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Electronic viscosity and energy relaxation in neutral graphene
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We explore hydrodynamics of Dirac fermions in neutral graphene in the Corbino geometry. In the absence of
a magnetic field, the bulk Ohmic charge flow and the hydrodynamic energy flow are decoupled. However, the
energy flow does affect the overall resistance of the system through viscous dissipation and energy relaxation
that has to be compensated by the work done by the current source. Solving the hydrodynamic equations, we
find that local temperature and electric potential are discontinuous at the interfaces with the leads as well as the
device resistance and argue that this makes Corbino geometry a feasible choice for an experimental observation
of the Dirac fluid.

DOI: 10.1103/PhysRevB.107.045413

Quantum dynamics of charge carriers is one of the most
important research directions in condensed matter physics.
In many materials, transport properties can be successfully
described under the assumption of weak electron-electron in-
teraction allowing for free-electron theories [1]. An extension
of this approach to strongly correlated systems remains a
major unsolved problem. The advent of “ultraclean” materi-
als poses new challenges, especially if the electronic system
is nondegenerate. At high temperatures, such systems may
exhibit signatures of a collective motion of charge carriers
resembling the hydrodynamic flow of a viscous fluid [2–14].

Electronic viscosity has been discussed theoretically for
a long time [15–20] but became the subject of dedicated
experiments [2,9] only recently, after ultraclean materials
became available. Up until now, most experimental efforts
have focused on graphene [2–11], where the hydrodynamic
regime is apparently easier to achieve [21–23]. Viscous effects
manifest themselves in nonuniform flows. In the common
“linear” geometry (channels, wires, Hall bars, etc.) this occurs
in “narrow” samples where the typical length scale associated
with viscosity is of the same order as the channel width
[24–28]. In contrast, in the “circular” Corbino geometry (see
Fig. 1), the electric current is nonuniform even in the simplest
Drude picture (in the absence of a magnetic field, j ∝ er/|r|,
where er = r/|r|) making it an excellent platform to measure
electronic viscosity [29–32]. In the last year, electronic hy-
drodynamics in the Corbino geometry has been studied both
experimentally [33] and theoretically [34–37].

In this paper we address the “Dirac fluid” [3,9] (the hy-
drodynamic flow of charge carriers in neutral graphene) in the
Corbino geometry. Unlike doped graphene, where degenerate,
Fermi-liquid-like electrons may be described by the Navier-
Stokes equation with a weak damping term due to disorder
[16,21,24], the two-band physics of neutral graphene leads to
unconventional hydrodynamics [22,38]. In the hydrodynamic

approach any macroscopic current can be expressed as a prod-
uct of the corresponding density and hydrodynamic velocity
u (up to dissipative corrections); for example, the electric
and energy current densities are j = nu and jE = nE u, re-
spectively. In the degenerate regime the charge and energy
densities are proportional to each other (to the leading ap-
proximation in thermal equilibrium nE = 2μn/3, where μ is
the chemical potential), and the two currents are equivalent
[39]. In contrast, the equilibrium charge density vanishes at
charge neutrality, n(μ = 0) = 0, while the energy density re-
mains finite. The two currents “decouple”: The energy current
remains “hydrodynamic,” and the charge current is completely
determined by the dissipative correction δ j.

Electronic transport at charge neutrality has been the sub-
ject of intensive research [9,25–28,39–47] leading to general
consensus on the basic result: In the absence of a magnetic
field, B = 0, the resistivity of neutral graphene is determined
by the electron-electron interaction

R0 = π

2e2T ln 2

(
1

τ11
+ 1

τdis

)
−→

τdis→∞
1

σQ
. (1)

Here, τ11 ∝ α−2
g T −1 describes the appropriate electron-

electron collision integral, and σQ is the “intrinsic” or
“quantum” conductivity of graphene. Disorder scattering is
characterized by the mean free time τdis, which is large un-
der the assumptions of the hydrodynamic regime, τdis � τ11,
and yields a negligible contribution to Eq. (1). Equation (1)
describes the uniform bulk current and is independent of vis-
cosity (i.e., in a channel [21,25,45,47]). In contrast, in the
Corbino geometry the current flow is necessarily inhomo-
geneous, and hence viscous dissipation must be taken into
account.

We envision the following experiment: A graphene sam-
ple (at charge neutrality) in the shape of an annulus is
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FIG. 1. Corbino geometry. The annulus-shaped sample of neutral
graphene (μ = 0) is placed between the the two leads: the inner circle
of radius r1 and the outer shell with inner radius r2. A current I is
injected through at the center point, and a voltage U is measured
between electrodes placed at the inner and outer radii rin and rout.

placed between the inner (a disk of radius r1) and outer
(a ring with inner radius r2) metallic contacts (leads). For
simplicity, we assume both leads to be of the same mate-
rial, e.g., highly doped graphene with the same doping level.
The electric current I is injected into the center of the in-
ner lead preserving the rotational invariance (e.g., through a
thin vertical wire attached to the center point) and spreads
towards the outer lead, which for concreteness we assume
to be grounded. The overall voltage drop U is measured
between two points in the two leads (at the radii rin < r1

and rout > r2) yielding the device resistance, R = U/I , see
Fig. 1. In most traditional measurements, the leads’ resis-
tance is minimal, while the contact resistance is important
only in ballistic systems; see, e.g., Ref. [10]. Hence one
may interpret the measured voltage drop in terms of the
resistivity of the sample material. Here, we focus on the
device resistance and show that in the hydrodynamic regime
there is an additional contribution due to electronic viscosity
and energy relaxation.

Charge flow through the Corbino disk can be described
as follows. The injected current spreads through the inner
lead according to Ohm’s law and the continuity equation.
In the stationary case, the latter determines the radial com-
ponent of the current density, jin

r = I/(2πer). This defines
the drift velocity uin = jin/nin (nin is the carrier density in
the inner lead) and the energy current jin

E = nin
E uin. Reach-

ing the interface, both currents continue to flow into the
graphene sample. Charge conservation requires the radial
component of the electric current to be continuous at the
interface, δ j(r1) = jin(r1). Due to the continuity equation, the
current density in graphene has the same functional form,
δ jr = I/(2πer). Does this mean that the device resistance
trivially follows if one knows the resistivity of graphene?
The answer is “no,” since the electrochemical potential is
discontinuous at the interface! There are two mechanisms for
the “jump” in the potential: (i) the usual Schottky contact
resistance [43,48], and (ii) dissipation due to viscosity [32]

and energy relaxation [49]. Since the lost energy must come
from the current source, both contribute to R.

In neutral graphene (at zero magnetic field), the energy cur-
rent jE = nE u is decoupled from the electric current j = δ j,
which means that, at charge neutrality, u is not respon-
sible for any charge current in the sample. The flows in
neutral graphene are described by the set of hydrodynamic
equations derived in Refs. [38,45,49] and recently solved in
Ref. [47] in the channel geometry. Within linear response, the
static equations are

∇ ·δ j = 0, (2a)

nI∇ ·u + ∇ ·δ jI = −(12 ln 2/π2)nIμI/(T τR), (2b)

∇δP = η�u − 3Pu/
(
v2

gτdis
)
, (2c)

3P∇ ·u = −2δP/τRE . (2d)

Here, Eq. (2a) is the charge continuity equation; Eq. (2b) is the
“imbalance” continuity equation [38,43] [μI is the imbalance
chemical potential, nI = πT 2/(3v2

g ) is the equilibrium imbal-
ance density, vg is the band velocity in graphene, and τR is the
recombination time]; Eq. (2c) is the linearized Navier-Stokes
equation [38,47,50,51] with the shear viscosity η; and Eq. (2d)
is the linearized “thermal transport” equation obtained from
Eq. (S4d) of the Supplemental Material [52] for the “super-
collision” relaxation model [49] (τRE is the energy relaxation
time; for this model, τRE � τR).

Equilibrium thermodynamic quantities [the pressure P =
3ζ (3)T 3/(πv2

g ), enthalpy density W , and energy density]
are related by the “equation of state,” W = 3P = 3nE/2.
The dissipative corrections to the macroscopic currents are
given by

δ j = E/(eR0), (3a)

δ jI = −2γ ln 2

π
T τdis∇μI , γ = δI

1+τdis/(δIτ22)
, (3b)

where τ22 ∝ α−2
g T −1 describes a component of the collision

integral that is qualitatively similar to, but quantitatively dis-
tinct from, τ11 and δI ≈ 0.28. At charge neutrality, the electric
field E only enters the linear response equations through the
dissipative correction [Eq. (3a)].

Equations (2a)–(2d), (3a), and (3b) should be solved for u,
δ j, δ jI , E, μI , and δP. We employ the boundary conditions
that follow from the fact that we only have interfaces between
the graphene sample and the leads in the Corbino geometry.
Since there are no additional sinks or sources for charge,
imbalance, and entropy at the interface, the corresponding
currents (radial by symmetry) are conserved exactly (i.e.,
before employing hydrodynamic approximations) across the
interface:

δ j = jL, δ jI = jL
I � jL, su = sLuL

at both interfaces with leads (the superscript “L” denotes the
quantities on the lead side; s and sL are entropy densities).
This does not fix the jump in the potential, which we discuss
below.

Excluding δP from Eqs. (2c) and (2d), we find a second-
order differential equation for u

η′�u = 3Pu/
(
v2

gτdis
)
, η′ = η + 3PτRE/2. (4a)
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FIG. 2. Radial component of the hydrodynamic velocity ur .
Black curves show the drift velocity in the leads, uin(out)

r ∝ 1/r. Col-
ored curves correspond to the solution, Eq. (4b), for the two indicated
values of �GE . The results are plotted for the two cases of a large
(main panel) and small (inset) device.

Importantly, energy relaxation here renormalizes the value of
viscosity, as the energy flow described by u becomes effec-
tively compressible. It is also worth noticing that, in weakly
disordered neutral graphene, the hydrodynamic velocity u
vanishes in the homogeneous case. This is a consequence of
charge-energy separation and energy relaxation described by
Eq. (2d).

In the Corbino disk, the general solution for the radial
component of the velocity has the form

ur = a1I1

(
r

�GE

)
+ a2K1

(
r

�GE

)
, �2

GE = v2
gη

′τdis

3P
, (4b)

where I1(z) and K1(z) are the Bessel functions. The co-
efficients a1 and a2 can be found using the continuity of
the entropy current at the two interfaces (within linear re-
sponse). The resulting behavior in shown in Fig. 2 (here we
choose to show our results in graphical form since the ana-
lytic expressions are somewhat cumbersome [52]; quantitative
calculations were performed for T = 100 K, I = 1 µA, and
experimentally relevant values of the parameters were taken
from Refs. [8–10,49]).

In the hydrodynamic regime, the electron-electron scat-
tering time is the shortest scale in the problem; hence the
spatial variation of u is determined by the energy relaxation.
If �GE 	 rout − rin, then the energy current injected from the
leads decays in a (relatively small) boundary region while in
the bulk of the sample u → 0. On the other hand, if �GE is
of the same order as (or larger than) the system size, then ur

does not vanish and approaches the standard Corbino profile,
ur ∝ 1/r. At each interface, ur exhibits a jump due to the
mismatch of the entropy densities in the sample and leads.

The nonequilibrium quantities δP and μI can now be found
straightforwardly. The former follows directly from Eq. (2d)
using the solution (4b), while the differential equation for
the latter can be found by substituting Eq. (3b) into Eq. (2b)
and using the solution (4b). The boundary conditions for δP
and μI follow from the continuity equations for the charge and
imbalance. The two quantities can be combined to determine

FIG. 3. Temperature distribution δT in the device. Colored
curves correspond to the solution of the hydrodynamic equations for
the indicated values of �GE and �R. The results are plotted for the two
cases of a large (main panel) and small (inset) device. In the leads,
δT = 0, shown by black lines.

the nonequilibrium temperature variation,

δT = πv2
g

9T 2ζ (3)
δP − π2

27ζ (3)
μI ,

shown in Fig. 3. For a large sample (�GE , �R 	 rout − rin,
�2

R = γ v2
gτdisτR/2), δT exhibits fast decay and vanishes in

the bulk of the sample. For larger values of �GE , �R, energy
relaxation is less effective, and the system exhibits an inho-
mogeneous temperature profile.

The obtained solutions completely describe the hydrody-
namic energy flow in neutral graphene. Our remaining task is
to find the behavior of the electrochemical potential at the two
interfaces enabling us to determine R. The standard descrip-
tion of interfaces between metals or semiconductors [48] can
be carried over to neutral graphene [43] in terms of the contact
resistance. Typically, this is a manifestation of the difference
of work functions of the two materials across the interface.
In graphene, the contact resistance was recently measured in
Ref. [10]; see also Refs. [33,53,54]. In the standard diffusive
(or Ohmic) case, the contact resistance leads to a voltage drop
that is small compared with the voltage drop in the bulk of the
sample and can be ignored. In contrast, in the ballistic case
there is almost no voltage drop in the bulk, such that most
energy is dissipated at the contacts. Both scenarios neglect
electron-electron interactions.

In the diffusive case, interactions lead to corrections to
the bulk resistivity [55,56], and the contact resistance can
still be ignored. In the ballistic case, electron-electron inter-
action may give rise to a “Knudsen-Poiseuille” crossover [16]
and drive the electronic system to the hydrodynamic regime.
While the Ohmic resistivity of the electronic fluid may remain
small, the hydrodynamic flow possesses another channel for
dissipation through viscosity [32]. At charge neutrality, this
effect is subtle, since the electric current is decoupled from
the hydrodynamic energy flow; see Eq. (3a). At the same time,
both are induced by the current source providing the energy
dissipated not only by Ohmic effects, but also by viscosity
[32] and energy relaxation processes [49] that should be taken
into account in the form of an additional voltage drop. Since
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the voltage drop in the bulk of the sample is completely
determined by Eq. (3a), the additional contribution takes the
form of a jump in φ at the interface corresponding to an excess
electric field induced in the thin Knudsen layer around the
interface [32].

The magnitude of the jump in φ can be established by con-
sidering the flow of energy through the interface. Following
the standard route [32,57], we consider the time derivative
of the kinetic energy, A = Ė , where E is obtained by inte-
grating the energy density nE (u)−nE (0) over the volume.
Working within linear response, we expand the latter to the
leading order in the hydrodynamic velocity. Finding time
derivatives from the equations of motion and using the con-
tinuity equation and partial integration, we then separate
the “bulk” and “boundary” contributions, A = Abulk + Aedge.
We interpret the former as the bulk dissipation, while Aedge

includes the energy brought in (carried away) through the
boundary by the incoming (outgoing) flow. In the stationary
state Ė = 0, dissipation is balanced by the work done by
the source. Assuming that no energy is accumulated at the
interface, we find the corresponding boundary condition.

The specific form of the equations of motion depends on
the choice of the material. Assuming that the leads’ material
is highly doped graphene, the equation of motion is the usual
Ohm’s law with the diffusion term [58] coming from the
gradient of the stress-energy tensor [39]; here we include a
viscous contribution due to disorder [59] and find [32] (omit-
ting the continuous entropy flux)

Alead
edge =

∫
dSβ

(
uL

ασ ′
L;αβ − uL

βδPL − e jL
βφ

)
, (5a)

where jL = nLuL is the current density, uL is the drift velocity,
δPL is the nonequilibrium pressure, and σ ′

L is the viscous stress
tensor in the lead. The first two terms are the usual dissipative
contributions to the energy flow across the boundary [57], and
the last term is the Joule heat.

In neutral graphene, we obtain similar results from the
Navier-Stokes equation, except that the Joule heat is now
determined by δ j

Asample
edge =

∫
dSβ

(
uασ ′

αβ − uβδP − eδ jβφ
)
. (5b)

Equating the two contributions (5a) and (5b) and using
the above solutions for the velocity and pressure, we find the
jumps in the potential φ at the two interfaces. This allows us
to determine φ everywhere in the device (see Fig. 4), as well
as the device resistance.

The total resistance of the Corbino device is shown in
Fig. 5. Neglecting hydrodynamic effects, we find the usual
logarithmic dependence of R on the system size. Viscosity and
energy relaxation provide an additional dissipation channel
and hence increase R. Energy relaxation contributes to this
increase since it dominates the hydrodynamic energy flow; see
Eqs. (4a) and (4b). At the same time, the boundary condition
for the electric potential, Eqs. (5a) and (5b), is determined by
viscosity.

In this paper we have solved the hydrodynamic equa-
tions in neutral graphene. We have shown that despite the
known decoupling of the Ohmic charge flow and hydro-
dynamic energy flow, in Corbino geometry the latter does

FIG. 4. Electrochemical potential (voltage drop) throughout the
device. The resistive leads (shaded regions) show the Ohmic be-
havior. The jumps at the interfaces are due to dissipative effects
(viscosity and energy relaxation) in the bulk of the sample.

affect the observable behavior leading to jumps in temperature
(shown in Fig. 3) and the electric potential (see Fig. 4). The
potential jump is distinct from the usual contact resistance
insofar as it is a function of the system size. Both effects
are observable using modern imaging techniques (the local
temperature variation can be measured using the approach
of Refs. [60–62], while measurements of the local potential
are at the heart of the technique proposed in Refs. [10,63]).
Hydrodynamics also affects the more conventional transport
measurements through the size-dependent contribution to the
device resistance (see Fig. 5).

Our results highlight several particular features of the
Dirac fluid in neutral graphene. Firstly, the “linear response”
currents (3a) and (3b) are independent of the temperature
gradient due to exact particle-hole symmetry [43]. Secondly,
in contrast to the case of doped graphene [32] the Dirac fluid
is compressible even within linear response [due to energy
relaxation; see Eq. (2d)]. Finally, the hydrodynamic flow in
neutral graphene is the energy flow. Hence energy relaxation

FIG. 5. Total resistance of the Corbino device for different values
of �GE (here, r1 = 0.5 µm). Inset: Additional contribution to the
resistance due to viscous dissipation.
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effectively dominates over viscous effects [see Eqs. (4a) and
(4b)], complicating experimental determination of η.

An external magnetic field is also known to couple the
charge and energy flows in neutral graphene [38]. We expect
that our theory will yield interesting results in the study of
Corbino magnetoresistance [53]. Another extension of our
theory is the study of thermoelectric phenomena, which is
more interesting if one moves away from the neutrality point
[35] (where the thermopower must vanish due to the exact
particle-hole symmetry). Our results regarding both issues
will be reported elsewhere.
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