
Application of machine learning for the

extrapolation of seismic data

Master’s Thesis

of

Amelie Cathrine Nüsse

at the Geophysical Institute

Reviewer: Prof. Dr. Thomas Bohlen

Second Reviewer: Prof. Dr. Dirk Gajewski

Date of submission: 22.11.2022

DEPARTMENT OF PHYSICS

Geophysical Institute

Erklärung zur Selbstständigkeit

Ich versichere, dass ich diese Arbeit selbstständig verfasst habe und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt habe, die wörtlich oder inhaltlich übernom-
menen Stellen als solche kenntlich gemacht und die Satzung des KIT zur Sicherung guter
wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet habe.

Karlsruhe, den 22.11.2022,

Amelie Cathrine Nüsse

Abstract

Low frequencies in seismic data are often challenging to acquire. Without low frequencies,
though, a method like full-waveform inversion might fail due to cycle-skipping. This
thesis aims to investigate the potential of neural networks for the task of low-frequency
extrapolation to overcome aforementioned problem. Several steps are needed to achieve
this goal: First, suitable data for training and testing the network must be found. Second,
the data must be pre-processed to condition them for machine learning and efficient
application. Third, a specific workflow for the task of low-frequency extrapolation must be
designed. Finally, the trained network can be applied to data it has not seen before and
compared to reference data. In this work, synthetic data are used for training and evaluation
because in such a controlled experiment the target for the network is known. For this
purpose, 30 random but geologically plausible subsurface models were generated based on
a simplified geology around the Asse II salt mine, and used for finite-difference simulations
of seismograms. The corresponding shot gathers were pre-processed by, among others,
normalizing them and splitting them up into patches, and fed into a convolutional neural
network (U-Net) to assess the network’s performance and its ability to reconstruct the data.
Two different approaches were investigated for the task of low-frequency extrapolation. The
first approach is based on using only low frequencies as the network’s target, while the
second approach has the full bandwidth as target. The latter yielded superior results and
was therefore chosen for subsequent applications. Further tests of the network design led to
the introduction of ResNet blocks instead of simple convolutions in the U-Net layers, and
the use of the mean-absolute-error instead of the mean-squared-error loss function. The
final network designed in this way was then applied to the synthetic data originally reserved
for testing. It turned out that the chosen method is able to successfully extrapolate low
frequencies by more than half an octave (from about 8 to 5 Hz) given the experimental
setup at hand. Although the results start to deteriorate in the low-frequency band for larger
offsets, full-waveform inversion will overall benefit from the application of the presented
machine learning approach.

Contents

1. Introduction 1

1.1. Related work . 2
1.2. Thesis outline . 3

2. Theoretical background 5

2.1. Deep learning . 5
2.1.1. Neurons and neural networks . 5
2.1.2. Activation functions . 6
2.1.3. Training neural networks . 7
2.1.4. Convolutional neural networks . 10
2.1.5. Autoencoders . 12

2.1.5.1. U-Net . 12
2.1.5.2. Residual U-Net . 13

2.2. Seismic modeling . 15
2.2.1. Seismic wave propagation in acoustic media 15
2.2.2. Finite-difference method . 16

2.2.2.1. Numerical dispersion and instabilities 18
2.2.2.2. Boundary conditions . 18

2.3. Full-waveform inversion . 18
2.3.1. Misfit function . 19
2.3.2. Calculating the gradient . 19
2.3.3. Multi-scale approach . 20
2.3.4. FWI workflow . 20

3. Data generation and preparation 23

3.1. Model building . 23
3.2. Modeling training data . 25
3.3. Development of a preprocessing workflow 33

3.3.1. Split in patches . 34
3.3.2. Normalizing the data . 37
3.3.3. Overlapping patches . 40
3.3.4. Comparison of the normalization techniques 44
3.3.5. Final pre-processing workflow after reconstruction tests 44

4. Application of deep learning for low-frequency extrapolation 47

4.1. Full-bandwidth extrapolation . 47
4.2. Low-frequency extrapolation . 48
4.3. Comparison of the extrapolation approaches 55
4.4. Parameter testing . 55
4.5. Loss functions . 57
4.6. Final results . 61

5. Conclusions 69

Acknowledgements 71

Appendix 81

A. Used software and hardware . 81
B. U-Net for the reconstruction tests . 82
C. Further predictions of the final network . 83

List of Figures

2.1. Sketch of an artificial neuron. The input x1, x2, . . . , xD is scaled with indi-
vidual weights w1, w2, . . . , w3 and summed up as activation a. The activation
is then transformed by an activation function h to form the output z. . . . 5

2.2. Sketch of a two-layered fully connected neural network, where circles depict
single neurons. The input has D features, the output consists of K features.
The layer between the input and the output layer is the hidden layer. Each
neuron has an additional bias term which is not shown in the sketch. 6

2.3. Common activation functions used in deep learning. 8
2.4. Schematic of a convolution, here implemented as a cross-correlation. The

kernel slides over the input and the values are multiplied and summed up
accordingly. The boxes show how the upper-left element of the output is
formed. Figure drawn after Goodfellow et al. (2016) 11

2.5. Sketches of the architecture of autoencoders. For the convolutional autoen-
coder, the arrows correspond to 3x3 convolution. The numbers below the
boxes depict the number of channels and the numbers on the sides the size
of the feature maps. 13

2.6. Architecture of the U-Net after Ronneberger et al. (2015). The original
U-Net is one layer deeper but for display reasons only 3 layers are shown.
The black arrows depict the characteristic skip-connections. 14

2.7. ResNet Block after He et al. (2016). With the shortcuts that are an identity
mapping, the network only has to learn the residual F (x). 14

2.8. 2D staggered grid as suggested by Virieux (1986) and Levander (1988). . . 17
2.9. Sketch for a 1D misfit function for different frequency bands in the multiscale

approach after Bunks et al. (1995). The frequency content decreases from
top to bottom. Vertical lines mark the global minimum of each misfit function. 21

2.10. Flowchart for full-waveform inversion. 21

3.1. Original smooth vp velocity model of the salt dome at Asse II, taken from
S, ortan (2022). Note that this model has a strong surface topography. 24

3.2. Used concept for generating a random interface: (a) Define nine nodes equally
spaced along vp ≤ 4000 m/s. Randomly move each point. (b) Interpolation
between the new nodes gives the outline of the interface. 24

3.3. Examples of different randomly generated vp velocity models used for simu-
lating shot gathers. 26

3.4. (a) Waveform and (b) amplitude spectrum of the tapered flat-spectrum
wavelet which is used as source signature. The flat-spectrum wavelet is the
autocorrelation of a linear sweep of 10 s length from 5 to 30 Hz, with a 1 s
taper at the beginning and the end. 27

3.5. Convergence test: Same trace modelled with different grid sizes ∆h. The
sampling interval is adjusted for each grid size. 28

3.6. Raw output of SOFI2D, its 1.5-integrated signal for a homogeneous model
with a flat-spectrum wavelet as input signal. The waveforms and spectra are
normalized for comparison. 30

3.7. Spectra of two flat-spectrum wavelets and the designed filter (brown) to
transform the 5-30 Hz flat-spectrum wavelet into a 8-30 Hz flat-spectrum
wavelet. 30

3.8. Snippet of the waveform (a) and amplitude spectrum (b) of a trace modeled
once with a 8 to 30 Hz flat-spectrum wavelet (dashed line) and once with
a 5 to 30 Hz flat-spectrum wavelet, where the trace is high-pass filtered
above 8 Hz afterwards (solid). The residual (brown) verifies the good match
between the results of both methods. 31

3.9. Unprocessed shot gathers of the same shot location but with different sub-
surface models. Each shot gather is displayed with a 99-percentile clip. The
synthetic data show large enough differences to be suitable for training the
neural network. 32

3.10. Shot gathers of (a) target, (b) prediction and (c) residual of a network trained
on full shot gathers. (a-c) have the same clip, which is the 99-percentile of
(a). The title of the residual plot gives the NRMS value, which indicates a
good fit. 35

3.11. The data are split into patches to increase the number of training data
and decrease the required memory. In this example, the data are split into
patches of 100×1400 data points for visibility, in the used neural network
much smaller patches of 128×128 data points are used. 36

3.12. Shot gathers of (a) target, (b) prediction and (c) residual of a network trained
on per-shot normalized patches. (a)-(c) have the same clip, which is the
99-percentile of (a). (d) is the same as (c) but with a different clip to enhance
the grid-like artifacts. The title of the residual plots gives the NRMS value,
which indicates a good fit. 38

3.13. Shot gathers of (a) target, (b) prediction and (c) residual of a network trained
on per-patch normalized patches. (a)-(c) have the same clip, which is the
99-percentile of (a). (d) is the same as (c) but with a different clip to enhance
the blocky artifacts. The title of the residual plots gives the NRMS value,
which indicates a nearly perfect fit. 39

3.14. Shot gathers normalized (a) per shot and (b) per trace. Note that the
amplitudes in the far offsets are increased in case of the trace normalization. 40

3.15. Shot gathers of (a) target, (b) prediction and (c) residual of a network trained
on per-trace normalized patches. (a)-(c) have the same clip, which is the
99-percentile of (a). (d) is the same as (c) but with a different clip to enhance
the artifacts. The title of the residual plots gives the NRMS value, which
indicates a very good fit. 41

3.16. Shot gathers of (a) target, (b) prediction and (c) residual of a network trained
on globally normalized patches. The zoomed area enhances the grid-like
artifacts. (a)-(c) have the same clip, which is the 99-percentile of (a). The
title of the residual plot gives the NRMS value, which indicates a poorer fit
than the previous results. 42

3.17. Shot gathers of (a) target, (b) prediction and (c) residual of a network trained
on globally normalized patches. For this test overlapping patches are used,
which remove the grid-like artifacts, compare zoomed area with Figure 3.16.
(a)-(c) have the same clip, which is the 99-percentile of (a). The title of the
residual plot gives the NRMS value, which indicates a poorer fit than the
previous results. 43

3.18. Shot gathers of (a) target, (b) prediction and (c) residual of a network trained
on globally normalized patches and high-pass filtered above 3 Hz. (a)-(c)
have the same clip, which is the 99-percentile of (a). The title of the residual
plot gives the NRMS value, which indicates a good fit. 45

3.19. Preliminary pre-processing workflow for training data after the reconstruction
tests. For the test data a patch size of 256× 256 is used. 46

4.1. Amplitude spectra of a shot gather for input and target data for two different
approaches. Note that the amplitudes of all spectra a normalized individually. 48

4.2. Shot gathers of (a) input, (b) target, (c) prediction and (d) residual of a
network trained to extrapolate the full bandwidth. (a)-(d) have the same
clip, which is the 99-percentile of (b). The title of the residual plot gives the
NRMS value, which indicates a good fit. 49

4.3. (a) Amplitude spectra of a shot gather for true and extrapolated full-
bandwidth data. (b) Snippet of a waveform at 655 m offset. (c) Snippet
of a waveform at 1945 m offset. (d) Snippet at 3945 m offset. 50

4.4. (a) Amplitude spectra of a shot gather for true and extrapolated full-
bandwidth data which were high-pass filtered afterwards. (b) Snippet of
a waveform at 655 m offset. (c) Snippet of a waveform at 1945 m offset.
(d) Snippet at 3945 m offset. Note that compared to Figure 4.3, the DC
component and the very low amplitudes are removed. 51

4.5. Shot gathers of (a) input, (b) target, (c) prediction and (d) residual of a
network trained to extrapolate the full bandwidth. (a)-(d) have the same
clip, which is the 99-percentile of (b). The title of the residual plot gives
the NRMS value, which indicates a good fit. Compared to the results in
Figure 4.2, frequencies below 3 Hz are removed. 52

4.6. Amplitude spectra of a shot gather with the input data (solid line) and the
high-pass filtered predictions (dashed line). 53

4.7. (a) Amplitude spectra of a shot gather for true and extrapolated full-
bandwidth data. (b) Snippet of a waveform at 655 m offset. (c) Snippet
of a waveform at 1945 m offset. (d) Snippet at 3945 m offset. Note that
compared to Figure 4.3, the predicted data are low-pass filtered. 53

4.8. Shot gathers of (a) input, (b) target, (c) prediction and (d) residual of a
network trained to extrapolate the full bandwidth. The full-bandwidth data
are low-pass filtered to show the fit of the low frequencies only. (a)-(d) have
the same clip, which is the 99-percentile of (b). The title of the residual plot
gives the NRMS value, which indicates a good fit. 54

4.9. Shot gathers of (a) input, (b) target, (c) prediction and (d) residual of a
network trained to extrapolate only the low frequencies. (a)-(d) have the
same clip, which is the 99-percentile of (b). The title of the residual plot
gives the NRMS value, which indicates a poor fit. 56

4.10. (a) Amplitude spectra of a shot gather for true and extrapolated low-
frequency data. Here, the network is trained on predicting only the low
frequencies. (b) Snippet of a waveform at 3945 m offset. The large DC
component leads to a strong bias on the trace. 57

4.11. Shot gathers of (a) input, (b) target, (c) prediction and (d) residual of a
network trained to extrapolate the full bandwidth. (a - d) have the same
clip, which is the 99-percentile of (b). The title of the residual plots gives
the NRMS value, which indicates a poor fit. Compared to the results in
Figure 4.9, frequencies below 3 Hz are removed. 58

4.12. (a) Amplitude spectra of a shot gather for true and extrapolated low-
frequency data. Here, the network is trained to predict only the low frequen-
cies. Furthermore a high-pass filter is applied to remove the DC component
and the very low frequencies. (b) Snippet of a waveform at 655 m offset. (c)
Snippet of a waveform at 1945 m offset. (d) Snippet at 3945 m offset. 59

4.13. Residual plots for bandwidth extension approaches with different network
architectures. The title of the residual plots shows the NRMS value. 60

4.14. Residual plots between target and prediction for (a) an MSE, (b) an MAE,
(c) and MSE+SSIM, (d) and MAE+SSIM, and (e) a Huber loss function.
The percentage above each plot is the NRMS value. 62

4.15. Shot gathers of (a) input, (b) target, (c) prediction and (d) residual of the
final network trained to extrapolate the full bandwidth. (a)-(d) have the
same clip, which is the 99-percentile of (b). The title of the residual plot
gives the NRMS value, which indicates a good fit. 63

4.16. (a) Amplitude spectra of a shot gather for true and extrapolated full-
bandwidth data of the final network. (b) Snippet of a waveform at 655 m
offset. (c) Snippet of a waveform at 1945 m offset. (d) Snippet at 3945 m offset. 64

4.17. Shot gathers of (a) input, (b) target, (c) prediction and (d) residual of the
final network trained to extrapolate the full bandwidth. The data is low-pass
filtered to assess the fit of the low frequencies. (a - d) have the same clip,
which is the 99-percentile of (b). The title of the residual plots gives the
NRMS value, which indicates a good fit. 66

4.18. (a) Amplitude spectra of a shot gather for true and extrapolated full-
bandwidth data of the final network. (b) Snippet of a waveform at 655 m
offset. (c) Snippet of a waveform at 1945 m offset. (d) Snippet at 3945 m
offset. Note that the data are the low-pass filtered version of the data in
Figure 4.16. 67

B.1. Architecture of the U-Net used for the reconstruction tests. Compared to the
original U-Net by Ronneberger et al. (2015, s. Figure 2.6), the operations of
down- and up-sampling have changed. Here, S = 2 stands for a convolution
with stride 2. Batch normalization layers (BN) are used before the activation
function. The black arrows depict the characteristic skip-connections. 82

C.2. Residual plots between target and full-bandwidth prediction of (a) shot 2,
(b) shot 13, (c) shot 25, and (d) shot 36. The title of the plots shows the
NRMS value, which indicates a similar fit for all shot locations. 83

C.3. Residual plots between target and low-pass filtered full-bandwidth prediction
of (a) shot 2, (b) shot 13, (c) shot 25, and (d) shot 36. The title of the plots
shows the NRMS value, which indicates a similar fit for all shot locations. . 84

C.4. Waveform comparisons for the predicted full-bandwidth data for trace 300
(a-d) and 40 (e-h), for the shots 2 (a, e), 13 (b, f), 25 (c, g), and 36 (d,
h). Note that in (a) the prediction follows partly the input, in (c) some
high-frequency artifacts can be seen and in (h) the bias disturbs the good
fit. The remaining traces show a nearly perfect fit. 85

C.5. Waveform comparisons for the predicted full-bandwidth data for trace 300
(a-d) and 40 (e-h), for the shots 2 (a, e), 13 (b, f), 25 (c, g), and 36 (d, h).
Note that in (a, f-h) the amplitudes are too small and phases are not entirely
correct. The remaining traces show a nearly perfect fit. 86

List of Tables

2.1. Number of grid points n per minimum wavelength dependent on the FD
order for Taylor coefficients (Köhn, 2011). 18

2.2. Factor γ for the Courant criterion dependent on the FD order for Taylor
coefficients (Köhn, 2011). 19

3.1. P-wave velocities vi in m/s for different numbers of interfaces i above the
salt. v2 is the velocity of the second layer and so on, with v1 = 1500 m/s
being the velocity of the water layer. 25

3.2. Value ranges for the variable parameters of the model-generating algorithm. 26
3.3. Computing time in seconds for a similar setting but with different grid

spacings ∆h. The sampling intervals are adjusted with the grid size. 29

1. Introduction

Machine learning is becoming more and more successful with the increasing computational
power and the increasing amount of labeled training data available. At present, machine
learning surrounds us anywhere in our daily life. It might be as simple as email spam
detection or advertisement recommendations but can be as advanced as voice assistants
such as "Alexa" or advanced driver assistance systems, like traffic sign recognition in modern
cars. However, machine learning is not only improving everyday life but is also a great tool
to, for example, reveal underlying patterns or automate time-intensive processes in any
data-intensive scientific discipline.

Geophysics is such a data-intensive discipline. For that reason, the interest in machine
learning has grown significantly in the geophysics community in recent years. The first
publications on machine learning in geophysics were in the late 1980s, focusing on seismic
interpretation, such as horizon tracing (Liu et al., 1989) and bright spot detection (Huang
et al., 1989). Since then, an exponential growth in the number of Society of Exploration
Geophysicists (SEG) publications in the field of machine learning has been observed (Yu and
Ma, 2021). Nowadays, machine learning is used in a wide variety of geophysical applications,
which ranges from fault detection (Liu et al., 2020), detection of arrivals of the P- and
S-phases of earthquakes (Zhu and Beroza, 2019) to facies classification (Qian et al., 2018).
The aforementioned applications are all classification tasks, however, machine learning is
also coming up in the field of inversion. Neural networks are used to predict velocity models
from shot gathers (Yang and Ma, 2019; Kazei et al., 2021). Furthermore, Richardson (2018)
implemented the full-waveform inversion (FWI) algorithm as a recurrent neural network.

FWI is another powerful tool in geophysics that enables us to utilize the entire information
of the full waveform to obtain a model of the subsurface. Same as machine learning, FWI is
an optimization problem. It has the goal to converge synthetic data towards the measured
data (Virieux and Operto, 2009). Bunks et al. (1995) introduced the widely used multistage
approach to converge the data. In this approach, the data are inverted in several stages
covering different frequency bands, starting from low frequencies towards high frequencies.
Low frequencies will give a smooth model of the subsurface, while high frequencies will reveal
high-resolution details of the structures in the subsurface (Bunks et al., 1995). Furthermore,
low frequencies allow for a deeper penetration depth, reduced side lobe energies of the
wavelet, and improved absolute impedance estimation (ten Kroode et al., 2013).

Even though low frequencies are important for the further processing of seismic data, their
acquisition is challenging. Receivers have to deal with a reduced signal-to-noise ratio at
low frequencies (ten Kroode et al., 2013) and sources are usually not able to produce very
low frequencies (Wehner et al., 2019). Therefore, seismic data often lack such frequencies.

Without low frequencies, FWI becomes a highly nonlinear optimization task. The objective
function will be complex and can contain several local minima, if the starting model does
not have sufficient accuracy. Hence, the FWI optimization algorithm might get stuck in
one of the local minima instead of the global minimum. This is called cycle skipping (Hu

1

2 Application of machine learning for the extrapolation of seismic data

et al., 2018). In this context, low frequencies help in making application of FWI on field
data feasible.

1.1. Related work

The importance of low frequencies is well known, so different methods were developed to
address the problem of missing low frequencies. One workaround is to change the existing
FWI scheme. This has been achieved by either using advanced misfit functions (Warner
and Guasch, 2016; Sun and Alkhalifah, 2020), conditioning of the gradient (Ma et al.,
2012; Ovcharenko et al., 2018a) or additional constraints on the misfit (van Leeuwen and
Herrmann, 2013; Zhang et al., 2018). Another approach is using data-driven methods to
synthesize low-frequency information. Wu et al. (2013) suggest using the envelope for low-
frequency information. Hu (2014) propose the beat-tone method, where the low-frequency
information is taken from the difference between data of adjacent frequency bands. Li and
Demanet (2016) implement a phase-tracking algorithm that separates seismic recordings
into elementary events. Low frequencies can then be extrapolated by changing the wavelet.
In recent years, machine learning techniques have been applied to the task of low-frequency
extrapolation as well.

Ovcharenko et al. (2017) applied a deep-feedforward neural network. They use the real
and imaginary parts of the frequency-wavenumber (f-k) spectra from each receiver as input
to their neural network and trained the network to predict low-frequency spectra. The
resulting spectra are close to each other, though. Especially in the far offsets, their fit
is not very accurate. Ovcharenko et al. (2018b) extended their work by applying FWI
to the extrapolated data. The network can predict general trends; however, small-scale
details are not correctly reconstructed. Applying FWI to the data showed that the low
frequencies were not reconstructed well enough to be useful for FWI. In their subsequent
work, Ovcharenko et al. (2019) upgrade their network to a convolutional neural network.
The input and output are high-frequency spectra and single low-frequency spectra given
for shot gathers instead of single receivers as in the previous work.

Jin et al. (2018) introduced a network to extrapolate low-wavenumbers by combining
their beat-tone method (Hu, 2014) with the Inception network (Szegedy et al., 2015). The
extrapolated data showed better results when used in FWI than the beat-tone approach
alone. In their subsequent work, Hu et al. (2021) introduced a progressive transfer learning
approach by integrating the previous network into a physics-based FWI workflow. In this
approach, the training data evolve as the velocity model is updated with FWI. Following
the physics-guided approach further, Hu et al. (2020) extended their workflow by a pretext
task to obtain a better initial starting model. With the integration of conventional FWI into
the machine learning workflow, the network lacks efficiency. Jin et al. (2021) changed their
previous approach from frequency-domain to time-domain, by using a U-Net architecture
instead of the Inception network. The conventional FWI is replaced with a truncated FWI
to reduce the time for the FWI loop.

In contrast to the others, Sun and Demanet (2018) proposed to apply a CNN directly to
bandwidth-limited data in the time domain. They use band-limited shot gathers as input
to their network and predict low-frequency shot gathers from the input. The presented
traces show a promising fit. In their subsequent work, Sun and Demanet (2019) verified the
predictions of their network by using the data for FWI. With the extrapolated frequencies,
cycle-skipping can be omitted.

In their more recent approaches instead of training on complete shot gathers, Sun and
Demanet (2020b) used a trace-by-trace approach. This results in extrapolated low-frequency
traces that are accurate enough to improve FWI. The trace-by-trace approach, however,

Chapter 1. Introduction 3

suffers from decreased coherence between neighboring traces. To expand their network
to elastic data, Sun and Demanet (2020a) trained their network on multi-component
data. Training on the vx and vy components enables the prediction of low frequencies for
multi-component data. Sun and Demanet (2022) changed the architecture of the used
network to improve their result even further. Instead of conventional convolutions, dilated
convolutions (van den Oord et al., 2016) are used and instead of single traces, multiple
traces of neighboring receivers are used. Especially for diving waves, a great fit could be
achieved, which gave reasonable low-wavenumber FWI results.

Fabien-Ouellet (2020b) used a recursive convolutional neural network to generate low-
frequency data. Compared to other work, the network is not bound to a certain frequency
for input and target but extrapolates the central frequency to half the center frequency of
the input data. The extrapolated data show a good fit and the network is able to denoise
the very low-frequency data. The different frequency bands can then be used directly for
FWI to overcome the cycle-skipping problem (Fabien-Ouellet, 2020a).

Wang et al. (2020) trained a U-Net, see section 2.1.5.1, on band-limited shot gathers.
Compared to the other approaches, not low frequencies, but extended bandwidths are used
as targets. Quantified error values as well as residual plots are missing in this publication,
which makes it hard to evaluate the results.

Aharchaou et al. (2021) proposed a sequence-to-sequence approach in the frequency-
wavenumber domain. In contrast to the others, the network is not trained on synthetic
data, but on field data acquired with ocean-bottom nodes (OBN). The trained network is
then applied to towed-streamer data. For strong-amplitude events the extrapolated data
show a good match to the true data. In parts of the data with a weaker signal-to-noise
ratio, the signal is not recovered correctly. In another approach Aharchaou and Baumstein
(2020) applied a U-Net to time domain data from their ocean-bottom node recordings.
The resulting low frequencies could not recover all events perfectly; some events ended up
with too large amplitudes. Furthermore, the incoherent noise in the OBN field data also
inherently influenced the towed-streamer prediction.

Nakayama and Blacquière (2021) utilized a U-Net for simultaneously extrapolating low
frequencies, deblending and data reconstruction. The network is trained on synthetic data
as well as field data.

In their latest approaches Ovcharenko et al. (2021) use shot gathers of two different frequency
bands as input to a generative adversarial network (GAN). The idea is to integrate field
data into the training process. The aim of the network is to correctly reconstruct the
low-frequency field data. The results of this approach seem to be promising. However, a
quantified error is missing in the papers.

Another approach of Ovcharenko et al. (2022) is the implementation of a network for
multi-task learning. Instead of just implementing the low frequencies, also an initial velocity
model is predicted by the network. The advanced loss function helps to increase the accuracy
of the low frequencies and an improved initial starting model helps FWI to overcome the
cycle-skipping problem. With decreasing frequency and/or increasing arrival time, the
match between the target and predicted data reduces. Nevertheless, the results are still
good enough to mitigate cycle-skipping.

1.2. Thesis outline

To overcome the cycle-skipping problem in FWI, low-frequency information is needed. Such
information can be obtained by different techniques. The aim of this thesis is to investigate
the potential of a deep learning approach to extrapolate frequencies below 8 Hz and develop
such an approach. This thesis consists of 5 chapters:

4 Application of machine learning for the extrapolation of seismic data

After the introduction, which has already given an overview of related work, chapter 2
discusses the theoretical background to understand the methods used in this work. First,
the basic ideas of machine learning are presented, which is essential to understand the
network presented in this work. Then, I shortly cover the methodology of seismic modeling
with finite differences as well as the background information on FWI.

Chapter 3 deals with the preparation of synthetic data. This includes the random generation
of subsurface velocity models, the simulation of wave propagation in the models to obtain
synthetic seismic data, and the development of a pre-processing routine for the modeled
data to serve as training data for the neural network.

The pre-processed data are then used as training data to face the task of low-frequency
extrapolation with a U-Net (chapter 4). Two different approaches are discussed, which is
followed by several hyperparameter tests to find the optimal setting for the network. Then,
the final result is presented and further studied.

Finally, my findings are summarized in chapter 5. Furthermore, an outlook is given on how
this approach can be improved and the resulting data applied in FWI.

2. Theoretical background

Three topics are addressed in this thesis: Deep learning to extrapolate low frequencies,
seismic modeling to generate training data, and full-waveform inversion as motivation for
the extrapolation of low frequencies. In this chapter, the background information on those
disciplines is presented.

2.1. Deep learning

This section provides an overview of the theory of deep learning. Since deep learning is a
broad topic, only parts of the theory can be discussed within the scope of this thesis. For
additional details, I refer to the books of Bishop (2006) and Goodfellow et al. (2016). In the
following, artificial neurons and neural nets are introduced. Afterwards, different activation
functions and their advantages are discussed. Next, convolutional neural networks and the
architecture of encoder-decoder networks are explained.

2.1.1. Neurons and neural networks

Deep learning is based on artificial neural networks (Goodfellow et al., 2016). These are
inspired by neurons in the biological brain (Rumelhart, 1988). In Figure 2.1 a sketch of
an artificial neuron is displayed. Neurons consist in their basic form of a series of linear
combinations:

a =
D
∑

i=1

wixi + w0 , (2.1)

where x1,. . . ,xD are the input variables, wi the weight of the ith input and w0 the bias
(Bishop, 2006). The result a is called activation. The output z of a neuron is then a
transformation of the activation

z = h(a) , (2.2)

where h(·) is a differentiable activation function (Bishop, 2006). Different activation functions
are discussed in section 2.1.2.

x1

x2

xD

w0

∑

h

z

w1

w2

wD

a

Figure 2.1.: Sketch of an artificial neuron. The input x1, x2, . . . , xD is scaled with
individual weights w1, w2, . . . , w3 and summed up as activation a. The activation
is then transformed by an activation function h to form the output z.

5

6 Application of machine learning for the extrapolation of seismic data

In deep learning, neural networks usually consist of several layers of neurons (Goodfellow
et al., 2016). A simple network structure is displayed in Figure 2.2. Each node or unit
represents one neuron. The first layer is called input layer, the last layer is called output
layer. All remaining layers are named hidden layers. This means, every deep learning model
consists of at least three layers. In the sketch, only one hidden layer is used. For the neurons
in the hidden units, equation 2.1 changes to

aj =
D
∑

i=0

w
(1)
ji xi + w

(1)
j0 , (2.3)

where j is the index of the neuron in the current layer and the superscript (1) shows the
number of the current layer, here the first hidden layer. The transformed activation zj is
then the new input for neurons in the output layer. Therefore, the second layer is of the
form

ak =
M
∑

j=1

w
(2)
kj zj + w

(2)
k0 . (2.4)

With σ(·) as the final activation function, we can express the output yk of the network in
terms of the input variables and the adjustable weights as

yk(x, w) = σ

M
∑

j=1

w
(2)
kj h

(

D
∑

i=0

w
(1)
ji xi + w

(1)
j0

)

+ w
(2)
k0

 . (2.5)

The network is a forward operator applied to the input variables xi which gives the output
variables yk depending on the weights w. (Bishop, 2006)

2.1.2. Activation functions

There are several types of activation functions that are typically used in deep learning,
see Figure 2.3. The simplest version is a linear function. Most of the time deep learning
problems are nonlinear, though. Therefore, a nonlinear activation function is more beneficial.
Usually sigmoidal functions are used, such as the logistic function or the tanh function
(Bishop, 2006). The logistic sigmoid function s(x) is defined as

s(x) =
1

1 + e−x
(2.6)

and has a value range from 0 to 1, see Figure 2.3a (Goodfellow et al., 2016). The tanh
function has a similar appearance:

tanh(x) =
2

1 + e−2x
(2.7)

x1

xD

y1

yK

Figure 2.2.: Sketch of a two-layered fully connected neural network, where circles
depict single neurons. The input has D features, the output consists of K features.
The layer between the input and the output layer is the hidden layer. Each neuron
has an additional bias term which is not shown in the sketch.

Chapter 2. Theoretical background 7

However, it is shifted and scaled compared to the logistic function, see Figure 2.3b (Goodfel-
low et al., 2016). Its values range from -1 to 1. If the target of a network has the same value
range, sigmoidal functions work well for output neurons. However, they saturate quickly for
very negative and very positive values, which makes training difficult (Goodfellow et al.,
2016). Therefore, they are only sensitive for values close to zero. For this reason, the rectified
linear unit (ReLU) was introduced. The ReLU is defined as

ReLU(x) = max(0, x) (2.8)

The ReLU behaves just like a linear activation function for positive values but is zero
for negative values, see Figure 2.3c (Glorot et al., 2011). With that, the gradient is high
whenever the output is nonzero, and zero elsewhere. Through active units, the gradient can
flow very well without the problem of a vanishing gradient, which is one of the problems
sigmoidal functions face (Glorot et al., 2011). However, the neuron cannot learn anything
for samples where the unit is inactive, as the gradient is zero (Goodfellow et al., 2016).
To overcome this problem, different variants of the ReLU have been developed in recent
years, such as the leaky ReLU (Maas et al., 2013), the parametric ReLU (He et al., 2015)
or the ELU (Clevert et al., 2016), by changing the negative side of the ReLU to a nonzero
function.

Another more advanced version is the scaled exponential linear unit (SELU), which was
introduced by Klambauer et al. (2017) and is defined as

SELU(x) =

{

λx, if x > 0,

λα(ex − 1) otherwise ,
(2.9)

with λ ≈ 1.050700987 and α ≈ 1.673263242. With this design of the SELU, a normalization
of the activations to zero mean and unit variance is achieved. Having negative and positive
values allows to control the mean. The saturation region allows to dampen the variance
as there the derivative converges towards zero. A slope larger than one for positive values
allows to increase the variance (Klambauer et al., 2017), see Figure 2.3d. Compared to the
ReLU the exponential part of the SELU has another advantage. The gradient is nonzero for
negative values, which means that the information can flow backward through these units.
Normalizing neuron activations allows for robust training of neurons and avoids exploding
or vanishing gradients (Klambauer et al., 2017).

2.1.3. Training neural networks

To train a neural network means to adjust the trainable parameters θ in such a way that
the objective function J(θ) is optimized (Goodfellow et al., 2016; Bishop, 2006). Note that θ
corresponds not only to the weights w, but also includes other trainable parameters. Often,
the objective function is minimized and can therefore be called the error function, loss
function, or cost function (Goodfellow et al., 2016). Typically, minimizing is done iteratively
with a gradient-based optimizer (Goodfellow et al., 2016). Hereby, mostly stochastic gradient
descent (SGD) or variations of it are used (Goodfellow et al., 2016). The cost function is
often a sum over the per-example loss:

J(θ) =
1

m

m
∑

i=1

L
(

x(i), y(i), θ
)

, (2.10)

where m is the number of training samples (Goodfellow et al., 2016). Thus, the gradient
can be expressed as:

∇θJ(θ) =
1

m

m
∑

i=1

∇θL
(

x(i), y(i), θ
)

, (2.11)

8 Application of machine learning for the extrapolation of seismic data

−5.0 −2.5 0.0 2.5 5.0

Input

0.00

0.25

0.50

0.75

1.00

O
u
tp
u
t

(a) Logistic Sigmoid

−5.0 −2.5 0.0 2.5 5.0

Input

−1.0

−0.5

0.0

0.5

1.0

O
u
tp
u
t

(b) Tanh

−6 −4 −2 0 2 4 6

Input

0

2

4

6

O
u
tp
u
t

(c) ReLU

−5.0 −2.5 0.0 2.5 5.0

Input

−2

0

2

4

6

O
u
tp
u
t

(d) SELU

Figure 2.3.: Common activation functions used in deep learning.

The more training data are used, the more computationally expensive the gradient compu-
tation will be. Therefore, SGD uses an estimation of the gradient based on a small set of

samples. Each step of the algorithm uses a so-called minibatch B =
{

x(1), . . . , x(m′)
}

to

estimate the gradient:

g =
1

m′
∇θ

m′

∑

i=1

L
(

x(i), y(i), θ
)

(2.12)

Next, the parameters θ are updated in downhill direction:

θ ←− θ − ǫg , (2.13)

where ǫ is the learning rate or step size. When using the SGD algorithm, the computation
time per update does not increase with the number of training samples. The number of
epochs is a hyperparameter that specifies the number of passes through the complete
training data set. Meaning, if the data set consists of n minibatches, each epoch will consist
of n updates of the gradient. (Goodfellow et al., 2016)

Adam optimizer

The SGD algorithm (equation 2.13) can be slow. Hence, there are different implementations
of optimization algorithms. Here, only the Adam optimizer will be discussed, as it is used
for training the network in this work. The Adam optimizer is an adaptive learning-rate
optimizer and was introduced by Kingma and Ba (2015). The name is an abbreviation for

Chapter 2. Theoretical background 9

"adaptive moments". The update scheme for Adam is

m←− ρ1m + (1− ρ1)g (2.14)

v ←− ρ2v + (1− ρ2)g ⊙ g (2.15)

m̂←− m

1− ρt
1

(2.16)

v̂ ←− v

1− ρt
2

(2.17)

∆θ ←− −ǫ
ŝ√

r̂ + δ
(2.18)

θ ←− θ + ∆θ , (2.19)

where g is the gradient as defined in equation 2.12. The first moment, the mean m, and the
second moment, the uncentered variance v, of the gradient are initialized as zero. m̂ and
v̂ are the bias-corrected moment terms. ρ1,2 are exponential decay rates. The algorithm
updates the moving averages of the gradient and the squared gradient, which are estimates
of the first and second moment, respectively. Compared to SGD, for the Adam optimizer
the update direction is not necessarily the gradient direction but takes previous gradient
directions into account.

Gradient calculation by backpropagation

Training of a neural network starts with the initialization of the weights to small random
values (Goodfellow et al., 2016). The information of the input is then forward propagated
through the network with equation 2.5 and the cost function J is calculated from the
output. To calculate the gradients for optimization, the information of the cost function
needs to flow back through the network, which is called backpropagation (Rumelhart et al.,
1986; Goodfellow et al., 2016). For the derivation of the backpropagation algorithm, I follow
the original derivation of Rumelhart et al. (1986). Backpropagation is based on the chain
rule of calculus. Let us assume we have a simple multi-layer feedforward neural network as
discussed in section 2.1.1. The output y of the neuron j in the last layer is then

yj = σ

(

∑

i

ziwij

)

, (2.20)

where σ(·) is a nonlinear activation function and zi is the input of the neuron, which is
simply the output of the ith neuron in the previous layer. When d is the desired output
of the network, we can design an objective function that compares the target and the
prediction, for example a squared error:

J =
1

2

∑

c

∑

j

(

y
(c)
j − d

(c)
j

)2
, (2.21)

where c indicates different input-output pairs. To minimize J with SGD, the partial
derivative of J with respect to the weights w is needed. The first step of the backward pass
is to compute ∂J

∂y
. Differentiating equation 2.21 for a particular input-output pair c gives

the following:
∂J

∂yj
= yj − dj (2.22)

Applying the chain rule to get ∂E
∂a

leads to:

∂J

∂zj
=

∂J

∂yj
· ∂yj

∂aj
, (2.23)

10 Application of machine learning for the extrapolation of seismic data

where aj is the linear combination of the weights wij and the input xj . Finally, the partial
derivative ∂J

∂wji
can be calculated as

∂J

∂wji
=

∂J

∂aj
· ∂aj

∂wij
(2.24)

=
∂J

∂yj
· ∂yj

∂aj
· ∂aj

∂wij
(2.25)

= (yj − dj) σ′(aj)xi . (2.26)

It can be seen that the activation function h must be at least partially differentiable.
Furthermore, the partial derivative with respect to xi can be calculated as

∂J

∂xi
=
∑

j

∂J

∂aj
· ∂aj

∂xi
(2.27)

=
∑

j

∂J

∂aj
· wij . (2.28)

Hence, the gradients for all input features to the neuron of the last layer are known. As
those features are the output of neurons in the layer before, the gradient can be calculated
in the same manner for the next layer, passing the information from the last layer all
the way to the first layer. In essence, the backpropagation of a deep neural network is a
repeated application of the chain rule.

2.1.4. Convolutional neural networks

For grid-like data, for example, 1D time series or 2D images, a fully connected network
such as the one discussed in section 2.1.1 cannot take account of the fact that data points
nearby in these grid structures have a higher correlation to the current data point than
data points farther away (Bishop, 2006; Goodfellow et al., 2016). Convolutional neural
networks (CNNs) overcome this by using convolutions:

s(t) =
∫

x(a)w(t− a)da (2.29)

= x(t) ∗ w(t) , (2.30)

where x is referred to as input, w as kernel or filter, and s as feature map. As data are usually
not stored continuously, a discrete convolution is used for machine learning approaches:

s(t) = x(t) ∗ w(t) =
∞
∑

a=−∞

x(a)w(t− a) (2.31)

However, for multi-dimensional tensors that are often used in deep learning, also the
convolution has to be multi-dimensional. For 2D data the discrete convolution changes to:

S(i, j) = I(i, j) ∗K(i, j) =
∑

m

∑

n

I(m, n)K(i−m, j − n) (2.32)

To reduce the range of values for m and n, the commutative law is used:

S(i, j) = K(i, j) ∗ I(i, j) =
∑

m

∑

n

I(i−m, j − n)K(m, n) (2.33)

In many neural network libraries, such as TensorFlow (Abadi et al., 2015), convolution is
often implemented as a cross-correlation,

S(i, j) = I(i, j) ∗K(i, j) =
∑

m

∑

n

I(i + m, j + n)K(m, n) , (2.34)

Chapter 2. Theoretical background 11

which is similar to a convolution but without the flipped kernel. The network will then
learn the flipped kernel instead of the original kernel for a convolution. In the end, both
implementations give the same result (Goodfellow et al., 2016). Figure 2.4 shows an example
of a convolution as implemented in TensorFlow. The kernel slides over the input and a linear
combination of the overlying elements of kernel and input is written in the corresponding
output position.

The three main advantages of convolutional layers are that a CNN has sparse interactions,
shared weights, and equivariant representations (Goodfellow et al., 2016; Bishop, 2006).
Sparse interactions are possible as the kernel is chosen to be significantly smaller than the
input data. With that, also the dimensions of the matrix multiplication decrease, meaning
less parameters need to be trained. To reduce the amount of trainable weights even further,
shared weights are used. This means that the weights of the kernel are the same for every
location on the input. As the kernel values are tied, the convolution is also equivariant to
translation. This implies that if a kernel is sensitive for a particular feature, then the same
result is produced for each possible position of the feature in the input.

Furthermore, some variants of the convolution can be used to change the output size.
Setting a stride allows one to subsample by letting the kernel pass over some positions
(Dumoulin and Visin, 2016). This reduces the computational cost and size of the output
feature map. To avoid a larger reduction of the output size, zero-padding can be introduced.
The idea is to insert rows and columns with zeros around the original input to make it
wider. Depending on the number of zeros added, the size of the output will stay the same
as the input, or it is reduced (Goodfellow et al., 2016). The width of the resulting output
Wout for an input of width Win that passes through a convolution can be calculated as

Wout =
Win −K + 2P

S
+ 1, (2.35)

with a kernel of size K, a padding of P and a stride of S (Dumoulin and Visin, 2016).

Batch normalization

As discussed in section 2.1.2 when introducing the SELU, normalized activations are
beneficial for the training process. Another idea, which is nowadays the standard for CNNs,
is batch normalization, or in short, batch norm (Ioffe and Szegedy, 2015). This technique
reparameterizes the current minibatch H to get a normalized output

H ′ =
H − µ

σ
, (2.36)

a b c d

e f g h

i j k l

w x

y z

aw + bx+
ey + fz

bw + cx+
fy + gz

cw + dx+
gy + hz

ew + fx+

iy + jz

fw + gx+

iy + kz

gw + hx+

ky + lz

Input
Kernel

Output

Figure 2.4.: Schematic of a convolution, here implemented as a cross-correlation.
The kernel slides over the input and the values are multiplied and summed up
accordingly. The boxes show how the upper-left element of the output is formed.
Figure drawn after Goodfellow et al. (2016)

12 Application of machine learning for the extrapolation of seismic data

where µ denotes the mean of the current batch and σ the standard deviation. When
backpropagating through the network, we will also backpropagate through the batch norm
layer. This hinders the network to simply increase the standard deviation or the mean,
as this gets cancelled out by the normalization process (Goodfellow et al., 2016). After
training, the network is applied to the test data set. In this case, µ and ρ are not calculated
from the minibatch as before. Instead, a running average is used which was calculated
during training. Typically, the output of a batch norm layer is not simply H ′ but γH ′ + β,
where γ and β are trainable parameters. This allows the network to have any mean and
standard deviation (Goodfellow et al., 2016).

2.1.5. Autoencoders

With the theory introduced in the previous subsections, an infinite number of different
architectures can be designed. Here, I restrict myself to one class of networks, the so-called
autoencoders (AE), as they will be used in this thesis.

An autoencoder is designed to reconstruct the input as the output. This might seem like a
useless application, but typically not the output, but the information in the hidden layer is
of interest (Goodfellow et al., 2016). In Figure 2.5a the sketch of the architecture of an
autoencoder is displayed. The network consists of two parts: The encoder maps the input
x into an encoded representation q = f(x) and the decoder tries to restore the input from
the hidden representation, y = r(q) (Goodfellow et al., 2016). To encourage the network to
learn a meaningful encoded representation of the input data, the hidden space must be
smaller than the input space. If a linear decoder and an MSE loss are used to train the
network, the encoder will produce an encoded representation that is simply the principle
component analysis (PCA) of the data (Bourlard and Kamp, 1988). Using a nonlinear
decoder will give a nonlinear generalization of the PCA in the hidden space, while the
network is only trained on copying the input (Goodfellow et al., 2016). The traditional
applications of autoencoders are dimensionality reduction and feature learning (Goodfellow
et al., 2016). Autoencoders are trained in an unsupervised way, which means that the
data do not have labels. However, they find application as well in supervised tasks such as
classification: Once the network has learned a meaningful representation of the data, the
encoder can be used separately from the decoder to encode the data. The code can then be
used as input to a supervised classification model, with the advantage that the classification
network gets data already compressed down to its most important information (Gogoi and
Begum, 2017).

Autoencoders also work for grid-like data such as time series and images. The fully-connected
layers are simply replaced with convolutional layers as discussed in section 2.1.4 (Masci
et al., 2011), see Figure 2.5b. Still, the encoded space has a smaller dimension than the
input. To compensate for the spatial compression of the input, the number of channels is
increased. Different channels can be seen as 2D maps, showing where certain features can
be found in the input (Goodfellow et al., 2016).

2.1.5.1. U-Net

As the encoder of an autoencoder compresses the input to smaller spatial dimensions, high-
resolution location information will get lost. For traditional tasks, such as data compression,
a very high accuracy in the reconstruction is not important. However, when using those
networks outside of their traditional applications, such as in regression and segmentation
tasks, a high accuracy of the output is crucial. To overcome this problem, skip connections
between the encoder and decoder are introduced. They enable the transport of location
information from the encoder to higher resolution layers of the decoder (Ronneberger et al.,
2015).

Chapter 2. Theoretical background 13

x1 x1

x2 x2

x3 x3

x4 x4

x5 x5

l11 l31

l12 l32

l13 l33

l21

l22

Input

Encoded

Space

Output

(a) Stacked autoencoder (SAE)

1
2
8
×
1
2
8

1

16

64

16

1

6
4
×

6
4

3
2
×
3
2

1
2
8
×
1
2
8

6
4
×
6
4

Encoded Space

Input Output

(b) Convolutional autoencoder (CAE)

Figure 2.5.: Sketches of the architecture of autoencoders. For the convolutional
autoencoder, the arrows correspond to 3x3 convolution. The numbers below the
boxes depict the number of channels and the numbers on the sides the size of the
feature maps.

This architecture was introduced by Ronneberger et al. (2015) as the U-Net, which was
implemented for biomedical segmentation tasks. Figure 2.6 shows the architecture of the
U-Net, where the origin of its name can be easily seen, as the network is U-shaped. Similar to
an autoencoder, the U-Net consists of a contracting and an expanding part, but it uses skip
connections between the two parts. This improves the correct localization of class labels in
the output (Ronneberger et al., 2015). In the original U-Net max pooling is used to decrease
the input size. Max pooling (Zhou and Chellappa, 1988) writes the maximum value in a
sliding window to the output. To undo the pooling in the expansive part, up-convolutions
are used. An up-convolution is the transpose of a convolution (Dumoulin and Visin, 2016).
Nowadays, the idea of the U-Net with slight variations is used for various different tasks,
also outside segmentation. In geophysics, variants of the U-Nets can, among others, detect
faults (Liu et al., 2020), which is indeed a segmentation task, invert seismic data for seismic
velocities (Yang and Ma, 2019), pick P- and S-wave arrivals of earthquakes (Zhu and Beroza,
2019) or extrapolate low frequencies (Aharchaou and Baumstein, 2020; Jin et al., 2021;
Ovcharenko et al., 2020; Nakayama and Blacquière, 2021; Wang et al., 2020).

2.1.5.2. Residual U-Net

A variation of the U-Net is a residual U-Net also called UResNet or Res-U-Net, which was
also introduced for the first time in the field of biomedical image segmentation by Guerrero
et al. (2018) and Xiao et al. (2018). Compared to the U-Net as discussed in section 2.1.5.1,
it has ResNet blocks instead of convolutional layers. The architecture of a ResNet block
is shown in Figure 2.7. ResNet blocks consist of convolutional layers but have shortcuts
connecting shallower parts of the network directly with deeper parts. The operation in the
shortcut is in the ResNet layer a simple identity mapping (He et al., 2016). The shortcut
connections have an important advantage: The convolutional layers, where the trainable
parameters can be found, now do not have to learn a representation H(x), but only the
residual F (x) = H(x)− x, which improves the training (He et al., 2016). In contrast, skip
connections do not add on the data but concatenate the data from the encoder as additional
channels to the decoder (Ronneberger et al., 2015).

14 Application of machine learning for the extrapolation of seismic data

3×3 conv, ReLU

Max Pooling

2×2 up-conv

1×1 conv

copy

Input Output

Figure 2.6.: Architecture of the U-Net after Ronneberger et al. (2015). The
original U-Net is one layer deeper but for display reasons only 3 layers are shown.
The black arrows depict the characteristic skip-connections.

convolution convolution

ReLU

F (x)

+

x

x

ReLU

F (x) + x

Figure 2.7.: ResNet Block after He et al. (2016). With the shortcuts that are an
identity mapping, the network only has to learn the residual F (x).

Chapter 2. Theoretical background 15

2.2. Seismic modeling

In this thesis, the network is trained and applied on seismic data. Therefore, the basics of
seismic wave propagation in acoustic media will be discussed in the following. Afterwards,
the finite-difference method for seismic modeling is introduced. This information will be
needed for generating training data and the application of the results in full-waveform
inversion.

2.2.1. Seismic wave propagation in acoustic media

For infinitesimal deformations, the linear elasticity theory is valid and we assume a linear
relation between stress and strain, also known as Hooke’s law , using Einstein summation
convention:

σij = Cijklǫkl, i, j, k, l ∈ [1, 3] , (2.37)

where σ is the stress tensor, ǫ is the strain tensor, and the stiffness tensor C contains the
elasticity moduli (Lay and Wallace, 1995). The number of elasticity moduli can be reduced
to 21 due to the symmetry properties of σ, ǫ and C and the conservation of volume density
of elastic energy (Lay and Wallace, 1995). For isotropic elastic media, the number further
decreases to two independent parameters, known as the Lamé parameters λ and µ. With
that, the stress-strain relation for isotropic media can be written as

σij = λθδij + 2µǫij , (2.38)

ǫij =
1

2

(

∂ui

∂xj
+

∂uj

∂xi

)

, (2.39)

where θ is the cubic dilatation and can be calculated as the trace of ǫ (Lay and Wallace,
1995). To describe wave propagation, not only the stress-strain relation is needed but also
the equation of motion, which can be derived from Newton’s second law:

ρ
∂vi

∂t
= fi +

∂σij

∂xj
, (2.40)

where we consider that ∂2ui

∂t2 = ∂vi

∂t
(Lay and Wallace, 1995). The left-hand side is the inertial

force and the right-hand side corresponds to external body forces and stress gradients in
the medium (Lay and Wallace, 1995). Taking the time derivative of equation 2.38, leads to
the final equation for the velocity-stress formulation of wave propagation:

∂σij

∂t
= λ

∂θ

∂t
δij + 2µ

∂ǫij

∂t
(2.41)

With equations 2.40 and 2.41 elastic wave propagation is expressed. In this thesis only
acoustic media are considered. Hence, only pressure waves are propergating in a medium
and no shear waves exist. From this follows that the second Lamé parameter, the shear
modulus, is zero and the resulting seismograms, as well as the used equations, simplify.
With hydrostatic stress or pressure p defined as the mean of normal stress σii, so −p = 1

3σii,
the stress-strain relation can be rewritten as

σij = λθδij = λδijǫnn = λδij
∂un

∂xn
= −pδij . (2.42)

By inserting equation 2.42 into equations 2.40 and 2.41, we can simplify the equation of
motion:

− ρ
∂vi

∂t
= fi +

∂p

∂xi
(2.43)

With equation 2.41 the time derivative of the pressure is

∂p

∂t
= −λ

∂ǫnn

∂t
= −λ

∂vn

∂xn
. (2.44)

Equation 2.44 is the first-order acoustic wave equation.

16 Application of machine learning for the extrapolation of seismic data

2.2.2. Finite-difference method

In the following, only equations for the 2D case are discussed, as modeling will be done in
two dimensions only. The equation of motion (equation 2.43) needs to be discretized in order
to be able to solve it numerically. Using a constant grid spacing ∆h in both dimensions
and a time sampling ∆t, the parameters are now only defined at discrete coordinates
(x, y, t) = (k ·∆h, l ·∆h, n ·∆t) (Köhn, 2011). The basic idea of the finite-difference (FD)
method is to approximate the derivatives by finite differences (Moczo et al., 2004). For
a function f(x, t) that has continuous derivatives in space and time, we can express the
derivatives on a discrete grid as

∂f(x, t)

∂t
≈ f(x, t + ∆t)− f(x, t)

∆t
, (2.45)

∂f(x, t)

∂x
≈ f(x + ∆h, t)− f(x, t)

∆h
. (2.46)

To ensure that the partial differential equations refer to the same grid point, a staggered
grid is used, where some model parameters are shifted by half the grid spacing (Virieux,
1986; Levander, 1988). Figure 2.8 illustrates the staggered grid and the positioning of the
model parameters. Furthermore, the pressure wavefield is computed on different time steps
than the velocity fields. With equation 2.45 applied to the parameters v and p we get
expressions for the second-order time derivatives:

∂vi

∂t

∣

∣

∣

∣

n+ 1
2

=
vn+1

i − vn
i

∆t
(2.47)

∂p

∂t

∣

∣

∣

∣

n

=
pn+ 1

2 − pn−
1
2

∆t
, (2.48)

where n indicates the time step. By substituting the time derivatives in equations 2.43 and
2.44, we can express the velocity and pressure at the next time step using parameters from
earlier time steps:

vn+1
i = vn

i −
∆t

ρ

∂p

∂xi

∣

∣

∣

∣

n+ 1
2

− ∆t

ρ
f

n+ 1
2

i (2.49)

pn+ 1
2 = pn−

1
2 −∆t · λ ∂vi

∂xi

∣

∣

∣

∣

n

(2.50)

The equations are valid for a force source. If a pressure source Sp is used, the source signal
is added to the pressure term:

vn+1
i = vn

i −
∆t

ρ

∂p

∂xi

∣

∣

∣

∣

n+ 1
2

(2.51)

pn+ 1
2 = pn−

1
2 −∆t · λ ∂vi

∂xi

∣

∣

∣

∣

n

+ ∆t · λSn
p (2.52)

Furthermore, the derivatives in space need to be considered as well. The second-order
expression is of similar style as the time derivatives:

∂p

∂x

∣

∣

∣

∣

n+ 1
2

k+ 1
2

,l

=
p

n+ 1
2

k+1,l − p
n+ 1

2

k,l

∆h
. (2.53)

Chapter 2. Theoretical background 17

x

y

vx

(k + 1, l)

p,λ, ρ

vy

(k, l + 1)

(k, l)

(k + 1, l + 1)

Figure 2.8.: 2D staggered grid as suggested by Virieux (1986) and Levander
(1988).

However, typically higher-order operators are used because they increase the accuracy of
the simulation:

[

N
∑

k=1

βk(2k − 1)

]

∂p

∂x

∣

∣

∣

∣

n+ 1
2

k+ 1
2

,l

=
1

∆h

N
∑

k=1

βk

(

p
n+ 1

2

k+1,l − p
n+ 1

2

k,l

)

+
1

∆h

N
∑

k=1

N
∑

l=1

βk

((k − 1
2)∆h)2l−1

(2l − 1)

∂(2l−1)p

∂x(2l−1)

∣

∣

∣

∣

∣

n+ 1
2

k+ 1
2

,l

+O(∆h)2N ,

(2.54)

where βk are the FD coefficients (Köhn, 2011). With a higher-order operator not only the
neighboring grid points are considered, but also N adjacent points. For the eighth order
in space, the next four adjacent points in each direction are used. The term of the direct
neighbors has a larger FD coefficient than the one of the grid points farther away. In a
similar way, ∂v

∂x
is expressed, also usually in higher order in space. The time derivative is

usually kept as a second-order operator. By combining equations 2.51 and 2.52 with the
spatial derivatives, we get the FD scheme for the wave equation:

p
n+ 1

2

k,l = p
n−

1
2

k,l −∆t · λk,l

(

∂vx

∂x

∣

∣

∣

∣

n

k,l

+
∂vy

∂y

∣

∣

∣

∣

n

k,l

)

+ ∆t · λSn
p (2.55)

vn+1
x,k+ 1

2
,l

= vn
x,k+ 1

2
,l
− ∆t

ρk+ 1
2

,l

∂p

∂x

∣

∣

∣

∣

n+ 1
2

k+ 1
2

,l

(2.56)

vn+1
y,k,l+ 1

2

= vn
y,k,l+ 1

2

− ∆t

ρk,l+ 1
2

∂p

∂y

∣

∣

∣

∣

n+ 1
2

k,l+ 1
2

(2.57)

As shown in Figure 2.8, ρ is only defined on full grid points, but for the equation of motion,
results at half grid points are needed. To obtain a stable result, those points need to be
arithmetically averaged between the two neighboring grid points:

ρk+ 1
2

,l =
ρk,l + ρk+1,l

2
(2.58)

The value of ρk,l+ 1
2

is estimated similarly (Bohlen and Saenger, 2006).

18 Application of machine learning for the extrapolation of seismic data

2.2.2.1. Numerical dispersion and instabilities

The grid spacing ∆h and the time sampling ∆t need to be chosen carefully to avoid
numerical dispersion and instability. For the grid spacing we have the trade-off between
a fine sampling which gives more accurate results, and a coarser sampling which is less
computationally expensive. According to Nyquist’s theorem, at least two grid points per
wavelength are needed to be able to describe the wave correctly. However, usually more
points per wavelength are recommended. The theoretical largest grid size can be calculated
by

∆h ≤ λmin

n
=

vmin

nfmax
, (2.59)

where λmin is the minimum wavelength, which can be calculated from the minimum velocity
vmin divided by the maximum frequency fmax (Köhn, 2011). The factor n is the number of
grid points per minimal wavelength and depends on the FD order, see Table 2.1 (Köhn,
2011). To ensure the stability of the simulation, the time sampling has to be chosen such
that it fulfills the Courant-Friedrichs-Lewy criterion (Courant et al., 1928), here for the 2D
case:

∆t ≤ ∆h

γ
√

2vmax

, (2.60)

where γ is the sum of the FD coefficients, i.e., it also depends on the FD order, see Table 2.2.
The factor

√
2 is determined by the dimension D of the simulation, so in a 2D simulation

D = 2. Furthermore, the maximum velocity of the model vmax has an influence on the
time sampling.

2.2.2.2. Boundary conditions

At the model boundaries, absorbing boundaries are implemented to avoid artificial reflections.
The basic idea is to dampen waves that come close to the model boundaries. One of the
methods are perfectly matched layers (PML) introduced by Komatitsch and Martin (2007).
The perfectly matched layers stretch the coordinates of the wave equation in the frequency
domain, leading to exponentially decaying plane waves. As PMLs are only reflectionless for
an exact solution of the wave equation but not for an FD approach, an additional damping
function is used (Köhn, 2011).

2.3. Full-waveform inversion

Full-waveform inversion (FWI) was first introduced by Tarantola (1984b) and aims to solve
the inverse problem, that is, to find a model m that describes the observed data dobs. The
opposite problem, finding the data for a given model, is straightforward, because they can
be modeled as discussed in section 2.2.2. In the inverse problem, however, there can be
several models that describe the data, but the optimal model is searched for. Traditional
inversion methods like tomography do not use all the information contained in the data, but
only parts of it, e.g. traveltimes. In FWI, however, the entire information of the waveform
is used, including amplitudes.

In the following, the theory behind FWI with the adjoint-state method will be discussed
and a typical FWI workflow will be presented.

Table 2.1.: Number of grid points n per minimum wavelength dependent on the
FD order for Taylor coefficients (Köhn, 2011).

FD order 2 4 6 8
n 12 8 6 5

Chapter 2. Theoretical background 19

Table 2.2.: Factor γ for the Courant criterion dependent on the FD order for
Taylor coefficients (Köhn, 2011).

FD order 2 4 6 8

γ 1 7
6

149
120

2161
1680

2.3.1. Misfit function

Similar to training neural networks, full-waveform inversion is an optimization problem.
Starting from a model m, synthetic data dsyn are modeled, just as discussed in section 2.2.2,
which can be seen as applying a nonlinear forward operator F(·) to the model m:

dsyn = F(m) (2.61)

When interpreting equation 2.61 with neural networks in mind, m corresponds to the input,
dsyn to the output and F(·) to a feedforward network. The misfit between the synthetic
data and the observed data dobs, in machine learning jargon the target or label, can be
expressed by an objective function J(dobs, dsyn). The commonly used misfit function in
FWI is an L2 norm of the data residual ∆d = dsyn − dobs:

J(m) =
1

2

∑

s

∑

t

∑

r

‖∆d(xr, xs, t, m)‖2 , (2.62)

where s accounts for all source positions, r for all receiver positions and t for all steps in
time. Alternatively, also a normalized L2 norm is possible:

Jnorm =
1

2

∑

s

∑

r

∑

t

(

dsyn

‖dsyn‖
− dobs

‖dobs‖

)2

, (2.63)

(Choi and Alkhalifah, 2012). To find the optimal model the misfit function needs to
be minimized. Similar to the training of feed-forward neural networks, a gradient-based
approach is used to solve the optimization problem. Starting at an initial model m0 the
gradient of J with respect to m is calculated. Then the model is updated as follows:

mi+1 = mi − αPi∇mJ(mi) , (2.64)

where α is the step length, or learning rate in machine learning, and Pi a preconditioning
operator which approximates the inverse Hessian matrix of the misfit function (Köhn, 2011).
The preconditioning operator can be used, for example, for the tapering around source and
receiver positions (Köhn, 2011). By comparing equation 2.64 with equation 2.13, we can
see that in machine learning we update the trainable parameters θ, which are part of the
forward operator, but in FWI we update the model, which would correspond to the input
for traditional neural networks.

2.3.2. Calculating the gradient

For calculating the gradient, the adjoint state method is used as it only requires two
forward simulations (Plessix, 2006). The method consists of three basic steps. First, the
forward wavefield is modeled to obtain the observed data dobs. Then the data residual
∆d = dsyn − dobs is calculated. The residual is used to calculate the adjoint wavefield by
forward modeling with the time-reversed residuals at the receiver locations as sources.
Therefore, this wavefield is also called the backpropagated residual wavefield. This is the
second forward simulation. Now the cross-correlation between the forward and adjoint
wavefields is calculated, giving the gradient of the objective function (Tarantola, 1984a;
Plessix, 2006).

20 Application of machine learning for the extrapolation of seismic data

2.3.3. Multi-scale approach

With FWI being a highly nonlinear optimization problem, the misfit function has multiple
local minima (Bunks et al., 1995). Optimization algorithms might get stuck in a local
minimum instead of the global minimum, which is called cycle-skipping. This might occur
when the initial model is too far away from the true model and the observed and modeled
data are out of phase by more than half a period. To mitigate the cycle-skipping problem,
Bunks et al. (1995) introduced the multiscale approach. While the original publication
suggested to go from large to fine grid scales, nowadays the inversions are done in different,
increasing frequency bands. In Figure 2.9 the idea behind the multistage approach is shown.
Using low frequencies in the beginning smoothens the misfit function, which allows the
optimizer to converge towards the minimum. The model parameters found in this way
are then used as initial guess for the next frequency band. This repeats for all frequency
bands. In the end, the low frequencies give the information for a smooth model and with
increasing frequencies, more and more high-frequency details can be resolved. With the
multistage approach also the importance of the low frequencies becomes obvious. Without
low frequencies present in the data, the inversion does not start at the misfit curve at the
bottom of Figure 2.9, but in any of the other curves. If the initial guess is not good enough,
we might end up in a local minimum already in the first stage, which will prevent the
convergence towards the global minimum in later stages.

2.3.4. FWI workflow

With the theory in mind the actual workflow of FWI is briefly discussed in the following.
Figure 2.10 displays the schematic of the workflow. To start the FWI, the observed data
dobs and an initial model m0 are needed. The forward problem as discussed in section 2.2.2
is solved for the initial model to get the synthetic data dsyn and the wavefield u(x, y, t). The
residuals ∆d between the synthetic and the observed data are calculated. The residuals are
then backpropagated to obtain the the adjoint wavefield Ψ(x, y, t). Then the model update
∆m is calculated based on u(x, y, t) and Ψ(x, y, t). The gradient is preconditioned and the
conjugate gradient is used for the update. With the estimated step length µn, the model
can be updated with mn+1 = mn − µn∆m. If the misfit is smaller than a certain threshold
or the maximum number of iterations is reached, the inversion will stop. Otherwise, the
next iteration will start with the new initial model mn+1.

Chapter 2. Theoretical background 21

M
is
fi
t

M
is
fi
t

M
is
fi
t

M
is
fi
t

Model parameter

M
is
fi
t

Figure 2.9.: Sketch for a 1D misfit function for different frequency bands in the
multiscale approach after Bunks et al. (1995). The frequency content decreases
from top to bottom. Vertical lines mark the global minimum of each misfit function.

observed data dobs initial model m0

forward modeling

syntethetic

residual

misfit J = 1

2
∆d

2

residual wavefield Ψ

calculate model

update model

stop criterion

fulfilled?

update ∆m

mn+1 = mn +∆m

∆d = dobs − dsyn

data dsyn

backpropagateNo

Yes

final model

Figure 2.10.: Flowchart for full-waveform inversion.

3. Data generation and preparation

A sufficiently large amount of training data is needed to train a neural network. As
such a large amount of field data with the required characteristics is often not available,
this demand is fulfilled by generating synthetic data. Generating synthetic data has the
additional advantage that the frequency content of the data can be shaped as needed. This
chapter presents the generation of velocity models, discusses the acquisition design for
seismic modeling and explains the development of a pre-processing routine.

3.1. Model building

Subsurface models are needed to simulate synthetic data. In the related literature, these
models are generated using different methods. Some authors model on pre-existing data
sets, mostly benchmark data sets (Wang et al., 2020; Fang et al., 2020; Ovcharenko et
al., 2020; Fabien-Ouellet, 2020b; Jin et al., 2021). Sun and Demanet (2020b, 2022) use
benchmark models as well, but extract random patches from these models to simulate the
wave propagation in smaller and more varying models. Other authors create their own
synthetic velocity models, differentiating between random velocity models (Ovcharenko
et al., 2017, 2018b, 2019) and random models that follow a user-defined trend (Nakayama
and Blacquière, 2021; Ovcharenko et al., 2022, 2021). Hu et al. (2021, 2020) create a single
realistic model for training. The networks of Aharchaou et al. (2021) and Aharchaou and
Baumstein (2020) are trained solely on field data. Therefore, they can skip the process of
modeling synthetic data.

This work follows the approach of Nakayama and Blacquière (2021) and Ovcharenko et
al. (2022) and generates models randomly but with a defined trend to keep the models
geologically plausible. With a future application to field data in mind, the synthetic models
are chosen to resemble the subsurface structures around the Asse II salt mine (Pollok et al.,
2018). A smooth model taken from S, ortan (2022, Figure 3.1) serves as a starting point for
the generation of several different subsurface models. In contrast to the real model, the
synthetic models have a water column as first layer, which acts as a half space to avoid the
unfavorable effects of a free surface on the frequency content of the modeled data. The
implemented algorithm generates random variations of the initial model. First, a rough
outline of the salt body, where the P-wave velocity vp > 4000 m/s, is extracted from the
smooth model. To obtain a less complex wavefield, a simpler model is preferred. Therefore,
the surface topography is neglected and a flat surface is used instead.

The first step towards a varying model is to alter the appearance of the top salt. The basic
concept used to create a random interface is depicted in Figure 3.2. Nine nodes are defined
equally spaced along the salt outline. To alter the model, the nodes are randomly moved
vertically and horizontally in a given range, see Table 3.2. To avoid a lot of energy getting
reflected out of the model, an additional constraint is set for the two nodes at the model
borders: The two nodes are forced to be shallower than their neighboring point, which

23

24 Application of machine learning for the extrapolation of seismic data

0 2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
ep
th

in
k
m

0

1000

2000

3000

4000

5000

v
p
in

m
/s

Figure 3.1.: Original smooth vp velocity model of the salt dome at Asse II, taken
from S, ortan (2022). Note that this model has a strong surface topography.

0 2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
ep
th

in
k
m

0

1000

2000

3000

4000

5000

v
p
in

m
/s

(a)

0 2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
ep
th

in
k
m

0

1000

2000

3000

4000

5000

v
p
in

m
/s

(b)

Figure 3.2.: Used concept for generating a random interface: (a) Define nine nodes
equally spaced along vp ≤ 4000 m/s. Randomly move each point. (b) Interpolation
between the new nodes gives the outline of the interface.

Chapter 3. Data generation and preparation 25

results in a reflector dipping down towards the central part of the model. Then the grid
points between the nodes are interpolated using a quadratic interpolation.

Next, the overlying interfaces are constructed similarly. A number of one to four interfaces
above the salt structure can be chosen, where the initial depth of the interface depends
on the depth of the top of the salt structure. Then the nodes are placed again along the
initial interface structure, thereby making sure one point is above the minimum depth of
the salt. Next, the points are moved randomly in a certain value range, see Table 3.2. The
values between the nodes are found by cubic interpolation. Underneath the salt structure, a
dipping layer is added; here, only the two points at the boundary are randomly varied and
all points in between are linearly interpolated. Finally, a horizontal benchmark interface is
added to the model at depth 2.9 km.

Now that all interfaces are constructed, the velocities need to be assigned to the layers.
Each layer has a constant velocity value, assigned as shown in Table 3.1. This velocity is
randomly varied in the range of the perturbation given in Table 3.2. Only the velocity of
the water layer and the layer below the horizontal interface is kept constant at 1500 m/s
and 4000 m/s, respectively.

Besides P-wave velocities also a density model is needed to model the data. For simplicity,
the density is kept constant throughout the model with a density value of 2000 kg/m3. For
the simulation of acoustic media, the S-wave velocity is set to zero throughout the entire
model. In total, 30 different models are generated following the algorithm described above.
Some exemplary models can be seen in Figure 3.3. Although all models have similarities,
they differ in the number of layers, the seismic velocities, and the shape of the salt structure
and other interfaces.

3.2. Modeling training data

The training data are generated with the SOFI2D finite-difference (FD) modeling software
(Bohlen et al., 2016). Only acoustic waves are modeled to keep seismograms simple. The
generated vp models and the ρ model are given as input. Before the actual simulation, the
parameters must be defined. A flat-spectrum wavelet is chosen as the source signature, as it
has a constant amplitude spectrum in a given frequency range, see Figure 3.4b. Therefore,
the low frequencies, which are the focus of this work, have the same energy as the high
frequencies. The used flat-spectrum wavelet is the autocorrelation of a linear sweep of
10 s length from 5 to 30 Hz, with a 1 s taper at the beginning and the end. A Blackman
window is applied to the waveform as an additional taper. Figure 3.4a displays the resulting
waveform and the waveform with the applied Blackman window. Using the Blackman
window leads to a reduced number of undulations at the side lobes, which results in clearer
seismograms. The resulting zero-phase wavelet is shifted in time by 0.2 s to serve as a
source wavelet for FD modeling.

Table 3.1.: P-wave velocities vi in m/s for different numbers of interfaces i above
the salt. v2 is the velocity of the second layer and so on, with v1 = 1500 m/s being
the velocity of the water layer.

Interfaces v2 in m/s v3 in m/s v4 in m/s v5 in m/s

1 1900
2 1900 2900
3 1900 2800 3300
4 1900 2400 3000 3500

26 Application of machine learning for the extrapolation of seismic data

Table 3.2.: Value ranges for the variable parameters of the model-generating
algorithm.

Parameter Lower Limit Upper Limit
Layer velocity perturbation 175 m

s 175 m
s

Salt velocity 4600 m
s 5000 m

s
Dipping layer velocity 3400 m

s 3800 m
s

x-position salt nodes perturbation −500 m 500 m
y-position salt nodes perturbation side lobes −50 m 50 m
y-position salt nodes perturbation peak −300 m 100 m
x-position layer perturbation −50 m 50 m
y-position layer perturbation −100 m 50 m
y-position dipping layer nodes 2200 m 2600 m

0

2

D
ep
th

in
k
m

0

2

D
ep
th

in
k
m

0 5

x in km

0

2

D
ep
th

in
k
m

0 5

x in km
0 5

x in km

0

1000

2000

3000

4000

5000

v
p
in

m
/s

Figure 3.3.: Examples of different randomly generated vp velocity models used
for simulating shot gathers.

Chapter 3. Data generation and preparation 27

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10 0.15 0.20

Time in s

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

A
m
p
li
tu
d
e

tapered wavelet

original wavelet

(a) Waveform

0 10 20 30 40 50

Frequency in Hz

0.000

0.005

0.010

0.015

0.020

A
m
p
li
tu
d
e
in

1/
H
z

(b) Amplitude spectrum

Figure 3.4.: (a) Waveform and (b) amplitude spectrum of the tapered flat-
spectrum wavelet which is used as source signature. The flat-spectrum wavelet
is the autocorrelation of a linear sweep of 10 s length from 5 to 30 Hz, with a 1 s
taper at the beginning and the end.

28 Application of machine learning for the extrapolation of seismic data

To minimize grid dispersion, a maximum grid size can be estimated using equation 2.59
and the values of Table 2.1 and the FD operator of eighth order:

vmin

fmax · n
=

1800 m
s

30 Hz · n =
60 m

5
= 12 m (3.1)

Here, the FD operator of order eight is chosen, as it has a high accuracy and coarser grids
can be considered. To find a reasonable grid size, a convergence test is done. For that, a
single shot is modelled for various grid sizes ∆h = 2, 4, 6, 8, 10 m. With equation 2.60, the
maximum allowed time step for each grid size can be calculated as

∆t ≤ ∆h
2161
1680 ·

√
2 · 5000 m

s

≈

0.22 ms, for ∆h=2 m

0.44 ms, for ∆h=4 m

0.66 ms, for ∆h=6 m

0.88 ms, for ∆h=8 m

1.10 ms, for ∆h=10 m

. (3.2)

The shot is modeled with a time step of 0.2, 0.4, 0.6, 0.8, 1.0 ms, respectively. By comparing
the waveforms of a single trace (Figure 3.5), it can be seen that for the first arrival the
waveforms of all grid sizes match quite well. However, at ∼ 0.78 s the trace calculated with
grid size 10 m is out of phase. At time step t ≈ 0.9 s, all traces show different waveforms.
The traces modelled with smaller grid spacings show fewer differences in their waveforms.
The trace calculated with grid spacing 4 m is closest to the one with 2 m grid spacing but
requires less computing time, see Table 3.3. Therefore, a grid spacing of 4 m is chosen and
the corresponding time sampling ∆t = 0.4 ms.

To cross-check whether the output wavelets of the simulation match the source wavelets, the
frequency spectra are compared for a homogeneous model. The first layer of the subsurface
modes is water; therefore, an explosive source is used, which emits only P-waves just
like an airgun in marine acquisition. This is sufficient, as only acoustic waves are used.
Hydrophones are used as receivers that record pressure changes. In Figure 3.6 the resulting
waveform and its spectrum are displayed. It can be seen that the output waveform does not
match the input flat-spectrum wavelet and also that the amplitude spectrum has changed.
In the output, more energy is given to the higher frequencies, which is unfavorable for the
task of low-frequency extrapolation. A 1.5-integration of the input wavelet and a 180° phase
shift solve the issue and the integrated wavelet matches the input wavelet, see Figure 3.6.

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Time in s

−1.0

−0.5

0.0

0.5

1.0

N
or
m
al
iz
ed

A
m
p
li
tu
d
e

∆h = 2 m

∆h = 4 m

∆h = 6 m

∆h = 8 m

∆h = 10 m

Figure 3.5.: Convergence test: Same trace modelled with different grid sizes ∆h.
The sampling interval is adjusted for each grid size.

Chapter 3. Data generation and preparation 29

Table 3.3.: Computing time in seconds for a similar setting but with different
grid spacings ∆h. The sampling intervals are adjusted with the grid size.

∆h in m 2 4 6 8 10
Computation time in s 903 135 52 20 11

The need for a 1.5-integration has two different reasons. First, a half-integration is needed
to transform the data from the modelled 2D point source data to realistic 3D line source
data (Forbriger et al., 2014). The remaining integration comes from using a pressure source,
which is added to the pressure field, see equation 2.52, of the first-order wave equation.
This results in the partial derivative in time of the source signal in the second-order wave
equation. Therefore, the signal has to be integrated, to receive the original waveform.
(Thorbecke, 2021)

The acquisition geometry consists of 741 receivers with a spacing of 10 m, starting at
155 m and ending at 7555 m, and 37 sources with a spacing of 200 m, starting at 200 m
and ending at 7400 m. Both, receivers and sources, are located at 12 m depth. With 30
models and 37 source locations, this results in 1110 shot gathers for training and testing
the neural network. All four borders have CPML-boundaries of 15 grid points to avoid
artificial boundary reflections. The assumed velocity in the boundary layer is 3500 m/s and
a central frequency of 11 Hz.

Furthermore, a high-pass filter is designed so that it is not necessary to model seismograms
with source wavelets of different bandwidths. For that, a second flat-spectrum wavelet is
created from a linear sweep of 8 to 30 Hz and a length of 8.8 s. The same 1 s tapers as for
the source wavelet are applied at the beginning and the end of the sweep. Furthermore, also
the higher-frequent flat-spectrum wavelet is tapered with a Blackman window. In Figure 3.7
the spectra of the 5 to 30 Hz flat-spectrum wavelet, the 8 to 30 Hz flat-spectrum wavelet,
and the filter designed to obtain the high-frequency wavelet are displayed. To show the
effectiveness of this filter, a trace is modeled with both flat-spectrum wavelets as sources.
Then the designed filter is applied to the seismogram with the larger bandwidth. The
amplitude spectra of both seismograms are shown in Figure 3.8b. It can be seen that both
spectra and with that also the resulting waveforms, see Figure 3.8a, are identical. This
means, modeling the full bandwidth and filtering afterwards will lead to the same result
as modelling with a filtered source wavelet. Therefore, modeling the data only once is
sufficient.

With the tests done, the seismograms for all subsurface models are generated with a
recording time of 3.5 s. For training the network it is important that the shot gathers
differ from each other, to avoid redundant data. Therefore, some gathers are compared
for different models but the same shot location, see Figure 3.9. It can be seen that the
different number of interfaces already changes the appearance of the data, by introducing
more reflections. However, the different salt structures also enable a variable data set. The
first layer for all models is water with a constant velocity of vp = 1500 m/s; therefore, the
direct wave is similar for all models.

30 Application of machine learning for the extrapolation of seismic data

0.8 1.0 1.2

Time in s

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.5-integrated

0.0 0.2 0.4

Time in s

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Input

0.8 1.0 1.2

Time in s

−0.5

0.0

0.5

1.0
N
or
m
al
iz
ed

A
m
p
li
tu
d
e

Output

(a) Waveform

0 20 40

Frequency in Hz

0.0

0.2

0.4

0.6

0.8

1.0

1.5-integrated

0 20 40

Frequency in Hz

0.0

0.2

0.4

0.6

0.8

1.0

Input

0 20 40

Frequency in Hz

0.0

0.2

0.4

0.6

0.8

1.0

N
or
m
al
iz
ed

A
m
p
li
tu
d
e
in

1/
H
z

Output

(b) Spectrum

Figure 3.6.: Raw output of SOFI2D, its 1.5-integrated signal for a homogeneous
model with a flat-spectrum wavelet as input signal. The waveforms and spectra
are normalized for comparison.

0 10 20 30 40 50

Frequency in Hz

0.0

0.2

0.4

0.6

0.8

1.0

N
or
m
al
iz
ed

am
p
li
tu
d
e
in

1/
H
z

8-30 Hz wavelet

5-30 Hz wavelet

filter

Figure 3.7.: Spectra of two flat-spectrum wavelets and the designed filter (brown)
to transform the 5-30 Hz flat-spectrum wavelet into a 8-30 Hz flat-spectrum
wavelet.

Chapter 3. Data generation and preparation 31

0.4 0.5 0.6 0.7 0.8 0.9

Time in s

−0.050

−0.025

0.000

0.025

0.050

0.075

0.100

A
m
p
li
tu
d
e

filtered data

8-30 Hz data

residual

(a) Waveform

0 10 20 30 40

Frequency in Hz

0.0

0.2

0.4

0.6

0.8

1.0
N
or
m
al
iz
ed

A
m
p
li
tu
d
e
in

1/
H
z

filtered data

8-30 Hz data

residual

(b) Amplitude spectrum

Figure 3.8.: Snippet of the waveform (a) and amplitude spectrum (b) of a trace
modeled once with a 8 to 30 Hz flat-spectrum wavelet (dashed line) and once with
a 5 to 30 Hz flat-spectrum wavelet, where the trace is high-pass filtered above
8 Hz afterwards (solid). The residual (brown) verifies the good match between the
results of both methods.

32 Application of machine learning for the extrapolation of seismic data

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

−4

−2

0

2

4

A
m
p
li
tu
d
e

×10−5

(a) Model 1

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

−6

−4

−2

0

2

4

6

A
m
p
li
tu
d
e

×10−5

(b) Model 2

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

−4

−2

0

2

4

A
m
p
li
tu
d
e

×10−5

(c) Model 3

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

−4

−2

0

2

4

A
m
p
li
tu
d
e

×10−5

(d) Model 4

Figure 3.9.: Unprocessed shot gathers of the same shot location but with different
subsurface models. Each shot gather is displayed with a 99-percentile clip. The
synthetic data show large enough differences to be suitable for training the neural
network.

Chapter 3. Data generation and preparation 33

3.3. Development of a preprocessing workflow

In this chapter, the development of the processing workflow and the network architecture
using a reconstruction test is described. In such a test the network has to learn to reconstruct
the input and therefore, the input and target data are the same.

The following steps are used as an initial processing routine to run the first reconstruction
test. Before the data are read into the network they need to be preprocessed. The data are
split into training, validation and test data sets with a 80 %-10 %-10 % split. Thus, the data
from the first 24 models are used for training, the next three data sets for validation, and the
last three data sets for testing. The basic data preparation consists of the 1.5-integration of
the data, as discussed in section 3.2. For this, the data are scaled by the factor 1× 108 to
increase the value range. A linear taper is applied on the last 0.5 s to avoid artifacts from
the integration. Then the actual 1.5-integration is performed. A high-pass filter is applied
to dampen low-frequency artifacts from the integration below 3 Hz. Next, noise from a
uniform distribution is added to the data to avoid that large parts of the data contain only
zeros. The noise is factor 1× 107 smaller than the maximum amplitude of the data. Finally,
every shot gather is standardized and normalized with

x̃ =

x−µ
σ(x)

max
(

x−µ
σ(x)

) , (3.3)

where µ is the mean and σ the standard deviation of the data x. The resulting data have a
zero mean, a standard deviation of one and a value range between -1 and 1. This has the
advantage that the data come from the same distribution, which is beneficial for neural
networks (Ioffe and Szegedy, 2015), as discussed in section ?? and section ??. The mean,
standard deviation and the maximum value are saved to be able to transform the output
of the network back to its original amplitude range.

A U-Net similar to the one discussed in section 2.1.5.1 is used as neural network. This
approach to low-frequency extrapolation was also taken by Aharchaou and Baumstein
(2020), Jin et al. (2021), Ovcharenko et al. (2020), Nakayama and Blacquière (2021), and
Wang et al. (2020). Compared to the original U-Net by Ronneberger et al. (2015), the
U-Net used in this thesis has some slight modifications, see Figure B.1. The max-pooling
layer and the subsequent convolutional layer are replaced by a 3× 3 convolution with a
stride of two. This subsamples the data more efficiently than the traditional combination
(Springenberg et al., 2015). Furthermore, deconvolutions are prone to checkerboard artifacts
(Odena et al., 2016). To avoid these artifacts, the transpose convolutions in the expanding
part of the network are replaced with simple upsampling layers, where the new values
are repetitions of the existing values (Wang et al., 2020; Jin et al., 2021; Aharchaou and
Baumstein, 2020). In addition, batch norm layers are introduced before the activation
functions of every convolution to further improve the training.

To test this architecture with the data, reconstruction tests are conducted by training on
the full bandwidth with the input data as target data. Initially, the network consists of
two convolutions per layer and three layers in both the encoder and the decoder. ReLU
activations are implemented in the hidden layers, and tanh activations are chosen for the last
layer. The parameter updates are calculated for batch sizes of 64 with an Adam optimizer.
A mean squared error is used as the loss function and a normalized root-mean-square
(NRMS) value as introduced by Kragh and Christie (2002) for the evaluation to be able to
compare the results with the work of Ovcharenko et al. (2020), who used the NRMS for
the evaluation. The NRMS value is defined as

NRMS =
200× RMS (at − bt)

RMS (at) + RMS (bt)
, (3.4)

34 Application of machine learning for the extrapolation of seismic data

where at and bt are two traces that are compared in the time window t (Kragh and Christie,
2002). The RMS operator is given by:

RMS (xt) =

√

∑t2

t1
x2

t

N
, (3.5)

with N being the number of samples in the time window (Kragh and Christie, 2002).
The NRMS value is within the interval [0 %, 200 %] and is sensitive to small changes in
amplitudes and small time shifts. Generally, a value between 10 to 30 % is considered an
acceptable fit (Ovcharenko et al., 2020).

3.3.1. Split in patches

With the 24 training models mentioned earlier and 37 shots per model, 888 shot gathers can
be used for training. The network is trained for 100 epochs on the full shot gathers. Due to
memory issues, the batch size had to be decreased to three for the full shot gather and
the number of graphics processing units (GPU) increased from one to three. Figure 3.10
shows an exemplary output for a shot gather of the test data set. The prediction is nearly
identical to the target and only around the source artifacts are visible. The residual plot
shows that the recovered amplitudes are not entirely correct. The good data fit corresponds
to the low NRMS of 26.9 %. However, the required memory is so high that smaller solutions
are needed.

More training data allow for more updates in the training process; therefore, either additional
data need to be generated or more data need to be extracted from the existing data. Larger
input data require more memory; hence, splitting the data into smaller quadratic patches
helps with both: It is not only less expensive in memory, but also provides more data
samples. Fang et al. (2020), Aharchaou and Baumstein (2020), and Ovcharenko et al. (2020)
split their data into quadratic patches, as well. While Ovcharenko et al. (2020) randomly
extract patches, Fang et al. (2020) and Aharchaou and Baumstein (2020) use a sliding
window technique, which allows for easy reconstruction. The latter was used in this work,
see Figure 3.11. The patch size should be a power of two, because with every layer a 3× 3
convolution reduces the input size by a factor of two in both dimensions. A patch size of
128× 128 data points is chosen, as this allows several patches along the receiver axis and
covers enough data per patch along the time axis.

A patch size of 128 × 128 data points results in 414 patches per shot gather. Therefore,
instead of training on 37 ·24 = 888 data samples, the network trains on 37 ·24 ·414 = 367 632
input samples. In addition to reducing memory and increasing the number of data samples,
the variability of individual patches is larger than that of the full shot gathers, as can be
seen in Figure 3.11. This helps with generalization, as each patch can be seen as containing a
basic element of a shot gather (Fang et al., 2020). TensorFlow’s extract_patches function
considers only patches that fit completely inside the data (Abadi et al., 2015); therefore,
zeros are padded at larger offsets and larger time steps, such that a multiple of the patch
size fits inside. With that the entire data set can be covered with patches. The padded
zeros are cropped afterwards to obtain the original size.

Chapter 3. Data generation and preparation 35

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

Target

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(a) Target

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

Prediction

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(b) Prediction

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

26.9%

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(c) Residual

Figure 3.10.: Shot gathers of (a) target, (b) prediction and (c) residual of a
network trained on full shot gathers. (a-c) have the same clip, which is the 99-
percentile of (a). The title of the residual plot gives the NRMS value, which
indicates a good fit.

36 Application of machine learning for the extrapolation of seismic data

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

−4

−2

0

2

4

A
m
p
li
tu
d
e

(a) Original Input Data

−4

−2

0

2

4

(b) Patches

Figure 3.11.: The data are split into patches to increase the number of training
data and decrease the required memory. In this example, the data are split into
patches of 100×1400 data points for visibility, in the used neural network much
smaller patches of 128×128 data points are used.

Chapter 3. Data generation and preparation 37

3.3.2. Normalizing the data

With the decision to split the data into patches, the question arises, where to place this
step in the processing routine. Therefore, it is tested whether normalizing before or after
splitting the data in patches is more beneficial. When using patches, a batch size of 64 and
one instead of three GPUs is enough to fit the data into memory. In theory, normalizing
patch-wise means that every patch comes from the same distribution. While normalizing
per-shot means that the ratio of the amplitudes is kept. If we imagine a patch that contains
only noise, we can see a difference. In the case of normalizing per patch, the amplitudes of
the noise will be boosted which encourages the network to try to focus on reconstructing
noise. When normalizing before the splitting, the noise will still keep its low-amplitude
values and might therefore not be as important for the network as the signal. Furthermore,
normalizing before the splitting reduces the number of parameters that need to be stored
significantly, as each scalar needs to be stored in order to reverse the normalization after
prediction.

Shot normalization

Figure 3.12 depicts the results of normalization before subsampling into smaller patches.
Target and prediction visually seem to have a great fit, though there is a bias on the
prediction and the values around the direct wave are too high. The NRMS value of 13 %
confirms the good fit. In the residual plot, small grid-like artifacts can be seen. They appear
at the boundaries of the single patches. These artifacts are further discussed in section 3.3.3.
Fang et al. (2020) use a shot-wise normalization, but do not see the low-frequency artifacts
shown here.

Patch normalization

Artifacts occur as well when the data are normalized after subsampling into smaller patches,
see Figure 3.13. The recovered patches have different biases, which results in a blocky
structure in the output. However, the amplitudes of the biases are small compared to the
signals. Therefore, the prediction is still similar to the target and the NRMS value of 1.9 %
is very small which indicates a nearly perfect fit. The artifacts are strongest at patches
which consist of both very high amplitudes of the direct wave and very small amplitudes of
the background noise. Ovcharenko et al. (2020) use a patch-wise normalization, but they
do not report similar artifacts.

Trace normalization

In FWI data are usually normalized per trace rather than per whole shot gather (Louboutin
et al., 2017). The extrapolated data are used for FWI, therefore, it might be beneficial
to use a trace normalization for the network as well. Figure 3.14 shows the differences
between normalizing shot-wise and trace-wise. The value range for both data sets is the
same. Trace-by-trace normalization has the advantage that the natural amplitude decay at
larger offsets is reversed, such that all traces contribute to the gradient in the same amount
(Louboutin et al., 2017).

Figure 3.15 shows the predictions of a network trained on trace-normalized data. Similarly
to the previous data, the NRMS value of 2.9 % is very good. Also, the prediction and the
target look similar, except for the traces close to the source location, where a wrong bias
can be seen as vertical line. The residual plot indicates that the single traces have different
biases, which results in vertical stripes.

38 Application of machine learning for the extrapolation of seismic data

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

Target

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(a) Target

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

Prediction

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(b) Prediction

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

13.0%

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(c) Residual

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

13.0%

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

A
m
p
li
tu
d
e

(d) Residual

Figure 3.12.: Shot gathers of (a) target, (b) prediction and (c) residual of a
network trained on per-shot normalized patches. (a)-(c) have the same clip, which
is the 99-percentile of (a). (d) is the same as (c) but with a different clip to enhance
the grid-like artifacts. The title of the residual plots gives the NRMS value, which
indicates a good fit.

Chapter 3. Data generation and preparation 39

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

Target

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(a) Target

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

Prediction

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(b) Prediction

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

1.9%

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(c) Residual

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

1.9%

−0.04

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

A
m
p
li
tu
d
e

(d) Residual

Figure 3.13.: Shot gathers of (a) target, (b) prediction and (c) residual of a
network trained on per-patch normalized patches. (a)-(c) have the same clip,
which is the 99-percentile of (a). (d) is the same as (c) but with a different clip
to enhance the blocky artifacts. The title of the residual plots gives the NRMS
value, which indicates a nearly perfect fit.

40 Application of machine learning for the extrapolation of seismic data

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

Target

−0.04

−0.02

0.00

0.02

0.04

N
or
m
al
iz
ed

am
p
li
tu
d
e

(a) Per-Shot

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

Target

−0.4

−0.2

0.0

0.2

0.4

N
or
m
al
iz
ed

am
p
li
tu
d
e

(b) Per-Trace

Figure 3.14.: Shot gathers normalized (a) per shot and (b) per trace. Note that
the amplitudes in the far offsets are increased in case of the trace normalization.

Global normalization

Another possibility is to normalize all data with the mean and standard deviation of the
entire training data set. With this approach, all values remain between -1 and 1. The
advantage of this approach is that every value of the original value range corresponds to
one specific value in the output range. Furthermore, the number of parameters that need
to be stored decreases significantly. Figure 3.16 depicts the results of a network trained on
globally normalized data. The NRMS value of 33.6 % states a poorer fit than the previous
results and the prediction has a strong bias. By comparing Figure 3.16 to Figure 3.12, it
can be seen that the residual shows a similar low-frequency artifact around the direct wave.
Furthermore, a strong grid-like artifact disturbs the resulting shot gather, which is further
discussed in section 3.3.3.

3.3.3. Overlapping patches

Applying the trained network on adjacent patches leads to an unwanted grid structure
in the output, see Figure 3.16. Artifacts occur because convolutions and deconvolutions
with zero-padding are used. These are suspected to introduce artifacts at the borders
(Alsallakh et al., 2021). Data points on the borders of the input patch are involved in
fewer convolutions than data points in the center (Alsallakh et al., 2021). This leads to less
accurate results for the data points at the borders (Li et al., 2017). For larger input patches,
the relative extent of the border effects decreases (Alsallakh et al., 2021). Therefore, the
patch size is increased for the test data set. The input gather is first padded with zeros of
half the training patch size and then overlapping patches of size 256× 256 are used instead
of adjacent patches of size 128×128. In the original U-Net paper (Ronneberger et al., 2015),
overlapping tiles were also used. In this work, the 128× 128 center part of the output is
cropped such that the border parts with the artifacts can be neglected. Ovcharenko et al.
(2020) also clip the border data points to address the edge effects of the convolution. The
same network as before, still trained on adjacent patches, is used to predict the results on
overlapping patches, which leads to the successful avoidance of the grid-like artifacts, see
Figure 3.17.

Chapter 3. Data generation and preparation 41

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

Target

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(a) Target

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

Prediction

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(b) Prediction

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

2.9%

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(c) Residual

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

2.9%

−0.100

−0.075

−0.050

−0.025

0.000

0.025

0.050

0.075

0.100

A
m
p
li
tu
d
e

(d) Residual

Figure 3.15.: Shot gathers of (a) target, (b) prediction and (c) residual of a
network trained on per-trace normalized patches. (a)-(c) have the same clip, which
is the 99-percentile of (a). (d) is the same as (c) but with a different clip to
enhance the artifacts. The title of the residual plots gives the NRMS value, which
indicates a very good fit.

42 Application of machine learning for the extrapolation of seismic data

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

Target

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(a) Target

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

Prediction

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(b) Prediction

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

29.5%

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(c) Residual

Figure 3.16.: Shot gathers of (a) target, (b) prediction and (c) residual of a
network trained on globally normalized patches. The zoomed area enhances the
grid-like artifacts. (a)-(c) have the same clip, which is the 99-percentile of (a).
The title of the residual plot gives the NRMS value, which indicates a poorer fit
than the previous results.

Chapter 3. Data generation and preparation 43

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

Target

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(a) Target

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

Prediction

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(b) Prediction

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

33.6%

−4

−3

−2

−1

0

1

2

3

4
A
m
p
li
tu
d
e

(c) Residual

Figure 3.17.: Shot gathers of (a) target, (b) prediction and (c) residual of a
network trained on globally normalized patches. For this test overlapping patches
are used, which remove the grid-like artifacts, compare zoomed area with Fig-
ure 3.16. (a)-(c) have the same clip, which is the 99-percentile of (a). The title
of the residual plot gives the NRMS value, which indicates a poorer fit than the
previous results.

44 Application of machine learning for the extrapolation of seismic data

3.3.4. Comparison of the normalization techniques

Even though training on full shot gathers gives good results, it is memory intensive.
Therefore, this approach is not feasible in practice. All other trials introduced some artifacts,
with low errors for the patch-wise and trace-wise normalization. However, the blocky artifacts
produced by patch-wise normalization occur as artificial signals on the single traces. This
might also affect the amplitude relations between real events occurring on one trace. Trace-
wise normalization introduces a different bias for each trace. The artifacts for both methods
are strongest on patches or traces with the largest amplitudes. Hence, if the network
predicts all patches with a similar constant bias, this error will be boosted differently
depending on the parameters needed for reconstructing the original amplitudes. The global
normalization and the shot normalization show a similar behavior, as they are normalized
in the same manner. Both results suffer from a bias and a low-frequency artifact along the
direct wave. Here the complete shot gather is normalized, therefore, the reconstruction of
the true amplitudes does not introduce additional artifacts, beside the grid-like structure.
This artifact can be easily avoided by using overlapping patches for the test data set.
However, the origin of the low-frequency artifact is not obvious. A high-pass filter with
a 3 Hz corner frequency is applied to the globally normalized prediction to reduce the
artifacts. Figure 3.18 depicts the resulting prediction and the residual. The NRMS value
decreases to 7.0 %, and the bias decreases in amplitude as well. Filtering is an easy way to
improve the data quality and for the global normalization only three parameters in total
need to be stored. Therefore, the global normalization is my chosen method.

3.3.5. Final pre-processing workflow after reconstruction tests

The resulting preprocessing workflow is summarized in Figure 3.19. The data are first
scaled by 1× 108, then a linear taper is applied from 3.0 s to 3.5 s to reduce the artifacts of
the subsequent 1.5-integration. The input data are then high-pass filtered to minimize low-
frequency artifacts introduced by the integration. Afterwards, noise is added. Subsequently,
each trace is normalized with the global mean and standard deviation. A padding of 128
zeros is applied to the far offsets and the end of the traces. Next, the input data are split
into patches of size 128× 128. For test data an additional padding of 64 rows or columns
of zeros along all sides of the shot gather is applied. Lastly, the test data are then split
into overlapping patches of size 256× 256.

Chapter 3. Data generation and preparation 45

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

Target

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(a) Target

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

Prediction

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(b) Prediction

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

7.0%

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(c) Residual

Figure 3.18.: Shot gathers of (a) target, (b) prediction and (c) residual of a
network trained on globally normalized patches and high-pass filtered above 3 Hz.
(a)-(c) have the same clip, which is the 99-percentile of (a). The title of the residual
plot gives the NRMS value, which indicates a good fit.

46 Application of machine learning for the extrapolation of seismic data

Scale by 1× 108

Linear tapering of the last 0.5 s

1.5-integration

High-pass filter

Add noise 1× 10−7
·max

Global normalization

Zero-pad to multiple of 128

Split in patches 128×128

Figure 3.19.: Preliminary pre-processing workflow for training data after the
reconstruction tests. For the test data a patch size of 256× 256 is used.

4. Application of deep learning for

low-frequency extrapolation

With a successful reconstruction test, the selected processing workflow can be applied
to the actual problem. The task of the network is to predict low-frequency data from
high-frequency data; therefore, different input and target data sets need to be created.
Two different prediction possibilities are considered, see Figure 4.1. In the first approach,
the whole bandwidth is extrapolated, which allows a good quality control on whether also
the high frequencies are reconstructed correctly. In the second approach, only the low
frequencies are predicted. This approach has the advantage that the network actually has
to learn something completely new, and might not just focus on getting the high frequencies
correct. In the related literature the latter approach seems to be more common, only Wang
et al. (2020) and Nakayama and Blacquière (2021) use the entire bandwidth as target
data. For creating the input data, the high-pass filter designed in section 3.2 is used. The
low-frequency target data are set between 3 and 12 Hz. Hence, they leak into frequencies
larger than 10 Hz to avoid ripples in the seismograms (Figure 4.1b). The low-frequency
data are obtained using a bandpass filter that covers frequencies from 3 to 12 Hz. Lower
frequencies are not considered as they are influenced by edge artifacts of the 1.5-integration.

4.1. Full-bandwidth extrapolation

In the first approach, the entire bandwidth is predicted. The same hyperparameters are
chosen for the network as in the reconstruction tests, see section 3. Figure 4.2 shows the
results after 100 epochs of training on the globally normalized data. The target and predicted
data show high similarity. However, the same artifacts as in the reconstruction tests with
global normalization are present. Around the high-amplitude values, low-frequency artifacts
can be seen. The NRMS value is 17.0 %, which still indicates a good fit. To further investigate
the results, the resulting spectrum and some predicted waveforms are studied (Figure 4.3).
For high frequencies, the spectrum of the prediction fits very well with the target spectrum.
For frequencies lower than approximately 13 Hz, the spectrum of the prediction follows the
target spectrum only partly. Below 3 Hz, the low-frequencies amplitudes increase instead
of going towards zero. For offsets up to around 2 km, the phases of the waveforms have a
nearly perfect fit. The amplitudes are not entirely reconstructed correctly. For larger offsets,
the extrapolated waveform does not follow the target wavelet but follows the input wavelet
instead. Furthermore, a bias can be observed for long offsets. To remove the large DC
component, a high-pass filter is applied to the frequencies between 0 to 3 Hz (Figure 4.4a).
As a result, the residual of the filtered prediction and the target as well as the NRMS value
are decreased (Figure 4.5). The NRMS value of 6 % can be considered a nearly perfect
fit, and small offset traces up to approximately 2 km show a very good reconstruction of
phases and amplitudes (Figure 4.3c). For larger offsets, the prediction still tends to copy
the input rather than predicting the low frequencies (Figure 4.3d).

47

48 Application of machine learning for the extrapolation of seismic data

0 10 20 30 40

Frequency in Hz

0.0

0.2

0.4

0.6

0.8

1.0

N
or
m
al
iz
ed

A
m
p
li
tu
d
e
in

1/
H
z

input data

target data

(a) Full-bandwidth prediction

0 10 20 30 40

Frequency in Hz

0.0

0.2

0.4

0.6

0.8

1.0

N
or
m
al
iz
ed

A
m
p
li
tu
d
e
in

1/
H
z

input data

target data

(b) Low-frequency prediction

Figure 4.1.: Amplitude spectra of a shot gather for input and target data for
two different approaches. Note that the amplitudes of all spectra a normalized
individually.

Furthermore, the approach of bandwidth extension allows to determine how well the input
data is reconstructed. For that, the high-pass filter designed in section 3.2 is applied to the
predicted data and the resulting spectrum is compared to the spectrum of the input data
(Figure 4.6). Besides small amplitudes at frequencies larger than 35 Hz, both spectra match
perfectly. This means that the network is able to transfer the complete information of the
input layer to the output layer. To be able to compare the results of the bandwidth extension
with the ones of the low-frequency approach, only the low-frequency data are extracted
from the predicted data by applying the same filter as used to create the low-frequency
target data. The resulting spectrum and waveforms show a good fit for the low frequencies
(Figure 4.7). At smaller offsets, only small differences in the amplitudes can be observed,
while the phase shows a good fit. For the largest offset displayed, the first arrival still
matches reasonably well with the target data; however, at the arrival of the direct wave
at around 2.3 s, both amplitude and phase are completely off for the side lobes, while the
main peak is still reconstructed correctly. Figure 4.8 depicts the shot gathers for the low
frequencies. The NRMS value of 16 % verifies the good fit. However, by comparing the
shot gathers of target and prediction, it can be seen that the prediction is not able to
reconstruct the low frequencies of the events that occur around 1.7 s and around 2.0 s. For
the application of FWI on that data, these reflections are not important, as they will only
play a role at later stages of the FWI. The low frequencies are rather used to fit a smooth
background model than the single reflectors.

4.2. Low-frequency extrapolation

In the second approach only the low frequencies are used as target. The same hyperparam-
eters as before are chosen and the network is trained for 100 epochs. Figure 4.9 depicts the
true low frequencies, the extrapolated low frequencies, and the residual of a shot gather.
The shot gathers of target and prediction already differ during the visual inspection. The
NRMS value of 49.4 % indicates a poor fit, and the residual plot shows a strong bias in the
shot gather. Looking at the spectrum in Figure 4.9a confirms the poorer fit. This approach
suffers from a high DC component as well, which results in the strong bias. Furthermore,
unexpected high-frequency content can be found in the data. The waveform (Figure 4.10b)
is also affected by the bias. To properly quality control the data, the DC component is
removed by applying a high-pass filter above 3 Hz. The resulting spectrum (Figure 4.12a)
shows that with the removed very low frequencies the spectra of target and extrapolated
data resemble each other and the bias is removed from the waveforms, see Figure 4.12.

Chapter 4. Application of deep learning for low-frequency extrapolation 49

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

Input

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(a) Input

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

Target

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(b) Target

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

Prediction

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(c) Prediction

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

17.0%

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(d) Residual

Figure 4.2.: Shot gathers of (a) input, (b) target, (c) prediction and (d) residual
of a network trained to extrapolate the full bandwidth. (a)-(d) have the same clip,
which is the 99-percentile of (b). The title of the residual plot gives the NRMS
value, which indicates a good fit.

50 Application of machine learning for the extrapolation of seismic data

0 10 20 30 40

Frequency in Hz

0

200

400

600

A
m
p
li
tu
d
e
in

1/
H
z

Input

Target

Prediction

(a) Spectrum

0.6 0.8 1.0 1.2 1.4

Time in s

−0.5

0.0

0.5

1.0

N
or
m
al
iz
ed

A
m
p
li
tu
d
e

Input

Target

Prediction

(b) Snippet of waveform

1.2 1.4 1.6 1.8

Time in s

−1.0

−0.5

0.0

0.5

N
or
m
al
iz
ed

A
m
p
li
tu
d
e

Input

Target

Prediction

(c) Snippet of waveform

1.6 1.8 2.0 2.2

Time in s

−0.4

−0.2

0.0

0.2

0.4

N
or
m
al
iz
ed

A
m
p
li
tu
d
e

Input

Target

Prediction

(d) Snippet of waveform

Figure 4.3.: (a) Amplitude spectra of a shot gather for true and extrapolated
full-bandwidth data. (b) Snippet of a waveform at 655 m offset. (c) Snippet of a
waveform at 1945 m offset. (d) Snippet at 3945 m offset.

Chapter 4. Application of deep learning for low-frequency extrapolation 51

0 10 20 30 40

Frequency in Hz

0

100

200

300

400

500

600

A
m
p
li
tu
d
e
in

1/
H
z

Input

Target

Filtered prediction

(a) Spectrum

0.6 0.8 1.0 1.2

Time in s

−0.5

0.0

0.5

1.0

N
or
m
al
iz
ed

A
m
p
li
tu
d
e

Input

Target

Prediction

(b) Snippet of waveform

1.2 1.4 1.6 1.8

Time in s

−1.0

−0.5

0.0

0.5

N
or
m
al
iz
ed

A
m
p
li
tu
d
e

Input

Target

Prediction

(c) Snippet of waveform

1.6 1.8 2.0 2.2

Time in s

−0.2

0.0

0.2

N
or
m
al
iz
ed

A
m
p
li
tu
d
e

Input

Target

Prediction

(d) Snippet of waveform

Figure 4.4.: (a) Amplitude spectra of a shot gather for true and extrapolated
full-bandwidth data which were high-pass filtered afterwards. (b) Snippet of a
waveform at 655 m offset. (c) Snippet of a waveform at 1945 m offset. (d) Snippet
at 3945 m offset. Note that compared to Figure 4.3, the DC component and the
very low amplitudes are removed.

52 Application of machine learning for the extrapolation of seismic data

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

Input

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(a) Input

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

Target

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(b) Target

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

Prediction

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(c) Prediction

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

6.2%

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(d) Residual

Figure 4.5.: Shot gathers of (a) input, (b) target, (c) prediction and (d) residual
of a network trained to extrapolate the full bandwidth. (a)-(d) have the same
clip, which is the 99-percentile of (b). The title of the residual plot gives the
NRMS value, which indicates a good fit. Compared to the results in Figure 4.2,
frequencies below 3 Hz are removed.

Chapter 4. Application of deep learning for low-frequency extrapolation 53

0 10 20 30 40

Frequency in Hz

0

100

200

300

400

500

600

A
m
p
li
tu
d
e
in

1/
H
z

Input

Filtered prediction

Figure 4.6.: Amplitude spectra of a shot gather with the input data (solid line)
and the high-pass filtered predictions (dashed line).

0 10 20 30 40

Frequency in Hz

0

100

200

300

400

500

600

A
m
p
li
tu
d
e
in

1/
H
z

Input

Target

Prediction

(a) Spectrum

0.25 0.50 0.75 1.00 1.25 1.50

Time in s

−1.0

−0.5

0.0

0.5

1.0

N
or
m
al
iz
ed

A
m
p
li
tu
d
e

Target

Prediction

(b) Snippet of waveform

1.0 1.5 2.0

Time in s

−0.5

0.0

0.5

1.0

N
or
m
al
iz
ed

A
m
p
li
tu
d
e

Target

Prediction

(c) Snippet of waveform

1.5 2.0 2.5 3.0 3.5

Time in s

−1.0

−0.5

0.0

0.5

1.0

N
or
m
al
iz
ed

A
m
p
li
tu
d
e

Target

Prediction

(d) Snippet of waveform

Figure 4.7.: (a) Amplitude spectra of a shot gather for true and extrapolated
full-bandwidth data. (b) Snippet of a waveform at 655 m offset. (c) Snippet of a
waveform at 1945 m offset. (d) Snippet at 3945 m offset. Note that compared to
Figure 4.3, the predicted data are low-pass filtered.

54 Application of machine learning for the extrapolation of seismic data

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

Input

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(a) Input

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

Target

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

A
m
p
li
tu
d
e

(b) Target

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

Prediction

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

A
m
p
li
tu
d
e

(c) Prediction

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

16.0%

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

A
m
p
li
tu
d
e

(d) Residual

Figure 4.8.: Shot gathers of (a) input, (b) target, (c) prediction and (d) residual
of a network trained to extrapolate the full bandwidth. The full-bandwidth data
are low-pass filtered to show the fit of the low frequencies only. (a)-(d) have the
same clip, which is the 99-percentile of (b). The title of the residual plot gives the
NRMS value, which indicates a good fit.

Chapter 4. Application of deep learning for low-frequency extrapolation 55

For smaller offsets, the main peak and the surrounding side lobes are recovered fairly well.
However, a high-frequency jitter can be seen, e.g., at 1.1 s in Figure 4.12b. The fit of larger
offsets is again poorer. Figure 4.12d shows that the first arrival cannot be reconstructed,
neither amplitudes nor phases are correct. However, the direct wave is reconstructed well,
which is the opposite behavior to the bandwidth extension approach. Figure 4.11 depicts
the target data and the predictions. The bias is removed and the NRMS value is reduced
to 25.5 %. The poor results in the large offsets are clearly visible in the shot gathers as well.
Instead of clearly defined arrivals, the wavefront arrivals in the predicted data are highly
disturbed for larger offsets.

4.3. Comparison of the extrapolation approaches

Both approaches are able to predict the low frequencies reasonably well. The traces match
well for small offsets, especially for the bandwidth extension approach. Comparing the low
frequencies only, the bandwidth approach seems to be able to predict the phase correctly for
the entire waveform, while the low-frequency extrapolation approach gets out of phase. The
high-frequency artifacts of the low-frequency approach should not be taken into account for
the comparison, as the other data set is low-pass filtered. Using the full bandwidth as target
data seems to give better results than training on only the low frequencies. Therefore, the
first approach is preferred and used in the following.

For comparing the resulting NRMS values with the work of Ovcharenko et al. (2020), only
the comparisons of the low-frequency content should be considered, as keeping the high-
frequency content correctly is not the actual aim of this work. In their work, Ovcharenko
et al. (2020) present results for full-offset data ranging from around 25 to 41 %. So the
resulting 16.0 % and 25.5 % of this work are in a similar but slightly lower range. Similar to
my findings, also the accuracy is deteriorated at larger offset for the results of Ovcharenko
et al. (2020, 2017), Sun and Demanet (2019), and Fang et al. (2020). Reasons for a lower
accuracy at far-offsets might be that the training data contains more near-offset samples
than far-offset samples. Furthermore, near-offset samples have higher amplitudes than
far-offset samples, such that strong amplitudes are fitted before smaller amplitudes.

4.4. Parameter testing

With the aim to improve the fit especially in the larger offsets, different choices of hyper-
parameters are tested. With this the influence of the design of the network is analyzed.
The high-frequency content of the target data is already given in the input data; therefore,
it makes sense to train on residuals and use ResNet blocks as discussed in section 2.1.5.2.
Furthermore, a SELU activation function can be advantageous. Lastly, different depths of
the network will be tested. At first, the ResNet blocks and the SELU activation function
are introduced, while the remaining parameters are kept as before. After training for 100
epochs, the results show a decreased NRMS value of 10.2 % and an overall improved fit,
see Figure 4.13c. Rather than the low-frequency artifact along the direct wave, a constant
bias for the background can be seen. This could be removed via filtering. As expected,
the ResNet blocks and the SELU activation function are suitable for this task and help to
improve the result. Lastly, networks with different numbers of layers and numbers of ResNet
blocks per layer are tested. To easily reference the different networks, the following notation
is introduced: If a network is, e.g., of the structure (2,2,2), it means that its encoder and
decoder each consist of three layers with two ResNet blocks per layer. In the following,
networks with a (3,3), (3,3,3) and (2,2,2,2) architecture are tested. All architectures give
reasonably good results with NRMS values below 20 % (Figure 4.13). The deeper networks
perform worse than the shallower networks. The deeper networks have more trainable
parameters and might not be fully trained yet, meaning they would have needed more
epochs of training. Furthermore, more ResNet blocks per layer increase the performance.

56 Application of machine learning for the extrapolation of seismic data

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

Input

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(a) Input

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

Target

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

A
m
p
li
tu
d
e

(b) Target

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

Prediction

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

A
m
p
li
tu
d
e

(c) Prediction

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

49.4%

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

A
m
p
li
tu
d
e

(d) Residual

Figure 4.9.: Shot gathers of (a) input, (b) target, (c) prediction and (d) residual
of a network trained to extrapolate only the low frequencies. (a)-(d) have the
same clip, which is the 99-percentile of (b). The title of the residual plot gives the
NRMS value, which indicates a poor fit.

Chapter 4. Application of deep learning for low-frequency extrapolation 57

0 10 20 30 40

Frequency in Hz

0

200

400

600

A
m
p
li
tu
d
e
in

1/
H
z

Input

Target

Prediction

(a) Spectrum

0 1 2 3

Time in s

−1.0

−0.5

0.0

0.5

1.0

N
or
m
al
iz
ed

A
m
p
li
tu
d
e

Target

Prediction

(b) Snippet of waveform

Figure 4.10.: (a) Amplitude spectra of a shot gather for true and extrapolated
low-frequency data. Here, the network is trained on predicting only the low
frequencies. (b) Snippet of a waveform at 3945 m offset. The large DC component
leads to a strong bias on the trace.

4.5. Loss functions

Finally, different loss functions are tested. So far, a simple mean squared error (MSE) was
used, which is defined as

MSE =
1

n

n
∑

i=1

(xi − yi)
2 , (4.1)

where n is the number of data points, xi the true target data and yi the predicted data.
The mean squared error (MSE) is an L2 norm and usually the go-to loss function in
optimization, as its Hessian and gradient are easy to calculate (Wang and Bovik, 2009).
Among others, Hu et al. (2021), Fabien-Ouellet (2020b), and Sun and Demanet (2020a)
use the MSE as loss function for their networks. However, the MSE over-penalizes large
errors (Zhao et al., 2016). Instead, a mean absolute error (MAE) can be used,

MAE =
1

n

n
∑

i=1

|xi − yi| , (4.2)

which also has a derivative that is easy to calculate (Zhao et al., 2016). Such an L1 norm
was used, for example, by Ovcharenko et al. (2022) and Aharchaou and Baumstein (2020)
for training their networks for low-frequency extrapolation. The Huber loss is a loss function
that lies between the MSE and the MAE (Huber, 1964). For large errors the Huber loss
penalizes just like an L1 norm, while smaller errors are treated with an L2 norm:

Huber =

{

1
2 (xi − yi)

2 , for |xi − yi| ≤ δ

δ · (|xi − yi| − 1
2δ), otherwise

(4.3)

Introducing the structural similarity index measure (SSIM; Wang et al., 2004) allows us to
keep the statistical similarity between target and prediction large by comparing luminance,
contrast, and structure. It is defined as

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (4.4)

where µ is the mean and σ the standard deviation. The small coefficients C1 and C2 ensure
stability (Wang et al., 2004). SSIM values are in the range of (-1,1], with 1 meaning x = y.

58 Application of machine learning for the extrapolation of seismic data

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

Input

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(a) Input

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

Target

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

A
m
p
li
tu
d
e

(b) Target

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

Prediction

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

A
m
p
li
tu
d
e

(c) Prediction

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

25.5%

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

A
m
p
li
tu
d
e

(d) Residual

Figure 4.11.: Shot gathers of (a) input, (b) target, (c) prediction and (d) residual
of a network trained to extrapolate the full bandwidth. (a - d) have the same
clip, which is the 99-percentile of (b). The title of the residual plots gives the
NRMS value, which indicates a poor fit. Compared to the results in Figure 4.9,
frequencies below 3 Hz are removed.

Chapter 4. Application of deep learning for low-frequency extrapolation 59

0 10 20 30 40

Frequency in Hz

0

200

400

600

A
m
p
li
tu
d
e
in

1/
H
z

Input

Target

Prediction

(a) Spectrum

0.4 0.6 0.8 1.0 1.2 1.4

Time in s

−0.5

0.0

0.5

1.0

N
or
m
al
iz
ed

A
m
p
li
tu
d
e

Target

Prediction

(b) Snippet of waveform

1.0 1.2 1.4 1.6 1.8

Time in s

−0.5

0.0

0.5

1.0

N
or
m
al
iz
ed

A
m
p
li
tu
d
e

Target

Prediction

(c) Snippet of waveform

1.5 2.0 2.5 3.0

Time in s

−1.0

−0.5

0.0

0.5

1.0

N
or
m
al
iz
ed

A
m
p
li
tu
d
e

Target

Prediction

(d) Snippet of waveform

Figure 4.12.: (a) Amplitude spectra of a shot gather for true and extrapolated
low-frequency data. Here, the network is trained to predict only the low frequencies.
Furthermore a high-pass filter is applied to remove the DC component and the
very low frequencies. (b) Snippet of a waveform at 655 m offset. (c) Snippet of a
waveform at 1945 m offset. (d) Snippet at 3945 m offset.

60 Application of machine learning for the extrapolation of seismic data

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

10.2%

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(a) ResNet+SELU+(2,2,2)

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

5.5%

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(b) ResNet+SELU+(3,3)

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

7.5%

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(c) ResNet+relu+(3,3,3)

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

17.9%

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(d) ResNet+SELU+(2,2,2,2)

Figure 4.13.: Residual plots for bandwidth extension approaches with different
network architectures. The title of the residual plots shows the NRMS value.

Chapter 4. Application of deep learning for low-frequency extrapolation 61

Sun and Demanet (2022) also use the SSIM to evaluate the similarity of their extrapolated
and true low-frequency data. The MSE and the SSIM functions can be combined by
weighting them:

LOSS(x, y) = αMSE(x, y)− (1− α)SSIM(x, y) , (4.5)

where α is a weighting factor. This forces the network to get a low MSE while at the same
time keeping the statistical similarity high. For the application, the SSIM has to be scaled
to the interval (0,1] in order to get meaningful loss values. Similarly, the MAE and the
SSIM loss can be combined.

To test how well the individual loss functions work on the data set, networks are trained for
100 epochs with a (3,3) architecture, SELU activation functions and different loss functions.
Figure 4.14 depicts the resulting residuals for different loss functions. It can be seen that
reasonable results with NRMS values smaller than 10 % can be obtained with all loss
functions. The MSE loss and the combination of MSE and SSIM loss show similar results
with only small errors in the amplitudes. Also the difference between MAE on the one
hand and MAE in combination with SSIM loss on the other hand is small. The SSIM loss
needs additional calculations; therefore, only the MAE or MSE loss alone will be considered.
Training with the Huber loss introduces low-frequency artifacts again, but the overall fit is
good. A closer look at the residuals of the MAE and MSE loss reveals, that the MAE loss
shows a better performance than the MSE loss at far offsets. Also, the reflection events at
around 1.7 s and 2.0 s are better resolved with the MAE loss. Even though, the MAE loss
has larger errors along the direct wave, a better reconstruction of the far-offset arrivals and
later reflections is preferred. Therefore, the MAE loss is the chosen loss function for the
final network.

4.6. Final results

With the results from the previous tests, a UNet with ResNet blocks, SELU activation
function, (3,3) architecture and an MAE loss is taken as final network. Figure 4.15 shows
the target and the predicted gather for a single shot and their residual. The NRMS value of
9.3 % indicates a good fit for the full bandwidth. The two shot gathers are very similar. Only
the direct wave suffers from larger errors. In Figure 4.16 the spectrum and the waveforms
for different offsets are compared to the true data. In contrast to the tests, the spectrum
does not fit the spectrum of the target completely and is off by a small factor. Looking at
the normalized traces, it can be seen that the waveforms match, so indeed the network is
predicting the values wrong by a constant factor. Compared to previous results as, e.g.,
depicted in Figure 4.7, especially the far-offset trace has improved significantly. Instead
of following the input, the extrapolated trace matches with the target trace. The trace at
3945 m offset has some low-amplitude, high-frequency artifacts at around 1.2 s and 1.6 s.
This is not a problem for FWI, as in FWI only the lower frequencies will be used anyway.

Furthermore, the extrapolated low frequencies are compared separately by applying the
same low-pass filter as in section 4.1. Figure 4.17 shows a good fit for the low frequencies as
well. However, the large amplitudes at around 4 km are not correctly recovered. Furthermore,
the later reflections at around 1.7 s and 2.0 s are of very low amplitude. The resulting NRMS
value of 13.9 % verifies the good fit. Compared to the results achieved by Ovcharenko et al.
(2020), the network presented in this work performed better. However, this comparison is
not fair and the results should not be used blindly to judge the two different approaches in
general, as the used data sets differ a lot in complexity. In this work, acoustic data is used,
while Ovcharenko et al. (2020) use elastic land data that contain a strong ground roll.

62 Application of machine learning for the extrapolation of seismic data

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

5.5%

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(a) MSE loss

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

9.3%

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(b) MAE loss

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

5.8%

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(c) MSE+SSIM loss

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

9.0%

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(d) MAE+SSIM loss

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

8.0%

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(e) Huber loss

Figure 4.14.: Residual plots between target and prediction for (a) an MSE, (b)
an MAE, (c) and MSE+SSIM, (d) and MAE+SSIM, and (e) a Huber loss function.
The percentage above each plot is the NRMS value.

Chapter 4. Application of deep learning for low-frequency extrapolation 63

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

Input

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(a) Input

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

Target

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(b) Target

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

Prediction

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(c) Prediction

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

9.3%

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(d) Residual

Figure 4.15.: Shot gathers of (a) input, (b) target, (c) prediction and (d) residual
of the final network trained to extrapolate the full bandwidth. (a)-(d) have the
same clip, which is the 99-percentile of (b). The title of the residual plot gives the
NRMS value, which indicates a good fit.

64 Application of machine learning for the extrapolation of seismic data

0 10 20 30 40

Frequency in Hz

0

200

400

600

A
m
p
li
tu
d
e
in

1/
H
z

Input

Target

Prediction

(a) Spectrum

0.6 0.8 1.0 1.2

Time in s

−0.5

0.0

0.5

1.0

N
or
m
al
iz
ed

A
m
p
li
tu
d
e

Input

Target

Prediction

(b) Snippet of waveform

1.2 1.4 1.6 1.8

Time in s

−1.0

−0.5

0.0

0.5

N
or
m
al
iz
ed

A
m
p
li
tu
d
e

Input

Target

Prediction

(c) Snippet of waveform

1.6 1.8 2.0 2.2

Time in s

−0.2

0.0

0.2

N
or
m
al
iz
ed

A
m
p
li
tu
d
e

Input

Target

Prediction

(d) Snippet of waveform

Figure 4.16.: (a) Amplitude spectra of a shot gather for true and extrapolated
full-bandwidth data of the final network. (b) Snippet of a waveform at 655 m
offset. (c) Snippet of a waveform at 1945 m offset. (d) Snippet at 3945 m offset.

Chapter 4. Application of deep learning for low-frequency extrapolation 65

To further study the performance of the network, the low-frequency spectrum and waveforms
are investigated in Figure 4.18. Still, the extrapolated data show smaller amplitudes in the
spectrum, but the trend is similar to the true data. The extrapolated waveforms match
well with the target data. For all traces some peaks are not entirely correct in amplitude,
but the phases match very well. The surprisingly good fit at far offsets is worth noting, as
the previous results of this work showed increasing errors for far-offset traces.

Additional shot gathers and traces are analyzed in section C in the appendix. The NRMS
value for all reviewed shots is around 9.5 %, see Figure C.2. Most of the traces show a
similar good fit (Figure C.4). However, for offsets larger than 6900 m the DC component
becomes strong enough to disturb the waveform. Furthermore, for a few traces at various
offsets, the prediction follows partly the input and not the target. The network still shows
a great overall performance. For only the low-frequency band, the NRMS is in a range of
13 to 16 % (Figure C.3). The traces match well; however, some arrivals have a significantly
lower amplitude than in the true trace (Figure C.5). Furthermore, some phases are not
correctly reconstructed. Nevertheless, the overall impression is still good.

66 Application of machine learning for the extrapolation of seismic data

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

Input

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(a) Input

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

Target

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

A
m
p
li
tu
d
e

(b) Target

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

Prediction

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

A
m
p
li
tu
d
e

(c) Prediction

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

13.9%

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

A
m
p
li
tu
d
e

(d) Residual

Figure 4.17.: Shot gathers of (a) input, (b) target, (c) prediction and (d) residual
of the final network trained to extrapolate the full bandwidth. The data is low-pass
filtered to assess the fit of the low frequencies. (a - d) have the same clip, which
is the 99-percentile of (b). The title of the residual plots gives the NRMS value,
which indicates a good fit.

Chapter 4. Application of deep learning for low-frequency extrapolation 67

0 10 20 30 40

Frequency in Hz

0

200

400

600

A
m
p
li
tu
d
e
in

1/
H
z

Input

Target

Prediction

(a) Spectrum

0.25 0.50 0.75 1.00 1.25 1.50

Time in s

−0.5

0.0

0.5

1.0

N
or
m
al
iz
ed

A
m
p
li
tu
d
e

Target

Prediction

(b) Snippet of waveform

1.0 1.5 2.0

Time in s

−1.0

−0.5

0.0

0.5

1.0

N
or
m
al
iz
ed

A
m
p
li
tu
d
e

Target

Prediction

(c) Snippet of waveform

1.5 2.0 2.5 3.0

Time in s

−1.0

−0.5

0.0

0.5

1.0

N
or
m
al
iz
ed

A
m
p
li
tu
d
e

Target

Prediction

(d) Snippet of waveform

Figure 4.18.: (a) Amplitude spectra of a shot gather for true and extrapolated
full-bandwidth data of the final network. (b) Snippet of a waveform at 655 m
offset. (c) Snippet of a waveform at 1945 m offset. (d) Snippet at 3945 m offset.
Note that the data are the low-pass filtered version of the data in Figure 4.16.

5. Conclusions

This thesis aimed to investigate the potential of neural networks for the task of low-frequency
extrapolation. This is motivated by the fact that low frequencies can improve FWI results
by overcoming the cycle-skipping problem. The development of a deep learning workflow
for low-frequency extrapolation consisted of several steps: generating subsurface models,
simulating seismic data, developing a pre-processing workflow by reconstruction tests and
the actual extrapolation of low frequencies.

To be able to model training data, velocity models were generated on the basis of the
subsurface structures around the Asse II salt mine. The shape of the salt body as well as
the number and shape of additional interfaces was randomly varied. Additionally, a water
column was taken as first layer. The resulting velocity models were simple and geologically
plausible. With the velocity models, synthetic seismic data were simulated in acoustic
media. A flat-spectrum wavelet was used as source signal and a high-pass filter was designed
for the input data.

To develop a suitable pre-processing workflow, reconstruction tests were performed. For
that purpose, the output of the network should be as close to the input as possible. A U-Net
as proposed by Ronneberger et al. (2015) was utilized for this task. The essential steps of
the pre-processing include the 1.5-integration of the data, normalizing and standardizing
the data with a global mean and standard deviation, and splitting the data into smaller
patches.

For extrapolating the low frequencies, two approaches were investigated. The full-bandwidth
approach was able to predict the phases correctly while extrapolating solely the low
frequencies resulted in slightly wrong phases. To further improve the results, the influence
of the network architecture was studied. Extrapolating the full bandwidth instead of only
the low frequencies, which is the usual approach in the related literature, provides the
possibility to utilize ResNet blocks for the task. Furthermore, the performance with different
loss functions was assessed. While adding a structural similarity index measure to the
loss function did not result in any great changes, the change to a mean absolute error
improved the results. The results of the final network design were assessed by comparing
the target and prediction for the entire frequency range and the low-frequency range.
The extrapolation of the missing frequencies was successful. Besides small errors in the
amplitudes, the network can predict the low frequencies successfully. The fit, particularly
in the far offsets, has improved compared to the first try of full-bandwidth extrapolation
especially in the low-frequency band. An entirely correct extrapolation is not needed for
using the data in FWI, as the low frequencies are only intended to improve the model for
FWI not a correct imaging of the low-frequency content. Thus, small errors in the low
frequencies do not make a large difference.

The validity of the results is limited in several ways because this thesis only had the
intention to study the potential of such networks. For acoustic data from layers above a salt
dome, the network shows good performance. However, field data is neither purely acoustic

69

70 Application of machine learning for the extrapolation of seismic data

nor do they have a good signal-to-noise ratio compared to the utilized synthetic data.
Therefore, it is important to test the ability of the network to generalize the extrapolation
to different settings, such as elastic data, data with a lower signal-to-noise ratio, or data
from subsurface models with completely different structures. First, the already trained
network can be confronted with such new data and the generalization performance of it
can be studied. Then, in case of failure, the network can also be trained from scratch with
the new data sets to improve the performance. To improve the noise robustness, also data
augmentation during training could be used to add different levels and kinds of noise to
the same set of data.

The extrapolated frequencies of this work could be utilized to improve FWI. I suggest
performing FWI in multiple steps on the extrapolated full-bandwidth data for frequencies
below 8 Hz. Afterwards, the original data can be used to continue the FWI on an improved
starting model. It might also be possible to perform the FWI solely on the extrapolated
full-bandwidth data, but this comes with the risk of performing FWI on data that might
contain artifacts.

The machine learning approach presented in this thesis does not consider whether the
results are physically plausible. Therefore, it might be worth to investigate the potential of
combining physical equations with neural networks for the task of low-frequency extrapola-
tion. Such an approach can be taken, e.g., with physics-informed (Raissi et al., 2019) or
physics-guided neural networks (Daw et al., 2017). These networks constrain the predictions
by either an additional penalty on the loss function or a combination of such a penalty and
a calculation of additional input features with a physics based model, respectively.

All in all, the utilized neural network successfully extrapolates low frequencies for synthetic
data in a controlled setup. The results might deteriorate for very large offsets. Nevertheless,
the predicted data is still close to the true target, which will improve the results of FWI.

Acknowledgements

First of all, I want to thank Prof. Dr. Thomas Bohlen for giving me the freedom to choose
a topic in the field of machine learning and for the support with SOFI concerning the
acquisition design and setup. Furthermore, I want to acknowledge Prof. Dr. Dirk Gajewski
for accepting to be the second reviewer of my thesis.

Next, many thanks go to Thomas Hertweck, Lars Houpt and Jan Walda for their supervision,
countless fruitful discussions, great input, taking the time to help with any technical problems,
and proofreading my thesis. I further want to acknowledge Jan Walda for providing me
with his machine learning framework and Thomas Hertweck for his Python package for the
in- and output of seismic data.

Furthermore, I want to thank more people who helped me in different ways during the
process of this thesis. Here I want to name Sonia S, ortan for helping me getting started with
SOFI and providing me with the subsurface model and Marie Gärtner for proofreading
and for all the evenings spent cooking together and playing board games. Many thanks go
as well to my fellow students and friends for the great time we had together during lunch
breaks and all the evening and weekend activities.

In addition, I want to thank my flatmate Josephine for enduring countless conversations
about the progress of my thesis and surprising me with a cake or some food every now
and then to keep the motivation up. Last but not least, I want to thank my family for
supporting me and my studies. Especially Pauline helped me by proofreading parts of my
thesis and giving me tips and tricks concerning figures and tables.

71

Bibliography

Abadi, M., Agarwal, A., et al. (2015). TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. url: https://www.tensorflow.org (visited on 11/10/2022).

Aharchaou, M., Baumstein, A., Vdovina, T., Lu, R., and Neumann, E. (2021). “Deep
Learning of Bandwidth Extension from Seabed Seismic”. In: 82nd EAGE Conference
and Exhibition Extended Abstracts. European Association of Geoscientists & Engineers.
doi: 10.3997/2214-4609.202011111.

Aharchaou, M. and Baumstein, A. (2020). “Deep learning-based artificial bandwidth
extension: Training on ultrasparse OBN to enhance towed-streamer FWI”. The Leading
Edge 39.10, pp. 718–726. doi: 10.1190/tle39100718.1.

Alsallakh, B., Kokhlikyan, N., Miglani, V., Yuan, J., and Reblitz-Richardson, O. (2021).
“Mind the Pad – CNNs Can Develop Blind Spots”. In: International Conference on
Learning Representations. Vienna, Austria. url: https://openreview.net/forum?id=
m1CD7tPubNy (visited on 11/10/2022).

Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., and Wassermann, J. (2010).
“ObsPy: A Python Toolbox for Seismology”. Seismological Research Letters 81.3, pp. 530–
533. doi: 10.1785/gssrl.81.3.530.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. New York: Springer.
doi: 10.1007/978-0-387-45528-0.

Bohlen, T., De Nil, D., Köhn, D., and Jetschny, S. (2016). SOFI2D – Seismic modeling
with finite differences: 2D elastic and viscoelastic version (updated 2022). url: https:
//git.scc.kit.edu/GPIAG-Software/SOFI2D (visited on 11/10/2022).

Bohlen, T. and Saenger, E. H. (2006). “Accuracy of heterogeneous staggered-grid finite-
difference modeling of Rayleigh waves”. Geophysics 71.4. doi: 10.1190/1.2213051.

Bourlard, H. and Kamp, Y. (1988). “Auto-association by multilayer perceptrons and
singular value decomposition”. Biological Cybernetics 59.4, pp. 291–294. doi: 10.1007/
BF00332918.

Bunks, C., Saleck, F. M., Zaleski, S., and Chavent, G. (1995). “Multiscale seismic waveform
inversion”. Geophysics 60.5, pp. 1457–1473. doi: 10.1190/1.1443880.

Choi, Y. and Alkhalifah, T. (2012). “Application of multi-source waveform inversion to
marine streamer data using the global correlation norm”. Geophysical Prospecting 60.4,
pp. 748–758. doi: 10.1111/j.1365-2478.2012.01079.x.

Clevert, D. A., Unterthiner, T., and Hochreiter, S. (2016). “Fast and accurate deep network
learning by exponential linear units (ELUs)”. In: International Conference on Learning
Representations. San Juan, Puerto Rico. doi: 10.48550/arXiv.1511.07289.

Cohen, J. K. and Stockwell, J. J. W. (2022). CWP/SU: Seismic Unix Release No. 44: a
free package for seismic research and processing. Center for Wave Phenomena, Colorado
School of Mines. url: https://github.com/JohnWStockwellJr/SeisUnix (visited on
11/10/2022).

Courant, R., Friedrichs, K., and Lewy, H. (1928). “Über die partiellen Differenzenglei-
chungen der mathematischen Physik”. Mathematische Annalen 100, pp. 32–74. doi:
10.1007/BF01448839.

Crameri, F. (2021). Scientific colour maps. Version 7.0.1. doi: 10.5281/zenodo.5501399.

73

74 Application of machine learning for the extrapolation of seismic data

Daw, A., Karpatne, A., Watkins, W., Read, J., and Kumar, V. (2017). “Physics-guided
Neural Networks (PGNN): An Application in Lake Temperature Modeling”. arXiv. doi:
10.48550/arXiv.1710.11431.

Dumoulin, V. and Visin, F. (2016). “A guide to convolution arithmetic for deep learning”.
arXiv. doi: 10.48550/arXiv.1603.07285.

Fabien-Ouellet, G. (2020a). “Generating seismic low frequencies with a deep recurrent neural
network for full waveform inversion”. In: 1st EAGE Conference on Seismic Inversion.
European Association of Geoscientists & Engineers. doi: 10.3997/2214-4609.202037023.

Fabien-Ouellet, G. (2020b). “Low frequency generation and denoising with recursive
convolutional neural networks”. In: SEG Technical Program Expanded Abstracts, pp. 870–
874. doi: 10.1190/segam2020-3428270.1.

Fang, J., Zhou, H., Li, Y. E., Zhang, Q., Wang, L., Sun, P., and Zhang, J. (2020). “Data-
driven low-frequency signal recovery using deep-learning predictions in full-waveform
inversion”. Geophysics 85.6, A37–A43. doi: 10.1190/geo2020-0159.1.

Forbriger, T., Groos, L., and Schäfer, M. (2014). “Line-source simulation for shallow-seismic
data. Part 1: Theoretical background”. Geophysical Journal International 198.3, pp. 1387–
1404. doi: 10.1093/gji/ggu199.

Glorot, X., Bordes, A., and Bengio, Y. (2011). “Deep Sparse Rectifier Neural Networks”.
In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics. Ed. by G. Gordon, D. Dunson, and M. Dudík. Vol. 15. Fort Lauderdale, FL,
USA: PMLR, pp. 315–323. url: https://proceedings.mlr.press/v15/glorot11a.html
(visited on 11/10/2022).

Gogoi, M. and Begum, S. A. (2017). “Image Classification Using Deep Autoencoders”.
In: 2017 IEEE International Conference on Computational Intelligence and Computing
Research (ICCIC). doi: 10.1109/ICCIC.2017.8524276.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT Press. url:
http://www.deeplearningbook.org (visited on 11/10/2022).

Guerrero, R., Qin, C., Bowles, C., Chen, L., Joules, R., Wolz, R., Valdés-Hernández, M.,
Dickie, D., Wardlaw, J., and Rueckert, D. (2018). “White matter hyperintensity and
stroke lesion segmentation and differentiation using convolutional neural networks”.
NeuroImage: Clinical 17, pp. 918–934. doi: 10.1016/j.nicl.2017.12.022.

Harris, C. R., Millman, K. J., et al. (2020). “Array programming with NumPy”. Nature
585.7825, pp. 357–362. doi: 10.1038/s41586-020-2649-2.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). “Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification”. In: Proceedings of the IEEE
International Conference on Computer Vision, pp. 1026–1034. doi: 10.48550/arXiv.
1502.01852.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep Residual Learning for Image
Recognition”. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778. doi: 10.1109/CVPR.2016.90.

Hu, W. (2014). “FWI without low frequency data – beat tone inversion”. In: SEG Technical
Program Expanded Abstracts. Society of Exploration Geophysicists, pp. 4172–4177. doi:
10.1190/segam2014-0978.1.

Hu, W., Chen, J., Liu, J., and Abubakar, A. (2018). “Retrieving Low Wavenumber Infor-
mation in FWI: An Overview of the Cycle-Skipping Phenomenon and Solutions”. IEEE
Signal Processing Magazine 35.2, pp. 132–141. doi: 10.1109/MSP.2017.2779165.

Hu, W., Jin, Y., Wu, X., and Chen, J. (2020). “Physics-guided self-supervised learning for
low frequency data prediction in FWI”. In: SEG Technical Program Expanded Abstracts.
Society of Exploration Geophysicists, pp. 875–879. doi: 10.1190/segam2020-3423396.1.

Hu, W., Jin, Y., Wu, X., and Chen, J. (2021). “Progressive transfer learning for low
frequency data prediction in full waveform inversion”. Geophysics 86.4, R369–R382. doi:
10.1190/geo2020-0598.1.

Bibliography 75

Huang, K.-Y., Liu, W. H., and Chang, I. C. (1989). “Hopfield model of neural networks for
detection of bright spots”. In: SEG Technical Program Expanded Abstracts. Society of
Exploration Geophysicists, pp. 444–446. doi: 10.1190/1.1889690.

Huber, P. J. (1964). “Robust Estimation of a Location Parameter”. The Annals of Mathe-
matical Statistics 35.1, pp. 73–101. doi: 10.1214/aoms/1177703732.

Ioffe, S. and Szegedy, C. (2015). “Batch Normalization: Accelerating Deep Network Train-
ing by Reducing Internal Covariate Shift”. In: Proceedings of the 32nd International
Conference on Machine Learning. Ed. by F. Bach and D. Blei. Vol. 37. Lille, France:
PMLR, pp. 448–456. url: https://proceedings.mlr.press/v37/ioffe15.html (visited on
11/10/2022).

Jin, Y., Hu, W., Wu, X., and Chen, J. (2018). “Learn Low Wavenumber Information in FWI
via Deep Inception Based Convolutional Networks”. In: SEG Technical Program Expanded
Abstracts. Society of Exploration Geophysicists, pp. 2091–2095. doi: 10.1190/segam2018-
2997901.1.

Jin, Y., Hu, W., Wu, X., and Chen, J. (2021). “Efficient progressive transfer learning for
low-frequency reflection seismic data prediction”. In: First International Meeting for
Applied Geoscience & Energy Expanded Abstracts. Society of Exploration Geophysicists,
pp. 777–781. doi: 10.1190/segam2021-3594767.1.

Kazei, V., Ovcharenko, O., Plotnitskii, P., Peter, D., Zhang, X., and Alkhalifah, T. (2021).
“Mapping Full Seismic Waveforms to Vertical Velocity Profiles by Deep Learning”. Geo-
physics 86.5, R711–R721. doi: 10.1190/geo2019-0473.1.

Kingma, D. P. and Ba, J. L. (2015). “Adam: A method for stochastic optimization”. In:
3rd International Conference on Learning Representations. San Diego, CA, USA. doi:
10.48550/arXiv.1412.6980.

Klambauer, G., Unterthiner, T., Mayr, A., and Hochreiter, S. (2017). “Self-Normalizing
Neural Networks”. In: Advances in Neural Information Processing Systems. Ed. by I.
Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R.
Garnett. Curran Associates, Inc., pp. 971–980. url: https://proceedings.neurips.cc/
paper/2017/file/5d44ee6f2c3f71b73125876103c8f6c4-Paper.pdf (visited on 11/10/2022).

Köhn, D. (2011). “Time domain 2D elastic full waveform tomography”. PhD thesis. Kiel
University. url: https://macau.uni-kiel.de/receive/diss_mods_00006786 (visited on
11/10/2022).

Komatitsch, D. and Martin, R. (2007). “An unsplit convolutional perfectly matched layer
improved at grazing incidence for the seismic wave equation”. Geophysics 72.5, pp. 155–
167. doi: 10.1190/1.2757586.

Kragh, E. and Christie, P. (2002). “Seismic repeatability, normalized rms, and predictability”.
The Leading Edge 21.7, pp. 640–647. doi: 10.1190/1.1497316.

Lay, T. and Wallace, T. C. (1995). Modern global seismology. Academic Press.
Levander, A. R. (1988). “Fourth-order finite-difference P-SV seismograms”. Geophysics

53.11, pp. 1425–1436. doi: 10.1190/1.1442422.
Li, W., Wang, G., Fidon, L., Ourselin, S., Cardoso, M. J., and Vercauteren, T. (2017).

“On the compactness, efficiency, and representation of 3D convolutional networks: Brain
parcellation as a pretext task”. In: Information Processing in Medical Imaging, 25th
International Conference. Ed. by M. Niethammer, M. Styner, S. Aylward, H. Zhu, I. Oguz,
P. Yap, and D. Shen. Cham: Springer, pp. 348–360. doi: 10.1007/978-3-319-59050-9_28.

Li, Y. E. and Demanet, L. (2016). “Full-waveform inversion with extrapolated low-frequency
data”. Geophysics 81.6, R339–R348. doi: 10.1190/geo2016-0038.1.

Liu, N., He, T., Tian, Y., Wu, B., Gao, J., and Xu, Z. (2020). “Common-azimuth seismic data
fault analysis using residual UNet”. Interpretation 8, SM25–SM37. doi: 10.1190/INT-
2019-0173.1.

76 Application of machine learning for the extrapolation of seismic data

Liu, X., Xue, P., and Li, Y. (1989). “Neural network method for tracing seismic events”.
In: SEG Technical Program Expanded Abstracts. Society of Exploration Geophysicists,
pp. 716–718. doi: 10.1190/1.1889749.

Louboutin, M., Guasch, L., and Herrmann, F. J. (2017). “Data Normalization Strategies for
Full-Waveform Inversion”. In: 79th EAGE Conference and Exhibition Extended Abstracts.
European Association of Geoscientists & Engineers. doi: 10.3997/2214-4609.201700720.

Ma, Y., Hale, D., Gong, B., and Meng, Z. J. (2012). “Image-guided sparse-model full
waveform inversion”. Geophysics 77.4, R189–R198. doi: 10.1190/geo2011-0395.1.

Maas, A. L., Hannun, A. Y., and Ng, A. Y. (2013). “Rectifier nonlinearities improve
neural network acoustic models”. In: Proceedings of the 30th International Conference
on Machine Learning. Vol. 28. url: http://robotics.stanford.edu/~amaas/papers/relu_
hybrid_icml2013_final.pdf (visited on 11/10/2022).

Masci, J., Meier, U., Cireşan, D., and Schmidhuber, J. (2011). “Stacked convolutional
auto-encoders for hierarchical feature extraction”. In: Artificial Neural Networks and
Machine Learning – ICANN 2011. Ed. by T. Honkela, W. Duch, M. Girolami, and S.
Kaski. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, pp. 52–59. doi:
10.1007/978-3-642-21735-7_7.

Moczo, P., Kristek, J., and Halada, L. (2004). The Finite-Difference Method for Seismologists.
An Introduction. Comenius University, Bratislava. url: ftp://ftp.nuquake.sk/pub/Papers
(visited on 11/10/2022).

Nakayama, S. and Blacquière, G. (2021). “Machine-learning-based data recovery and
its contribution to seismic acquisition: Simultaneous application of deblending, trace
reconstruction, and low-frequency extrapolation”. Geophysics 86.2, P13–P24. doi: 10.
1190/geo2020-0303.1.

Odena, A., Dumoulin, V., and Olah, C. (2016). “Deconvolution and Checkerboard Artifacts”.
Distill. doi: 10.23915/distill.00003.

Ovcharenko, O., Kazei, V., Alkhalifah, T. A., and Peter, D. B. (2022). “Multi-Task Learning
for Low-Frequency Extrapolation and Elastic Model Building From Seismic Data”. IEEE
Transactions on Geoscience and Remote Sensing 60, pp. 1–17. doi: 10.1109/TGRS.
2022.3185794.

Ovcharenko, O., Kazei, V., Kalita, M., Peter, D., and Alkhalifah, T. (2019). “Deep learning
for low-frequency extrapolation from multioffset seismic data”. Geophysics 84.6, R989–
R1001. doi: 10.1190/geo2018-0884.1.

Ovcharenko, O., Kazei, V., Peter, D., and Alkhalifah, T. (2017). “Neural network based
low-frequency data extrapolation”. In: 3rd SEG FWI workshop: What are we getting?
Society of Exploration Geophysicists.

Ovcharenko, O., Kazei, V., Peter, D., and Alkhalifah, T. (2018a). “Variance-based model
interpolation for improved full-waveform inversion in the presence of salt bodies”. Geo-
physics 83.5, R541–R551. doi: 10.1190/geo2017-0575.1.

Ovcharenko, O., Kazei, V., Peter, D., Silvestrov, I., Bakulin, A., and Alkhalifah, T. (2021).
“Dual-band generative learning for low-frequency extrapolation in seismic land data”.
In: SEG Technical Program Expanded Abstracts. Society of Exploration Geophysicists,
pp. 1345–1349. doi: 10.1190/segam2021-3579442.1.

Ovcharenko, O., Kazei, V., Peter, D., Zhang, X., and Alkhalifah, T. (2018b). “Low-frequency
data extrapolation using a feed-forward ANN”. In: 80th EAGE Conference and Exhibition
Extended Abstracts. European Association of Geoscientists & Engineers. doi: 10.3997/
2214-4609.201801231.

Ovcharenko, O., Kazei, V., Plotnitskiy, P., Peter, D., Silvestrov, I., Bakulin, A., and Alkha-
lifah, T. (2020). “Extrapolating low-frequency prestack land data with deep learning”.
In: SEG Technical Program Expanded Abstracts. Society of Exploration Geophysicists,
pp. 1546–1550. doi: 10.1190/segam2020-3427522.1.

Bibliography 77

Plessix, R. E. (2006). “A review of the adjoint-state method for computing the gradient
of a functional with geophysical applications”. Geophysical Journal International 167.2,
pp. 495–503. doi: 10.1111/j.1365-246X.2006.02978.x.

Pollok, L., Saßnowski, M., Kühnlenz, T., Gundelach, V., Hammer, J., and Pritzkow, C.
(2018). “Geological exploration and 3D model of the Asse salt structure for SE expansion
of the Asse II mine”. In: Mechanical Behavior of Salt IX (SaltMechIX), pp. 753–763.

Qian, F., Yin, M., Liu, X.-Y., Wang, Y.-J., Lu, C., and Hu, G.-M. (2018). “Unsupervised
seismic facies analysis via deep convolutional autoencoders”. Geophysics 83.3, A39–A43.
doi: 10.1190/geo2017-0524.1.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2019). “Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear
partial differential equations”. Journal of Computational Physics 378, pp. 686–707. doi:
10.1016/j.jcp.2018.10.045.

Richardson, A. (2018). “Seismic Full-Waveform Inversion Using Deep Learning Tools and
Techniques”. arXiv. doi: 10.48550/arXiv.1801.07232.

Ronneberger, O., Fischer, P., and Brox, T. (2015). “U-Net: Convolutional Networks for
Biomedical Image Segmentation”. In: Medical Image Computing and Computer-Assisted
Intervention – MICCAI 2015. Ed. by N. Navab, J. Hornegger, W. M. Wells, and A. F.
Frangi. Cham: Springer, pp. 234–241. doi: 10.1007/978-3-319-24574-4_28.

Rumelhart, D. E. (1988). “The architecture of mind: A connectionist approach”. In: Mind
Readings: Introductory Selections on Cognitive Science. Ed. by P. Thagard. MIT Press.
Chap. 8, pp. 207–238.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). “Learning Representations
by Back-Propagating Errors”. Nature 323, pp. 533–536. doi: 10.1038/323533a0.

S, ortan, S.-A. (2022). “Effects of seismic anisotropy and attenuation on first-arrival wave-
forms recorded at the Asse II nuclear repository”. MA thesis. Karlsruhe Institute of
Technology (KIT). doi: 10.5445/IR/1000151635.

Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller, M. (2015). “Striving for
simplicity: The all convolutional net”. In: 3rd International Conference on Learning
Representations, ICLR 2015 – Workshop Track Proceedings. doi: 10.48550/arXiv.1412.
6806.

Sun, B. and Alkhalifah, T. (2020). “ML-Misfit: Learning a Robust Misfit Function for
Full-Waveform Inversion Using Machine Learning”. In: 82nd EAGE Annual Conference
and Exhibition Extended Abstracts. European Association of Geoscientists & Engineers.
doi: 10.3997/2214-4609.202010466.

Sun, H. and Demanet, L. (2018). “Low-frequency extrapolation with deep learning”. In: SEG
Technical Program Expanded Abstracts. Society of Exploration Geophysicists, pp. 2011–
2015. doi: 10.1190/segam2018-2997928.1.

Sun, H. and Demanet, L. (2019). “Extrapolated full waveform inversion with convolutional
neural networks”. In: SEG Technical Program Expanded Abstracts. Society of Exploration
Geophysicists, pp. 4962–4966. doi: 10.1190/segam2019-3197987.1.

Sun, H. and Demanet, L. (2020a). “Elastic full waveform inversion with extrapolated low-
frequency data”. In: SEG Technical Program Expanded Abstracts. Society of Exploration
Geophysicists, pp. 855–859. doi: 10.1190/segam2020-3428087.1.

Sun, H. and Demanet, L. (2020b). “Extrapolated full-waveform inversion with deep learning”.
Geophysics 85.3, R275–R288. doi: 10.1190/geo2019-0195.1.

Sun, H. and Demanet, L. (2022). “Deep Learning for Low-Frequency Extrapolation of
Multicomponent Data in Elastic FWI”. IEEE Transactions on Geoscience and Remote
Sensing 60. doi: 10.1109/TGRS.2021.3135790.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Dumitru, E., Vanhoucke,
V., and Rabinovich, A. (2015). “Going Deeper with Convolutions”. In: 2015 IEEE

78 Application of machine learning for the extrapolation of seismic data

Conference on Computer Vision and Pattern Recognition (CVPR). doi: 10.1109/CVPR.
2015.7298594.

Tarantola, A. (1984a). “Inversion of seismic reflection data in the acoustic approximation”.
Geophysics 49.8, pp. 1259–1266. doi: 10.1190/1.1441754.

Tarantola, A. (1984b). “Linearized Inversion of Seismic Reflection Data”. Geophysical
Prospecting 32.6, pp. 998–1015. doi: 10.1111/j.1365-2478.1984.tb00751.x.

Ten Kroode, F., Bergler, S., Corsten, C., de Maag, J. W., Strijbos, F., and Tijhof, H.
(2013). “Broadband seismic data – The importance of low frequencies”. Geophysics 78.2,
WA3–WA14.

Thorbecke, J. (2021). FDELMODC: 2D Finite-Difference Wavefield Modelling. url: https:
//github.com/JanThorbecke/OpenSource/blob/master/doc/fdelmodcManual.pdf
(visited on 11/10/2022).

Van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalch-
brenner, N., Senior, A., and Kavukcuoglu, K. (2016). “WaveNet: A Generative Model for
Raw Audio”. arXiv. doi: 10.48550/arXiv.1609.03499.

Van Leeuwen, T. and Herrmann, F. J. (2013). “Mitigating local minima in full-waveform
inversion by expanding the search space”. Geophysical Journal International 195.1,
pp. 661–667. doi: 10.1093/gji/ggt258.

Virieux, J. and Operto, S. (2009). “An overview of full-waveform inversion in exploration
geophysics”. Geophysics 74.6. doi: 10.1190/1.3238367.

Virieux, J. (1986). “P-SV wave propagation in heterogeneous media: Velocity-stress finite-
difference method”. Geophysics 51.4, pp. 889–901. doi: 10.1190/1.1442147.

Virtanen, P., Gommers, R., et al. (2020). “SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python”. Nature Methods 17, pp. 261–272. doi: 10.1038/s41592-019-
0686-2.

Wang, M., Xu, S., and Zhou, H. (2020). “Self-supervised learning for low frequency extension
of seismic data”. In: SEG Technical Program Expanded Abstracts. Society of Exploration
Geophysicists, pp. 1501–1505. doi: 10.1190/segam2020-3427086.1.

Wang, Z. and Bovik, A. C. (2009). “Mean Squared Error: Love it or Leave it? A new look
at signal fidelity measures”. IEEE Signal Processing Magazine 26.1, pp. 98–117. doi:
10.1109/MSP.2008.930649.

Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. (2004). “Image quality
assessment: From error visibility to structural similarity”. IEEE Transactions on Image
Processing 13.4, pp. 600–612. doi: 10.1109/TIP.2003.819861.

Warner, M. and Guasch, L. (2016). “Adaptive waveform inversion: Theory”. Geophysics
81.6, R429–R445. doi: 10.1190/GEO2015-0387.1.

Wehner, D., Landrø, M., and Amundsen, L. (2019). “On low frequencies emitted by air
guns at very shallow depths – An experimental study”. Geophysics 84.5, P61–P71. doi:
10.1190/geo2018-0687.1.

Wu, R. S., Luo, J., and Wu, B. (2013). “Ultra-low-frequency information in seismic data
and envelope inversion”. In: SEG Technical Program Expanded Abstracts. Society of
Exploration Geophysicists, pp. 3078–3082. doi: 10.1190/segam2013-0825.1.

Xiao, X., Lian, S., Luo, Z., and Li, S. (2018). “Weighted Res-UNet for High-Quality Retina
Vessel Segmentation”. In: 9th International Conference on Information Technology in
Medicine and Education, ITME 2018, pp. 327–331. doi: 10.1109/ITME.2018.00080.

Yang, F. and Ma, J. (2019). “Deep-learning inversion: A next-generation seismic velocity
model building method”. Geophysics 84.4, R583–R599. doi: 10.1190/geo2018-0249.1.

Yu, S. and Ma, J. (2021). “Deep Learning for Geophysics: Current and Future Trends”.
Reviews of Geophysics 59.3, pp. 1–36. doi: 10.1029/2021RG000742.

Zhang, Z.-D., Alkhalifah, T., Naeini, E. Z., and Sun, B. (2018). “Multiparameter elastic
full waveform inversion with facies-based constraints”. Geophysical Journal International
213.3, pp. 2112–2127. doi: 10.1093/gji/ggy113.

Bibliography 79

Zhao, H., Gallo, O., Frosio, I., and Kautz, J. (2016). “Loss Functions for Image Restoration
With Neural Networks”. IEEE Transactions on Computational Imaging 3.1, pp. 47–57.
doi: 10.1109/tci.2016.2644865.

Zhou, Y. T. and Chellappa, R. (1988). “Computation of optical flow using a neural
network”. In: 1988 IEEE International Conference on Neural Networks, pp. 71–78. doi:
10.1109/icnn.1988.23914.

Zhu, W. and Beroza, G. C. (2019). “PhaseNet: A deep-neural-network-based seismic
arrival-time picking method”. Geophysical Journal International 216.1, pp. 261–273.
doi: 10.1093/gji/ggy423.

Appendix

A. Used software and hardware

For this thesis I used the following software packages and hardware, which I would like to
acknowledge here:

• Python packages: NumPy (Harris et al., 2020) and SciPy (Virtanen et al., 2020) for
generating the subsurface models, TensorFlow (Abadi et al., 2015) for the machine
learning framework and ObsPy (Beyreuther et al., 2010) for small data processing
steps, Thomas Hertweck’s seismics I/O package for reading in the .su files, and Jan
Walda’s framework for setting up and training encoder-decoder networks.

• Seismic Unix (Cohen and Stockwell, 2022) for data processing and quick quality
controls.

• SOFI2D (Bohlen et al., 2016) for finite-difference forward modeling.

• Scientific color map "roma" (Crameri, 2021) for plots of the subsurface models.

• Four Nvidia A100 GPUs with 40 GB RAM each.

81

82 Application of machine learning for the extrapolation of seismic data

B. U-Net for the reconstruction tests

3×3 conv S=1, BN, ReLU

3×3 conv S=2, BN, ReLU

upsampling

1×1 conv S=1, tanh

copy

Input Output

Figure B.1.: Architecture of the U-Net used for the reconstruction tests. Com-
pared to the original U-Net by Ronneberger et al. (2015, s. Figure 2.6), the
operations of down- and up-sampling have changed. Here, S = 2 stands for a
convolution with stride 2. Batch normalization layers (BN) are used before the
activation function. The black arrows depict the characteristic skip-connections.

Appendix 83

C. Further predictions of the final network

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s
9.6%

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(a) Shot 2

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
T
im

e
in

s

9.6%

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(b) Shot 13

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

9.8%

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(c) Shot 25

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

9.1%

−4

−3

−2

−1

0

1

2

3

4

A
m
p
li
tu
d
e

(d) Shot 36

Figure C.2.: Residual plots between target and full-bandwidth prediction of (a)
shot 2, (b) shot 13, (c) shot 25, and (d) shot 36. The title of the plots shows the
NRMS value, which indicates a similar fit for all shot locations.

84 Application of machine learning for the extrapolation of seismic data

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

14.7%

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

A
m
p
li
tu
d
e

(a) Shot 2

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

14.8%

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

A
m
p
li
tu
d
e

(b) Shot 13

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

15.6%

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

A
m
p
li
tu
d
e

(c) Shot 25

2 4 6

x in km

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
in

s

13.3%

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

A
m
p
li
tu
d
e

(d) Shot 36

Figure C.3.: Residual plots between target and low-pass filtered full-bandwidth
prediction of (a) shot 2, (b) shot 13, (c) shot 25, and (d) shot 36. The title of the
plots shows the NRMS value, which indicates a similar fit for all shot locations.

Appendix 85

1.6 1.8 2.0 2.2

Time in s

−1.0

−0.5

0.0

0.5

N
or
m
al
iz
ed

A
m
p
li
tu
d
e

Input

Target

Prediction

(a) Shot 2, Trace 300

0.4 0.6 0.8 1.0

Time in s

−0.5

0.0

0.5

1.0

N
or
m
al
iz
ed

A
m
p
li
tu
d
e

Input

Target

Prediction

(b) Shot 13, Trace 300

0.8 1.0 1.2 1.4 1.6 1.8

Time in s

−0.5

0.0

0.5

1.0

N
or
m
al
iz
ed

A
m
p
li
tu
d
e

Input

Target

Prediction

(c) Shot 25, Trace 300

2.0 2.5 3.0

Time in s

−0.5

0.0

0.5

1.0

N
or
m
al
iz
ed

A
m
p
li
tu
d
e

Input

Target

Prediction

(d) Shot 36, Trace 300

0.2 0.4 0.6

Time in s

−0.5

0.0

0.5

1.0

N
or
m
al
iz
ed

A
m
p
li
tu
d
e

Input

Target

Prediction

(e) Shot 2, Trace 40

1.4 1.6 1.8 2.0

Time in s

−1.0

−0.5

0.0

0.5

1.0

N
or
m
al
iz
ed

A
m
p
li
tu
d
e

Input

Target

Prediction

(f) Shot 13, Trace 40

2.0 2.5 3.0

Time in s

−0.5

0.0

0.5

1.0

N
or
m
al
iz
ed

A
m
p
li
tu
d
e

Input

Target

Prediction

(g) Shot 25, Trace 40

2.25 2.50 2.75 3.00 3.25

Time in s

−1.0

−0.5

0.0

0.5

N
or
m
al
iz
ed

A
m
p
li
tu
d
e

Input

Target

Prediction

(h) Shot 36, Trace 40

Figure C.4.: Waveform comparisons for the predicted full-bandwidth data for
trace 300 (a-d) and 40 (e-h), for the shots 2 (a, e), 13 (b, f), 25 (c, g), and 36 (d, h).
Note that in (a) the prediction follows partly the input, in (c) some high-frequency
artifacts can be seen and in (h) the bias disturbs the good fit. The remaining
traces show a nearly perfect fit.

86 Application of machine learning for the extrapolation of seismic data

1.5 2.0 2.5

Time in s

−1.0

−0.5

0.0

0.5

1.0

N
or
m
al
iz
ed

A
m
p
li
tu
d
e

Input

Target

(a) Shot 2, Trace 300

0.2 0.4 0.6 0.8 1.0 1.2

Time in s

−0.5

0.0

0.5

1.0

N
or
m
al
iz
ed

A
m
p
li
tu
d
e

Input

Target

(b) Shot 13, Trace 300

0.5 1.0 1.5 2.0

Time in s

−1.0

−0.5

0.0

0.5

1.0

N
or
m
al
iz
ed

A
m
p
li
tu
d
e

Input

Target

(c) Shot 25, Trace 300

1.5 2.0 2.5 3.0

Time in s

−1.0

−0.5

0.0

0.5

1.0

N
or
m
al
iz
ed

A
m
p
li
tu
d
e

Input

Target

(d) Shot 36, Trace 300

0.0 0.2 0.4 0.6 0.8

Time in s

−0.5

0.0

0.5

1.0

N
or
m
al
iz
ed

A
m
p
li
tu
d
e

Input

Target

(e) Shot 2, Trace 40

1.00 1.25 1.50 1.75 2.00 2.25

Time in s

−1.0

−0.5

0.0

0.5

1.0

N
or
m
al
iz
ed

A
m
p
li
tu
d
e

Input

Target

(f) Shot 13, Trace 40

1.5 2.0 2.5 3.0 3.5

Time in s

−0.5

0.0

0.5

1.0

N
or
m
al
iz
ed

A
m
p
li
tu
d
e

Input

Target

(g) Shot 25, Trace 40

2.00 2.25 2.50 2.75 3.00 3.25

Time in s

−1.0

−0.5

0.0

0.5

1.0

N
or
m
al
iz
ed

A
m
p
li
tu
d
e

Input

Target

(h) Shot 36, Trace 40

Figure C.5.: Waveform comparisons for the predicted full-bandwidth data for
trace 300 (a-d) and 40 (e-h), for the shots 2 (a, e), 13 (b, f), 25 (c, g), and 36 (d,
h). Note that in (a, f-h) the amplitudes are too small and phases are not entirely
correct. The remaining traces show a nearly perfect fit.

	Contents
	1 Introduction
	1.1 Related work
	1.2 Thesis outline

	2 Theoretical background
	2.1 Deep learning
	2.1.1 Neurons and neural networks
	2.1.2 Activation functions
	2.1.3 Training neural networks
	2.1.4 Convolutional neural networks
	2.1.5 Autoencoders
	2.1.5.1 U-Net
	2.1.5.2 Residual U-Net

	2.2 Seismic modeling
	2.2.1 Seismic wave propagation in acoustic media
	2.2.2 Finite-difference method
	2.2.2.1 Numerical dispersion and instabilities
	2.2.2.2 Boundary conditions

	2.3 Full-waveform inversion
	2.3.1 Misfit function
	2.3.2 Calculating the gradient
	2.3.3 Multi-scale approach
	2.3.4 FWI workflow

	3 Data generation and preparation
	3.1 Model building
	3.2 Modeling training data
	3.3 Development of a preprocessing workflow
	3.3.1 Split in patches
	3.3.2 Normalizing the data
	3.3.3 Overlapping patches
	3.3.4 Comparison of the normalization techniques
	3.3.5 Final pre-processing workflow after reconstruction tests

	4 Application of deep learning for low-frequency extrapolation
	4.1 Full-bandwidth extrapolation
	4.2 Low-frequency extrapolation
	4.3 Comparison of the extrapolation approaches
	4.4 Parameter testing
	4.5 Loss functions
	4.6 Final results

	5 Conclusions
	Acknowledgements
	Appendix
	A Used software and hardware
	B U-Net for the reconstruction tests
	C Further predictions of the final network

