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Abstract

Over the last few years deep artificial neural networks (ANNs) have very successfully
been used in numerical simulations for a wide variety of computational problems
including computer vision, image classification, speech recognition, natural language
processing, as well as computational advertisement. In addition, it has recently been
proposed to approximate solutions of high-dimensional partial differential equations
(PDEs) by means of stochastic learning problems involving deep ANNSs. There are
now also a few rigorous mathematical results in the scientific literature which provide
error estimates for such deep learning based approximation methods for PDEs. All of
these articles provide spatial error estimates for ANN approximations for PDEs but
do not provide error estimates for the entire space-time error for the considered ANN
approximations. It is the subject of the main result of this article to provide space-time
error estimates for deep ANN approximations of Euler approximations of certain
perturbed differential equations. Our proof of this result is based (i) on a certain ANN
calculus and (ii) on ANN approximation results for products of the form [0, T]xR¢ 3
(t,x) — tx e R? where T € (0, ®0), d € N, which we both develop within this article.
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1 Introduction

Over the last few years deep artificial neural networks (ANNSs) have very successfully
been used in numerical simulations for a wide variety of computational problems

Communicated by: Holger Rauhut

P4 Philipp Zimmermann
philipp.zimmermann @math.ethz.ch

Extended author information available on the last page of the article.

Published online: 11 January 2023 €\ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10444-022-09970-2&domain=pdf
http://orcid.org/0000-0002-9840-3339
http://orcid.org/0000-0002-6791-1779
mailto: philipp.zimmermann@math.ethz.ch

4 Page 2 of 78 P. Grohs et al.

including computer vision, image classification, speech recognition, natural lan-
guage processing, as well as computational advertisement (cf., e.g., the references
mentioned in [14, 17, 27]). In addition, the articles [9, 19] suggest to approxi-
mate solutions of high-dimensional partial differential equations (PDEs) by means of
stochastic learning problems involving deep ANNs. We also refer to [1-6, 8, 10, 12,
13, 15, 20, 21, 23, 26, 30-32, 35, 36, 39] for extensions and improvements of such
deep learning based approximation methods for PDEs.

There are now also a few rigorous mathematical results in the scientific literature
which provide error estimates for such deep learning based approximation methods
for PDEs; see, e.g., [7, 11, 16, 20, 24, 27, 28, 37, 39]. The articles in this refer-
ence list all provide spatial error estimates for ANN approximations for PDEs but do
not provide error estimates for the entire space-time error for the considered ANN
approximations.

It is the subject of Theorem 3.12 in this article, which is the main result of
this article, to provide space-time error estimates for ANN approximations of Euler
approximations of certain perturbed ordinary differential equations (ODEs). To illus-
trate the findings of the main result of this article in more details, we formulate
in Theorem 1.1 below a special case of Theorem 3.12. In the following we briefly
illuminate the statement of Theorem 1.1 in words and also add some explanatory
comments regarding the mathematical objects appearing in Theorem 1.1, thereafter,
we present the precise statement of Theorem 1.1, and, thereafter, we remark on
the proofs of Theorem 1.1 and Theorem 3.12, respectively, and we also add some
comments on the benefits of Theorem 1.1 and Theorem 3.12, respectively.

In Theorem 1.1 we study ANN approximations of Euler approximations of suit-
able ODEs and the real number 7' € (0, o) in Theorem 1.1 specifies the time horizon
of the ODE under consideration. To precisely specify the ANN approximations in
Theorem 1.1, we need to mathematically formulate the considered ANNs and their
realization functions. In Theorem 1.1 we employ fully-connected feedforward ANNs
and, roughly speaking, we can think of such ANNs as nested tuples of real matrices
and vectors and the realization function of such a ANN is then an iterated finite com-
position of appropriate affine linear functions (uniquely described through pairs of
real matrices and vectors in the nested tuples) and certain fixed nonlinear functions.

The fixed nonlinear functions are often appropriate multidimensional versions of
a one-dimensional function from R to R and this one-dimensional function is usually
referred to as activation function of the ANN. In Theorem 1.1 we use the rectifier
function R 5 x — max{x, 0} € R as the activation function and the functions

Ag: R4 - RY 1)

for d € N satisfying that for all d € N, x = (x1,...,x4) € RY we have that
Aq(x) = (max{xp,0},..., max{xg, 0}) in Theorem 1.1 serve as the appropri-
ate multidimensional versions of the one-dimensional rectifier function R 5 x —
max{x, 0} € R.

The set N in Theorem 1.1 represents the set of all fully-connected feedforward
ANNSs and the function

R: N — Ugen C(RF, RY) 2)
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in (6) in Theorem 1.1 assigns to each ANN its realization function. More formally, for
every ANN @ e N we have that the continuous function R(®) € Uy jen C(RF, RY)
is the realization function associated to .

The function P: N — N in Theorem 1.1 counts the number of real weight and
bias parameters used to describe the considered ANN. Specifically, for every ANN
® € N we have that P(®) is the number of real numbers employed to describe ®. In
that sense we have for every @ € N that P(®) corresponds to the amount of memory
needed to store ® on a computer. We also refer to Fig. 1 for a graphical illustration
for an example ANN within the class of fully-connected feedforward ANNs used in
Theorem 1.1 below.

In Theorem 1.1 we study ANN approximations of Euler approximations of appro-
priate ODEs in which the vector field of the considered ODE is the realization
function of a ANN and the ANNs ®; € N, d € N, in Theorem 1.1 serve as the
ANNSs whose realization functions are the vector fields of the considered ODEs.
More formally, for every d € N let X9 = (X;l,x)(t,x)E[O,T]XRd: [0,T] x RY — R4

1st hidden layer
(2nd layer)

2nd hidden layer

Input layer (3rd layer)

(1st layer)

Output layer
(4th layer)

Fig.1 Graphical illustration of a fully-connected feedforward example ANN @ € N consisting of 4 layers
(corresponding to L = 3 affine linear transformations: one affine linear transformation between the 1st
layer [input layer] and the 2nd layer [1st hidden layer], one affine linear transformation between the 2nd
layer [1st hidden layer] and the 3rd layer [2nd hidden layer], and one affine linear transformation between
the 3rd layer [2nd hidden layer] and the 4th layer [output layer]) with [j = 5 neurons on the input layer
(with a 5-dimensional 1st layer), with /; = 7 neurons on the 1st hidden layer (with a 7-dimensional 2nd
layer), with [, = 6 neurons on the 2nd hidden layer (with a 6-dimensional 3rd layer), and with I3 = 1
neuron on the output layer (with an 1-dimensional output layer). In the situation of (6) in Theorem 1.1,
we have that L = 3,1 = 5,1y = 7,1, = 6,15 = 1, we have that xo = (x\",...,x{") € B,
X1 = (x1<1), e, xl(7)) = A7(Wixo+ B1) e R7, xy = (xz(l), e xz(())) = Ag(Wax + B2) € RO, we have
that the ANN @ = ((Wy, By), (W2, B2), (W3, B3)) is an element of the set x;_, (R« *k—1 x Rlk) =
((R7*3 xR7) x (R®*7 x R®) x (R *® x R1)) < N, and we have that the number of ANN parameters of ®
satisfies P(®) = 11 (lo+1)+ L +1)+13(L+1) =7(5+1)+6(7+1)+1(6+1) =424+48+7 = 97.
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be the unique continuous function which satisfies for all t € [0, 7], x € R? that
([0,T] a5 — Xx¢ eRY) e C([0,T],RY), X, = x, and

4x1, = (R(®q))(X{,) 3)
and note that for all d, N € N we have that the function

YN = (YY) oefo.ryxra [0, 7] x RY — R 4)

t,x

in (8) in Theorem 1.1 is nothing else but the time-continuous Euler approximation of
the ODE in (3) with N € N equidistant time steps.

Roughly speaking, Theorem 1.1 then demonstrates that there exist ANNs
(We,d,N)(e.d.N)e(0,1]xNxN S N whose realization functions R(We.q,n): Ré+
R, N,d e N, ¢ € (0, 1], approximate the time-continuous Euler approximations
YN = (Yt‘f;N)(,)x)e[O’T]de: [0,7] x R? — R?, d,N e N, according to (9) in
Theorem 1.1 and whose parameters P(W. 4 n) € N, N,d € N, ¢ € (0, 1], grow at
most polynomially in the dimension d € N, at most polynomially in the number of
time steps N € N, and at most logarithmically in the accuracy parameter ¢ > 0. We
now present the precise statement of Theorem 1.1 and, thereafter, comment on the
proof and the use of Theorem 1.1.

Theorem 1.1 Let &, T,0 € (0, ), let Ay € C(RY,RY), d € N, satisfy forall d € N,
x=(x1,...,%q) € RY that

Ag(x) = (max{xp, 0}, ..., max{xg, 0}), 5)

let N = UreN Uiy 1;,...1.eN (><]I(‘:1(Rl’<”k*l X le)), let R: N — Uk 1en C(Rk, RY)
and P: N — N satisfy forall L € N, ly,1;,...,lp € N, ® € (x,le(leXlkfl X
RK)), W = (W1, By), ..., (W, B)) € (xf_ (RIexl=1 x RlIK)), xg € RP, x; €
Ri, .. xp e RE withVke Nn (0, L): x¢ = Ay, (Wixk—1 + By) that

R(¥) € C(RY,R™),  (R(¥))(x0) = WL 1 + B, ©
and P(®) = Yk_, li(le—1 + 1), let &4 € N, d € N, satisfy forall d € N, x € R? that
R(®g) € C(RLRY),  [(R(®4))(x)| < €(1 + |x]), and P(®q) < €d®, (7)

and let Y&N = (Y,?;CN)(I,X)E[O’T]XW: [0,T] x RY - RY, N,d e N, satisfy for all

d,NeN,ne{O,l,...,Nfl},te[%,W],xeRdthath’xNzxand

YN = v 4 (= 20) (R(@a) (V") ®)

N

Then there exist C e Rand Wy g v €N, N,d € N, ¢ € (0, 1], such that
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() itholdsforalle € (0,1],d, N € N that R(W, 4 5) € C(RIF! RY),

(i) it holds forall e € (0,1],d, N €N, t € [0, T], x € R? that
Y5 — (R(Wean))(t.x)| < Cd'AN3e(1 + x|, )

(i) it holds foralle € (0,1],d, NeN,t€[0,T], x € RY that
[(R(We.a.n))(r, )| < Cd' AN (1 + x|, (10)

and
(iv) it holds for all € € (0, 1], d, N € N that

P(W, qn) < Cd'OTONO[1 + |In(e)[?]. (11)

Theorem 1.1 is an immediate consequence of Corollary 3.13 in Section 3.3.5
below. Corollary 3.13, in turn, follows from Theorem 3.12 in Section 3.3.5, which is
the main result of this article.

Theorem 1.1 and Theorem 3.12, respectively, can be used to establish that ANNs
can approximate solutions of certain second-order Kolmogorov PDEs on entire
space-time regions without the curse of dimensionality and this is precisely the
subject of our follow-up article [22]. To illustrate this issue, let fy: RY — R4,
d € N, and g4: RY > R, d € N, be Lipschitz continuous functions, let ug €
C2([0, T] x RY, R), d € N, satisfy forall £ € [0, T], d € N, x € RY that

ug(0,x) = ga(x)  and  (Guq)(t.x) = (Lua)(t.x) fax),  (12)

and let A7 = (X?{x)(,’x)e[O,T]XRd: [0,T] x RY - R?Y, d € N, satisfy for all t €
[0,T],d e N, x e R? that

Xj,=x and LA = a0 (13)

X
In the outline of this introductory section we restrict ourselves to first-order Kol-
mogorov PDEs of the form (12) and deterministic ODEs of the form (13), respec-
tively, while the later results in this article are also applicable in the case of certain
second-order Kolmogorov PDEs and stochastic ODEs, respectively.

Our goal is to verify under reasonable assumptions that ANNs can approximate
the solutions u4: [0, T] % R? - R, d € N, of the PDEs in (12) on entire space-time
regions without the curse of dimensionality. For this we observe that (12), (13), and
the method of characteristics (or, in the context of second-order PDEs, the Feynman-
Kac formula) show that forallz € [0, T],d e N, x € R it holds that

ua(t, x) = ga(&L,). (14)

In the next step we assume that the functions f; : RY - R? d € N, and gd: RY - R,
d e N, themselves can be approximated by ANNs without the curse of dimensionality
in a suitable sense.

More specifically, we assume that there exist ANNs Fp 4 € N, (g,d) € (0, 1] x
N, whose ANN parameters grow at most polynomially, both, in e ~' € [1, o) and
d € N and whose realization functions converge in a suitable sense to the functions
fa: R >R deN,ase¢ converges to zero and we assume that there exist ANNs
Gea €N, (g,d) € (0,1] x N, whose ANN parameters grow at most polynomially,
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both, in ¢! € [1,00) and d € N and whose realization functions converge in a
suitable sense to the functions g, : RY — R, d € N, as ¢ converges to zero.

Beside approximations for the functions f;,d € N, and g4, d € N, in (12), we also
employ time-continuous Euler approximations. More formally, for every d, N € N

and every continuous .7 : R¢ — R? let Y7V = (Y;i’N)(t,x)e[o,T]de: [0, T] x

RY — RY satisfy foralln € {0, 1, ..., N — 1}, 7 € [2L, FDT) 1 ¢ R hat

YoM =x and YN =vRN 4+ (=2 #(vY). a9
N N
Observe that foralld, N e N, % € C(Rd, RY), x € RY we have that

[0, 7] 31— YN e R (16)

is the time-continuous Euler approximation for the ODE with initial value x, with
the vector field function .% : R? — R¢ and with the equidistant time step size % In
particular, we observe that (8) in Theorem 1.1 ensures that for all d, N € N we have
that YR(®a)-N — yd.N
In the next step we combine (14) with the triangle inequality to obtain that for all
deN,te[0,T],xe RY we have that
ua(t, %) = (R(Ge)) (Y™™ = [ga(¥) = (R(Gea)) (Ve ™M)

t,x

< [8a(X) = (R(Gea) (XL0] +[(R(Ge)) () — (R(Ge)) (V4]
+(R(Gea) (Y4N) = (R(Gea)) (Y )],

A7)
The first summand on the right hand side of (17) can be controlled through the
assumption that the functions R(G. 4), ¢ € (0, 1], d € N, converge in a suitable
sense to the functions g4, d € N, as ¢ converges to zero, the second summand on
the right hand side of (17) can be bounded from above by employing standard error
analysis for Euler approximations from the literature (cf., e.g., [18, Section II.3] and
[22, Section 2.3]), and the third summand on the right hand side of (17) can be
estimated from above by using suitable elementary perturbation estimates for Euler
approximations of ODEs. The estimate in (17) thus illustrates that it is sufficient to
verify that

[0. 7] x R 5 (1, x) > (R(Ge.a))(YF2 ) e R (18)

for d € N can be approximated by ANNs without the curse of dimensionality in order
to prove that uy : [0, T] x R? — R for d € N can be approximated by ANNs without
the curse of dimensionality. This is precisely where Theorem 1.1 above and the more
general result in Theorem 3.12, respectively, can be brought into play. Indeed we
observe that Theorem 1.1 above and Theorem 3.12, respectively, reveal that time-
continuous Euler approximations of the form

0. 7] x RY 5 (£, x) —> YRV ¢ pd (19)

for d € N can be approximated by ANNs without the curse of dimensional-
ity. Combining this with (17) then allows us to conclude the solution functions
ug: [0,T] x RY - R, d € N, can in a suitable sense be approximated by ANNs
without the curse of dimensionality.
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This finishes our sketch on how Theorem 1.1 above and Theorem 3.12, respec-
tively, can be used to verify that solutions of first-order Kolmogorov PDEs of the
form (12) can be approximated by ANNs without the curse of dimensionality. In
the same spirit as above, Theorem 3.12 can actually also be employed to verify
that certain second-order Kolmogorov PDEs can be approximated by ANNs without
the curse of dimensionality. We refer to the precise statement of Theorem 3.12 in
Section 3.3.5 in this article as well as to our follow-up article [22] for the details, also
in this more general situation.

Our proofs of Theorem 1.1 and Theorem 3.12, respectively, are based on a certain
ANN calculus, which we develop in Section 2. Section 2 is in parts based on several
well-known concepts and results in the scientific literature (cf., e.g., [11, 27, 34,
40]). We refer to the beginning of Section 2 for a more detailed comparison of the
content of Section 2 with the material in related articles in the scientific literature.
Our proof of Theorem 1.1 and Theorem 3.12, respectively, is mainly inspired by [27],
[11, Section 6], and [40, Section 3.1].

Theorem 1.1 and Theorem 3.12, respectively, provide error estimates for rectified
ANN approximations of Euler approximations of certain perturbed ODEs. Many of
the ANN approximation and representation results of this work, however, apply to
ANNSs with more general activation functions than only the rectifier function (cf.,
e.g., Li et al. [29, Section 1] and Petersen et al. [33, Section 2] for further activation
functions).

The error estimates for rectified ANN approximations of Euler approximations of
perturbed ODEs, which we establish in Theorem 1.1 and Theorem 3.12, respectively,
can then be used to establish space-time error estimates for ANN approximations for
PDEs. This will be the subject of a future research article, which will be based on
this article.

The remainder of this article is organized as follows. In Section 2 we develop the
above mentioned ANN calculus and, in particular, we establish in Section 2.5 ANN
representation results for Euler approximations. In Section 3.1 we develop ANN
approximation results for the square function R 3 x — x2 € R. These ANN approx-
imation results for the square function are then used in Section 3.2 to develop ANN
approximation results for products of the form [0, T] x RY 5 (t,x) — tx € R?
where T € (0, ), d € N. In Section 3.3 we then combine the ANN representation
results in Section 2.5 with the ANN approximation results for products in Section 3.2
to establish in Theorem 3.12 the main result of this article.

2 Artificial neural network (ANN) calculus

This section develops a certain calculus for ANNs. Some of the notions and results
which we present here are rather elementary, but for convenience of the reader
we present here all details and we include the proof of every result. The material
in this section is also in parts based on several well-known concepts and results
in the scientific literature. In particular, Definition 2.1, Definition 2.2, and Defini-
tion 2.3 are slight reformulations of Petersen & Voigtlaender [34, Definition 2.1].
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Moreover, Lemma 2.4 is elementary and well-known in the scientific literature. Fur-
thermore, Definition 2.5 is also a slight reformulation of Petersen & Voigtlaender
[34, Definition 2.2]. In addition, Proposition 2.6, Corollary 2.7, and Lemma 2.8 are
elementary and essentially well-known in the scientific literature (cf., e.g., Petersen
& Voigtlaender [34]). Moreover, Definition 2.11 is an extension of Elbrichter et
al. [11, Setting 5.2] and Proposition 2.16 is in parts an extension of Elbrichter
et al. [11, Lemma 5.3]. Furthermore, Definition 2.17 and Definition 2.22 extend
Elbrichter et al. [11, Setting 5.2] (cf., e.g., Petersen & Voigtlaender [34, Defini-
tion 2.7]). In addition, Proposition 2.25 is a reformulation of [27, Lemma 5.1].
Moreover, Lemma 2.27 and Proposition 2.28 are significantly inspired by [27, Propo-
sition 5.3]. Furthermore, item (iv) in Lemma 2.27 and item (iv) in Proposition 2.28,
respectively, improve the parameter estimates in [27, Proposition 5.3]. In addition,
Corollary 2.31 in Section 2.5.2 below is also in parts inspired by [27, Proposition 6.1].

2.1 ANNs and their realization functions

Definition 2.1 (ANNs) We denote by N the set given by
N = ULen Uipar...ipyenint (Xfoi RIA1 X RY)) (20)

and we denote by P, L,Z,O: N - N, H: N - Ny, and D: N — u‘L’OzzNL the
functions which satisfy forall L € N, Iy, [1,...,lp e N, ® € (X,le(leXlk—' X RI"))
that P(®) = S5, L (le—1 + 1), L(®) = L, T(®) = Iy, O(®) = Ip, H(P) = L —1,
and D(®) = (lp, I, - .., IL).

Definition 2.2 (Multidimensional versions) Let d € N and let ¥: R — R be a
function. Then we denote by My, 4: RY — R? the function which satisfies for all
x=(x1,...,%q) € R that

My.a(x) = (Y (x1), ... ¥(xa)). 2D
Definition 2.3 (Realizations associated to ANNs) Let a € C(R,R). Then we
denote by R,: N — Ugsen C(RF, R!) the function which satisfies for all L € N,
lo,l1,....,lp e N, ® = ((Wy, By), (W2, B2),..., (WL, BL)) € (X1%=1(le><lk*1 X

R)), xo € Rlo,x; e R, ..., xp—1 € Ri-1 with Vk € Nn (0,L): x; =
My 1, (Wixk—1 + By) that

Ra(®) e C(RO,RL)  and  (Ru(®))(x0) = Wexr—1 + B (22)
(cf. Definition 2.2 and Definition 2.1).

Lemma 2.4 Let ® € N (cf. Definition 2.1). Then

() it holds that D(®) € NE(@)+1 gpg
(i) it holds for all a € C(R, R) that Ro(®) € C(RL(®) RO(®))

(cf. Definition 2.3).
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Proof of Lemma 2.4 Note that the assumption that ® € N = Uzen U ;) 1,1, Jent+!

(x,{‘zl(le”k—' X le)) ensures that there exist L € N, Iy, I1, ..., I, € N such that
e (xf_y (R x RY)). (23)
Observe that (23) assures that
L(P) =1L, Z(®) = lo, o) =1, (24)
and  D(®) = (Ip. 1y, ..., 1) € NET1 = NE@+L, (25)

This establishes item (i). Moreover, note that (24) and (22) show that R,(®) €

C (RI(¢),RO(¢)). This establishes item (ii). The proof of Lemma 2.4 is thus
completed. O

2.2 Compositions of ANNs
2.2.1 Standard compositions of ANNs

Definition 2.5 (Standard compositions of ANNs) We denote by (-) e (+): {(®1, ®2)
€ N x N: Z(®;) = O(P2)} — N the function which satisfies for all L, £ € N,
lo Iy, .l ool .o le € N, @ = (W, Bl), (Wa, B2), ..., (WL, BL)) €
(< foy (RIEE=1 5 RI)), @y = (Wh, B1), (W2, Ba), ..., We, Be)) € (X,
(R%> U1 x R%)) with [y = Z(P;) = O(d;) = lg¢ that

D oDy =
((Wl, %1), (Wz, Bs), ..., (ngl, %271), (W1Wg, WiB¢ + By),

(Wa, Ba). (W3, Bs)..... (W B)) =7 1<%

((WiW1, WiB| + B1), (W2, By), (W3, B3), ..., (WL, BL)) L>1=2¢

(W1, B1), W2, B2). ..., We_1,Be_1), (WiWe, WiBe + B1)) :L=1<¢g

(WiWr, WiB1 + By) L=1=2¢
(26)

(cf. Definition 2.1).

Proposition 2.6 Let 1, P2 € N, 10,111, ""ll,,C(cbl)’ bholi,..., lz’ﬁ(%) eN
satisfy for all k € {1, 2} that Z(®1) = O(®2) and D(Pk) = (lk.0, lk1s - - - lk,ﬁ((bk))
(cf- Definition 2.1). Then

(i) it holds that
D(P) e ©2) = (L0, 12,1, b Loyl ll,ﬁ((bl))’ 27)

(i1) it holds that
[£(®1 0 ®2) — 1] = [£(®1) — 1] + [£(®) — 1], (28)

@iv) it holds that
H(Dy o @2) = H(P1) + H(P2), (29)
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(v) it holds that
P(®1 e ) = P(®1) + P(P2) + 111l £(0)—1 + 1)
—liho+1) = b (o) (b £i@y)—1 + 1)

< P(®y) + P(P2) + 11,112’£(¢2)_1, (30)
and
(vi) it holds for all a € C(R, R) that Ry (®) & ;) € C(RL(®2) RO®1)) gnq
Ra(®1 e @2) = [Ra(P1)] 0 [Ra(P2)] 31

(cf. Definition 2.3 and Definition 2.5).

Proof of Proposition 2.6 Throughout this proof let a € C(R,R), let Ly € N, k €
{1, 2}, satisfy for all k € {1,2} that Ly = L(®y), let ((Wk’1, Bk.1), (Wi2, Br2),

(Wi Ly Bery)) € (x i (RIeXt=t 5 Rli)), k € {1,2}, satisfy for all k e
{1,2} that
q>k = ((Wk,l’ Bk,l)y (Wk,27 Bk,z)s sy (WkaLk’ Bk’Lk))’ (32)
let Ly € N, 130,031, ..., 50, € N, @3 = (W31, B3,1), ..., (W35, B3 13)) €
(72 (Rl *hi-1 x RI)) satisfy that @3 = @y e®), let xo € R20,x; €
Rb21, ceesXL,—1 € R212-1 satisfy that

VjieNN(0,La): xj =My, (Wajxj—1 + Baj) (33)

(cf. Definition 2.2), let yo € Rlto, V1 € Riut, .., YL,—1 € RA.Ly—1 satisfy that yg =
Wz,szszl + BQ’L2 and

VjeNn(0,L1): yj = Mgy ; (Wi jyj—1 + Bij), (34)
and let zg € R0, z; e Rt .. ,ZLs—1 € RA3.L3-1 satisfy that zg = x¢ and
VjeNn(0,L3): zj =Mayy (W3 jzj—1 + B j). (35)
Note that (26) ensures that
Dy = D oDy =

'
(Wa1, Ba1), (Wa2, Bo2), ..., (Wa1,—1, Ba1,—1),
(W1aWa, L, Wi, 132 L, + B1.1), (W12, B12)

, Li>1<L,
(Wi3,B13)..... (Wi, Bi,L,))

((W1,iWa,1, Wi1Boy + Bi1), (Wi, Bi2),

‘Li>1=Lr (36)
(Wi3,B13),.... (Wi, Bi,L,)) .

((Wa1, Ba1), (Wa2, B22), ..., (Wa1,—1, Ba1,—1),
(Wi iWa,1,, Wi.1Ba, 1, + Bi1))

((W1,1W2,1, Wi,1Bo1 + Bih) Ly =1=1Ly
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Hence, we obtain that

[ﬁ(cbloQ)z)—l] =[(L271)+1+(L171)]71

— Ly 1]+ [Ly — 1] = [£(®1) — 1] + [£(@) — 1] P

and D(Pj e D) = (12,0712,17---,12,L271,ll,1,ll,2,---Jl,L.)- (38)

This establishes items (i)—(iii). In addition, observe that (38) demonstrates that

Ls
'P(q31 . CDQ) = Z 13,j(l3,j71 + 1)

Jj=1
_Lz—l 1 L3
=| X b+ )| +B,0n-1+ 1)+ l 2 Bl + 1)]
| J=1 | j=Ly+1
Ly—1 L3
= 2 bjbja+ )| +hilla,—1+1)+| 2 hj—r,+1(lj—1, + 1)1
| =1 i Jj=Ly+1
Lo—1 L
= Z lz’j(lz,jfl + l) + [Zzll,j(ll,jl + 1) + ll,l(lz,szl + 1)
Jj=1 j=
2 [
= 21 Ll j—1+1)| + Zl Ll j—1 + 1)] + 0,1l ,—1+ 1)
j= j=

—b,(l -1+ 1) =l 1(lo+1)
:P(Cbl) + 'P(Cbz) + 11’1(12,14271 + l) — lz’Lz(lg,szl + l)
—11’1(11’0 + 1)
<77(<Dl) + P(CDQ) +hal,—1.
(39)
This establishes item (iv). Moreover, observe that (36) and the fact that a € C(R, R)
ensure that

Ra(®) o ®3) € C(R20, RiL1) = ¢(RE(®) RO(@)), (40)

Next note that (37) implies that L3 = L1 + L, — 1. This, (36), and (38) ensure that
(13,0, 13,15 -, 13,0, 41,—1) = (L0, 12,1, - a—1, 1, L, - L), (D)
[VjeNn(0,Ly): (Ws,,Bs;)= (W, Baj)l (42)

(W3,1,, B3,1,) = (W1,iWa,1,, Wi.1B2.1, + B1.1), (43)

and [V] e NN (Lz, L+ Lz): (W3,j, Bgyj) = (Wl,j+l—L2s Bl,j+1—L2)]-
(44)
This, (33), (35), and induction imply that for all j € Ny [0, L,) it holds that Zj = Xj.
Combining this with (43) and the fact that yo = W 1,x7,—1 + B2 1, ensures that

Wi, 1,20,—1+ B3, = W3 1,x1,—1+ B3 1,
= Wi iWaor,xp,—1 + Wi1B21, + B
= Wi,1(Wa,1,x1,—1 + B2,1,) + Bi,1 = Wi1yo + Bi1.
(45)
Next we claim that for all j € N n [Ly, L; + L») it holds that

W3 jzj—1+ B3 j=Wijt1-L,Yj—L, + Bl j+1-L;- (46)
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We prove (46) by induction on j € Nn[La, L1 + L2). Note that (45) establishes (46)
in the base case j = L. For the induction step note that the fact that L3 = L1+ Ly —
1, (34), (35), (41), and (44) imply that for all j € Nn[L,, 00) " (0, L1+ Ly — 1) with

Wi jzj—1+ B3 j = Wi jr1-1,Yj—L, + Bl,j+1-L, 47)
it holds that
Wi j+12j + B3 j+1 = W3 j11Mats ; (W3 jzj—1 + B3 j) + B3 j+1
= Wijwa—1Maty joior, Wi jt1-LoYj—1y + Bijt1-1,) + Bijr2-1, (48)
= Wi j+2—L,Yj+1-L, + B1,j+2—1,-
Induction hence proves (46). Next observe that (46) and the factthat L3 = L1+ Ly—1
assure that

W3 13203—1+t B30 = W3 L +0,—120,+L,—2+ B30, +L,—1 = Wi, yL,—1+ B1,L,.
49)
The fact that @3 = O e O5, (33), (34), and (35) therefore prove that

[Ra(®1 @ @2)](x0) = [Ra(P3)](x0) = [Ra(P3)](z0) = W3,15205—1 + B35
= Wi, ye,—1 + Bi,r, = [Ra(®1)](y0)
= [Ra(®1)](Wa,1,X1,—1 + Ba,1,)
= [Ra(@1)]([Ra(®2)](x0)) = [(Ra(P1)) 0 (Ra(P2))](x0).

(50
Combining this with (40) establishes item (v). The proof of Proposition 2.6 is thus
completed. O

Corollary 2.7 Let L1, Ly, L3eN, l1 0, 11,1, ..., 11,0, 12,0, 02,1, - - 12,105,130, 03,1, - -+,
[3,1, € N satisfy that Iy o = I, and let & = ((Wk,l,Bk,l), (Wk,z, Bk’z),

oo Whes Brny)) € (XjLI(lev-lek~-f—l x Rki)), k e {1,2,3}, satisfy that
D3 = & o O (cf. Definition 2.1 and Definition 2.5). Then

(1) it holds that
Ly = £(®3) = L(P)) + L(P2) — 1 = Ly + Ly — 1 > max{L, L}, (51)
(ii) it holds for all j € N n (0, Ly) that

(W3,j, B, j) = (Wa,j, Ba,j), (52)
(iii) it holds that
(W3.1,, B3.1,) = (WiaWa,1,, Wi1Ba, 1, + B1.1), (53)
and
(iv) it holds forall j e N (Lp, L1 + La) = N (Lp, ) n [1, L3] that
(W3, B3,j) = (Wi j—Ly41, Bl j—L,+1)- (54)

Proof of Corollary 2.7 Observe that item (ii) in Proposition 2.6 proves item (i).
Moreover, note that (26) establishes items (ii)—(iv). The proof of Corollary 2.7 is thus
completed. O
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2.2.2 Associativity of standard compositions of ANNs

Lemma 2.8 Let @1, ®,, &3 € N satisfy that Z(®1) = O(P;) and Z(D;) = O(P3)
(cf. Definition 2.1). Then it holds that

((DIOCDZ)O(D?, :CDIO(CI)20CD3) (55)

(cf. Definition 2.5).
Proof of Lemma 2.8 Throughout this proof let ®4, &5, &g, &7 € N satisfy that
Oy = O1edy, 5 = Dred3, g = DPyre D3, and &7 = D e D5, let
Ly e N,k e {1,2,...,7}, satisfy for all k € {1,2,...,7} that Ly = L(®Dy), let
U0 lke1s - bk, € NSk € {l, 2, ..., 7}, and let ((Wk,l, Bk,l), (Wk,z, Bk’z), el
(Wi,Ly» Brry)) € (xszl(leY.fxlkw x Rliki)), k e {1,2,...,7}, satisfy for all
ke{l,2,...,7} that

O = ((Wi1, Be1), (We2, Be2), - - (Wi Brory))- (56)
Observe that item (ii) in Proposition 2.6 and the fact that for all k € {1, 2, 3} it holds
that £(®y) = Ly proves that

L(DPg) = L(D] 0 Dy) 0 D3) = L(D] e Dy) + L(D3) — 1
=L(D))+ L(Dy) + L(P3) —2=L1+Lr+L3—2 (57)
=L(D))+ L(DPreD3) — 1 =L(Dj e (Dye DP3)) =L(D7).

Next note that Corollary 2.7, (56), and the fact that &4 = & e &, imply that

[VieNA(0,Ly): (Waj, Bsj) = (Waj. Baj)l. (58)
(Wa,1,, Bar,) = (Wi,iWa,1,, Wi.1B2.1, + B1,1), (59

and  [VjeNn (Ly Ly +La): (Waj, Baj) = (Wi j+1-1,, Bl j+1-1,)]-
(60)

Hence, we obtain that
[VjeNn(Lz—1,Ly + L3 —1):
(Wajt1-130 Bajy1-15) = Wajr1-15, Bajy1-1y)], (61)
(Wa,1,, Ba,1,) = (Wi 1Wa,1,, Wi1 B2, + Bi1), (62)
and
[VieNn(Ly+L3y—1,Li+Ly+L3—1):
(Wajy1-Ls Bajy1-13) = (Wi jy2—1,—13. Bijr2-1,-13)]. (63)

In addition, observe that Corollary 2.7, (56), and the fact that &5 = &, e P3
demonstrate that

[VjieNn(0,L3): (Ws, Bsj) = (Wsj, B3j)]. (64)
(W55, Bs,13) = (Wo1W3 15, Wa1B3 1, + B2 1), (65)

and  [VjeNn (L3, Ly+L3): (Wsj,Bsj)=(Waj+i—1s, B2 j+1-15)]-
(66)
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Moreover, note that Corollary 2.7, (56), and the fact that &g = ¥4 ¢ O3 ensure that

[VjeNn(0,L3): (W, Bsj) = (Ws,, B3] (67)

(We,5, Bs,1;) = (Wa,1W3,1,, Wa1B3 1, + Ba 1), (68)

and [V] e Nn (L3, Ls + L3): (W@j, B6)j) = (W4,j+l—L3, B4,j+1—L3)]-
(69)
Furthermore, observe that Corollary 2.7, (56), and the fact that &7 = & e &5 show
that

[VjieNn(0,Ls): (W, B7j) = (Wsj, Bs )], (70)

(W7,Ls, B7,1s) = (W1,1Ws, 1, Wi.1Bs. 15 + B1.1), (71)

and [VjENﬁ(L5,L1 + Ls): (W7],B7]) (W1]+1 LS’B]]+1_L5)]
(72)
This, the fact that L3 < L, + L3 — 1 = Ls, (64), and (67) imply that for all j €
N ~ (0, L3) it holds that

(We.j. Bes,j) = (W35, Bs,j) = (W5 j, Bs ;) = (W7, B7,j). (73)

In addition, observe that (58), (59), (64), (65), (68), (70), (71), and the fact that L5 =
Ly + L3 — 1 demonstrate that

(We,15, Bo,1;) = (Wa,1W3 15, Wa.1B3, 1, + Ba 1)

_ (W2,1W3 15, Wa1B3. 1, + B2.1) tLy>1
(Wi, iWo i W3 1y, Wi iWa 1 B3, + WiiBai + Bi1) :La=1

_ J(WoaWs 1y, Woi By 1y + Bai) s Ly > 1 a4
(Wi 1(W2,1 W3 13), Wi 1(W21B3 1y + B21) + Bi1) Ly =1

_ ) (Ws1y, Bs 15) t Ly > 1
(Wi,1Ws 15, Wi1Bs 1, + Bi,1) :1Lr=1

= (W7,1;, B7,1,)-

Next note that the factthat Ls = Lo+ L3 —1 < L;+ Ly + L3 —1 = L3+ Ly, (69),
(61), (66), and (70) ensure that for all j € N with L3 < j < Ls it holds that

(We,j» Bo,j) = (Wa jt1-13: Bajr1-15) = (Wa j+1-15. B2, j+1-L5) (75)
= (Ws,j, Bs,j) = (Wy,j, By,j).
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Moreover, observe that the fact that Ls = Lo+ L3—1 < L1+ Ly+L3z—1 = L3+ L4,
(69), (74), (59), (66), and (71) prove that

(Wa,Ls+1—Ls> Bars+1—1;) :L2>1

(We.Ls» Be,Ls) =
’ ’ (W(),L31 B6,L3) : L2 =1

_ (W4L2,B4L2) Ly > 1
(W7L3,B7L3) Ly =1

_ (W11 Wo, Ly» Wi1B2 1, +B11) :Ly>1 (76)
(W7,Ls, B7,15) cLy, =1

_ ) (WiaWs 1, WiaBs 1s + Biy) i Ly > 1
(W7,L5. B7,15) Ly =1

(W7.L5, B7,15)-

Furthermore, note that (69), (63), (72), and the fact that Ls = Lo + L3 — 1 > L3
assure that for all j € N with Ls < j < Lg it holds that

(We.j» Bo.j) = (Wa j+1-Ls5» Bajr1-13) = (Wi j+2—1,—L3, Bl j+2—1,—L3)
= (Wi j+1-Ls, Bij+1-1s5) = (W75, B,j).
(77)
Combining this with (57), (73), (74), (75), and (76) establishes that
(P oeDy) e D3 =P 0D3=0D5==>P7 =0 0Ps =D 0 (DyeD3). (78)
The proof of Lemma 2.8 is thus completed. O
2.2.3 Compositions of ANNs and affine linear transformations
Corollary 2.9 Let ® € N (c¢f. Definition 2.1). Then
(i) it holds for all A € N with L(A) = 1 and Z(A) = O(®) that

PlA e d) < [max{l, g%}] P(®) (79)

and
(i) ir holds for all A € N with L(A) = 1 and Z(®) = O(A) that

P(® o A) < [max{1, %ﬁ%ﬁ H P (80)
(cf. Definition 2.5).
Proof of Corollary 2.9 Throughout this proof let L € N, o, I1,...,lp e N, A, Ay €

N satisfy that L(A1) = L(A2) = 1, Z(A1) = O(®), Z(P) = O(A3), and D(P) =
(lo, 11, ..., 11). Observe that item (iv) in Proposition 2.6, the fact that O(®) = I,
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the fact that Z(®) = Iy, and the fact that for all k € {1, 2} it holds that D(Ay) =
(Z(Ax), O(Ax)) ensure that

L—1
S ln(lp—1+ 1)
=1

m=

P(Aj e @) = l + [O(A])]([L_l +1)

[2—1
| S b+ 1) [+ [FE o+ 1)
m=1

L—1
< max{l, OEL‘%)}] D1+ 1) + [max{l, OELA‘)}] lp(lp—1+1)
m=1
_ O(ay) L _ Oay)
= maX{l, I }] mzzzllm(lmfl + l) = [max{l, W}] P(q))
8D
and
L
P@eAy)=| > luly—1+1)| + ll[I(Az) + l]
m=2
L
_ [2 Iy (b1 + 1)1 + [I(;ji)l*l]ll(zw 1)
m=2
L(A2)+1 L T(Ay)+1
< [max{l, o }] mEZIm(lm_l +1)| + [max{l, s} }] L(lo+1)
L
|max{1, I(zfi)fl}] X lnlln1+1)| = |max{1, II_((?))::}] P(®).
(82)
This establishes items (i)—(ii). The proof of Corollary 2.9 is thus completed. O

2.2.4 Powers and extensions of ANNs

Definition 2.10 Let d € N. Then we denote by I; € R?*? the identity matrix in
Rd xd .

Definition 2.11 We denote by (-)*": {® € N: Z(D)

= O(®)} — N, n € Ny, the
functions which satisfy for all n € Ny, ® € N with Z(®) = O(

) that

oo _ | (10(0): (0.0.....0)) € RO@)xO(@)  RO@) ., —0
| Do (@) :neN

(cf. Definition 2.1, Definition 2.5, and Definition 2.10).
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Definition 2.12 (Extension of ANNs) Let L € N, W € N satisfy that Z(¥) = ( ).
Then we denote by 1 w: {® € N: (L(®) < Land O(P) = Z(V¥))} — N the
function which satisfies for all ® € N with £(®) < L and O(®) = Z(¥) that

ELw(®) = (B L@y oo (84)
(cf. Definition 2.1, Definition 2.5, and Definition 2.11).

Lemma 2.13 Let d, i€ N, ¥ € N satisfy that D(V) = (d, i, d) (cf. Definition 2.1).
Then

() it holds for all n € Ng that L(W*") = n + 1, D(¥*") € N"*2, and

oy ) (d,d) n=20
b )_{(d,i,i,...,i,d) ‘neN (83)
and
(ii) it holds for all ® € N, L € N [L(®), o0) with O(®) = d that L(Ep,w(P)) =
L and
P(EL,w(P))
P(®) (L(®) =L
< .
{[(max{l, HP(@) + (L —L(®)—1)i+d)(i+ 1)] (L(@) < L
(86)

(cf. Definition 2.11 and Definition 2.12).

Proof of Lemma 2.13 Throughout this proof let ® € N, Iy, [1, ...,! L(®) € N satisty

that O(®) = d and D(®) = (lo, 11, .., lf(g)) € NE@®+1 and let a4 € N,
ke NgnJ0, L], L € Nn[L(D), ), satisfy forall L € Nn[L(D), o),k € Non [0, L]
that

Iy k< L(D)
ark =131 :L(P)<k<L. (87)
d k=1L

We claim that for all n € Ny it holds that

(d,d) tn=0
(d,i,i,...,i,d) :neN’
(88)

LWy =n+1 and N'T23DW*)= {
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We now prove (88) by induction on n € Ny. Note that the fact that peo = (Iz,0) €
R%d % R (cf. Definition 2.10) establishes (85) in the base case n = 0. For the
induction step Ny 3 n — n + 1 € N assume that there exists n € Ny such that

(d,d) n=0
(d,i,i,...,i,d) :neN’

(39)
Observe that Lemma 2.4, (83), items (i)—(ii) in Proposition 2.6, (89), and the
hypothesis that D(¥) = (d, i, d) imply that

LW*)=n+1 and N'T23DW*) = {

LWOTD) = L(W e (W) = LW)+ LW —1=2+(n+1)—1=(n+1)+1
and  D(W*TD) = D(W e (U*)) = (d,i,i,...,i,d) e N*T3,
(90)

Induction thus proves (88). Next note that (88) establishes item (i). In addition,
observe that items (i)—(ii) in Proposition 2.6, item (i), (84), and (87) ensure that for
all L € N n [£(®P), o0) it holds that

L(ELw(®)) = LW EL@)) e @) = (W EL@)) 4 £(d) — 1

TSI o W oD

and
D(ELw(®)) = D((W* L)) e ®) = (ag,ar1,...,arr).  (92)
Combining this with (87) demonstrates that
L(EL(e)w(®)) = L(P) 93)
and

D(EL (), w(®)) = (aL(@).00 AL@).15 -+ AL(0).L(0))

04
= (lo. 1o+ g (g) = D(P). O

Hence, we obtain that

P(EL(a)w(®)) = P(P). (95)
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Next note that (87), (92), and the fact that / L(@) = O(®) = d imply that for all
L e Nn (L(®), ) it holds that

P(gL,‘I’(CD)) = ké] apx(ap k—1 + 1)

L(®)—-1 L
= l > arx(ap k-1 + 1)] + > apilapk—1+1)
k=1 k=L(®)

L(@) L(®)
l I (lk 1+ )] + Z aL,k(aL,k—l + 1)

=1 k=L(®)

L
! Z aLkaLk 1+1)]

= Le(le—1 + 1)1 + aL’ﬁ(q>)(aL,£(<1>)—1 +1)

L—1 L (96)
+ |: Z aL,k(aL,k—l + 1)] + l Z aL,k(aL,k_l + 1)1
k

k=L
= kgl lk(lk_l + 1) + 1(1[/(1))_1 + 1)
J;(L —1—(L(®) + i) +1)i(i+1)+arlar,o—1+1)
[ L(®)—1 1
= 1;1 We(l—r+ 1) | + 2z Ug@)—1 + 1]
+(L = £(®) = 1)i(i+ 1) +d(i+1)

L(®)

Z Le(le—1 + )1 + (L — L(D) — 1)i(i—|— 1)+di+1)

< _max{l, é ]

— [max{1, § ] P(O) + (L — £(®) — )il + 1) +d(i+ 1).

Combining this with (95) establishes (86). The proof of Lemma 2.13 is thus
completed. O
Lemma 2.14 Leta € C(R, R), I € N satisfy for all x € RZUD that T(T) = O(I) and
(Ra(D)(x) = x (cf. Definition 2.1 and Definition 2.3). Then

(i) it holds for alln € Ny, x € RZD) thar

Ra(@* e CRIW RID)  gnd (R, (I™)(x)=x  (97)

and
(i) it holds for all ® € N, L € N A [L(®), o), x € RE(®) with O(®) = I(I) that

Ra(EL1(®)) € C(RE®) RO®@))  gng (Ra(EL.1(®))) (x) = (Ra(®)) (x)
(98)
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(cf. Definition 2.11 and Definition 2.12).

Proof of Lemma 2.14 Throughout this prooflet ® € N, L, d € N satisfy that £L(®) <
L and Z(I) = O(®) = d. We claim that for all n € Ny it holds that

Ra(I) e CRY,RY)  and VxeRY: (Ro(I)(x)=x. (99

We now prove (99) by induction on n € Ny. Note that (83) and the fact that O(I) = d
demonstrate that R, (I*) € C(R?,R?) and Vx € RY: (R,(1°°))(x) = x. This
establishes (99) in the base case n = 0. For the induction step observe that for all
n € No with R, (I*") € C(RY, R?) and V x € RY: (R, (I*"))(x) = x it holds that

Ra(I* D) = Ry (Lo (1) = (Ra()) 0 (Ra(I*")) € C(R?, RY) (100)

and

VxeR: (Ro(I*0+ D)) (x) = ([R ()] o [Ra(I*)]) (x)
(R0 = (RaD)e) = .
(101)
Induction thus proves (99). Next observe that (99) establishes item (i). Moreover,
note that (84), item (v) in Proposition 2.6, item (i), and the fact that Z(I) = O(®)
ensure that

Ra(EL1(®)) = Ra((I*E—E£(®) 0 @

e C(RZ®) ROW) — c(RT®) RIW) = c®@E®) gO@) (10
and
Ve RHO): (Ra(EL1(®))(x) = (Ra(T*E-EOM) (Ra(@)() (103
= (Ra(®))(x).
This establishes item (ii). The proof of Lemma 2.14 is thus completed. O

2.2.5 Compositions of ANNs involving artificial identities

Definition 2.15 (Composition of ANNSs involving artificial identities) Let ¥ € N.
Then we denote by

()Ow (): {(P1,P2) eNXxN: Z(P1) = O(¥) and O(D,) = Z(¥)} — N (104)

the function which satisfies for all &, ®, € N with Z(®1) = O(¥) and O(P;) =
Z(W) that

OIOQy Dy =D e (Ved)) = (Del)e D) (105)

(cf. Definition 2.1, Definition 2.5, and Lemma 2.8).
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Proposition 2.16 Let WV, 1, ®2eN,1,110,01,1, -, ll,ﬁ(d:q)’ bolt,..., 12,£(<I>2)
€ N satisfy for all k € {1,2} that D(¥) = (Z(V),i, O(¥)), Z(®1) = O(V),
O(®2) = Z(V), and D(Pk) = (k0. Ity - - - lk,£(<1>k)) (cf- Definition 2.1). Then

(1) it holds that

D(®1 Oy ©2) = (0: 1215 - b £@yy—10 b L 112, L £io)):
(106)
(ii) it holds that

L(P] Op P2) = L(D1) + L(D2), (107)

(iii) it holds that

P(@1 Oy ©2) < [max{1. 7. g ] (P@1) + P(02). (108)

and
(iv) it holds for all a € C (R, R) that Rq(®1 Oy ®2) € C(RL(®2) RO@D) gng

Ra(®1 Ov 1) = [Ra(®@1)] 0 [Ra(W)] o [Ra(®2)]  (109)
(cf. Definition 2.3 and Definition 2.15).

Proof of Propositions 2.16 Throughout this proof let a € C(R, R), Ly, L, € N sat-
isfy that L1 = L£(®;) and L, = L(®;). Note that item (i) in Proposition 2.6,
the hypothesis that D(®3) = (l20,02.1,...,l2,1,), the hypothesis that D(V) =
(Z(W), 1, O(V¥)), and the hypothesis that Z(W) = O(P,) show that

D(W e @) = (lro,0,1,...,12,1,—1,1, O(W)) (110)

(cf. Definition 2.5). Combining this with item (i) in Proposition 2.6, the hypothesis
that D(®1) = (l1,0, 1,15 ---.1,1,), and the hypothesis that Z(P;) = O(¥) proves
that

D(®) Oy ©2)=D(P1 e (Ve D))= (lr0.lo1,..., Lo, o—1. 0 L1 lias oo lny).

(111)
This establishes item (i). Moreover, observe that item (ii) in Proposition 2.6 and the
fact that £(W) = 2 ensure that

L(P) Oy D) = L(P) o (Vedy)) =L(D))+ L(VeDy)—

1
— L(®1) + L(W) + L(®2) — 2 = L(D)) + L(Dy). 1P
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This establishes item (ii). In addition, observe that (111), the fact that Z(¥) =
O(®2) = Ip,1,, and the fact that O(V) = Z(®;) = 1 o demonstrate that

_Lzl Ly
P(@1Ow ®2) = | X bwmllom—1+1 1+[lemllm 1+1)1
m=1 =2
+1<12L2 1 +1 +1111+1)

Ly—1
= Zl2m12ml+ 1+[lemllml+l)1
m=1
I

+I(\I/)12L2(12L2 1+ 1)+ 1 110+) (113)

_max{l, m}] L;::llz,m(lz,m 1+ 1)

N

 [max{1. ot} | 2 i + 1)]
:max{l, m’ O(i\y) ] (P(®1) + P(®2)).

N

This establishes item (iii). Next note that item (v) in Proposition 2.6 implies that

Ra(®1 Oy P2) = Ry(P1 o (Ve dy))
~ [Ra(@1)] o [Ra(W o @)
= ([Ra(®1)] o [Ra(¥)] 0 [Ra(®@2)]) € C(RL(@2) RO(@)),
(114)
This establishes item (iv). The proof of Proposition 2.16 is thus completed. O

2.3 Parallelizations of ANNs
2.3.1 Parallelizations of ANNs with the same length

Definition 2.17 (Parallelization of ANNs with the same length) Let n € N. Then we
denote by

Py {(®1, @2, ..., @,) €N L(D1) = L(D2) =... = L(Py)} =N (115)
the function which satisfies for all L e N, (l] o, l1,1,..., 0, L), (12 0,021, -+, lz’L),
s (Tnos bty oo ) € NEFL = ((Wi,1,B1,1), Wi2,B12), ..., (Wi,
Bi.)) € (xf_y (ROxxTi=t x Rl"")) Cbz = ((Wz 1,B21), (W22, B22), ..., (War,
Byr)) € (xfo(RRe*hict x RR2k)) = (W1, Bn1), (Wn,z, By 2),
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eos (WaL, Bu1)) € (xE_ | (RInkXInk=1 x RInk)) that

Wii O o --- 0 Bi1
0O Woy O --- 0 B>
Pn(cblv @27-.',q>}’l) = 0 0 W3’1 o 0 ’ B3’] ’
0 0 0 - Wy By,
Wio O o --- 0 By
0 W 0 --- O B>)
0 0 Wio--- 0 [ [Bs2ff, ..., (116)
O 0 0 Wn2 Bn,2
WI,L 0 0 0 BI,L
0 wWor O --- 0 By
0 0 Wsp--- O B3 1
0 0 0 - Wy By.L

(cf. Definition 2.1).

Lemma 2.18 Letn, L€ N, (I10,01.1,---,01.1), (o l21s -, bn)s ooy (nos In1s
Jnp) € NEFL <I>1 = (W11, B, 1) (Wi, Bi2),.... (WL, Bi.L)) € (xf_,
(Rl‘ Lt RIK)), @) = ((Wa1, Bo1), (Wa2. Boa). ... (War, Bap)) € (X£_,
(RIZlezk b x RIZk)) ’ q)n - ((Wl’l,15 n,l)’ (Wl’l,27 Bn,Z)a L} (Wn,L» Bn,L)) €
(xE_ | (Rlnk Xkt 5 R’"~k)) Then it holds that
Pn(q)l, &y, ..., CDn) € (Xllgzl (R(Z_';:] 1_/,k)x(2_'}:1 Ljk—1) % R(Zﬁzl l_/lk))) (117)
(cf. Definition 2.17).

Proof of Lemma 2.18 Note that (116) establishes (117). The proof of Lemma 2.18 is
thus completed. O

Proposition 2.19 Leta € C(R,R), n e N, & = (®, &y, ..., ,) € N satisfy that
L(®P)) = L(DP2) =... = L(DPy) (¢f Definition 2.1). Then
(i) it holds that

R, (Pn(fb)) eC (R[Z?ZI I(d)_/-)]’ R[Z?‘:l 0(‘1’1')]) (118)

and
(i) it holds for all x; € RE(®) x, e RZ(®2) |y, e RZ(®n) gy

(Rd (Pn(cb)))(xl,xz, ey Xn)

= (Ra(®1))(x1), (Ra(®2))(®2), - ., (Ra(®)) (x)) € RIZj=1 O@)]
(119)

(cf. Definition 2.3 and Definition 2.17).
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Proof of Proposition 2.19 Throughout this proof let L € N satisfy that L = L£(®),
let ljo,0j1,....0, € N, j e {1,2,...,n}, satisfy for all j € {1,2,...,n} that
D(ij) = (lj,(), lj,la e, lj,L), let ((Wj,la Bj,l)a (Wj,z, Bj,2), R (Wj,La Bj,L)) €
(xE_ (RE#xxlik=1 x RIkY), je {1,2,...,n}, satisfy forall j € {1,2,...,n} that

®; = (W1, Bj1). (Wj2. Bj2). ... (Wi, Bjr)). (120)

letay € N, k€ {0,1,..., L}, satisfy forall k € {0, 1, ..., L} that oy = Z;f:] Lk
let ((A1,b1), (A2, b2), ..., (AL, br)) € (xF_ (R¥X%—1 x R*)) satisfy that

P, (®) = ((A1, b1), (A2, b2), ..., (AL, bL)) (121)

(cf. Lemma 2.18), let (x; 0, Xj.1,...,xj0—1) € (R0 x R x ... x RliL-1), j e
{1,2,...,n},satisfy forall j € {1,2,...,n},ke Nn (0, L) that

Xjk = Ma 1, (Wjkxjr—1 + Bji) (122)

(cf. Definition 2.2), and let rg € R*, r; € R*, ... rp—1 € R*~1! gatisfy for all
ke {0,1,...,L — 1} that xx = (x1k, X2k, - - - Xn.k). Observe that (121) demon-
strates that Z(P, (®)) = ap and O(P,(P)) = . Combining this with item (ii) in
Lemma 2.4, the fact that for all k € {0, 1, ..., L} it holds that ax = >77_; I, the
fact that for all j € {1,2,...,n} it holds that Z(®;) = I; o, and the fact that for all
J€{1,2,...,n}itholds that O(®;) = [; ; ensures that

Ra(Py(®)) € C(R®, RoL) = ¢ (RIZj-110] RIZj-i L]y

= c(RIZI=1 T RIZj-1 O@)]), (123)

This proves item (i). Moreover, observe that (116) and (121) demonstrate that for all
ke {l,2,..., L} itholds that

Wix O 0O --- 0 Bk
0 Wory O - 0 By i

A= 0O 0 Wi O and by = | B3k |. (124)
0 0 0 - Wi Buk
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Combining this with (21), (122), and the fact that for all k € N n [0, L) it holds
that xx = (x1.k, X2k, - - - » Xn.k ) implies that for all k € N n (0, L) it holds that

Mat e (Wix1x—1 + Bii) X1k
Ma by (Wakx2,k—1 + Bok) X2k

My (Aktk—1 + bi) = : =| . [=uw 125
Mt 1 (W kXnk—1 + Buk) Xn.k

This, (22), (120), (121), (122), (124), the fact that to = (1.0, X2,0, - - - » Xn.0), and the
fact thatry,—1 = (x1,.—1,X2..—1, . - ., Xn,—1) ensure that

(Ra (Pn(q))))(xl,Ov X2,050 -+ xn,O) = (Ra (P”(CD))) (PO)

WiLxi..—1+ Bi.L (Ra(@1))(x1,0)
WaLx20—1 + B2 L (Ra(®P2))(x2,0) (126)
=ALrL—1 +bL = : = ) .
Wn,an,L—l + Bn,L (Ra(q)n))(xn,O)
This establishes item (ii). The proof of Proposition 2.19 is thus completed. O

Proposition 2.20 Letn, L e N, ® = (&1, ®,, ..., D,) e N, (Lo, l1.1,....11.1),
(bo.lo1s - lor)s ooy (lnos bt b)) € NEFU satisfy for all j €
{1,2,...,n} that D(®;) = (I 0,1j1,...,1j1) (cf Definition 2.1). Then

(i) it holds that

D®y(®) = (3] _ 110 35 lieon 2 i) (127)

and
(i1) it holds that

n 2

PPy (P)) < 5[ P())] (128)

j=1
(cf. Definition 2.17).

Proof of Proposition 2.20 Note that the hypothesis that Vj € {1,2,...,
n}:D(®;) = (lj0.1j1,...,1j1) and Lemma 2.18 assure that

D(P,(®)) = (Z’;lej,o,ijll,-,l, ...,Z’;le,,L). (129)
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This establishes item (i). Moreover, observe that (129) demonstrates that

D= S [(S be +1]

=~
—_

k(=1 +1)

//\
INgE
Mh
1
nM:
HM=
?M“

N
=
M:

n n n 2
= Z 1P(0)P(®;) = %[Ziz] P(d)i)] . (130)
i=1j=1
The proof of Proposition 2.20 is thus completed. O
Corollary 2.21 Letn € N, ® = (&1, Dy, ..., D,) € N" satisfy that D(®;) =
D(®3) = ... = D(®,) (cf. Definition 2.1). Then it holds that P(P,(®)) < n*P(®d)
(cf. Definition 2.17).

Proof of Corollary 2.21 Throughout this proof let L € N, lo, I1, ..., € N satisfy
that D(®;) = (lo, I1, ..., Ir). Note that item (i) in Proposition 2.20 and the fact that
Vje{l,2,....,n}: D(®;) = (lo, 1, ..., 1) demonstrate that

P(Pn(q)l, Dy, ..., q)n)) = (nlj)((nlj_1) + 1) < é (Vllj)((nlj_l) -I—I’l)

1 J

[zu, )| =P

th

(131)
The proof of Corollary 2.21 is thus completed. O

2.3.2 Parallelizations of ANNs with different lengths

Definition 2.22 (Parallelization of ANNs with different length) Let n € N, ¥ =
(W1, W2,...,¥,) € N" satisfy for all j € {1,2,...,n} that H(¥;) = 1 and
I(¥;) = O(¥;). Then we denote by

Pouw: {(Cbl, CDQ,...,CD,,) e N*: (V] € {1,2, ...,n}: O(@j) II(\IJJ'))} — N
(132)
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the function which satisfies for all ® = (&, ®y,...,D,) € N" with Vj €
{1,2,...,n}: O(®;) = Z(¥,) that

Py y(®) = Py <gmaxke{1,2,...,n} L(®), ¥ (®1), ..., gmaxke{l,z,...,n} L(@). 9, ((D”))
(133)

(cf. Definition 2.1, Definition 2.12, Lemma 2.13, and Definition 2.17).

Corollary 2.23 Leta € C(R,R), n e N 1 = (I}, I, ...,1,), ® = (&1, Do, ...,
®,) € N" satisfy forall j € {1,2,...,n}, x € RO@) that HI;) =1, I(L;) =
O(L;) = O(®;), and (Ra(1;))(x) = x (cf. Definition 2.1 and Definition 2.3). Then
(i) it holds that

Ry (Pn,H(Q)) c C(R[Z;:' I(d’j)], R[Z.’}:' O(q’j)]) (134)

and
(ii) it holds for all x| € ]RI(CDI), X € RI(CDZ), .., Xp € RI(‘D") that

(Ra(Pag(®))) (x1, %, - %)

— (Ra(®@1))(x1), (Ra(®2))(x2), ..., (Ra (@) (1)) € RIZj=1 O@1)]
(135)

(cf. Definition 2.22).
Proof of Corollary 2.23 Throughout this proof let L € N satisfy that L =
max ey 2, )} £(P;). Note that item (ii) in Lemma 2.13, the hypothesis that for all

Jj € {1,2,...,n} it holds that #(I;) = 1, (84), (28), and item (ii) in Lemma 2.14
demonstrate

() that for all j € {1,2,...,n} it holds that £(&L1;(®;)) = L and
Ra(€L1,(®,) € CRE®), RO®)) and
(I) thatforall j € {1,2,...,n}, x € RE(®}) it holds that
(Ra(€L.1;(®))) (x) = (Ra(®;))(x) (136)
(cf. Definition 2.12). Items (i)—(ii) in Proposition 2.19 therefore imply
(A) that

Ra(Pa(EL1, (1), €1, (B2), ..., i1, (®n)) € C(R[Z'}ZII@/)], Rt O(<I>j)])
(137)

and
(B) that for all x; € RZ(®) x, e RZ(®2) . &, e RZ(®4) it holds that

(Ra( (SL]II(CDI)ygL]Iz(q)Z) ..... SL]I( ))))(xl X2, e, xn)
= ((Ra(ELr (@) (1), (Ra (€112 (92))) (52), -+ (Ra(ELs, (@) () )
= (Ra(@))(x1). (Ra(@2))(x2). ... (Ra(®1))(x2)

(138)
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(cf. Definition 2.17). Combining this with (133) and the fact that L = maxe(1 3. n}
L(®;) ensures

(C) that
Ry (Pn,]l(cb)) c C(]R[Z’}:lz(q’j)]7 R =1 O(‘b.i)]) (139)

and
(D) that for all x; € RZ(®) | x, e RZ(®2) . x, e RZ(®) it holds that

i

a(Pna( ))(x1 X2y ey Xp)
R (P (5L I d)l 5L’]12(CI>2),...,5L’]1n(fbn))>>(xl,X2,...,xn)
a(®1

( <m@mmwan%mm)
(140)
This establishes items (i)—(ii). The proof of Corollary 2.23 is thus completed. O
Corollary 2.24 Let n,L € N, ij,ip,...,1, € N, & = (U, ¥, ..., ¥,),d =

(@1, @o, ..., ®,) € N" satisfy for all j € {1,2,...,n} that D(¥;) = (O(®;), i;,
O(®,)) and L = maxye(y 2,... n) L(Pr) (cf. Definition 2.1). Then it holds that

’P(Pny\p(q)))
| (= £@5) = 1) Gy + 1)+ O(®;) (i + D) L0, 00 (L)]
2
[ PO e 0] )

(cf. Definition 2.22).

(141)

Proof of Corollary 2.24 Observe that (133), item (ii) in Proposition 2.20, and
item (ii) in Lemma 2.13 assure that

7)(Pn \I/(CD))
= P(Pu(EL.w, (P1), 5L,wz(2<1>2)s-~-,5L,wn(¢n)))
<3 [Zioi P, (@)]
< %<[Z'] i [max {1, (Tj)}] (@)L £(0,).0)(L)
+ [Z§:1 (L —L(®)) =1 (ij + 1) + O(®)) (i + 1)) ]1(11(@_1),@)@)]
2
+ S PO 12y )] )
(142)
(cf. Definition 2.12 and Definition 2.17). The proof of Corollary 2.24 is thus
completed. O
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2.4 Sums of ANNs
2.4.1 Sums of ANNs with the same length

Proposition 2.25 Letra € C(R,R), M € N, hy, hy,...,hyy € R, &, Pg, ...,
@y € N satisfy that D(®1) = D(®y) = ... = D(®y) (cf. Definition 2.1). Then
there exists ¥ € N such that

() it holds that P(¥) < M*P(®),
(i) it holds that Ro(W) € C(RZ(®D) RO@)) gng
(iii) it holds for all x € RL(®) thay

(Ra())(x) = % i (Ra (@) () (143)
(cf. Definition 2.3).

Proof of Proposition 2.25 Throughout this proof let d, 0 € N satisfy that Z(®;) = d
and O(®}) = 0, let (A}, by) € RO*(M) 5 R? (A, hy) e RIMd)xd  RMd gaisfy
that

A] = (hlla hzla hMIa), A2= . , b] =0, and b2=0 (144)
L
(cf. Definition 2.10), let A, A, € N satisfy that A} = (A1, b1) and Ay = (A, by),
and let ¥ € N satisfy that

W =Ape[Py(Pr, Pr,...,Pu)|eA (145)

(cf. Definition 2.5, Definition 2.17, Lemma 2.8, and Proposition 2.19). Note that
(145) and items (i)—(ii) in Corollary 2.9 demonstrate that

P) < [max{1, gl P([Puy (P1, @, ar)] » A2)
T(Ar)+1 }]

@)
< [max{l, OPy (@, 03, ..., ¢M))}] [max{l, Z(Py (&1, ®s,..., D)) +1
PPy (®1, ®2,..., Py))
— [max{1, $5}] [max{1 47 }| P(Pu (1, @2, Bur))
= P(Pu(®1, D2,..., Pu)).

(146)
Corollary 2.21 and the hypothesis that for all m € {1,2,..., M} it holds that
D(®,,) = D(®1) hence prove that

P(V) < PPy (@1, P2, ..., Py)) < M>P(P). (147)
Next note that (144) and the fact that Ay = (A, by) prove that for all x € R4
it holds that R,(Az) € C(RY, RM?) and (R,(A2))(x) = (x,x,...,x) € RM9,
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Proposition 2.19 and item (v) in Proposition 2.6 therefore ensure that

Ra((PM(q)], Dy, ..., (DM)) . Az) = (Ra(PM(q)l, Dy, ..., CDM))) o (RQ(AQ))
e C(RI(AZ)’ RO(PM((DL@ZW”(DM))

_ C(Ra” RO(¢1)+O(¢2)+...+O(¢M))

_ C(Rd,RMo)
(148)
and
VxeRY: (Ro((Pu(®1, @2,..., Pn)) o A2))(x)
= ([Ra Py CD[,CDQ,...,(DM))]O[Ra(Az)D(x) (149)
=( aPM q)],q)z,.. CDM)))()C,)C,...,)C)
= ((Ra (Ra(CDZ))( ) s (Ra(®u))(x)).

Furthermore, observe that (144) and the fact that A; = (A, by) assure that for all
Y1, Y2, ..., yu € R? it holds that R, (A1) € C(RM?, R?) and

(Ra(AD)) V1, y2, -5 ym) = D homym- (150)

m=1

Combining this and item (v) in Proposition 2.6 with (145), (148), and (149)
demonstrates that for all x € R? it holds that R, (W) € C(R?, R?) and

(Ra(W)() = 3 i (Ra(®) (). (s

This and (147) establish items (i)—(iii). The proof of Proposition 2.25 is thus
completed. O

2.4.2 Sums of ANNs with different lengths

Proposition 2.26 Ler a € C(R,R), M,d,0,i,L € N, hy,hy,....,hy € R
I, &y, ®,..., Py € N satisfy for all m € {1,2,...,M}, x € R® that
D) = (0,14,0), (Ra@)(x) = x, (Pw) = d, O(®n) = 0, and L =
max,c(12,..m} £(Pm) (cf. Definition 2.1 and Definition 2.3). Then there exists
W e N such that

(i) it holds that R, (W) € C(R?, R?),
(i) it holds for all x € R? that

(Ra())(x) = %Z i (Ra () (). (152)
and
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(ii1) it holds that

P(¥) < %( |z [max {1 § 3] P(@) 13,0 (L)]
| (= £(@n) = )i+ 1)
£+ 1) Lg(a,).0)(L)]

+ [Z%=l P(®Pm) ]1{£(<1>,,1)}(L)] )2-

(153)

Proof of Proposition 2.26 Throughout this proof let J = (J1,72,...,Ty) € NM
satisfy for all m € {1,2,..., M} that J,, = I, let (A}, b;) € R?*(M2) » R?
(Ag, by) € RIMd)xd  RMd gaisfy that

Iy
L
Al = (hlla hhly ... hMIa), Ar=1 .1, b1=0, and by =0 (154)
L
(cf. Definition 2.10), let A, A, € N satisfy that A; = (A1, by) and Ay = (A2, by),
and let W € N satisfy that

W =Aje (Pys(P, P2,....Pn)) ¢ As (155)

(cf. Definition 2.5, Definition 2.22, Lemma 2.8, and Corollary 2.23). Note that (155)
and items (i)—(ii) in Corollary 2.9 demonstrate that

Oa1) Z(Ag)+1
Bt [max{l’ OPuo(01.92.... <1>M))}] [max{l’ I(PMg(cpl,oz,.‘.,cpM))ﬂ}‘]
P(Pu3(P1, P2, ..., Pur))
— [max{1, 325 }] [ max{1, 25555} PPy s (@1, @2, @)
= P(PMJ(cbl, Dy, ..., QDM))_

(156)
Corollary 2.24 hence proves that
P(Y) < ’P(PMJ(CD], Dy, ..., @M))
< %( [ZZI:l [ max {1, 5}] P(®m) IL(£(<1>m),oo)(L)]
(157)

| (= £(@) = )i+ 1) +2 (1) Lz, 000 (L)
2
S PO L0, 0] )

Next note that (154) and the fact that Ay = (A, by) prove that R,(A;) €
C (R4, RM?) and

VxeRY: (Ry(A2))(x) = (x,x,...,x) e RM9, (158)
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Corollary 2.23 and item (v) in Proposition 2.6 therefore ensure that

Ra (PMJ((DI, Dy, ..., Dy e Az) € C(RI(AZ), RO(PM~3(®1’¢2"“’®M))) (159)
_ C(Rd, RMD)
and
VxeRY: (Ra (PM’j(CD], Dy, ..., Dy) e Az))(x)
= ((Ra(®1))(x), (Ra(®2))(x), - .., (Ra(®u))(x)).
In addition, observe that (154) and the fact that A; = (A, by) assure that R, (A1) €
C(RM? R?) and

(160)

Yy 2 vm € R (Ra(A)) (01, 2, ooy ym) = ) oy (161)

Combining this, (159), (160), and (155) with item (v) in Proposition 2.6 demonstrates
that

Ra(V) € C(RI((PM,S(q)I,®2’---s®M))‘A2)’ RO(AO) = C(R%, R?) (162)
and
M
VxeRY: (R, Z m))(x). (163)
This and (157) establish items (i)—(iii). The proof of Proposition 2.26 is thus
completed. O

2.5 ANN representations for Euler approximations
2.5.1 ANN representations for one Euler step

Lemma 2.27 Letra € C(R,R), L} € Nn [2,0), Ly € N, d,i,l10,01.1,.--,
hirho i, ..., € N I,®, & € N satisfy for all k € {1,2}, x € R?
that D(I) = (d,i,d), (Ra(D))(x) = x, Z(®x) = O(®k) = d, and D(P) =
(Ik.0s Ik 15 - - - o .1y ) (cf: Definition 2.1 and Definition 2.3). Then there exists ¥ € N
such that

(i) it holds that R,(¥) € C(R?, RY),
(i) it holds for all x € RY that

(Ra(¥))(x) = (Ra(®2))(x) + (Ra(®1)) © (Ra(®2)))(x).  (164)
(iii) it holds that
DY) = (0. o1, byt i +i lia A+ o D -1+ Dy ), (165)

and
@iv) it holds that

P(W) =P(®1) + P(P2) + (i —d)(lo,r,—1 + 1) +111(l2,,—1 — d)
L L—2
+(L1—2)i(i+1)+i[ Z ll,m:| -‘rl[ Z l :|
m=2
(166)
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Proof of Lemma 2.27 Throughout this proof let A; € R4*24 A, e R?3*d b, e RY,
by € R satisfy that

A=l L), A= GZ) b1 =0, and bry=0 (167

(cf. Definition 2.10) and let A € (R¥*2? x RY) < N, Ay € (R??*4 x R??) C N,
W e N satisfy that A} = (A, b1), Ay = (Az, b2), and

W= Ape [P, I"E17))] 0 A 0 @y (168)

(cf. Definition 2.5, Definition 2.11, Definition 2.17, Lemma 2.8, and item (i) in
Lemma 2.13). Observe that (167) and the fact that Ay = (A, by) ensure that for all
x € R4 it holds that

Ra(A2) e CRY,R¥M)  and  (Ru(A2))(x) = (x,x). (169)
Item (v) in Proposition 2.6, item (i) in Lemma 2.14, and Proposition 2.19 hence imply
that for all x € R? it holds that R, ([P2(®1, I*(Z171))] e A,) € C(RY, R*) and
(Ra([P2 (@1, 1°H17 1) ] 0 A9)) (x) = (Ra (Po (@1, 1°H17D))) (x, x)
= ((Ra(®1))(x), (Ra(T*E17D)) (x)) = ((Ra(®@1))(x), x).

Item (V) in Proposition 2.6 therefore demonstrates that for all x € R¢ it holds that
Ra([P2(@1,1*E17D)] o Ay 0 @5) € C(RY, R?) and

(170)

(Ra ([P2(®1. 121 7D) [0 4 0 @) (x) = ((Ra(®1))((Ra(€2))(). (Ra(€2)) () ).
{17n

In addition, note that (167) and the fact that A; = (Aj, b;) ensure that for all
y = (y1, y2) € R? x R¥ it holds that
Ra(Ar) e C(R* RY)  and  (Ra(A1))(y) = y1 + y2. (172)

Item (v) in Proposition 2.6, (168), and (171) hence prove that for all x R4 it holds
that R, (W) € C(R?, RY) and

(Ra(¥))(x) = (Ra(®1)) (Ra(®2))(x)) + (Ra(®2))(x). (173)

Next note that item (i) in Lemma 2.13 and item (i) in Proposition 2.20 demonstrate
that

D(Py (@1, 1" 7D)) = (24, 1y +islip + iy lpy—1 +5,2d). (174)

Item (i) in Proposition 2.6 therefore ensures that

D(Ay o [P0, I*F D) 0 Ay) = (d iy + i li2 +iseenulipy—1 + i d).
(175)

Combining this with item (i) in Proposition 2.6, (168), and the fact that O(®,) =
5,1, = d shows that

'D(‘-I’) = (12,0,12,1, b, ha b+ -1 d). (176)
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The fact that /1, = O(®;) = d hence ensures that

Ly—1
P(Y) = [ > bom(lom—1 + 1)] + (g + i)(lz,Lz—l +1)

m=1

Li—1
+[ > (lim + )= +i+ 1)] +d(ly,L,—1+i+1)

m=2

=P(d;y) — 12,L2(12,L2—1 + 1)+ (I + i)(lz,Lz—l +1)

B SR R

(L1—2)( )+l1Ll(ll Li—1+ )+11,L1 .

This, the fact that [z, = O(P2) = d, and the fact that ;o = Z(®;) = d
demonstrate that

P(Y) = P(®2) + (1 —d + ) (laz,—1 + 1) + (L1 —2)i(i + 1)
Ly
[lem]+1[211m]+77(¢1) alho+1)
=P(®;) + P(®2) + (i— d)(lz,Lz_] +1)+ ll,l(lz,L2—1 —d)
L L1—2
+(L1 —2)i(i + 1)+i[ > ll,m] +i[ > ll,m].
m=2 m=1

Combining this with (173) and (176) establishes items (i)—(iv). The proof of
Lemma 2.27 is thus completed. O

(177)

(178)

Proposition 2.28 Lera € C(R,R), L} € Nn [2,0), Ly € N, I, &, ®; € N,
d, i, 11,0,11,1, .. '111,L19l2,0a12,1» .. -,l2,L2 e N satisfyfor all k € {1, 2}, X € Rd
that 2 < i < 2d, hp,—1 < lip,—1 +1i D) = (d,i,d), (Ro@))(x) = x,
I(Pr) = O(®k) = d, and D(®r) = (k0. Ik 15 - - -5 Ik, 1) (cf- Definition 2.1 and
Definition 2.3). Then there exists V € N such that

(i) it holds that R, (W) € C(RY, RY),
(ii) it holds for all x € R? that
(Ra(¥))(x) = (Ra(®2))(x) + ((Ra(®1)) 0 (Ra(®P2))) (x),  (179)
(iii) it holds that
D(\IJ) = (12,0, lzyl, ey l2,L2—1: 11’1 +1, 11,2—|—i, Ceey ll,Ll—l +1, ll,Ll)y (180)

and
@iv) it holds that

P(W) < P(D2) + P(1)[3P(®1) + P(I) — 1]

)
Ples) + [1P(0) + Poy)]- (80

NN

Proof of Proposition 2.28 Throughout this proof let W e N satisfy that

(I) it holds that R, (¥) € C(R4, R?),
(I) it holds for all x € R that

(Ra(¥))(x) = (Ra(®2))(x) + ((Ra(®1)) 0 (Ra(®2)))(x),  (182)
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(III) it holds that
DW) = (lro. 1, .-y lopy—1, g+ Lo+, oo i -1+, ), (183)

and
(IV) it holds that

PW) =P(®1)+P(P2) + (i—d)(2,1,—1 + 1) +1i,1(l2, 1,1 — d)
+(L1—2)i(i+1)+i[ Lzlj ll,m] +1[LZ_ ]
" (184)
(cf. Lemma 2.27). Note that the fact that /1 o = Z(®1) = d = O(P1) = I, implies
that

L L
i[ Zl zl,m] < %i[ Zl B (L m—1 +1)] = H[P(®1) —lii(d+1)]  (185)
m=2

m=2
and
L—2 —2
i[ 3 ll,m] %1[ 2 D (lm— 1+1)] (186)
m=1 m=1
= % [’P(CD]) —d(ll,Ll—l +1) —ll,L1—1(ll.,L1—2 + 1)]

Combining this with (IV) and the hypothesis that [ 7,1 <[j 1,—1 + i ensures that

P(Y) < [1L+i]P(®1) + P(P2) + (i — d)(l2,L2—1 +1)+ 11’1(12’142_1 —d)

+(Ly —2)i(i + 1) — il 1(d + 1)

~Ya -1+ 1) =Sl —2 + 1)

< [1+1]P(®1) + P(P2) + [max{i — d, 0}](11,L1—1 +i+1)

[l -1 +i—d =L@+ 1]+ (L1 —2)i(i + 1)

—%id(ll,[‘lfl +1)— %ill,Llfl(ll,mfZ +1).

(187)
Moreover, observe that the hypothesis that 2 < i < 2d shows that

hali—d—%i(d+1)] = sid(ho,—1+1) = 3ili,—1(lhp,—2 + 1)

i . . 188
<lq2d - d (d+1)] =3l - —ili,—1 < —3ilg,—1. (188)

This and (187) prove that

P(Y) < [1 + i] P(Dy) + P(P2) + [max{i —d, 0}] L —1

+[max{i —d,0}] i+ 1) + ly1l1,0,—1 — 3ili,—1 + (L1 —2)i(i + 1)
< [1+1]P(®1) + P(P2) + [max{i — d,0}] L1—1

+i(i + 1)+ll,1ll,L171+(L1 —-2)i(i+1)— zill Li—1
< [1+1]P(®1) + P(P2) + [max{i — d,0}] Li—1 ol —1

+(Ly = Vi + 1) = il 1,1
< [1+1]P(®1) + P(D2) +haliL -1+ (L —1)i(i+1).

(189)
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Moreover, observe that

Ly Ly
_ _ 1<l _
Li—1< [ lll,m] 1< mZ:: Lm(m—1 + 1)] 1 (190)
1
2

Combining this and (189) with the fact that Vk e N [1, L1]: l1 x < %ll,k(h,k_] +
1) < %P(@l) demonstrates that

P(V) < [1+1]P (@1)+P(‘b2)+ll 1hp,—1+ P(Cbl)( 1)
= P(dy) + [1 +i+ % i+ 1)]?(@]) + 11,111,L1 1 (191)
< P(®2) + [1 +1i+ 5ii + D] P(dy) + H{P(@1)]?

Furthermore, note that the hypothesis that 2 < i < 2d and the hypothesis that D(I) =
(d, i, d) prove that

i+ 3ii+1) =2 +i+3i-J?<2di+i+d-1}

=id+1)+d(i+1)— 32 =PI - ;12 P(I) — 2. (192)
Combining this and (191) implies that
P(¥) < P(P2) + [1 + P(I) = 2] P(®1) + 7[P(P1)]
= P(®2) + [1P(®1) + P(I) — 1]P(®1) 193
< P(®2) + P P(@1) + [P + [P(01)]? (159
— P(®2) + [AP() + P(@1) .

This, (I), (I), and (IIT) establish items (i)—(iv). The proof of Proposition 2.28 is thus
completed. O

2.5.2 ANN representations for multiple nested Euler steps

Corollary 2.29 Leta € C(R,R), d,i,£ € N, £o,£,...,€g € N, (Lp)pen, <
Nn[2,0), Ly €N, (¢n)neny S N, letl, e N ke {0,1,..., Ly}, n € Ny, assume
foralln € No, x € RY that 2 <1< 2d, oy <lorg—1 + i lnty—1 < lig1,L, 4 —1s
D(I) = (d,i,d), (Ra(D))(x) = %, Z(da) = O(n) = T(¥) = O(W) = d, Dihy) —
(InosInts -y lnr,), and D(¥) = (Lo, 1, ..., L), and let f: R? > RY, n e Ny,
be the functions which satisfy for all n € N, x € R? that

Jox) = (Ra(¥)(x)  and  fuy1(x) = fulx) + ([Ra(pn)] 0 fu) (x) (194)

(cf. Definition 2.1 and Definition 2.3). Then for every n € N there exists ¥ € N such
that

(i) it holds that Rq(W) € C(R?, RY),
(i) it holds for all x € RY that (R, (W))(x) = fu(x),
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(iii) it holds that H(W) = H(W) + S0 H(x),
@iv) it holds that

D(v) = (5(),51,~~.,€£—1,l(),1 +i oo+, . log—1 + 1,

ha+iha+i, ..., hp—1+i..., In—11+ i lh—12+1,..0, b1, —1 +1.d),
(195)

and

(v) it holds that P(W) < P(y) + SIZL [LP(1) + P(gw)]".

Proof of Corollary 2.29 We prove items (i)—(v) by induction on n € N. Note that the
hypothesis that D(y) = (Lo, £1, ..., £e), the fact that £g = Z(¢) = £g = O(Y) =
d, the hypothesis that D(¢o) = (lo,0, 00,1, - .-, 10,1,), the hypothesis that £¢_; <
lo,Lo—1 + 1, the hypothesis that Lo € N n [2, 00), Proposition 2.28 (with a = a,
Li=Lop, Ly =L1=1®&, =¢0, Pr=v.d=d,i=111,y = loy, l2,w = £y for
ve{0,1,..., Lo}, we {0, 1,..., £} in the notation of Proposition 2.28), and (194)
imply that there exists Y € N which satisfies that

(D it holds that R, (T) € C(RY, RY),
(I) it holds for all x € R? that

(Ra(1)(x) = (Ra(¥))(x) + ([Ra(do)] o [ <w>])(x> (196)
= fo(x) + ([Ra(¢o)] o f fi

(=}
~—
—

=
||

(III) it holds that
D(Y) = (€0, €1, ..., Le—1,lo1 +ilo2 + i, ..., lorg—1 +1ilo,r,), (197)
and
(IV) it holds that P(Y) < P(y) + [LP(I) + P(¢)]*-
Observe that (IIT) shows that £(Y) = £ + Lo — 1. Hence, we obtain that
H(Y)=L(T)—1=(£-1)+(Lo—1) =H(¥) +H(go).  (198)

Combining this with (I)—(IV) establishes items (i)—(v) in the base case n = 1.
For the induction step N 3 n - n+1 € Nn [2,0)letn € N, ¥ € N,
o, b, ..., [2+ZZ;5(LFI) € N satisfy that

(a) it holds that R, (W) € C(R?, RY),
(b) it holds for all x € RY that (Ry(W))(x) = fu(x),
(c) itholds that H (W) = H(y) + Y04 H(gw),
(d) it holds that
D(W) = (€0, L1, ..., Lo, log +ilo2 + i lopg—1 + 1l +i 012+,
R STV PSS U O T S N R T VY S B SRS B d)
=0t gy, )
(199)
and 5
1. itholds that P(¥) < P(y) + Sr—s [PD) + P(¢w)]”
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Observe that (d) and the hypothesis that Yk € No: ler,—1 < let1,0,,,-1
demonstrate that

[E(W)—l = [Q—H'ZZ;(I)(M—U =l 1L, -1 +i<l,—1+1i (200)

The hypothesis that D(¢,) = (l4.0,ln.1s---,In.L,), (d), the hypothesis that L, €
N N [2, ), and Proposition 2.28 (with a = a, L1 =Ly, Ly=2+>;_ O(Lk 1)
I=L®=¢,, P =V, d=d,i=i,l1y =y, low="~Lyforve{0,1,..., Ly},
wef{0,1,...,8+>7" O(Lk 1)} in the notation of Proposition 2.28) hence prove
that there exists ® € N which satisfies that

(A) it holds that R, (®) € C(RY, R?),
(B) it holds for all x € R? that

(Ra(®))(x) = (Ra(¥))(x) + ([Ral(gn)] © [Ra(¥)]) (%), (201)
(C) it holds that

D(q)) = (ﬁo, Ly, .., le_1,loa+1,lo2+1i, ..., lO,Lofl +i i+ b+,
., ll,Llfl +1,..., ln,l +1, ln,2 +1,..., ln,Lnfl +1, ln,L,,), (202)
and
(D) it holds that P(®) < P(¥) + [AP(I) + P(¢,)]".
Next note that (C) implies that £(®) = £+ >;_(Li — 1). Hence, we obtain that

H@) =L@ —1=(E=1)+ > (Le—1)=HW)+Y,  Hip). (03)

Moreover, observe that (B), (194), and (b) demonstrate that for all x € R it holds

that
(Ra(®))(x) = (Ra(¥))(x) + ([Ra(¢n)] )
= fﬂ(x) + ([ (¢n)] fn)( ) fn+1 x (204)

In addition, note that (D) and (e) ensure that

P(@) < PY) + | 3 [APM) + Plew)]* | + AP + Pon)]
(205)

k=0
) + z [1PM) + P(gi)].

This, (A), (C), (203), and (204) prove items (i)—(v) in the case n + 1. Induction thus
establishes items (i)—(v). The proof of Corollary 2.29 is thus completed. O

Proposition 2.30 Let a € C(R,R), d,£ € N, £p,¢1,...,¢¢ € N, ¥ € N,
(¢n)nen, S N satisfy for all n € Ny that Z(¢n) = O(¢n) = L(y) = O(¥) = d,
L(¢n) = 1, and D(Y) = (Lo, €1,...,Le) and let f,: RY — R4, n e Ny, be the
functions which satisfy for all n € Ny, x € R? that

folx) = (Ra())(x)  and  fug1(x) = fu(x) + ([Ra(en)] © fu)(x) (206)

(cf. Definition 2.1 and Definition 2.3). Then for every n € Ny there exists ¥ € N such
that
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() it holds that R,(¥) € C(RY, RY),
(ii) it holds for all x € RY that (R, (¥))(x) = fu(x), and
(iii) it holds that D(V) = D(v).

Proof of Proposition 2.30 We prove items (i)—(iii) by induction on n € Ny. Note that
(206) and the fact that R, () € C(R?, RY) establish items (i)—(iii) in the base case
n = 0. For the induction step Ng 3n — n + 1 € Nletn € Ng, W € N satisfy that

(I) it holds that R, (¥) € C(RY, RY),
(I) it holds for all x € R? that (R, (¥))(x) = f,(x), and
(IT) it holds that D(W) = D(y),
and let (A, b) € (R¥”*? x RY) < N, A € (R?”*? x R?) < N, ® e N satisfy that ¢, =
(A,b), A = (A +14,b),and ® = A e W (cf. Definition 2.5 and Definition 2.10).

Observe that item (v) in Proposition 2.6 demonstrates that for all x € R? it holds that
Ra(®) € C(R?, RY) and

(Ra((p))(x) = (Ra (A))
= (4 (207)

Combining this with (206) and (II) proves that for all x € R¢ it holds that

(Ra(®))(x) = (Ra(dn) (fu(x)) + fu(x) = far1(x). (208)

In addition, note that (IIT), the fact that ® = A e U, the fact that L(A) = 1, the
fact that Z(A) = O(A) = O(¥) = d, and item (i) in Proposition 2.6 imply that
D(®) = D(¥) = D(v). Combining this and the fact that R, () € C(R?, RY) with
(208) proves items (i)—(iii) in the case n + 1. Induction thus establishes items (i)—(iii).
The proof of Proposition 2.30 is thus completed. O

Corollary 2.31 Leta € C(R,R), d,i,L, L € N, €y, ¢1,...,8e € NI €N,
(Pn)neny < N, let 1, € N, k € {0,1,...,L}, n € Ny, assume for all n € N,
x € RUthat 2 < i < 2d, ey < lop—1 + 1 lnr—1 < Liv1.—1, D(I) =
(d.i,d), (Ra(D))(x) = x, Z(¢n) = O(dn) = I(y) = O(Y) = d, D(¢n) =
(.02 ln1s - s 1), and DY) = (€0, L1, ..., Le), and let f,: R — R, n € Ny,
be the functions which satisfy for all n € N, x € R? that

Jox) = (Ra(¥)(x)  and  fuy1(x) = fulx) + ([Ra(n)] 0 fu) (x) (209)

(cf. Definition 2.1 and Definition 2.3). Then for every n € Ny there exists ¥ € N such
that

(i) it holds that Rq(W) € C(RY, RY),

(i) it holds for all x € RY that (R, (¥))(x) = fo(x),
(iii) if holds that H(W) = H(W) + S04 H(dx) = H(¥) +n H(eo), and
(iv) it holds that P(W) < P(y) + Y123 [1P(1) + P(w)]".
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Proof of Corollary 2.31 To prove items (i)—(iv) we distinguish between the case L =
1 and the case L € N n [2, o0). We first prove items (i)—(iv) in the case L = 1.
Observe that Proposition 2.30 ensures that there exist ¥,, € N, n € Ny, which satisfy
that

(I) it holds for all n € Ny that R, (¥,) € C(R?, RY),
(I) it holds for all n € Ng, x € R? that (R, (¥,,))(x) = fu(x), and
(1) it holds for all n € Ny that D(¥,,) = D(¥).

Next note that the hypothesis that L = 1 demonstrates that for all n € Ny it holds that
H(¢n) = 0. Combining this with (IIT) implies that for all n € Ny it holds that

H(W,) = H(Y) = HW) + Y H(tn) = HY) +nHdo).  (210)
In addition, observe that (IIT) shows that for all n € Ny it holds that
P(¥,) = P(¥) ) + Zk . )+ P(n)] @11)

Combining this and (210) with (I)—(II) establishes items (i)—(iv) in the case L = 1.
We now prove items (i)—(iv) in the case L € N n [2,00). Note that (209), the

fact that R, () € C(R?,RY), the fact that H(y) = H(Y) + X0 Hidx) =
H(y) + 0 H(¢o), and the fact that P(y) = P(¥) + 3o [SPT) + P(¢k)]2 prove
that there exists W € N such that

(a) it holds that R, (W) € C(R?, RY),

(b) it holds for all x € RY that (R, (¥))(x) = fo(x),

(c) itholds that H(W¥) = H(w) + 3,1 Higw) = H(¥) + 0 - H(¢o), and

(d) itholds that P(¥) < P(v) + ;o [APM) + P(ow)]”.

Moreover, observe that Corollary 2.29 and the fact that for all £ € Ny it holds that
H(px) = L — 1 = H(¢po) ensure that for every n € N there exists ¥ € N such that
(A) itholds that R,(¥) € C(RY, RY),

(B) itholds for all x € R? that (R, (¥))(x) = fu(x),

(C) itholds that H(W) = H(Y) + YZg H(gw) = H(¥) + nH(¢o), and

(D) it holds that P(W) < P(¥) + Y44 [AP() + P(ew)]’.

Combining this with (a)—(d) proves items (i)—(iv) in the case L € N n [2, o). The
proof of Corollary 2.31 is thus completed. O

2.5.3 ANN representations for multiple perturbed nested Euler steps

Proposition 2.32 Lera € C(R,R), N,d,ie N, I, ® e N, A, As, ..., Ay € RI*d

satisfy for all x € RY that 2 < i < 2d, D(I) = (d,i,d), (Ra(l )( ) = x, and
I(®P) = O(®) = d and let Y,, = (Y,f’y)(x V)ERd x (RN © RY x (R? ) — RY,
n € {0,1,..., N}, be the functions which satlsfy foralln € {0,1,. — 1},
xeRd,y— (y1 V2, ..., yn) € (RHN that Yy = x and

Yol =Y+ Aui 1 (Ra(@)(Ya ™)) + yutn (212)

@ Springer



Space-time error estimates for deep neural network approximations... Page410f78 4

(¢f.  Definition 2.1 and  Definition  2.3). Then  there  exists
(\I-’n)y)(n’y)e{o’ 1. N}x(RHN S N such that

(i) itholdsforallne{0,1,...,N}, ye (RN that R,(¥,, ) € C(R?, R?),
(ii) it holds foralln € {0,1,...,N}, y € (RH)N, x € RY that (Ra(Wa.y))(x) =
X,y

(iii) Znho’lds forallne{0,1,...,N}, ye (RN that
H(Wp,y) =HI) +nH(P) =1 +nH(P), (213)

(v) it holds foralln € {0,1,..., N}, y € (R)N that
P(Y,y) < P(I) + n[L1P(1) + P(®)T, (214)

(v) itholdsforalln e {0,1,...,N}, x € RY that
[(RDN 5y — (Ra(Wny))(x) € RY] e C((RD)N, RY), (215)

and

(vi) it holds for all n € {0,1,...,N}, m € Ng n [0,n], x € R y =
(Vs ¥2s oY) 2 = (21,22, - .- n zv) € RDN withV k € N[0, n]: yx = 21
that

(Ra(Wm,y))(x) = (Ra(Wm,2))(x). (216)

Proof of Proposition 2.32 Throughout this proof let [y, /1, ..., ! L(o) € N satisfy that
D(®) = (lo,11, - o)) let App € (R x RY)  Nonoe {1,2,..., N},
b e RY, satisfy foralln € {1,2,..., N}, b e R? that

Anp = (A, b) € (RT*4 x RY), (217)

let p,yeN,neN,ye (Rd)N, satisfy foralln e N, y = (y1, y2, ..., yn) € (Rd)N
that

Py = Bmin{n N} yiminguny ® P (218)

(cf. Definition 2.5), and let ¥, = (V™) (1 y)erd x (re)v : R x (RN — R, n e Ny,

be the functions which satisfy for all n € Ng, x € RY, y = (¥1,y2,---,YN) € (Rd)N
that yg*y = x and

Vit = + (Ralons1.y)) ). (219)

Observe that item (i) in Proposition 2.6 and the fact that for alln € {1,2,..., N},
y = 01,52 -, yn) € (RYN it holds that p,y = A, ® ® prove that for all
ne{l,2,...,N},ye (RN it holds that D(ps,y) = D(P) = (osl1s s L (a)-
Corollary 2.31 (witha = a,d = d,i =i, L = L(D), L = 2,84y =d, {; =i,
€2=d,ﬂ=ﬂ,l//=ﬂ,(Nosn'—>¢nEN)=(N09n'—>pn+1,y€N),
(Nox{0,1,..., L(®)} 5 (n, k) — Iy eN) = (Nox{0,1,..., L(D)} 3 (n, k) —
LkeN,Noan— f,e CRL,RY)) = (Nypsn— (RE3x— Y eRl) e
C(R?,RY)) for y € (R?)N in the notation of Corollary 2.31) and the fact that for all
x e RY, y e (RY)N it holds that (Rq(I))(x) = x = Yy = ¥, hence prove that
there exist ¥, , € N, (n, y) € {0, 1, ..., N} x (RY)N, which satisfy that
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() itholdsforalln e {0,1,..., N}, y € (RY)N that R, (¥,,y) € C(RY, RY),
() itholdsforalln € {0,1,...,N},y € (RN, x € R that (Ry(W¥n,y))(x) =

V=1,
(IIl) itholdsforalln e {0,1,...,N},ye (R))N that
n—1
H(Wy) = HD) + > Hiperry) = 1+ nH (D), (220)
k=0
and

(IV) itholds foralln € {0,1,..., N}, y € (RY)" that

P(Wy Z )+ Plors1y) [ = P(I) + n[LP(T) + P(®)].
0 221)

Next we claim that for all n € {0, 1, ..., N} it holds that
ViR [(RDY sy i e RY) e (RO RY)] @22)

We now prove (222) by inductiononn € {0, 1, ..., N}. Note that the fact that for all
x e R,y e (RY)N it holds that ¥, ¥ = x proves (222) in the base case n = 0. For
the induction step observe that (212) and the fact that R,(®) € C(R¢, R?) ensure
that foralln € {0, 1, ..., N — 1} with

VxR [(RDY 5y 1Y e RY) e C (RN, RY)] (223)
it holds that
VxR [(RDY sy o 1)} eRY) e C(RDY,RY)]. 29)

Induction thus proves (222). In addition, observe that (222) and (IT) imply that for all
nef{0,1,..., N}, x e R it holds that

(RN 3y > (Ra(Wny))(x) € RY) € C((RH)N,RY). (225)

Nextletn e {0,1,....,N},x e R:, y = (y1,y2,....¥n8). 2 = (21,22, ..., 2N) €
(RY)N satisfy for all k € Nn [0, n] that y; = z;. We claim that for all m € No [0, 1]
it holds that

Yol = Y5 (226)
We now prove (226) by induction on m € Ny N [0, n]. Note that the fact that Y;** =
X = Yg ** implies (226) in the base case m = 0. For the induction step observe that
(212) and the fact that for all k € N n [0, n] it holds that y; = zx ensure that for all
m € No n (—o0, n) with ¥;,” = ¥;»'* it holds that

Yol =Y + A1 (Ra(@)(Yi™)) + yms1
=Y "+ Ans1 (Ra(@)(Yi%)) + zms1 = Y,

Induction thus proves (226). Note that (226) and (2.5.3) assure that for all
ne {0,1,...,N},m e Ngn[0,n], x € R, y = (y1,y2,....9N), 2 =
(z1,22,-.-,2N) € (Rd)N with Vk € N [0, n]: yx = z4 it holds that

(Ra(Wm,y))(x) = (Ra(¥m2)) (%) (228)

(227)
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Combining this with (225) and (I)-(IV) establishes items (i)—(vi). The proof of
Proposition 2.32 is thus completed. O

3 ANN approximation results

This section establishes in Theorem 3.12 in Section 3.3 below the main result of this
article. Some of the material presented in Sections 3.1 and 3.2 are well-known con-
cepts and results in the scientific literature. In particular, the material in Sections 3.1.1
and 3.1.2 consists mainly of reformulations of concepts and results in Elbréchter et
al. [11, Appendix A.3 and Appendix A.4]. Moreover, our proof of Proposition 3.5
in Section 3.2.1 below is inspired by Elbrichter et al. [11, Section 6] and Yarotsky
[40, Section 3.1] (cf., e.g., also [34, Lemma A.3] and [38, Lemma A.2]). Further-
more, Lemma 3.8 and Lemma 3.9 are elementary and essentially well-known in the
scientific literature. In addition, our proof of Lemma 3.11 is based on a well-known
Gronwall argument.

3.1 ANN approximations for the square function
3.1.1 Explicit approximations for the square function on [0, 1]

Lemma 3.1 Let g,: R — [0, 1], n € N, be the functions which satisfy for all n € N,
x € R that

2x :x €0, %)
gi(x)=<2-2x :xe[}1] (229)
0 :x € R\[O, 1]

and gn+1(x) = g1(gn(x)). Then

(i) itholdsforallneN,ke{0,1,...,2"*1—1},xe[ k k+]]that

on—12 on—1
2 (x — 2 Cye |2k 2k+1]
27! . 271’ 2n
gn(x) = 2n(2k+2 _ ) 2k+1 2k+2 (230)
X)) ixE | T

and
(ii) it holds for alln € N, x € R\[0, 1] that g, (x) = 0.

Proof of Lemma 3.1 First, we claim that for all n € N it holds that

(Vke{O,l,...,Z”l—l},xe EEN=1E

, ot
(x— %) ixe|Z%, zn]

2k 2k+1
gnlx) = 2"(21(27’;2 —Xx) :xE€ —2](2-,’[1, 2](2;52] ) @0
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We now prove (231) by induction on n € N. Note that (229) establishes (231) in the
base case n = 1. For the induction step N 3 n — n+1 € Nn[2, o0) assume that there

exists n € N such that forall k € {0, 1,...,2" 1 —1},x € [2,,]‘ T é‘,ﬂ] it holds that
2% ) 2% 2k+1
gn(x) = : (Zk+22n) o §Z+1 znsz]rz ' (232)
2”(2—n—x) X € 2—,1,2—,,]

Observe that (229) and (232) imply that for all I € {0, I, L2l x e

[%—,ﬂ, M] it holds that

go1(x) = &1(8a(¥) = 12" (x = 3) = 2[2"(x = F) | = 2w — F). 233)
In addition, note that (229) and (232) ensure that for all / € {0, 1,...,2"~! —1},

XE€E [2“2(# 2’“] it holds that

g1(x) = g1(ga(x)) = @1(2"(x = F) =2-2[2(x = %)

=2 2"ty 4] = 2nFI(3HL — ),

(234)

Moreover, observe that (229) and (232) demonstrate that for all [ €

{0,1,..., 2071 — 1}, x e [2HL, ZEB] ig holds that

gn1(x) = g1(gn(x) = @1(2" (%2 —x) =22 22 — )

=222 +2)+ 2" 1x =21ty 4] -2 (235)
SEARCEE o))

Next note that (229) and (232) prove that for all [ € {0, 1, AU ot 1}, x €
[2EG/2) 21421 it holds that

gns1(x) = g1(gn(x)) = 012" (%52 = x)) =222 — )| = 271 (252 — x),
(236)
Moreover, observe that for all k € {0,2,4,6, ...} n[0,2" — 2] it holds that

[ 2%k Zkil} _ [w;ﬁ WJ [2k+1 M] _ [2(/{/2);(1/2)’ 2(k/22n)+1

on+12 on+l n+12 on+l

(237)

and k/2 € {0,1,...,2"~! —1}. This, (233), and (234) demonstrate that for all k €

{0,2,4,6,...} n[0,2" —2],x € [+, 5] it holds that

ot (x - 242)) x e [242) 20/240/2)
gn+1(x) = 2n+1(4(1</2+)1+2_x) Cye 2(k/2)2+(1/2) 2(k/22)+1]
omn * n ’ n
(238)
e g e[ 3
2GR ) xe 33
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In addition, observe that for all k € {1,3,5,7,...} n [1,2" — 1] it holds that

2k 241 _ [2((k=D/2)+1 2((k=1)/2)+(3/2)

2n+l ’ 2)1+l on ) on ) 239)
derl e | _ [2AG=D2)+G/2) 2A%=1)/2)+2 (
2n+| ’ 2n+1 om ) on )

and (k—1)/2€{0,1,..., on—l _ 1}. This, (235), and (236) demonstrate that for all
ke{l,3,57,...} n[1,2" — 1], x € [ £, & ] it holds that

2”’ 2”
2+ (x ((k— 13/12)4'2) Cxe 2(("-5)/2)4—l 2((k—1)é2)+(3/2)
_ 2" ’ "
gnt+1(x) = 2n+](2 ((k— 5’1/2 )+2 _x) ixe 2((k— 1)4) (3/2) 2((k752/2)+2
B 2 (x — 2n+1) tXE 2%1’22]::11
PR ) xe [BH, 22

(240)
Combining this with (238) ensures that forall k € {0, 1, ..., 2" — 1}, x € [47, 5]
it holds that

+1 2% ) 2k 2K+l

w1 ) € g (241)
En+1\X) = (22 ) e |2t 2k
2n+1 . on+12 2n+1

Induction thus proves (231). Observe that (231) establishes item (i). Next we claim
that for all n € N it holds that

Vx eR\[0,1]: gu(x) =0. (242)

We now prove (242) by induction on n € N. Note that (229) establishes (242) in the
base case n = 1. For the induction step observe that (229) ensures that for all n € N
with (Vx € R\[0, 1]: gn(x) = 0) it holds that

(Vx e R\[0, 1]: gut1(x) = g1(gn(x)) = g1(0) = 0). (243)
Induction thus proves (242). Note that (242) establishes item (ii). The proof of
Lemma 3.1 is thus completed. O

Lemma 3.2 Ler g,: [0,1] — [0, 1], n € N, be the functions which satisfy for all
neN, x € [0, 1] that

2—2x :xE€ [% ]
and gn+1(x) = g1(gn(x)), and let f,: [0,1] — [0, 1], n € Ny, be the functions

which satisfy for all n € No, k € {0,1,...,2" — 1}, x € [zi ";1) that f,(1) = 1
and

. 1
a1x) = {2x :x €0, i) (244)

2
fn(x) _ [ZkQZrl] X — (k22+nk). (245)
Then it holds for all n € Ny, x € [0, 1] that

[Z (272", ] and ’xz—fn(x)’<2_2"_2. (246)

1
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Proof of Lemma 3.2 Note that (245) proves that foralln € Ny, / € {0, 1, ...,2" — 1}
it holds that

1241 204+1)I—(12+1 2 2

The hypothesis that for all n € Ny it holds that f,(1) = 1 hence ensures that for all
neNp,le{0,1,...,2"} it holds that
2
fala) =[] (248)
This and Lemma 3.1 demonstrate that foralln € N,k € {0, 1, ..., 2”_1} it holds that

2 2
fn—l(g_]rf) fn(g_) Jn— 1(2n 1) fn(zn) = [znk_—l] - [g_r]f] (249)
=0=2"2g,(3).
In addition, note that (245) and (248) imply that for all n e N, k €
{0,1,...,2"=1 — 1} it holds that

foe 1(2k+1) fo <k+ 1/2)) [2k+1] [2k+1] (K24k) _ (4k244k+1)  (2k242k)

n on—1 2n 2(n—1) — 22n—1 22n—1
_ 2k242k+1 _ 4k%+4k+2
22n 1 22n
(250)
and )
2
fn(2k2:1|-1) _ [21;{1] 4k -;Lk-i—]. 251)
Lemma 3.1 hence assures that foralln € N, k € {0, 1,...,2"~! — 1} it holds that
42 44k 42 4244k _ _
fn* <2k+1) - fn(2kzjt_l) = ( erzn +2) - ( J2r2n 1) =2 m — 2 zngn(%)-
(252)
Combining this with (249) shows that foralln € N, [ € {0, 1, ..., 2"} it holds that
fn 1(2/1) fn(zn) _z_zngn(zn)- (253)

Furthermore, observe that (248) demonstrates that for all n € No, [ € {0, 1,...,
2" — 1} it holds that

[50][s0] - e - osmeitan _ 6 (e ). s

Combining this with (245) implies that for all n € Ny it holds that f, € C([0, 1], R)
and

2
Vie{o,1,...,2" —1},xe &, F1]: fulx) = [%]xf G (255

The fact that foralln € N, k € {0, 1,...,2""" — 1} it holds that [ k+1] _

on—12 on—1
[%—],f, 2]‘2;,H] U [2131-1’ 21;:2] hence ensures that there exist (a, k, bn k> Cn k) € R3,

ke{0,1,...,2""! —1},n e N,such that foralln € N, k € {0,1,...,2" "1 — 1},
x € [555, L] it holds that

on—12 on—
2k+1
fate)— oy = o T D o e [EER]
n—1\X) = JulX) = 2k+1 :
eni(x = Z5r) by e |2 252 ]
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Lemma 3.1 and (253) therefore prove that foralln € N, k € {0, 1,...,2"" 1 — 1},
x € [55, EEL] it holds that

21> a1
Fa1(6) = fal(x) = 272" g (). (257)
Hence, we obtain that for all n € N, x € [0, 1] it holds that
Fam1(x) = fa(x) = 272" g (x). (258)

Next note that (245) ensures that for all x € [0, 1] it holds that fy(x) = x. Combining
this with (258) implies that for all m € Ny, x € [0, 1] it holds that

fnl) = fol) + [ £ () ~ fomi(0))]
" . (259)
= o) = | X (1) = )] == [ X 27a(0)]

n=1

Moreover, observe that (255) demonstrates that for all m € Ngy, [ €
{0,1,...,2" — 1}, x € [ 5, ] it holds that

fnl) =% = [ B = G =2 = | B |+ [ — [ 55 () — 2

:(xszm) (l;'—mlfx)ZO.

(260)
The fact that for alla € R, b € (a, o), r € [a, b] it holds that (r — a)(b —r) <
1 (b — a)? hence proves that for all m € No, I € {0, 1,...,2" — 1}, x € [2L,,, l;—,,,l] it
holds that

) =] = fulo) = 5% = (3 — &) (S — )

2 2
1 (1+1 N 1 (1N 1 (1 _ 1 ~A2m2
<Z(2_m_ﬁ> _Z(W> —7(227)—W—2 T
261)
Therefore, we obtain that for all m € Ny, x € [0, 1] it holds that
’ fn(x) — xz‘ <272, (262)

Combining this with (259) establishes (246). The proof of Lemma 3.2 is thus
completed. O

3.1.2 ANN approximations for the square function on [0, 1]
Proposition 3.3 Ler ¢ € (0,1], @ € C(R,R) satisfy for all x € R that a(x) =

max{x, 0}. Then there exists ® € N such that

(i) it holds that Ra(®) € C(R, R),

(i) it holds for all x € R\[0, 1] that (R,(®))(x) = a(x),
(iii) it holds for all x € [0, 1] that |x* — (R4 (®))(x)| <&,
(iv) it holds that P(®) < max{10log,(¢ ') — 7,13}, and
(v) it holds that L(®) < max{% logy(e™1) + 1,2}

(cf. Definition 2.1 and Definition 2.3).
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Proof of Proposition 3.3 Throughout this proof let M € N satisfy that
M = min(N N [2,0) N [% log, (1), oo)), (263)

let g,: R — [0, 1], n € N, be the functions which satisfy for all n € N, x € R that

2x :x €0, %)
gi(x)=42-2x :xe[i1] (264)
0 :x e R\[0,1]

and g,+1(x) = gi1(gn(x)), let f,: [0, 1] — [0, 1], n € Ny, be the functions which
satisfy forall n € No, k € {0, 1,...,2" — 1}, x € [ 4, 51) that f,(1) = 1 and
2n >

fulx) = [2"2—“] x— L (265)

let (Ag, b) € R4 x R* k e N n [2, ), satisfy for all k € N 1 [2, c0) that
0

2 —4 2 0
— _1
A = ; 73 ; 8 and by = _% , (266)
(_2)3—2k 24—2k (_2)3—2k 1 0
let Ay € R4 x R, k e N [2, ), satisfy for all k € N n [2, o) that
A = (((—2)372k 2972k (=2)372k 1), 0), (267)
let ¢ox € N, k € N n [2, 0), satisfy that
1 0
1 _1
¢ = 1l _% A (268)
1
and
0

—tl—

VkeNn[3,0): ¢ = (A2, ba), o (Ag—1, br—1), A |,

—_

(269)
and let 7¢ = (4.1, 7%.2, 7k.3. 7k.4): R — R* k € N, be the functions which satisfy
forall x € R, k € N that

ri(x) = (rii(x), ria(x), ri3(x), ria(x)) = Maa(x, x — %,x —1Lx) (270
and

res1(x) = (1 (6), g 1.2(x), re1,3(x), re1,4(x)) = Maa (Akprre(x) +brs1)
271)
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(cf. Definition 2.2). Note that (270), (21), (264), and the hypothesis that for all x € R
it holds that a(x) = max{x, 0} show that for all x € R it holds that

2r11(x) —4ry2(x) + 2r1 3(x) = 2a(x) — da(x — —) +2a(x — 1)

= 2max{x, 0} — 4 max{x — %, 0} + 2max{x — 1,0} = g1 (x). (272)

Furthermore, observe that (270), (21), the hypothesis that for all x € R it holds that
a(x) = max{x, 0}, and the fact that for all x € [0, 1] it holds that fo(x) = x =
max{x, 0} imply that for all x € R it holds that

_ ) folx) :x e0,1]
ri,4(x) = max{x, 0} = {max{x, 0} :xeR\[0,1]° (273)
Next we claim that for all k € N it holds that
(Vx eR: 2rp1(x) —dria(x) + 2rp3(x) = gk(x)) (274)
and
fri—1(x) cxef0,1]
(Vx € R realx) = {max{x, 0} :xeR\[0, 1]> (275)

We now prove (274)—(275) by induction on k € N. Note that (272) and (273) prove
(274)—(275) in the base case k = 1. For the induction stepN 3 k — k+1 € Nn[2, )
assume that there exists k € N such that for all x € R it holds that

2}’](’1()6) — 41’](’2()6) + 2rk,3(x) = gk (x) (276)
_ : 0,1
and  rra(x) = fem1(x) xel0.1] .
max{x, 0} :xeR\[0,1]
Observe that (276), (272), (266), (21), and (271) ensure that for all x € R it holds that
+ 2rk,3(x))

277)

gk+1(x) = gi(gr(x)) = g1(2rx,1(x) — 4rr2(x)
=2a(2r,1(x) — 4rea(x) + 2r 3(x))

—4a(2r,1(x) — drea(x) + 2r3(x) — 1) (278)
+2a(2rk’1(x) 4rk,2( ) + Zrk,3( ) — 1)
= 2rk+1,1(x) — 4rk+1,2(x) + 2rk+1,3(x).
In addition, observe that (21), (266), (271), and (276) demonstrate that for all
x € R it holds that

Tk+1,4(x)

:a((—2)3_2(k+1)rk,1(x)+24_2(k+1 rea(x) + (= )3 2k+1)rk3( )+rk’4(x))
((=2)" 21 (x) + 227 o (x) + (=2)! s (x) + s ()
(2_2]{[—2}’/(’1( )+22}’k2 2rk3 )]+rk4 )

(= [27*][2rk1(x) — drea(x )+2rk ()] + re.a(x))
(= [27%]gr(x) + rea(x)).
(279)

Combining this with (277), Lemma 3.2, the hypothesis that for all x € R it holds that
a(x) = max{x, 0}, and the fact that for all x € [0, 1] it holds that f;(x) > 0 shows
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that for all x € [0, 1] it holds that
rer1a(x) = a( = [27%g(x)] + fie1(x

)
=a(—(2— gi(x ))+x—[§( ng,-(x))])
—a(x [ 3 27%g0)]) = alho) = A,

j=1
Next note that (279), (277), item (ii) in Lemma 3.1, and the hypothesis that for all
x € Rt holds that a(x) = max{x, 0} prove that for all x € R\[0, 1] it holds that

Fr1.4(x) = a( - (Z_Zkgk(x)) + rk,4(x)) = a(max{x, 0}) = max{x, 0}. (281)

Combining (278) and (280) hence proves (274)—(275) in the case k+ 1. Induction thus
establishes (274)—(275). Next note that (22), (266), (267), (274), (268), (269), (270),
and (271) assure that for all m € N n [2, 00), x € R it holds that R, (¢) € C(R, R)
and

(Ra(ém))(x)
= (—2)3_2mrm_],1(x) + 24_2mrm_1,2(x) + (—2)3_2'"1’,,1_],3()6) + rm—1,4(x)

= (—2)42m —rm_l"(x()jzr)'"_l‘3(x)] + rm—l,z(x)) + rm—1,4(x)

_ p4—2m ([mel,l(x()+rl77*113(x):| + rm,1,2(x)> + Fm—1,4(x)
(4r

(280)

_2)
2rm L1(x) = 2rm—13(x)) + rm—1,4(x)
[2 2(m— 1][2rm 11(x) —4rm_12(x )+2rm_1y3(x)]+rm—1,4(x)
= —[272m=D]g, _(x )+rm 1.4(x).
(282)

Combining this with (275) and Lemma 3.2 shows that for all m € N n [2, 0), x €
[0, 1] it holds that

(Ralm))(x) = — (272" Vg1 (x)) + frua(x)

m—2

— — (272 Vg () +x - | L 27g) | (283)
=

:22 2m

m—1 Y
=x = | T 27gi(0)| = fnr ()
j=
Lemma 3.2 therefore implies that for all m € N n [2, o0), x € [0, 1] it holds that
’xz - (Ra(¢m))(x)‘ < 272m=)=2 _ p=2m, (284)
Next note that (263) assures that
M = min(N n [max{Z, 2log2 ])},oo))
> min( [ max{2, } logy (™)}, 0) ) (285)
= max{2, Llog,(e7")} = 1 log,(e 7).
This and (284) demonstrate that for all x € [0, 1] it holds that

‘xz — (Ra (¢M))(x)‘ <27 <ol ¢ (286)
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Moreover, observe that item (ii) in Lemma 3.1, (275), and (282) ensure that for all
m e NN [2,0), x € R\[0, 1] it holds that

(Ra(@m))(x) = =272 gy 1 (x) + - 1.4(x)
= rm—1,4(x) = max{x, 0} = a(x). (287)

Furthermore, observe that (263), (268), and (269) assure that
L(¢pyu) = M < max{}log,(e7") + 1,2}. (288)
This, (263), (268), and (269) show that

Ploy) =41+ 1) + lMZ_14(4+ 1)] +(@4+1)

j=2
=8 +20(M —2) + 5 < 20 max{J logy(¢~!) — 1,0} + 13
= max{10log,(¢~!) — 20, 0} + 13 = max{10log,(¢~"') — 7, 13}.

(289)
Combining (286), (288), (287), and the fact that R,(¢p) € C(R,R) hence
establishes items (i)—(v). The proof of Proposition 3.3 is thus completed. O]

3.1.3 ANN approximations for the square function on R

Proposition 3.4 Let e € (0,1], g € (2, ), a € C(R, R) satisfy for all x € R that
a(x) = max{x, 0}. Then there exists ® € N such that

() it holds that Ra(®) € C(R, R),
Gi) it holds that (Rq(®))(0) = 0,
(iii) it holds for all x € R that 0 < (R4 (P))(x) <
(v) it holds for all x € R that |x*> — (R4 (®))(x)]
(v) it holds that P(®) < max{[ 409 ]log2(£ D) 80 =3 — 28,52}, and

(vi) it holds that L(®) < max{2 ) log,(e7!) + (q—2) +1,2}

e+ |x|%
< emax{l, |[x|7},
+

(cf. Definition 2.1 and Definition 2.3).

Proof of Proposition 3.4 Throughout this proof let § € (0, 1] satisfy that § =
272/a=2)ga/(4=2) Jet A; € (R2X! x R?) € N, Ay € (R'"*2 x R) < N satisfy that

£)1/(g—2)
e <<_(<)>/<>> ’ @) and A2 = (((5)"¥@72 (5)72/2).0),

(290)
let W e N satisfy that

(D) it holds that R, (W) e C(R, R),

(1) it holds for all x € R\[0, 1] that (R, (¥))(x) = a(x),
(II) it holds for all x € [0, 1] that |x* — Ra(\lf )(x)| <8,
(IV) it holds that P(¥) < max{1010g2(3 1) — 7,13}, and
(V) itholds that L(¥) < max{2 log,(671) + 1,2}

@ Springer



4 Page 52 of 78 P. Grohs et al.

(cf. Proposition 3.3), and let ® € N satisfy that
D =Aye[Pry(V, V)]0 A (291)

(cf. Definition 2.5, Definition 2.17, and Lemma 2.8). Note that Proposition 2.19 and
item (v) in Proposition 2.6 ensure that for all x € R it holds that

(Ra ((P2(W, ¥)) 0 Ay)) 1(/x() :2)(Ra (Pz(l% \Ifz)))) ((Ra(A1))(x))
= (R, (P , £ 9)x, —(& 9—=)x
Ao ‘I’))))l(/((glz)x> ) o ) (292)

)(a-2) )

Item (v) in Proposition 2.6 and (291) therefore demonstrate that for all x € R it holds
that

(Ru((b))(x) :(Ra(AZ))(Ra([PQ(\IJ’ \IJ)] ° A1)(x)) o
(&)Y (g)2/a-) [ Re(NHTE) )

(293)
This, (I), (1), and the hypothesis that for all x € R it holds that a(x) = max{x, 0}
imply that

(Ra(®))(0) = (5)"¥=D ([Ra(W)](0) + [Ra(¥)](0))
= (%)-2/@—2) (a(0) + a(0)) = 0. 294)

Moreover, observe that (I) and (IT) ensure that for all x € R\[—1, 1] it holds that

[Ro(¥)](x) + [Ra(¥)](—x) = a(x) + a(—x) = max{x, 0} + max{—x, 0}
= max{x, 0} — min{x, 0} = |x|.
(295)
Furthermore, note that (II) and (IIT) show that

UBe— 1.y |12 = (Ra()](x) + [Ra(¥)](~))|
= max{ sup, ey g7 [+ — (@(x) + [Ra(9)](~0))] sup,epo, ¥ — ([Ra(W)](x) +a(~0))] }
= max{ sup, (107 [(—)? — (Ra(¥)) ()| supyego) |2 — (R (9)) ()] }

= sup,efo.1] |72 — (Ra(¥))(x)] < 8.
(296)

Next observe that (293) and (295) prove that for all x & R\[—(s/2)~"/(@=2),
(£/2)~"/(@=2)] it holds that
[Ra(®)](x)
_ (%)_2/(‘1_2)([Ra(‘lf)]((ﬁ)l/(q 2) x) + [Ra(W)]( - (%)1/(q—2)x)> (297)

_ (%)72/(5172) (%)1/( x’ %)71/ 4*2)|x| < |x2.

0

N
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The triangle inequality therefore ensures that for all x € R\[—(g/2)~1/(@=2)
(¢/2)~Y(@=2)] it holds that

2 = (Ra(®)(x)] = 5 = (5)7 V@Dl < (1xP + (5)7 V02 x])
)] |~ @) + (%)—1/@—2)|x|q‘x\—(q—1))
)o=1/ta=2)

=
_
—~

< £)a=2)/a=2) 4 (£)=1/@=2)|xja (5

= (5 +5)|x]7 = g|x]? < emax{l, |x[}.
(298)

Next note that (293), (296), and the fact that § = 22/(4=2)¢4/(4=2) demonstrate that

for all x € [—(g/2)~1/(@=2) (£/2)~1/(@=2)] it holds that

}x—( @))(x)|
2/(q 2) ‘( £)1/(a=2) ([Ra( )((5)Y =) )+[Ra(\p)](_(%)1/(q—2)x)>‘
<(§) quFwﬁ ”\y—aRAmuw+U%wnva
<(§)” 2/(¢=2)§ = O 2/(¢—2)9—2/(q—2) ga/(a—2) ,g<8max{1 Mq}
(299)

Combining this and (298) implies that for all x € R it holds that
[x2 — (Ra(®@))(x)| < emax{1, x|} < (1 + |x]7). (300)

In addition, note that (299) ensures that for all x € [—(g/2)~ @2 (g/2)~ V@] it
holds that

(Ra(@)@)] < [x2 = (Ra(@)(x)| + IxP <o+ . (30D
This and (297) show for all x € R that
[(Ra(®))(x)| < &+ |x ], (302)

Furthermore, observe that the fact that § = 2~7@=2¢%(4=2) engsures that

logy(571) = logy (2710 D=0 2) = 24 [

Next note that Corollary 2.21 implies that P(P,(¥, ¥)) < 4 P(V). Corollary 2.9,
(291), (IV), and (303) hence ensure that

o < {12} o1 27 |
= [max{l ] [max{l, 2}] (Pz(lIJ, ‘-IJ))
)
2

iy llosae ™| G03)

= P(P2(¥, ¥)) <4P(¥) < 4max{10log, (8~ ') — 7,13} (304)
= max{40[

7] +40[( _2)]10g2( ) — 28,52}
= max{[ 2)] logy(e™") + 255 — 28,52}
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In addition, observe that item (ii) in Proposition 2.6, (291), (V), and (303) demon-
strate that

L(D) = L(Py(W, \y)) — £(¥) < max {%logz(c?_l) +1, 2}
max{[ )]logz( 1)+((]—i2)+1,2}.

Combining this with (294), (297), (302), (300), and (304) establishes items (i)—(vi).
The proof of Proposition 3.4 is thus completed. O

(305)

3.2 ANN approximations for products

3.2.1 ANN approximations for one-dimensional products

Proposition 3.5 Let ¢ € (0, 1], g € (2, ), a € C(R, R) satisfy for all x € R that
a(x) = max{x, 0}. Then there exists ® € N such that

(i) it holds that R,(®) € C(R?, R),
(il) it holds for all x € R that (R4(®))(x,0) = (Ra(®))(0,x) =0,
(iii) it holds for all x, y € R that

lxy — (Ra(®))(x, y)| < emax{l,|x]?, |y|?}, (306)
(iv) it holds for all x, y € R that
|(Ra(®))(x, )| < 3(5 +x* + %) < 1+2x% +2)7, (307)

(v) it holds that
P(®) < 225 [logy(e™1) +logy (297! + 1)] + Lz — 252

(g—2)
(308)
< 28 [logy(e 1) g + 1]~ 252,
and
(vi) it holds that
q _1 -1 (11_1)
L(®) < 5rl55[loga(e7h) + logy (2971 + D] + (155 (309)

< iy [log:(e7") + ]
(cf. Definition 2.1 and Definition 2.3).

Proof of Proposition 3.5 Throughout this proof let § € (0, 1] satisfy that § =
g2 + )71 let Ay e (R?*2 x R¥) N, Ay e (R!*3 x R) < N satisfy that

11\ /0
Ar=[(10]. {0 and  Ar=((3 -1 —1).0), (310)
01/ \o

let ¥ € N satisfy that
() it holds that R,(W¥) € C(R, R),
(1) it holds that [R,(W¥)](0) = 0,
(IIl) it holds for all x € R that 0 < [R,(¥)](x) < 8 + |x|2,
(IV) it holds for all x € R that [x? — [R,(¥)](x)| < § max{1, |x|?},
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(V) it holds that P(¥)
(VD) it holds that £L(W)

max{[ 2% logy(87") + %5 — 28,52}, and
max{[ )]10g2(8 h+ —(qi2) +1,2}

(cf. Proposition 3.4), and let ® € N satisfy that

NN

D =Aye[P3(V, W, )| eA (311)

(cf. Definition 2.5, Definition 2.17, and Lemma 2.8). Note that item (v) in
Proposition 2.6 and Proposition 2.19 ensure that for all x,y € R it holds that
Ra([P3(¥, ¥, W)] o Ay) € C(R?, R?) and

[Ra([P3(¥, W, W)] e Ay)](x,y) = [Ra(P3(¥, ¥, ¥)) | ([Ra(A1)](x, ¥))
[Ra(W)](x + y)
= [Ra(P3(¥, W, W) |(x + y,x,9) = | [Ra(¥)](x)
[Ra(W)](y)
(312)

Item (v) in Proposition 2.6 and (311) therefore demonstrate that for all x, y € R it
holds that R, (®) € C(R?, R) and

[Ra(®)](x,y) = ( (Az- [P3(W, ¥, W)] e Ay))(x, y)
N(Ra([P3(W, W, )] o Ay)(x, y))
_ 1 1 1 (Ra )) (313)
= (3 -3 3 [Ra(9)](x)
[Ra( y
=1[R (x +y) = 5[Ra(¥)](x) — 5[Ra(¥)](»)-

The fact that for all &, B € R it holds that aff = %|oc +BJ2 - ; |o|? — % |B|?, the triangle
inequality, and (IV) hence ensure that for all x, y € R it holds that

[[Ra(®)](x, Y)—xy|

= |5 [[Ra(¥)](x +y) = Ix +y|2] - %[[Ra(q’)]( ) = [xP] = 3 [[Ra ()] () = [y*]|
<%’[Ra x+y) e+ 1P|+ 3 [[Ra(W)](x) = [P + 5 [[Ra(¥)](3) = [y P

< §[max{1, |x + y|9} + max{1, |x|q}+max{1 [y|9}]. -

This, the fact that for all o, B € R, p € [1, c0) it holds that |a +B|? < 277 (|e|? +
IB|?), and the fact that § = (29! + 1)~! establish that for all x, y € R it holds that

—

Ra(®)](x, y) = xy|

[max{1,2q_1|x|q + 2q_1\y|q} + max{l, |x|q} +max{1, |y|q}]
[max{1,2q_l|x|q} 4+ 2471 y|e 4 max{l, |x|’1} +max{1, |y|q}]
[29 + 2] max {1, [x]7, |y|?} = e max{1, |x|7, |y|9}.

(315)

NN N
1915 RIS 115
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Moreover, observe that (III), (313), the triangle inequality, the fact that for all
a, B € R it holds that o + B|*> < 2(Ja|? + |B|?), and the fact that § = £(2¢~! + 1)~!
prove that for all x, y € R it holds that

[Ra(@)](x, ¥)| < 51[Ra(W)](x + ¥)| + 51[Ra(¥)](x)] + 3/[Ra(¥)] (V)]
T+ [x+yP) + 38+ x) + (8 + [yP)

2 (PP = [l + 07+ 3 (1xP + )
+ x P+ P] < 5[5 + P+ 1P

N

NN

Il
TN
[ |

(2qfl+1)
(316)
Next note that (I) and (313) prove that for all x, y € R it holds that
[Ra(®)](x,0) = 3[Ra(¥)](x) = 3[Ra(¥)](x) = 3[Ra(¥)](0) = 0
1
2

= 3[Ra(W)](y) = 5[Ra(¥)](0) — 3[Ra(¥)](y) = [Ra(®)](0, y).
(317)

Furthermore, observe that the fact that § = £(2¢~! + 1)~! shows that
[2( 72)] logy(87") + ﬁ = [Z(q 2)] logy (e7'(277" + 1)) + (q_lz)
= sty loga(e™h) +logy (2771 + D] + (318)
= [Z(q 2)]log2( -h4 [2(q 2)]1og2(2q Ty 1)+(q—12).

Moreover, observe that Corollary 2.21 implies that P(P3(¥, ¥, ¥)) < 9P(W).
Items (i)—(ii) in Corollary 2.9, (V), (311), and (318) hence ensure that

P10 = a1, e . | P v )
- [max{l, %}] [max{l,% ]P(P3(\IJ, W, W) = P(P3(W, W, W)

<9IP(Y) < 9max{[iq)] logy(87") + 5 — 28,52}

= max{720([ 3,557 1oz (571) + ¢;157) — 252. 468}

= max{720([ 3157 loga (e ™") + [ 57,157 | loga (2971 1) + (1 157) — 252, 468}

-2) 2)
= max{ 7% 360g ( (67 +1logy (2971 + 1)) + ({]7302) — 252, 468}.

(319)
Next note that the fact that for all » € (—oo, 4] it holds that r > 2r —4 = 2(r — 2)

ensures that for all r € (2, 4] it holds that r(( )) > 2) > 2. This and the fact that

for all 7 € [3, %) it holds that ’((H)) — 1 > 2 imply that for all r € (2, o0) it

holds that r((r 1)) 2. Hence, we obtain that for all r € (2, c0) it holds that

[ 229 ] logy (2771 + 1) — 252 > [ 2% ]log, (2~ 1) — 252

Y st (320)

= D) 252 > 720 — 252 = 468.

(r-2)
Combining this with (319) shows that

P(®) < 2% (logy(e™") + logy (2971 + 1)) + 25 — 252. (321)
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The fact that
logy (277" + 1) = logy (297" + 1) — logy(29) + ¢ = logy (X 5) + ¢
= log, (2*1 +279) + g <log, (271 +272) +g4 (322)
=log,(3) + ¢ =log,(3) =2 +4¢

hence proves that

P(®) < %5 (logy(e ) + logy (297" + 1)) + 255 — 252
36! —
< (ggog)(logz(s D+ ¢ +1logy(3) — 2) (qmz) —252 23
= % (loga(67") +q +logy (3) =2+ ) — 252
< 2% (logy(e7") + g +logy(3) — ) —252.

In addition, observe that item (ii) in Proposition 2.6, (311), (VI), the fact that § =
£(2¢71 + 1)~!, and (318) demonstrate that

L(®) = L(P3(¥, e V) = L(¥)
< max{[ 315 logy (671) + gy + 1.2} (324)

< max{2 )[logz( ) +log (297" + 1)] + EZ:;?,Z}.

Furthermore, note that the fact for all » € (2, o0) it holds that r(( )) > 2 assures that

—

(g—1
q—2

ﬁ[logﬂs’l) +log (297 + 1)] +

—~
—

B alg=1) (325)
> gy log 277 + 1= Jiim + 122
Combining this with (324) proves that
L(P) < 2(q 2)[10g2( 1) +log, (207! + ]+ EZ:;;
< g omle ™) +log (2771 + 2070 + g (326)

— log (8 D) —1
= et < g llom(e™) + 4 + 4]
= (qqz)[logz( )+Q]~

This, the fact that R,(®) € C(R?, R), (315), (316), (317), and (323) establish

items (i)—(vi). The proof of Proposition 3.5 is thus completed. O]

3.2.2 ANN approximations for multi-dimensional products

Definition 3.6 (The Euclidean norm) We denote by |-| : (UgenRY) — [0, c0) the
function which satisfies foralld € N, x = (x1,...,x4) € R4 that

el =[50 i1 (327)

Proposition 3.7 Letc € (0, 1], g € (2, 0), d € N, a € C(R, R) satisfy for all x € R
that a(x) = max{x, 0}. Then there exists ® € N such that

(i) it holds that R,(®) € C(RIT!, RY),
(i) it holds for all t € R, x € R? that (Rq(®))(t,0) = (Ry(P))(0, x) =0,
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(iii) it holds for all t € R, x € RY that

ltx — (Ra(®@))(t, x)| < &(vVd [max{1, [t]9}] + |x]4), (328)
(iv) it holds forallt € R, x € R? that
[(Ra(®))(2. x)| < V(1 +26%) +2]x|, (329)
2

(v) it holds that P(®) < d?[ 7245 [logy(e™") + ¢ + 1] — 25247, and
(vi) it holds that L(®) < (qZZ) [log, (¢~ 1) + ¢]

(cf. Definition 2.1, Definition 2.3, and Definition 3.6).

Proof of Proposition 3.7 Throughout this proof let v, w € R**! b e R A €
R(2d)x(d+1) gatisfy that

v = (?) w = (é) b =0, (330)

and
wv00---0
wOvO0---0
A= wOOv---O’ (331)
w000 ---v

let W e N satisfy that

(I) it holds that R, (¥) € C(R?, R),
(1) it holds for all x € R that [R,(W¥)](x, 0) = [R4(¥)](0,x) =0,
() it holds for all x, y € R that |xy — [Rq(¥)](x, )| < smax{l |x|9, |y|7},
(IV) it holds for all x, y € R that |[[R, (¥)](x, y)| < 1+ 2x2 + 2y?,
(V) it holds that P(¥) < 360’1 [logy(e™") + ¢ + 1] — 252, and
+

(VD) it holds that £L(W¥) < (q % [log,(e~1) + ¢]

/—\
I\)
~—

(cf. Proposition 3.5), and let A € (R24*(d+1) 5 R2d) = N, ® € N satisfy that
A=(A,b) and @ =[Py(¥,V,..., V)] eA (332)

(cf. Definition 2.5 and Definition 2.17). Observe that (330) and (331) ensure that for
ally = (y1, y2, ..., Ya+1) € RT1 it holds that

Y1
yiw + yv if
yiw + y3v
Ay = . = Y3 . (333)
w + v )
Y1 Yd+1 i
Yd+1
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Combining this with (332) proves that for all t € R, x = (x,x2,...,%4) € RY it
holds that

Ra(A) e C(RITLRY™)  and  (Ra(A))(1,x) = (£, x1.1, X2, ..., 1, Xq).
(334)
Proposition 2.19, (332), and item (v) in Proposition 2.6 hence demonstrate that for
allt e R, x = (x1,x2,...,x4) € RY it holds that R, (®) € C(RI*! RY) and

(Ra(®))(1,x) = (|[Ra(Pa(W, ¥, ..., ¥))] o [Ra(A)])(r,x)
= ['Ra (Pd(\ll, v, ..., ‘-IJ))](I, X1, 0, X0, ... b, Xq) (335)
= ((Ra(¥)(t. x1), (Ra(W))(t. x2). ... (Ra(W)) (1. xa)).
Combining this with (IT) proves that for all ¢ € R it holds that

(Ra(®))(1,0,0,...,0) = (Ra(¥))(z,0), (Ra(¥))(z,0), ..., (Ra(¥))(t,0))
=(0,0,...,0) = 0.
(336)
Next note that (IT) and (335) imply that for all x = (x1, X2, ..., x4) € R? it holds that

(Ra(®))(0,x) = ((Ra(¥))(0. x1). (Ra(W))(0. x2). - ... (Ra(W))(0. x4))
=(0,0,...,0)=0.
(337)
In addition, observe that the triangle inequality and the fact that for all r € [1, o),
(x1,x2, ..., %) € RY it holds that

d 12 d /2
[ ] < [ P (338)
prove that forall b € R, x = (x1, x2,...,X4) € RY re [1, 00) it holds that
12 12 12
| s (el + g )? ] < | i ?] T+ [ 2 \x,~|2r]
< oIV + [ Sy ey P]” = v + il

This, (IIT), and (335) assure that forallr € R, x = (x1, x2,...,x4) € R it holds that

i3~ (Ra(@))(1.2)] = [ Sy e, — (Ra(w)) e x)P]
[Z‘Ji 1 smax{l |t]4, \xj|q}]2] . < 8[2?21 [ max{1, |7} + \xj|q]2] .
e(vd| H A+ x]9).

(340)

Furthermore, observe that (IV), (335), and (339) show that for all ¥ € R, x =
(x1, X2, ..., x4) € RY it holds that

[(Ra(@)(0. )] = [ Zie | (Ra(@)) 1.3)P]”

[Z?—l (1 + 207 + 2|xj|2)2] /21/ (341)
= [ (1 20 + V2x, )]

f( - 2|t| ) 4 |V2x [P = V(1 +2)t2) +2)x]2.

(339)

<
<

N
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In addition, note that Corollary 2.21 implies that
P(Pa(W, W,...,¥)) < d*P(V). (342)
Item (ii) in Corollary 2.9, (V), and (332) hence ensure that

T(A)+1

P(®) < |max{1, gt

}] P(Py(W, W, ..., W)

:hﬂﬁﬁ%ﬂﬂm@ﬂme»:ﬂmwﬂwwW»(M@

<d*P(Y) < dz[(zé_og)][logz(fl) +q + 1] — 25242,

Next note that item (ii) in Proposition 2.6, (VI), and (332) demonstrate that

L(®) = L(Py(¥, ¥, ..., W) = L(¥) < L5 [log,(e ") + q]. (344)
This, the fact that R,(®) € C(RIT! RY), (336), (337), (340), (341), and (343)
establish items (i)—(vi). The proof of Proposition 3.7 is thus completed. O]

3.3 Space-time ANN approximations for Euler approximations
3.3.1 Space-time representations for Euler approximations
Lemma 3.8 Let N.d € N, p € C(RY,RY), T € (0, 0), (tn)pef—1,0,1,..n+1} S R

satisfy that t—1 < 0 = t9 < t1 < ... <ty =T < tysy, let f,: R - R,
ne{0,1,..., N}, be the functions which satisfy foralln € {0, 1, ..., N}, t € R that

Jn ([) - [%] ]l(tnflvtn] (t) + [((;”:11:;))] ]l(tnvfnJrl)(t)’ (345)
and let Y = (th’y)(t’x’},)e[O,T]X]RdX(Rd)N: [0, T] x R? x (RN — RY be the
function which satisfies for all n € {0,1,...,N — 1}, t € [ty,ty41], X € RY,
y =12 ..., yn) € RON that Yg’y = x and

N X = N PP 7 SN, IRV

(cf. Definition 2.1 and Definition 2.3). Then
(1) it holds that

([0, 7] x R? x (RHN 5 (1, x,y) — ¥;"¥ e RY)
e C([0,T] x RY x (RHN, RY)  (347)

and
(ii) it holds forallt € [0, T], x € R, y e (RN that

N
Y =T ) Y (348)
n=0
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Proof of Lemma 3.8 Observe that (346) ensures that for all n € {0,1,..., N — 1},
t€[ty, ths1], x € RY, y = (Y1, y2,---,YN) € (Rd)N it holds that

x,y(tn+1ft) x,y( t—ty )

In B 3§l+17tn i Int1 [ntcl;tn s
=Y, (1 - t,lﬂ—nz,,) + Ytn;l (ln+1—ntn)
=Y, (1 - 752) (349)
(V0 (g — 1) (V) + yen]) (752)
= V" [t = ) w(Y5) + vt (55725) = V00

Hence, we obtain that forall 7 € [0, T], x € R ye (Rd )V it holds that

N

|
-

sz’y = Yt)(;’y ]l{to}(t)+ th’y ]l(t,,,t,,+1](t))
X,y ([ th41—t X,y t—t,
|:Yln (tnjll—tn ) + Ytn+l (t)l+l_tn )] ]l(tnatn+l] (t)>

X,y ( t—1lp41
an (tn—t,;1)1(111,[n+1](t)]

Zx
il

= Ytﬁ’y]l{to}(t)Jr
n

N
-~

(350)

R = |l
IMre

=Y, Ly () + [

N -
+ [Z Yt:,y (t;—ttn,,ill) IL(tn—]atn] (t)‘| :

n=1

Combining this with (345) implies that for all 7 € [0, T], x € R?, y € (R?)" it holds
that

y y v Wy t—ty_
le Y= Ylﬁ ’ ]l{lo}(t) + th y(tt —ttl ) ]l(to,tl](t) + Yl)zcv) (t —;V,l )]l(thlJN ()
0—1 N—IN_1

N—1
X,y t—ty t—t—
+ Zl Y, [(xn—t,:lll) Il(tn,tn+1](t) + (tn—t,,,ll ) ]l(ln—l,ln](t>]

n=

(351)

Il
g
e
=
=
I =

<

Next we claim that for all n € {0, 1, ..., N} it holds that
(R? x (RN 5 (x,y) = ¥, e RY) e C(RY x (R))N, RY). (352)

We now prove (352) by induction on n € {0, 1,..., N}. Note that the fact that for
all x € RY, y € (RY)V it holds that Y, = Yy' = x proves (352) in the base
case n = 0. For the induction step assume there exists n € {0, 1, ..., N — 1} which
satisfies that

(R? x (RN 5 (x,y) — ¥, e RY) e C(RY x (RN, RY). (353)
Observe that (346) ensures that for all x € R, y € (R?)" it holds that
Yol =Yoo+ (g — 1) (Y2 7) + vt (354)

tn+l Iy
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Combining this with (353) and the hypothesis that 1 € C(R?, R?) demonstrates that

(R? x (RN 5 (x,y) = V¥ e RY) e C(RY x (R)N,RY).  (355)

41
Induction thus proves (352). Next observe that (351), (352), and the fact that for all
ne{0,1,..., N}itholds that f,, € C(R, R) show that
([0, T] x RY x (RN 5 (1, x,y) — ¥;"" e RY)
e C([0, T] x RY x (RHN RY). (356)

Combining this with (351) establishes items (i)—(ii). The proof of Lemma 3.8 is thus
completed. O

3.3.2 ANN representations for hat functions
Lemma 3.9 Ler a € C(R,R) satisfy for all x € R that a(x) = max{x, 0}, ler

o, B, v, h € R satisfy that o < P < y, let W) € R**!, B e R*, W, e RI*4 B, e R
satisfy that

(B—a) (B—a)
1 __B
Wl _ (BT“) , B1 _ (BE“) , (357)
(r—B) (B
1 __
(r—B) (r—B)
Wa=(h —h —h h),  By=0, (358)

and let ® € (R**! x R*) x (R'** x R) < N satisfy that & = (Wy, By), (W2, B2))
(cf. Definition 2.1). Then

(i) it holds that R,(®) € C(R, R) and
(i1) it holds for all t € R that

(Ra(@)(©) = [ G2 M) + [ L5 160 )

0 it € (-0, a] Uy, ©)
. (359)
= ((ZB,X it € (o, B]
B e (By)

(cf. Definition 2.3).
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Proof of Lemma 3.9 Observe that for all 7 € R it holds that R,(®) € C(R, R) and
(Ra(®))(t) = Wa(Mg,a(Wit + B1)) + Ba

_ (1—a) _ (1=B) _ (t=B) (t=v)
=h max{ o)’ 0y —nh max{ =a)’ 0} h max{ =B) 0} +h max{ =B)’ O}
= 1[0~ 00+ 0] a(t) +h [&:Z)) —0-0+ 0] Lop (1)
(t—a) _ (1=B) _ (t=B)
A= R = R = R RII0
(t—a)  (=B) _ (=B) , (=y)
[ — G — Gt ] T )

_ [ G=a)n (y=t)h
=[50 | tem®+ |55 1en®
(360)
(cf. Definition 2.2). The proof of Lemma 3.9 is thus completed. O

3.3.3 A posteriori error estimates for space-time ANN approximations

Proposition 3.10 Let N,d € N, a € C(R,R) satisfy for all x € R that a(x) =
max{x, 0}, let T € (0, ), (ta)nefo,1,...n} S R satisfy foralln € {0, 1, ..., N} that

ty = %, let ® € [1, ), € € (0, 1], g € (2, 00) satisfy that

D = [ 25| [loga(e™") + ¢ + 1] - 504, (361)
lett. ® € N satisfy that Z(®) = O@) = d, and let Y =

(V) (1 xy)efo.r)xre x ey [0, TIx REx (RN — RY be the function which sat-
isfies foralln € {0,1,...,N — 1}, 1 € [ty, ty+1], x € RY, y = (Y1, ¥2,---,IN) €
(RN that Yy = x and

B () [BRAONE) 4] 66

n

(cf. Definition 2.1 and Definition 2.3). Then there exist Wy, € N, y € (RN, such that

(i) it holds for all y € (RY)N that R,(¥y) € C(RIT RY),
(i) it holds foralln € {0,1,...,N — 1}, t € [ty th+1], x € RY, y € (RN that

17 = (Ra (%)) (1, )| < e(2vd + |V |7 + Y32 9), (363)
(iil) it holdsforalln € {0,1,...,N — 1}, t € [ty, tas1], x € RY, y € (RH)N that
[(Ra())) (. )| < 6v/d +2([Y, |2 + ¥, %), (364)

(iv) it holds for all y € (RY)N that

P(Yy) < %[6d2N2H(d>)

2 (365)
+3N[d2© + (23 + 6NH(®) + 7d* + N[4d* + P(@)]Z)ZH :
(v) itholds forallt € [0,T], x € RY that
[RDN 5y — (Ra(¥y))(t, x) e RY] e C((R)N,RY), (366)
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and
(vi) it holds foralln € {0,1,...,N}, t € [0,¢,], x € RY, y = (Y1, Y25 -+ -» YN)»
2= (21,22, ..., 28) € RN withVk e N [0, n]: yx = zx that

(Ra(Wy))(7, x) = (Ra(W2))(7, x) (367)
(cf. Definition 3.6).

Proof of Proposition 3.10 Throughout this proof let 7, € R, n € {—1, N + 1}, satisfy
foralln € {—1, N + 1} that ¢, = %, let (I)pen S N satisfy for all 9 € N, x € R?
that R, (I) € C(R?, R®), D(Ip) = (0,20, 0), and

(Ra(lp))(x) = x (368)

(cf., e.g., [27, Lemma 5.4]), let (Hn)ne{o,l,...,N} C N satisfy for all n €
{0,1,..., N}, t € Rthat Z(I1,) = O(11,) = 1, H(I1,) = 1, P(I1,) = 13, and

(Ra(TL,))(1) = [((rflitfnill))] L)) + [%] 10() (369

(cf. Lemma 3.9), let (Ex,y) (n,y)e(0,1,...N} x (R7)¥ < N satisty that

(I itholdsforallne {0,1,...,N},y e (RY)N that R, (8, ) € C(RY,RY),
() itholds for alln € {0,1,...,N}, y € (R)N, x € R? that (R4 (En.y))(x)
e R
(1) itholds foralln € {0,1,..., N}, y € (R)VN that H(E, ) = | + nH(P),
(IV) itholds foralln € {0,1,..., N}, y e (R)N that

P(Eny) < P(la) + n[1P(1,) + P(®)F, (370)
(V) itholds foralln € {0,1,..., N}, x € R? that
[(RDN 5y > (Ra(Eny))(x) e R?] e C((RH)N,RY), (371)

and

(VD) it holds for all n € {0,1,...,N}, m € No n [0,n], x € RY, y =
V1, Y2, --->YN)s2 = (21,22, ---,2N) € (Rd)N withVk € N [0, n]:
zx that

(Ra(8m,y))(x) = (Ra(Em,z))(x) (372)
(cf. Proposition 2.32), let I" € N satisfy that

(a) itholds that R, (T") € C(RI*! RY),
(b) itholds forall # € R, x € R? that (R, (T"))(¢,0) = (Ra(I"))(0, x) = 0,
(c) itholds forallz € R, x € R? that

Jtx — (Ra())(t. x)| < e(Vd [max{1, [t|*}] + [x]). (373)

(d) itholds forall t € R, x € R? that
[(Ra(D))(#, x)| < V(1 +26%) +2]x
(e) it holds that P(I") d2[(j]‘f’g)][1og2(a*1) +q +1] — 25242, and

<
(f) itholds that £(T') < ;%55 [loga(e™") + 4]

2 (374)
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(cf. Proposition 3.7), let (Wp y)(n y)ef0.1,...N}x(Rd)Y S N satisfy for all n €
{0,1,....,N},y e (RON that (¥, ,) = d + 1, O(V, ) = d, and

lIJ"vy = F CDHd-f—l [P2,(]11,]Id)(nnv En,y)] (375)

(cf. Definition 2.15, Definition 2.22, Proposition 2.16, and Corollary 2.23), let L, €
N, y € (RY)", satisfy for all y € (RY)N that Ly, = max,efo1,_ n} £(Wn,y), and let
(Py)ye(rayy < N satisfy that

(A) itholds forall y € (RY)N that R, (®,) € C(RIF! RY),
(B) itholds forall y € (RY)N, 7 € R*! that

N
(Ra(®))(2) = Y, (Ra(Wny))(2), (376)

n=0

and
(C) itholds forall y € (RY)N that

P(,) < %[[Z:’ZO2P(\yn.y)n(ﬁ(%_m)(L).)]
[ (Ly = £(W0y) = 1)24(2d + 1) +dQd + 1)Ly, ) o) (Ly)]
2
[P ">)1{£<wn_y)}(Ly)H 377)

(cf. Proposition 2.26). Note that (III) and the fact that for all n € {0, 1, ..., N} it
holds that H(T1,,) = 1 ensure that foralln € {0, 1,..., N}, y € (R?)V it holds that
L(Ep,y) =2+nH(P) =2, L(IT,) =2,and

max{L(I1,), L(Ep,y)} = max{2,2 + nH(P)} =2 + nH(p) = L(En,y). (378)

Corollary 2.24 (witha = a,n = 2, L = max{L(I1,), L(E, )}, i1 = 2,12 = 2d,
= (I, Ig), ® = (I1,, Ep,y) forn € {0,1,...,N}, y € (Rd) in the notation

of Corollary 2.24), (IV), and the fact that for all n € {0, 1,..., N} it holds that

P(I1,,) = 13 hence prove that forall n € {0, 1,..., N}, y € (R9)V it holds that

= - - 2

7>(1>2 1.1 (T Bny)) < 5 (2P(My) + 6(L(En,y) — 3) + 3 + P(Eny))
— L(11 + 6£(En,) + P(Eny)) i
< z(11 +6(2+nH(®)) + P(ly) + n[1P(14) + P(®)T)
= 123+ 6nH (D) + P(Ly) + n[1P(1a) + P(®) Y.

(379)
Moreover, observe that (361) and (e) imply that 2P(I") < d 29, Combining this with
Proposition 2.16, (379), and the fact that P(I;) = 4d? + 3d < 4(d? + d) ensures that
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foralln e {0,1,..., N}, y e (R?)" it holds that

P(\Ijn’y) = (F QHd+l [P2 (H] Hd)(nn, E )])
2(d+1) -
< max{l, @+1) } (P(r) + P(Pz .1) T, Eny)))
< d*D + (23 + nH(®) + P(la) + n[yP(la) + P(@)])
<

(@)
d*D + (23 + 6nH(®) + 4d2 + 3d + n[2(d* + d) + P(®)[ ).

(380)
Next note that (IIT), (378), (84), (133), (116), item (ii) in Proposition 2.16, and item
(i) in Lemma 2.13 demonstrate that foralln € {0, 1,..., N}, y € (R4)" it holds that
E(\I}n‘y) = L:(F) + ﬁ(Pz (HI ]14 [y, En, )))

= L(T) + LP2(E i £.(m1,). L5010 T Emax( £(11,). L5013 10 (Bny))

= L(0) + L(Pa(E (s, )5, (M) EL(z, )5, (En))

= L)+ L(Eg (u,ﬂ 1 (Bn, v)

=L(T) + L(((Ia)*°) ® En.y)

= L(T) + L((14)*°) + L(En,y) — 1

=L(T)+ L(Eny) = L(T) + H(Epy) + 1

= L(T) + 2 + nH(®)

(381)

Therefore, we obtain that for all n € {0,1,..., N}, y € (R?)V it holds that

LWN,y)—L(Vyy)—1 =(LT)+2+NH(P)) — (L(T) +2+nH(P)) — 1
= (N —n)H(P) — 1.
(382)
In addition, note that (381) proves that for all y € (R?)V it holds that L, =
L(Wy,y) = L(Wn,0) = Lo. The fact that Y\ "\ (N —n) = S _ m = IN(N +1),
(377), and (382) hence assure that for all y € (Rd)N it holds that

P(a,)
<3| = Py

2
+max{(L(Wy,y) — L(Wn,y) —1)2d(2d + 1) + d(2d + 1), o})]+PwNV)]

| 2050 (2P(Wiy) + max{(N — n)H(®)2d(2d + 1) — d(2d + 1),0})

NI—
r

2
+P(\IJN)y)]
< 3| (2N + 1)P(Wy,y)

+ max{H(®)2d(2d + )[Zﬁgol(zv—n)] Nd(2d + 1 0}]

(2N + 1)P(Wy,y) + max{H(®)d(2d + 1)N(N + 1) — Nd(2d + 1 0}]

NI—

(383)
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This and (380) imply that for all y € (R?)" it holds that

P(®y) < %[(2N+1)[d2©+(23+6N’H(<D)+4d2+3d+N[2(d2+d)+73(<1>)]2)2]
+ max{H(®)d(2d + 1)N(N + 1) — Nd(2d + 1), 0}]2. (384)

Therefore, we obtain that for all y € (R4)V it holds that

P(dy)

<3N+ 1)[d2© + (23 + 6NH(®) + 7d> + N[4d® + P(q))]z)z]
] 2
+max{7-l(<1>)d(2d +1)N(N +1) — Nd(2d + 1), 0}]

_ 2
3N[d2® + (23 + 6NH(®) + 7d> + N[4d? + P(cl>)]2)2] + 6d2N2H(®) | .

(385)
In addition, note that (369), (Il), and Lemma 3.8 (with N = N,d = d, u = R4(®),
T=1,{-101,....N+1l}sn—teR)=({-1,0,1,....N+1}5n —
heR),{0,1,...,N}sn+— f, e C(R,R)) = ({0, 1,...,N} an— R,(I1,) €
C(R,R)), Y = Y inthe notation of Lemma 3.8) ensure that forall 7 € [0, T], x € R?,
y € (R?)V it holds that

<

=

P = S ReM)O1 = 3 (R O] (Ral(E0,) ()] (386)

Moreover, observe that (375), (376), item (iv) in Proposition 2.16 (with ¥ = I,
o =T, &, = Pz’(ﬂl’ﬂd)(nn, En,y), i= 2(d +1) forn € {0, 1, ...,N}, y €
(R?)N in the notation of Proposition 2.16), and Corollary 2.23 (witha = a, n = 2,
I = (I1,1g), ® = (M, Epy) forn € {0,1,..., N}, y € (R)V in the notation of
Corollary 2.23) demonstrate that for all # € [0, T], x € R?, y € (R?)" it holds that

(Ra(@))(t. x) = > (Ra(I)) (Ra(T1))(). (Ra(En,y))(x)). (387)

n=0

Next note that (369) shows that for all k € {0, 1,..., N}, 1 € R\(tx—1, fx+1) it holds
that

(Ra (k) (1) = 0. (388)

Combining this, (386), and (387) with (b) proves that for all k € {0, 1,..., N — 1},
t € [ti. tir1], x e R, y e (R?)N it holds that

I
M=

th Y

[(Ra(T2)) ()] [(Ra (En,y)) (x)]

«(TT)) ()] [(Ra(Bk,y)) ()] + [(Ra(Tx+1)) ()] [(Ra (Ext1,5)) (x)]
(389)

Il
o

n

= (

o
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and

(Ra(®y))(t, x) = Z(Ra(F))(( a(Tn))(1), (Ra(8n.y))(x))
n=0 (390)
= (Ra(1)) ((Ra (M) (1), (Ra(Ei.y))(x))

+(Ra(D) (Ra(Mi1-1))(1). (Ra(Br1,9))(x))-

The triangle inequality, (c), and (d) hence establish that forall k € {0, 1, ..., N —1},
t € [tk tir1], x € R, y e (R?)N it holds that

ny N (Ra(<1> ), x)]
Z] [[(Ra (M) ()] [(Ra(En.y)) ()] = (Ra(T)) (Ra(TTa))(1). (Ra(En.y))(x))|

<3 e (v [man{ 1 (R (ML) O H] + | (Ral0,))(5)1)

(391)
and

=~
+

[(Ra(®@))(t. )| < 3 [(Ra(T))((Ra(T1n))(1), (Ra(En.y))(x)) |

N
~3
+ |l
—_

(VA (1 +2/(Ra(T1x))(1)?) + 2/ (Ra(Eny) (x)[?)-

k
(392)
Next note that (369) ensures that for all n € {0, 1, ..., N}, t € Rit holds that 0 <
(Ra(I1,))(#) < 1. Combining this with (391), (392), and (II) demonstrates that for
allk e {0,1,..., N —1}, 1€ [tx, tir1], x € R, y € (R?)N it holds that

3
Il

[ = (Ra(@y)) (1, x)| < Z e(Vd + |(Ra(8n.y))(x)]7)

(393)
*8(\7+IIY”H‘1)+8(\7+||Yzf+y1|\q)
= e(2vd + [V + Y5 1)

and
k+1
[(Ra(®y)) (2, x)|| < i (3vd +2[(Ra(Eny))(x)]?)
Va2 e avasrr e O

let1

—6f+2(HYi£’yH2+ 1Y3212)-

Furthermore, observe that (387), (V), and (a) ensure that for all z € [0, T], x € RY it
holds that

[(RDY 5y — (Ra(®y))(t, x) e RY] € C (RN, RY). (395)

In addition, observe that (b), (387) and (388) demonstrate that for all n €
{0,1,..., N}, te[0,1,],x e R, y e (RY)V it holds that

n

(Ra(@))(t. x) = > (Ra(T)) (Ra(TT))(1). (Ra(Er.y))(x))- (396)

k=0
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This and (VI) show that for all n € {0,1,...,N}, t € [0,1,], x € RY, y =
(V1. Y2, - s YN ) 2 = (21,22 - s 2n) € RN with Vk € N [0,n]: yp = z it
holds that

(Ra(®y))(1,x) = 3 (Ra(T))(Ra(Iln)) (1), (Ra(Em.y))(x))

0
EO(Ra(F))((Ra(Hm))() (Ra(Bm.2))(x))
= (Ra(®))(2, x).

Combining this with (A), (385), (393), (394), and (395) establishes items (i)—(vi).
The proof of Proposition 3.10 is thus completed. O

3
=) M=

(397)

3.3.4 A priori estimates for Euler approximations

Lemma 3.11 Let N,d e N, ¢,C € [0, ), A1, A, ..., Ay € R et |-| : RY —
[0, 0) be a norm on R4, let ||-||: RY*4 — [0, o0) be the function which satisfies for
all A € R4 1<1y [Ax], let o RY — R? be a function

which satisfies for all x € RY that
le()] < €+ clx]. (398)
and let Y, = (Y3"") (¢ yyerdx gy : RY x (RN — R, n € {0,1,..., N}, be the

functions which satisfy foralln € {0,1,..., N—1}, x € RY, y = (¥1,¥2,.--,IN) €
(RN that Yy = x and

Y =00 4 At (V) + v, (399)
Then
(1) itholds foralln € {0,1,...,N}, x € RY, y = (Y1, Y2, ---,,YN) € (Rd)N that
2 A1 (V) + i (400)
and

(ii) it holds foralln € {0,1,...,N}, x € RY, y = (¥1,y2,---,YN) € (Rd)N that

17:]
Jeso(e| £ )

n
< (uxu e [kzl |||Ak||] M%)
(401)

m

2k

k=1

Proof of Lemma 3.11 We claim that foralln € {0,1,..., N}, x € RY, y = (1, y2,
.o ywn) € (RYN it holds that

Z A (YY) + v ] - (402)

We now prove (402) by induction on n € {0, 1, ..., N}. Observe that the hypothesis
that for all x € RY, y e (R?)" it holds that Y,” = x proves (402) in the base case
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n = 0. For the induction step note that (399) implies that foralln € {0, 1, ..., N—1},
xeRY, y=(y1,Y2, ..., IN) € (Rd)N with

Z Akt (V) + i ] (403)

it holds that
Y, 00 =Y+ Avain(Y) + e

n—1 i
=x+ | X (A1 (7)) + yig1) | + (A 0 (Y27) + yug1)
k=0 (404)

n
- [z (Apor i (¥)) + ykﬂ)] |
Induction thus proves (402). Observe that (402) establishes item (i). In addition, note
that (402), the triangle inequality, and the fact that for all A € RI*¥d x ¢ RY it
holds that |Ax| < [|A|| x| demonstrate that for all m € {0,1,..., N}, x € R?,
y =152, ..., yn) € (RN it holds that

1Yo < Il + [Z lAes e (Ye) ||1 Z Yet1-

Combining this with (398) ensures that foralln € {0, 1,..., N}, m € {0, 1,...,n},
xeRY y = (y1.y2, ..., yn) € (RN it holds that

(405)

[ > Akl v yll]

] te l S Al ||Y”||1

406
The time-discrete Gronwall inequality (cf., e.g., Hutzenthaler et al. [25, Lemm; 2.1%
with N = n, & = (|x| + C[ Xi=; I Akll] + max,eqo1..ny I 351 yxl). Bo =
cllAdll. B = cllAzll. ... Buo1 = cllAnll. o = 1Y L e = P77 ...en =
Y Y| forn € {1,2,..., N} in the notation of Hutzenthaler et al. [25, Lemma 2.1]))
hence implies that foralln € {1,2,..., N}, x € RY, y = (Y1, y2,---,IN) € (Rd)N

it holds that
n—1
) exo(c| 'S naven]):
k=0

(407)

m—1 m
Y] < el + l S el (€ +c||Y,z"y||)] " “ $
e [2 ||Ak|||] V S w

<kl+C [z ||Ak|||] [maxme{o,l ,,,,,

n
R Y (TR o V| P

The hypothesis that for all x € R?, y € (R?)" it holds that Yy = x therefore
assures that for all n € {0,1,...., N}, x e R, y = (y1, y2.....yn) € (RN
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|) exe(c] & st ).

(408)
This establishes item (ii). The proof of Lemma 3.11 is thus completed. O

holds that

n
] < (uxn e Lzl |||Ak|||] F M%)

3.3.5 A priori error estimates for space-time ANN approximations

Theorem 3.12 Let N,d € N, € € [0,0), a € C(R,R) satisfy for all x € R
that a(x) = max{x,0}, let T € (0,%0), (tn)nefo,1,...ny S R satisfy for all

ne{0,1,..., N} thatt, = % let© e [1,0), e €(0,1], g € (2, 0) satisfy that
D = [ 25 [loga(e™") + ¢ + 1] = 504, (409)

let ® e N satisfy for all x € RY that T(®) = O(®) = d and |(Ra(P))(x)| <
Q:(l + |x )r letY = (YtX)y)(t,x,y)e[O,T]dex(Rd)N: [0, T] x RY x (Rd)N — R? be
the function which satisfies for alln € {0,1,...,N — 1}, t € [ty, ty+1], x € RY,
y =1y, yn) € ROV that Yy =xand

Y =y 4 (= n) [F(Ra(®) (Ye) + yura]. (410)

and let g,: R x (RN — [0, 0), n € {0, 1,..., N}, be the functions which satisfy
foralln € {0, 1,...,N},x€Rd, y=(1,Y2,-.--»YN)E (Rd)N that

> yk> exp(€n)  (411)
k=1

gn(x,y) = (|x| + ¢, + max
me{0,1,...,n}

(¢f. Definition 2.1, Definition 2.3, and Definition 3.6). Then there exist ¥, € N,
y € (RHN, such that

(i) it holds forall y € (RN that R, (W) € C(RIT RY),
(i) itholdsforalln € {0,1,...,N —1},t € [ty, tar1], x € RY, y € (RN that

177 = (Ra(Wy)(t, )| < e(2Vd + (ga(x, )T + (gn+1(x, ))7), (412)
(iii) it holds foralln € {0, 1, ..., N — 1}, t € [ty, tn+1], x € RY, y € (RN that

[(Ra (W) (8, %) < 6Vd +2((ga(x, ¥)* + (gar1(x, 7)), (413)

(v) it holds for all y € (RY)N that
P(¥,) < I N6 [27—1, +D + (30 + 6H(D) + [4+ 79(@)]2)2]2,
(414)
(v) it holds forallt € [0, T], x € R? that
[RDN 5y — (Ra(¥y))(t, x) e RY] e C((R)N,RY), (415)

and
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(vi) it holds foralln € {0,1,...,N}, t € [0,1,], x € RY y = (Y1, ¥2, -+, IN),
2= (21,22, ..., 2n) € RN withVk e N [0, n]: yx = zx that

(Ra(¥y))(t, x) = (Ra(¥2))(2, x). (416)

Proof of Theorem 3.12 Throughout this proof let W, € N, y € (RY)V, satisfy that
(1) itholds forall y € (RY)N that R, (W,) € C(RI*T!, RY),
(1) itholds foralln € {0,1,..., N — 1},1 € [tn, tn+1], x € RY, y € (R?)V that

15 = (Ra(Wy) (1. x)| < e(2Vd + [V, 7|7 + |y 0 19), @417)

Ih+1

(IIl) itholdsforalln e {0,1,...,N —1},t € [ty, tar1], x € R?, y € (RY)N that

[(Ra(Wy)(t, x)|| < 6Vd +2(| Y5> + [ Y2 7). (418)

Int1

(IV) itholds for all y € (R?)V that
P(W,) < %[6d2N2H(¢)
2\2 2
+3N[d*D + (23 + 6NH(P) +7d* + N[4d? + P(®)[) H . (419

(V) itholds forall ¢ € [0, T], x € R? that
[(RDN 5y — (Ra(¥y))(r, x) € RY] € C((RY)N,RY), (420)

and
(VD) itholds foralln € {0,1,...,N},r € [0,1,],x € RY, y = (Y1, Y25 -+ > YN)»
2= (z1,22,....28) € (RN withVk € N~ [0, n]: yp = 2 that
(Ra(Wy))(t,x) = (Ra(W:))(t, x) (421)
(cf. Proposition 3.10). Note that (IV) ensures for all y € (R?)V that
P(¥y)

< %[6d2N2H<q>> +3N[dPD + (23 + ONH(®) + 74> + Na*[4 + 7’<‘D>]2)2H2
< %[6d2N2’H(CD) + 3N[d2© + N2d3 (30 + 6H(®) + [4 + P(CD)]Z)Z] 2

(422)
Hence, we obtain that for all y € (R?)" it holds that

2
P(w,) <1 [6d2N2’H(d>) +3N3d8 [@ + (30 + 6H(®) + [4 + P(CI>)]2)2H

< %N6d16 [2H(¢') +D + (30 + 6H(DP) + [4 + P(q))]z)z]z.
(423)

@ Springer



Space-time error estimates for deep neural network approximations... Page730f78 4

In addition, observe that Lemma 3.11 and the hypothesis that for all n €
{0, 1,..., N} it holds that 7, = % demonstrate that for all n € {0,1,..., N},

xeRd y = (Y1, y2,..-,IN) € (Rd)N it holds that
Sl [en(57)

H] exp(€ty) = gn(x, y).

1Y) < [|x ST o
(424)

_ [|x § Ch + Mo

Combining this with (IT) and (III) ensures that for all n € {0,1,...,N — 1}, ¢ €
[tn, tat1], x € R, y € (RY)N it holds that

[ = (Ra(¥y)) (1. x)| < e(2vd + Y717 + ¥, 7, 19)

fn+1 425
< e(2Vd + (8(xa 7)) + (gnsr(x y))1)

and
[(Ra()) (1. )] < 63 + 2(| Y52 + HYfﬁ B w6

< 6Vd +2((gn(x.))* + (gnt1(x, ¥))?).

This, (I), (V), (VI), and (423) establish items (i)-(vi). The proof of Theorem 3.12 is
thus completed. O

Corollary 3.13 Ler €, T,0 € (0,0), a € C(R,R) satisfy for all x € R that
a(x) = max{x,0}, let ®; € N, d € N, satisfy forall d € N, x € R? that
I(®y) = O(dy) = (Ra(®2))(x)|| < €(1 + ||x]), and P(®y) < €d°, let
YN = (v 6 en. T]X]Rd @1 [0.T] x R? x (RN — R, N.d €N, be
the functions which satisfy foralld, N e Nyn € {0,1,...,N—1},t € [%, W]
xeRY y = (v, v2. ..., yn) € (RN that Y(i’xltly = x and

d,N d,N d,N
Yt,x,y = Y%’x’y + (% - n) [%(Ra(q)d))(Y%’x’y) + Yn-i-l]- 427)

(cf. Definition 2.1, Definition 2.3, and Definition 3.6). Then there exist C € R and
Weuny €N ye ROV, N, deN, ¢ e (0, 1], such that

(i) it holds for all ¢ € (0,1], d,N € N, y € ROV that Ry(Ve.an.y) €
C(Rd+l,Rd),
(i) it holds foralle € (0,1],d, Ne N, t€[0,T], x e RY, y € (R)N that

IV = (Ra(Wean ) (1) < CAPNPe(1 4 x + |yIP),  428)
(iil) it holds foralle € (0,1],d, N e N, 1t € [0, T], x e R, y € (RN that

[(Ra(We.a,ny))(t. x)]| < CdN(1 + x| + |y [P, (429)
(iv) it holds foralle € (0,1],d, N € N, y € (RN that
P(e.an,y) < Cd"OTBNO[1 + [In(e) ], (430)

(v) it holds forall e € (0,1],d, N €N, t € [0, T], x € RY that
[(RDN 5y > (Ra(Weany))(t,x) R e C(RH)N,RY),  (431)
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and
(vi) it holds for all e € (0,1], d,N € N, n € {0,1,...,N}, t € [0, %] x €
R, y = (3, y2e .- vN) 2 = (21,20, -, 2n) € (RN with Vk € N n
[0,n]: yr = zx that
(Ra(We,a,n.y))(t, x) = (Ra(We.a,n.z2)) (2, X). (432)

Proof of Corollary 3.13 Throughout this proof let . , € [1,), g € (2,%), ¢ €
(0, 1], satisfy for all ¢ € (0, 1], ¢ € (2, c0) that

720q
Deq = [<q ~2)

let ¢ = max{exp(€T), D1.3,62 + 6€(¢ + 1)}, and let g=" : R? x (RY)N — [0, 0),
n € {0,1,...,N}, N,d € N, be the functions which satisfy for all d, N € N,
ne {O,l,...,N},xeRd,y =(y1,¥2,---,YN) € (Rd)Nthat

] [1og2(e—‘) +q+ 1] — 504, (433)

cnT
g8V (x, y) = (x| LI

N ¢nT
N mefod...n} Zy"De"P(T)- (434)

k=1

Note that Theorem 3.12 (with N = N,d = d, ¢ = €, a =a, T = T, 1, = I,

D =D3,e=¢69g=3®=0,Y = Yd’N,g,, = gg’NforN,d e N, ne
{0,1,..., N}, e € (0, 1] in the notation of Theorem 3.12) implies that there exist
WeanyeN, ye (RON N, deN,e e (0,1], which satisfy that

(D it holds for all ¢ € (0,1], d,N € N, y € (R)VN that Ry(Wean,y) €
C(Rd+l,Rd),
() itholds forall & € (0,1],d, N e N,n e {0,1,...,N — 1}, e [2L, (EDT)
xeRY, ye (RY)N that
d,N d,N
1YY = (Ra(Wean ) (6 %) < &(2Vd + (gY (x, 3)) + (g1 (£, )?),
(435)

(IT) it holds forall & € (0, 1],d, N e N,n € {0,1,..., N — 1}, ¢ e [2F, (XTI
xeRY, ye (RY)N that

[(Ra(Wean )t %) < 6vVd +2((g™ (x, 1)) + (g1 (%, 3))%), (436)
(IV) itholds foralle € (0,1],d, N e N, y € (R)N that
P(WYe,a,nN.y)
< §NOd"2H(®g) +De s+ (30+67—L(<I>d)+[4+P(<I>d)]2)2]2, (437)
(V) itholdsforalle € (0,1],d,NeN,te€[0,T],x € R that
(RN 5y > (Ra(Weany))(t, x) eRY e C(R)N,RY),  (438)

and
(VD) itholds forall ¢ € (0,1],d,N € N,n € {0,1,...,N}, t € [0, %]x €
Ry = (y1,y2, .., 98)s 2 = (21,22, .., 2v) € (RY)N with Vk € N n
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[0,n]: yr = zx it holds that

(Ra(We.a.ny)) (1 x) = (Ra(Wea.n.2)) (2, x). (439)

Observe that Jensen’s inequality implies that for all n € N, p € [1,00),
(x1,x2, ..., x,) € R" it holds that

Xt + -+ x0[P < nPTH(|xg]P + -+ [xa]P). (440)

Moreover, note that Holder’s inequality shows that for all N € N, y =
(Y1, ¥2, ..., yn) € (R4)N it holds that

N

N
S Il = Satsh <N (L inl) =w @
k=1 _

Combining (440), (IT), and (434) therefore ensures that for all ¢ € (0,1],d, N € N,

ne{0,1,...,N—1},te [%,W],xeﬂ@,y = (Y, y2, ..., yn) € (RHN it
holds that

1YY, — (Ra(Weany)) (1, x)| < 2d72e(1+ (857 (x, 9))%)

3
= 2d1/28<1 + <x| +¢T 4+  max H i yk”) exp(3€T))
" k=1

€{0,1,...,N}

N 3
2d1/25<1 + 9(IXI3 +c+ ( > Hykll) >c3>
k=1

26 (1+9(|x [ + & + N[y [°)e?)

2¢%d"* N6 (1+9(|x[® + 1+ [y[*))

= 2¢%"*N¢ (10 + 9)x > + 9|y [?)

20c54"2NV2e (1 + [x? + [y[?). (442)

N

N

N

N

Next note that (ITT), (434), (440), and (441) imply that for all & € (0,1],d, N € N,

ne{0 1, N—1}hte[2 L WU L e Ry = (yi,y2, ..., yw) € ROV it
holds that

[(Ra(Weany))(t.x)]| < 6vVd +4(g" (x. y))?
= 6Vd + 4<x| +CT + . {max H Z ka> exp(2¢T)

N

2
6Vd + 12<x|2 +ct+ (2 ) )CZ
k=1

6vVd + 12(|x|* + ¢* + N|y[*)c?
18c*VAN (1 + ||x | + |y?). (443)

N

N
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Furthermore, observe that (433) shows that for all ¢ € (0, 1] it holds that

(De3)* = (%m(fl) + @1,3)2 < (D13)*(In(e™") +1)?
< 1 —In(e)[* < 2¢*(1 + |In(e) ). (444)

This, (IV), the hypothesis that for all d € N it holds that P(®,) < ¢d?, and (440)
assure that forall ¢ € (0, 1], d, Ne N, y € (Rd)N it holds that

2
P(Wean.y) < §N6d1°[2¢d° + o5+ (30 +6€d° + [4+ €d°]2)2]

N

ZNCa'0[4€20% + (De5)* + (30 + 6¢d” +2[16 + 2a™])* |

N

TN0a'®[4€2% + 26 (1 + [In(e) 2) + (62 + 6€a° + 2¢%4™)*]

N

TN0a'0[4€2a® + 263 (1 + [In(e) 2) + (62 + 6¢(€ + 1)a*)" |

N

ZNCa'[cd® + 26 (1 + [In(e)?) + (cd®)’|

N

27N%4'6 >c2(1 + |1n(8)|2) + (cd2°)4]

N

54¢4 N6 16+ [1 v |1n(8)|2]. (445)

Combining (1), (442), (443), (445), (V), and (VI) establishes items (i)-(vi). The proof
of Corollary 3.13 is thus completed. O
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