\).\(^{20,43}\) The assignment of the Pb and Bi atoms was done by means of quantum chemical calculations again. According to these results, we find the preferred distribution of the Pb and Bi atoms to be analogous to that in the lighter homologs. Figure 4 illustrates the assignment by the chosen predominant color of the two-colored thermal ellipsoids. The calculated bond lengths and angles also follow the expected trends and accord with the experimentally observed ones.

As for the lighter homologs of this series we do not find any Au⋯Au interactions. The Au atoms form instead three-center bonds with most of the surrounding Pb and Bi atoms, namely Au1–Bi2–Pb5, Au1–Bi3–Pb5, Au1–Pb1–Bi2, as well as Au1–Pb1–Pb2. Additionally we find two- or three-center bonds between the other Pb and Bi atoms, which are slightly polarized (see Figure 5).

As already shown in Scheme 1, the syntheses of 1, 2, and A greatly depend on the solvents used during the reaction and the layering step. In contrast, the products that are reproducibly obtained from these reactions are independent from the ratio of the reactants, as the three compounds were isolated as the only crystal types from the corresponding Schlenk tubes (with the reactant ratios ranging from 1:3 to 3:1), respectively. This is in contrast to the recently reported Au/Sn/Sb systems, where not only the solvent, but also the reactant ratios significantly influenced the composition of the isolated compounds.\(^{27}\)

For further comparison, we additionally investigated the Au/Pb/Sb system and performed the reactions between \([\text{K(crypt-222)}]_2\text{(Pb}_2\text{Sb}_2)\text{en}\) and \([\text{AuMePPh}_3]_2\), from which \([\text{K(crypt-222)}]_2\text{(AuPb}_2\text{Sb}_2)\text{en}\) (B·3en) was previously isolated from en/tol.\(^{25}\) The same reaction carried out in either py/tol or py/THF resulted in the crystallization of the same compound, yet with different co-crystallizing solvent molecules, B·2py (see Figures S1, S4, S6 and Tables S1, S4, S5). Although the underlying formation mechanism could not yet be unraveled, as typical for inorganic cluster syntheses, we may conclude that the results observed in this series of reactions are strongly dependent on the ratios of the atomic radii of the involved elements and thus explain the differences found for the Au/Pb/Bi versus Au/Sn/Sb versus Au/Pb/Sb combination.

CONCLUSIONS

In summary, we reported the formation of the salts of two new anions \((\text{PbBi}_3)^{-}\) and \([\text{AuPb}_5\text{Bi}_3]_2^{4-}\), which were synthesized under the same reaction conditions while crystallized from different solvent combinations. The \((\text{PbBi}_3)^{-}\) in 1 represents the first experimental proof for the existence of a (pseudo-)tetrahedral molecule with a single charge in condensed phase, which closes a gap in a series of related molecules with charges running from \(+1\) to \(-5\). At the same time, the \((\text{PbBi}_3)^{-}\) anion is the first pseudo-tetrahedral unit comprising tetrel and pnictogen atoms in a 1:3 ratio, which finally rationalizes the exchange process for 2:2 anions in solution to occur. The \([\text{AuPb}_5\text{Bi}_3]_2^{4-}\) cluster anion in 2 represents the heaviest homolog in the \([\text{MTt}_5\text{Pn}_3]_2^{4-}\) series and illustrates the distinct tendency of the initial species \((\text{Pb}_2\text{Bi}_2)_2^{-}\) to undergo more complex fragmentation/rearrangement processes in solution.

Together with the anion in 1 and the recently reported compound \([\text{Au}((\eta^2-\text{Pb}_2\text{Bi}_2))_3]^{2-}\), the anion in 2 demonstrates the importance of the chosen crystallization conditions for the product spectrum in terms of maintaining an intact geometry, performing atom exchange, or more significant fragmentation and reconstruction. Future studies will be focused on the in-depth studies of the roles of solvents in the cluster formation mechanisms and prediction of selective and efficient
formation pathways. In addition, we will explore the reactivities of 1 toward a variety of d-/f-/p-block metal precursors.

ACKNOWLEDGMENTS
This work was financially supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG). F.P. gratefully acknowledges a research fellowship by the Alexander von Humboldt foundation.

CONFLICT OF INTEREST
Stefanie Dehnen is a coauthor of the manuscript and a member of the Advisory Board of Natural Sciences and was not involved at the handling of the peer-review process of this submission. All other authors have no conflict of interest.

ETHICS STATEMENT
There are no ethical issues to consider in this work.

AUTHOR CONTRIBUTIONS
The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

DATA AVAILABILITY STATEMENT
All data generated or analyzed during this study are included in this published article and its Supporting Information.

The structures of compounds 1, 2, and B-2py were determined by single-crystal X-ray diffraction. The crystallographic data for the two structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publications nos. CCDC-2142405 (1), CCDC-2142406 (2), and CCDC-2142405 (B-2py). Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: [internat.] + 44 1223/336-033; e-mail: deposit@ccdc.cam.ac.uk). Further details are provided in the Supplementary Information.

The Cartesian coordinates of all optimized structures and the respective SCF energies are summarized in the supplementary document "optimized-structures.txt." The files comprise all necessary data for reproducing the values. Information on the used methods and corresponding references are provided in the Supporting Information. For the default parameters of TURBOMOLE, such as the convergence criteria for structure optimizations, please see the manual at https://www.turbomole.org (retrieved April 23, 2022).

PEER REVIEW
The peer review history for this article is available at https://publons.com/publon/10.1002/ntls.202103302

ORCID
Fuxing Pan https://orcid.org/0000-0002-3798-4213
Lukas Guggolz https://orcid.org/0000-0002-0415-8089
Stefanie Dehnen https://orcid.org/0000-0002-1325-9228

REFERENCES
20. Pan F, Guggolz L, Weigend F, Dehnen S. Atom exchange versus reconstruction: (Ge3As2)3− (x = 2, 3) as building blocks for the supertetrahedral Zintl cluster [Au6(Ge3As)(Ge2As2)]3−. Angew Chem Int Ed. 2020;59(38):16638–16643.
21. Guggolz L, Dehnen S. Systematic DFT studies on binary pseudo-tetrahedral Zintl anions: relative stabilities and reactivities towards...

Lichtenberger N, Massa W, Dehnen S. Polybismuthide anions as ligands: the homoletic complex [(Bi₁₂)Cd(Bi₇)]⁴⁺ and the ternary cluster [(Bi₁₂)Zn₃(TiBi₅)]⁴⁺. Angew Chem Int Ed. 2019;58(10):3222–3226.

Zhu D, Lindeman SV, Kochi JK. X-ray crystal structures and the facile oxidative (Au–C) cleavage of the dimethylaurate(I) and tetramethylaurate(VI) ions. Inorg Chem. 1995;34(11):283–290.

Klemm W. Metalloids and their compounds with the alkali metals. Allg Chem. 1958;113(7):2563–2567.

TURBOMOLE V7.5 2020, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, since 2007; available from http://www.turbomole.com

How to cite this article: Pan F, Guggolz L, Dehnen S. Capture the missing: formation of (PbBi₃)⁻ and [[AuPb₅Bi₃]₂]⁴⁺ via atom exchange or reorganization of the pseudo-tetrahedral Zintl anion (Pb₂Bi₂)²⁻. Nat Sci. 2022;2:e202103302. https://doi.org/10.1002/nts.202103302