

Announcing

Gold Open Access

Preprints welcome

flagship journal

Publishing charges waived

Edited by active scientists

our new

WILEY VCH

Excellence in Chemistry Research

Meet the Editors of ChemistryEurope

Luisa De Cola Università degli Studi di Milano Statale, Italy

Ive Hermans University of Wisconsin-Madison, USA

Ken Tanaka Tokyo Institute of Technology, Japan

MO_x@VO_x-Pd-type Nanorods and Nanotubes as Catalysts for Selective Reduction of NO

Lucas Warmuth,^[a] Patrick Lott,^[b] Olaf Deutschmann,^{*[b]} and Claus Feldmann^{*[a]}

Vanadium oxide (VO_x-Pd) nanotubes as well as VO_x-coated ZnO nanorods (ZnO@VO_x-Pd) and VO_x-coated, layered-titania nanotubes (I-TiO₂@VO_x-Pd) are decorated with Pd nanoparticles and evaluated for selective catalytic reduction with hydrogen (H₂-SCR) for the first time. The nanostructures exhibit lengths of 300 to 700 nm, diameters of 20–100 nm and, in the case of the nanotubes, an inner tube diameter of about 10 nm. Pd nanoparticles (14±5 nm) are well-dispersed over the respective nanorod/nanotube nanostructure. Structure and composition

Introduction

Vanadium oxides (VO_x) are widely used for redox catalysis and specifically characterized by facile switching between the oxidation states $V^{_{+\!N\!V}}$ and $V^{_{+\!V}}$ as well as by fast oxygen release and incorporation.^[1] Most often VO_x-based catalysts are used in the context of sensing,^[1d] photocatalysis,^[2] or electrocatalysis.^[3] VO_x is also known as an integral component of selective catalytic reduction (SCR) catalysts that allow for a reduction of NO_x emissions with NH₃ in the exhaust stream of lean-operated diesel or natural gas engines.^[4] In the combination with palladium (Pd), VO_x turned out to be promising for selective catalytic reduction of NO_x emissions of hydrogen-fueled combustion engines in the so-called H₂-SCR process according to the equation: 2 NO+2 H₂ \rightarrow N₂+2 H₂O.^[5] Herein, VO_x usually serves as reducible support material that promotes the formation of NH_x species, namely NH₃ and NH₄⁺, which have been reported to be essential intermediates in the selective catalytic reduction of NO with H₂.^[6] Palladium, which serves as oxidation catalyst in lean exhausts, i.e. for hydrocarbon or NO oxidation, and which is also used in three-way catalysts (TWC)

[a]	Dr. L. Warmuth, Prof. C. Feldmann
	Institute of Inorganic Chemistry (IAC)
	Karlsruhe Institute of Technology (KIT)
	Engesserstraße 15
	D-76131 Karlsruhe (Germany)
	E-mail: claus.feldmann@kit.edu
[b]	Dr. P. Lott, Prof. O. Deutschmann
	Institute for Chemical Technology and Polymer Chemistry (ITCP)
	Karlsruhe Institute of Technology (KIT)
	Engesserstraße 20
	76131 Karlsruhe (Germany)
	E-mail: deutschmann@kit.edu

Supporting information for this article is available on the WWW under https://doi.org/10.1002/cctc.202201354

© 2022 The Authors. ChemCatChem published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is noncommercial and no modifications or adaptations are made. are characterized by SEM, TEM, EDXS with element mapping, XPS, FT-IR, XRD, and sorption analysis. Thermal analysis indicates the nanostructures to be thermally stabile up to 350 °C (VO_x), and 500 °C (ZnO@VO_x, I-TiO₂@VO_x). All catalysts are tested for their activity in regard of the selective catalytic reduction of NO with H₂, revealing a significant impact of the catalyst support on both activity and selectivity. Specifically, I-TiO₂@VO_x nanotubes show promising properties with an activity up to 70% and a selectivity up to 80% N₂.

for cleaning stoichiometric exhaust gases,^[7] has a twofold role. On the one hand, Pd adsorbs and activates H₂ from the gas phase,^[5a] and on the other hand, it catalyzes the reaction between NO and NH_x species to ultimately form N₂ and H₂O.^[6] Both requires a close contact between the noble metal and the metal-oxide support material, since the spillover of surface species between the noble metal and the support material has been identified to be a key for high NO conversion.^[8] Beside the intended nitrogen, the reaction also often yields certain amounts of toxic NH₃ and the greenhouse-gas N₂O as byproducts.^[9] Increasing activity and selectivity of the H₂-SCR process and suppressing NH₃ and N₂O as undesired by-products require additional research efforts, improved understanding, and optimized catalyst materials.

Motivated by previous studies that point to the suitability of VO_x-Pd for selective catalytic reduction of NO_x by H₂,^[5,6] we here aim at investigating nanorod- and nanotube-like VO_x-Pd catalysts for H₂-SCR. For such catalyst shapes, generally, a high active surface and a high thermal stability can be expected.^[10] Pd-impregnated VO_x nanotubes, to the best of our knowledge, have been rarely applied for redox catalysis and were yet only described for the electrooxidation of methanol.^[11] Moreover, promising results have been reported for NH₃-SCR over VO_x/WO_x-modified or -decorated titania nanotubes.^[12] Here, we report on the synthesis of VO_x-Pd nanotubes, ZnO@VO_x-Pd nanorods, and I-TiO₂@VO_x-Pd nanotubes (I-TiO₂: layered titania) and their evaluation in regard of the catalytic reduction of NO_x with H₂ as a novel catalyst formulation for emission control of modern hydrogen-combustion engines.

Results and Discussion

Characterization of VO_x nanotubes

Following a procedure reported by Spahr et al.,^[13] VO_x nano-tubes were prepared by autoclaving V_2O_5 in an ethanol-water

ChemCatChem 2023, e202201354 (1 of 10)

mixture in the presence of dodecylamine at 180°C for 7 days. Accordingly, VO_x nanotubes were either prepared in the liquid phase with vanadium(V) alkoxides, VOCl₃, or V₂O₅ as the starting materials.^[13,14] Herein, the oxidation state of vanadium was deduced via magnetic measurements to +4.8. For all these approaches, long-chained high-molecular weight stabilizers such as dodecylamine are required for exfoliation and surface stabilization of the VO_x nanotubes.^[14a] Subsequent to the synthesis, the structure and shape of the as-prepared dark green solid was examined by X-ray diffraction (XRD) and highannular dark field (HAADF) scanning transmission electron microscopy (STEM). XRD shows reflexes at low two-theta values, which were calculated to 2.75 nm (Figure 1a), and thus, point to a material with large lattice spacing. HAADF-STEM overview images show multi-walled nanotubes with uniform shape, a length of 700 ± 300 nm and a diameter of 100 ± 25 nm (Figure 1b). High-resolution images confirm the tube-like structure with a wall thickness of 40-50 nm and an inner tube of about 10 nm in diameter (Figure 1c). The mean oxidation state of vanadium was determined by X-ray photoelectron spectroscopy (XPS) to 4.78 (Figure 1d). Together with elemental analysis (EA; SI: Table S1), a mean sum formula of $VO_{2.39}(C_{12}H_{28}N)_{0.21}$ can be deduced, which compares to literature data of comparable VO_x nanotubes.^[13,14a,15] Fourier-transform infrared (FT-IR) spectroscopy, finally, shows the presence of dodecylamine, which is adhered on the nanotube surface (Figure S1).

Ultimately, the as-prepared VO_x nanotubes were impregnated with Pd nanoparticles. To this concern, a solution of PdAc₂ in acetone was dropped on the VO_x nanotube powder. Due to the low surface tension of the solution, palladium was homogenously distributed by capillary forces. Thereafter, acetone was removed by evacuation and Pd²⁺ reduced by purging with H₂:N₂ (10:90) at room temperature.^[16] The presence of Pd nanoparticles, their size and distribution over the VO_x nanotubes were examined by EDXS and TEM (Figure 2), uncovering a homogeneous Pd distribution with 2.0 wt-% loading and a mean size of 14±5 nm. The size of the Pd nanoparticles could hardly be reduced further due to redox

interaction with the support. Thus, the VO₂⁺/VO²⁺ redox couple ($E_0(VO_2^+/VO^{2+}) = 1.0 V$) has a similar redox potential as the Pd²⁺/Pd redox couple ($E_0(Pd^{2+}/Pd^0) = 1.0 V$),^[16] so that a reductive treatment with H₂:N₂ promotes the reduction of both. This prevents a distinct seed formation of Pd particles and enhances seed growth by continuous VO₂⁺/VO²⁺-driven reduction and reoxidation.

ZnO@VO_x nanorods and I-TiO₂@VO_x nanotubes

Since the catalytic activity typically not only depends on the metal catalyst but also on the respective support material, we have modified the VO_x support by ZnO as a basic oxide and TiO₂ as an acidic oxide to probe the effect on NO reduction by selective catalytic reduction with H₂. To this concern, ZnO@VO_x-Pd nanorods were prepared with ZnO nanorods realized following a literature recipe.^[17] As a basic metal oxide ZnO exhibits a positively charged surface at neutral pH.^[18] Upon addition of a solution of VO(SO₄), the as-formed $[(VO)_2(OH)_5]^$ ions^[16] are adhered on the ZnO nanorods, which promotes the formation of a ZnO@VO_x core@shell structure (Figure 3a-c) that exhibits an overall vanadium content of 5 wt-%. HAADF-STEM overview images show the nanorods with a length of 700 \pm 300 nm and a diameter of 40 ± 10 nm (Figure 3a,d). Highresolution images confirm the length and diameter of the nanorods (Figure 3b). EDXS element mappings confirm the core@shell structure of the nanorods with a uniform coverage of the ZnO nanorods with VO_x (Figure 3c,e,f), whereas X-ray diffraction indicates the amorphicity of the mentioned layer (SI: Figure S2). Finally, the ZnO@VO_x nanorods were impregnated with Pd nanoparticles, following the procedure described for the VO_x nanotubes to result in ZnO@VO_x-Pd nanorods with a Pd loading of 2.1 wt-% (Figure 3g).

In addition to the $ZnO@VO_x$ -Pd nanorods, I-TiO₂@VO_x-Pd nanotubes were prepared. These I-TiO₂ nanotubes were obtained via a two-step process similar to our previously reported approach.^[19] First of all, titanium metal was oxidized

Figure 1. Characterization of VO_x nanotubes: (a) XRD with low 2-theta area as inset, (b) HAADF-STEM overview image, (c) HAADF-STEM detail image of a single nanotube, (d) XPS to indicate the oxidation state of vanadium showing the V_{2p} and O_{1s} region with V_2O_5 (blue) and VO(SO₄) (green) as references.

Figure 2. VO_x nanotubes after impregnation with Pd nanoparticles: (a) EDXS, (b) EDXS element mapping, and (c) HAADF-STEM image.

Figure 3. ZnO@VO_x nanorods: (a) HAADF-STEM overview image, (b,d) HAADF-STEM detail image, (c,e,f,g) EDXS element mapping prior (c) and after Pd nanoparticle impregnation (e-g).

under strongly alkaline conditions in aqueous NaOH to obtain Na₂Ti₃O₇ as a layer-type sodium titanate. These titanate layers of this intermediate compound were then exfoliated under acidic conditions with exchange of Na⁺ cations by H⁺, followed by a self-rolling process of the protonated titania layers to form layered-TiO₂ (I-TiO₂) nanotubes. The as-prepared I-TiO₂ nanotubes were then coated by VO_x, in principle, similarly to the

aforementioned ZnO nanorods by addition of a solution of VO(SO₄). In contrast to ZnO, however, I-TiO₂ nanotubes are negatively charged in this pH range (pH = 6; *Sl: Figure S3*),^[20] so that the diffusion of $[(VO)_2(OH)_5]^-$ ions to the nanotube surface is slow. Consequently, only a limited VO_x content was deposited on the I-TiO₂ nanotubes (≤ 1 wt-%V). A neutralization of the I-TiO₂ nanotube suspension should allow to tackle this limitation

in order to reach a higher VO_x loading.^[16] Indeed, the addition of simple aqueous NaOH or KOH results in a higher VO_x loading (SI: Figure S4). Alkali metal cations, however, are also known as catalyst poisons.^[16] Hence, to obtain alkali-metal-free catalysts, diluted aqueous ammonia turned out to be more sufficient as a base and - similar to NaOH or KOH - results in a homogeneous VO_x coating of the I-TiO₂ nanotubes with vanadium contents of 5-6 wt-% (Figure 4a-c). STEM overview images prove the presence of nanotubes with a length of 300 ± 50 nm, a diameter of 15 ± 5 nm, and an inner tube diameter of 7 ± 1 nm (Figure 4a,d). High-resolution images confirm length and diameter of the nanorods (Figure 4d). EDXS element mappings prove the core@shell structure of the nanotubes with a uniform coverage of the I-TiO₂ nanotubes with VO_x (Figure 4b,c,e,f), whereas the crystallinity of the nanotubes remained unaffected (SI: Figure S5). Finally, the I-TiO₂@VO_x nanotubes were also impregnated with Pd nanoparticles, following the procedure described for the VO_x nanotubes to result in I-TiO₂@VO_x-Pd nanotubes with 2.6 wt-% Pd (Figure 4g).

Thermal stability of MO_x@VO_x-based supports

For catalytic applications, the thermal stability of the support is an important feature. To this concern, thermogravimetry (TG) and STEM measurements were performed, starting with the VO_x nanotubes. TG shows evaporation of surface-adhered dodecylamine at temperatures > 180 °C (Figure 5a), which does not affect the morphological stability of the VO_x nanotubes. According to STEM images, they retain their nanotubular morphology up to a temperature of 350 °C (Figure 5e). Beyond this temperature, the nanotubes decompose with formation of spherical nanoparticles, 50–100 nm in size, which are embedded in a carbon matrix (Figure 5f). The total mass loss of the VO_x nanotubes at 1,000 °C is 33.9%, which is close to the amount of dodecylamine deduced from EA data (30.2%; *Sl: Table S1*). This remaining small difference between TG and EA data (3.3%) can be ascribed to the different combustion temperatures (TG: 1,000 °C, EA: 1,150 °C), and water adsorbed on the surface of the VO_x nanotubes. The latter was confirmed by Fourier-transform infrared (FT-IR) spectroscopy of the asprepared VO_x nanotubes showing vibrations at 3600– 3000 cm⁻¹ (ν (O–H)) and 1650 cm⁻¹ (δ (H₂O)) (*Sl: Figure S1*).

Subsequent to the VO_x nanotubes, the thermal stability of the ZnO@VO_x nanorods and I-TiO₂@VO_x nanotubes was evaluated (Figure 5). For both, the thermal decomposition starts with the loss of surface-adsorbed water and hydroxyl-associated species below 200°C with a mass loss of only 3.2% for ZnO@VO_x and 17% for I-TiO₂@VO_x (Figure 5a). This comparably high value for I-TiO₂@VO_x relates to the significantly higher surface area of these nanotubes (I-TiO₂@VO_x nanotubes: 387 m²/g versus ZnO@VO_x nanorods: 27 m²/g and VO_x nanotubes: 25 m²/g). A slight mass increase at high temperatures (> 600 °C) is observed for all samples and can be ascribed to VO_x oxidation. According to STEM images, shape and structure of the ZnO@VO_x nanorods and I-TiO₂@VO_x nanotubes was retained

Figure 4. L-TiO₂@VO_x nanotubes: (a) HAADF-STEM overview image, (b,d) HAADF-STEM detail image, (c,e,f,g) EDXS element mapping prior (b,c) and after Pd nanoparticle impregnation (e-g).

Figure 5. Thermal stability of VO_x nanotubes, ZnO@VO_x nanorods, and I-TiO₂@VO_x nanotubes: a) TG analysis in an O₂/N₂ (20:80) atmosphere; b,c,e) TEM images of the nanostructures after heating to 400 °C (VO_x nanotubes: 350 °C); d,f) TEM images of the nanostructures after heating to 500 °C.

after heating to 400 (Figure 5b,c,e) and 500 °C, respectively (Figure 5d,f). For the ZnO@VO_x nanorods, thermal sintering of the nanorods even occured above 600 °C, which is due to the well-known Hüttig temperature ($T_{Hüttig}$ =674 °C).^[21] In sum, the deposition of VO_x on ZnO nanorods and I-TiO₂ nanotubes as supports results in an increased thermal stability in comparison to the VO_x nanotubes.

Catalytic activity

The catalytic properties of the VO_x-Pd nanotubes, $ZnO@VO_x$ -Pd nanorods, and I-TiO₂@VO_x-Pd nanotubes were evaluated in

regard of the catalytic reduction of NO_x with H₂ (H₂-SCR process).^[9a] Thus, the catalytic activity was examined in a catalyst testing bench by exposing the respective sample to a gas atmosphere containing 0.1 vol.-% NO, 0.5 vol.-% H₂, and 10 vol.-% O₂ in nitrogen as inert carrier gas with temperatures of 100 °C to 300 °C, using a space velocity of approximately 80,000 h⁻¹. The resulting gas concentrations throughout the entire heating and cooling cycle for the VO_x-Pd nanotubes, ZnO@VO_x-Pd nanorods, and I-TiO₂@VO_x-Pd nanotubes are displayed in Figures 6–8 (*SI: Figures S6–S9*).

For the VO_x-Pd nanotubes, a considerable NO conversion started at 200 °C and culminates in a maximum conversion of 27% at 283 °C (Figure 6). Further heating is accompanied with a

Figure 6. H₂-SCR process with VO_x-Pd nanotubes with concentration profiles of NO (red), NH₃ (blue), CO (violet), N₂O (green), as well as the temperature profile (black).

ChemCatChem 2023, e202201354 (5 of 10)

minor activity drop, similar to the previously reported behavior of other Pd-based H₂-SCR catalysts.^[5a,b] Similarly, the sideproducts NH₃ and N₂O pass local maxima during heating, namely a maximum volumetric share of 86 ppm NH₃ at 268 °C and of 57 ppm N₂O at 283 °C (Figure 6). In addition, the initial heating ramp gives rise to a pronounced CO signal between 120 and 210°C (SI: Figure S6), which originates from a loss of dodecylamine as a stabilizer that remained adhered on the nanotube surface after preparation. Notably, the maxima of the side products are less intense in the cooling ramp, whereas the NO conversion over the VO_x-Pd nanotubes increases to a maximum of approximately 40% at 265°C (SI: Figure S7). This hysteresis behavior most likely relates to the evaporation of residual dodecylamine at temperatures above 180°C, which was confirmed by both TG analysis and the CO signal during the catalytic tests. Since the stabilizer can potentially block catalytically active surface sites, its removal from the catalyst's surface can be accompanied by an improved catalytic performance. Although CO could also be adsorbed and activated on Pd, in principle, hereby acting as a reductant for NO_x^[22] the kinetic data suggest that CO rather acts as an inhibitor of NO_x conversion over the VOx-Pd nanotubes (Figure 6), most likely because CO and NO compete for the same Pd surface sites.^[23] According to STEM, moreover, the VO_x nanotubes retain their morphology only up to a temperature of 350 °C (Figure 5f). Hence, major structural or morphological changes of the catalyst, e.g. due to thermal degradation, are not to be expected during a single test run when using such VOx-Pd nanotubes as redox catalyst for NO reduction in the H₂-SCR process. However, minor morphological changes of the VO_x nanotubes under the conditions of the reaction-gas mixture in combination with the evaporation of surface-adhered dodecylamine may negatively affect the redox properties of the VO_x-Pd nanotube catalyst and/or the noble metal to metal-oxide support interaction on the long run. As these redox properties are key to the activity of H2-SCR catalysts, [6,8,24] the evolution of VO_x nanotube-based H₂-SCR catalysts should be subject of future investigations.

Since H₂-SCR with VO_x-based nanotube catalysts - to the best of our knowledge - is studied for the first time, we have used a 74%Al₂O₃/20%TiO₂/5%V₂O₅/1%Pd catalyst system as a reference system. The catalyst, subject to our present study, were tested with identical conditions as applied by Borchers et al.^[5b] However, it must be noticed that these authors have used a monolithic sample with a catalytically active washcoat instead of a powder catalyst. In comparison to the maximum NO conversion of 40% observed over the VO_x-Pd (2%) nanotubes in our current study (SI: Figure S7), the monolithic 74% Al₂O₃/20%TiO₂/5%V₂O₅/1%Pd catalyst exhibited only a slightly higher maximum NO conversion of 48% at about 220°C. Moreover, the NH₃ concentration was negligible between 100 °C and 300 °C, and N₂O represented the most abundant side product with a maximum concentration of 70 ppm. Notably, this comparison underscores the high attractiveness of VO_x-Pd nanotubes for H₂-SCR. Despite the less complicated catalyst formulation and the lower surface area (74%Al₂O₃/20%TiO₂/5% $V_2O_5/1$ %Pd: 158 m²/g^[5b] versus VO_x nanotubes with 25 m²/g), the VO_x-Pd nanotube catalyst has only a slightly lower NO conversion compared to the monolithic reference catalyst and forms at least slightly lower N₂O emissions. The monolithic reference catalyst, however, outperforms the VO_x-Pd nanotubes with respect to NH₃ emission. The reference catalyst's lower tendency to form NH₃ is likely due to the presence of TiO₂, whose addition to the H₂-SCR catalyst formulation was recently reported to be a suiTable Strategy to minimize NH₃ formation.^[9b]

While the aforementioned comparison with a monolithic reference catalyst clearly points to the suitability of the VO_x-Pd nanotubes for H₂-SCR, further modification is necessary to improve both activity and selectivity. In this regard, ZnO@VOx-Pd nanorods and I-TiO₂@VO_x-Pd nanotubes with basic ZnO and acidic TiO₂ were evaluated as alternative catalyst supports. In contrast to the VOx-Pd nanotubes, both ZnO@VOx-Pd nanorods and I-TiO₂@VO_x-Pd nanotubes have the additional advantage of the absence of long-chained stabilizers adhered on the catalyst surface such as dodecylamine in the case of the VO_x-Pd nanotubes. As a result, the ZnO@VOx-Pd nanorods exhibit a significantly lower NO conversion compared to the VOx-Pd nanotubes, although they efficiently suppress NH₃ formation (Figure 7). Since the noble metal loading of both samples is essentially the same, i.e. 2.0 wt-% for VOx-Pd and 2.1 wt-% for ZnO@VOx-Pd, and also the surface areas of the support materials differ only marginally (VO_x nanotubes: 25 m²/g versus $ZnO@VO_x$ nanorods: 27 m²/g), the introduction of ZnO seems to govern the change in catalytic activity. Generally, this finding is in accordance with literature on Pt-based H₂-SCR catalysts. Thus, Li et al. found that basic supports like MgO inhibit the H₂-SCR reaction and favor the formation of oxidized Pt species (i.e., PtO, PtO₂), whereas acidic supports promote the NO_x conversion and keep Pt in the metallic state.^[24c] Specifically, the oxidation state of Pt is known to affect the NO_x adsorption capacity and the catalytic activity significantly. Similar to MgO as a catalyst support, we ascribe the inferior NO conversion of the ZnO@VO_x-Pd nanorods to the basic character of the ZnO support. Compared to the VO_x-Pd nanotubes, the N₂O concentration increases substantially for the ZnO@VOx-Pd nanorods (Figure 7), which points to the contribution of the ZnO support to the overall selectivity. In line with previous findings,^[24c] moreover, the basic ZnO support also reduces the N₂ selectivity (SI: Figure S8).

As a most obvious difference to VO_x -Pd nanotubes and $ZnO@VO_x$ -Pd nanorods, the I-TiO₂@VO_x-Pd nanotubes considerably improve the NO_x conversion culminating in a maximum NO conversion of 70% at 213 °C during the cooling phase (Figure 8; *SI: Figure S9*). While only minor NO₂ concentrations were observed throughout the light-off/light-out cycle, the maximum NO conversion coincides with the maximum of the N₂O concentration (122 ppm). Moreover, the concentrations of NH₃ and NO₂ are both negligible with I-TiO₂@VO_x-Pd nanotubes over the entire temperature and time range (Figure 8). The incorporation of TiO₂ into the support material may promote the catalytic activity for H₂-SCR in twofold manner. First, the surface area of 387 m²/g that was determined for the I-TiO₂@VO_x nanotubes exceeds the surface area of the ZnO@VO_x

Figure 7. H₂-SCR process with ZnO@VO_x-Pd nanorods with concentration profiles of NO (red), NH₃ (blue), N₂O (green), NO₂ (orange), as well as the temperature profile (black).

Figure 8. H₂-SCR process with I-TiO₂@VO_x-Pd nanotubes with concentration profiles of NO (red), N₂O (green), NO₂ (orange), as well as the temperature profile (black).

nanorods (27 m²/g) and VO_x nanotubes (25 m²/g) by far, hereby providing a large surface for the adsorption of reactive species, which ultimately promotes noble metal to metal-oxide support interactions that were found to trigger the H₂-SCR reaction.^[8] Second, the addition of 10 to 20 wt-% of TiO₂ to zeolitic support materials with a high surface area was recently reported as highly beneficial for the activity and product selectivity of Pdbased H₂-SCR catalysts, presumably due to an increased reducibility of active Pd sites and an enhanced activation of reactants, which involves both the noble metal as well as the support material.^[9b] Hence, we can assume that TiO₂ promotes the reduction of NO_x with H_2 also for thel-TiO_2@VO_x nanotube catalyst.

Taken together, VO_x turned out to be an interesting catalyst material for H₂-SCR, which is here evaluated for the first time in the form of nanorods and nanotubes as a morphology since this is considered beneficial in terms of mechanical and chemical stability in combination with high surface area. Similar to previous studies, acidic catalyst supports such as titania result in a higher NO_x conversion rate than basic catalyst supports such as ZnO.^[24] From the newly realized VO_x-Pd nanotubes, ZnO@VO_x-Pd nanorods, and I-TiO₂@VO_x-Pd nanotubes as H₂-SCR catalysts, I-TiO₂@VO_x-Pd nanotubes outperform

the pure VO_x-Pd nanotubes due to the absence of long-chained, high-molecular weight stabilizers remaining adhered on the catalyst surface, the high surface area, and the beneficial presence of acidic TiO₂. The I-TiO₂@VO_x-Pd nanotubes, finally, show the best performance with promising activity (up to 70%) and selectivity (up to 80% N₂), which can be further improved by fine-tuning of structure and composition.

Conclusion

Vanadium oxide (VOx-Pd) nanorod-/nanotube-based catalysts were evaluated for selective catalytic reduction of NO_x with hydrogen (H₂-SCR) for the first time and show promising catalytic performance. In detail, VO_x-Pd nanotubes (length: 700 ± 300 nm, diameter: 100 ± 25 nm, inner tube diameter: 10 nm), ZnO@VO_x-Pd nanorods (length: 700 ± 300 nm, diameter: 40 ± 10 nm), and I-TiO₂@VO_x-Pd nanotubes (length: $300\pm$ 50 nm, diameter: 15 ± 5 nm, inner tube diameter: 7 ± 1 nm) were prepared and decorated with Pd nanoparticles (2.0-2.5 wt-% Pd, diameter: 14 ± 5 nm). Due to the similar redox potential of the VO_2^+/VO^{2+} and Pd^{2+}/Pd redox couples (both with 1.0 V), unfortunately, the reduction of Pd²⁺ cannot be accelerated, which limits the size of the Pd nanoparticles. All catalysts show interesting catalytic performance in regard of the catalytic reduction of NO with H₂. Thus, an activity/ selectivity (to N₂) of 40%/63% for VO_x-Pd nanotubes, 30%/50% for ZnO@VOx-Pd nanorods, and 70%/80% for I-TiO2@VOx-Pd nanotubes were determined. Furthermore, thermal stability of the respective nanostructure up to $350\,^\circ\text{C}$ (VO_x), and $500\,^\circ\text{C}$ (ZnO@VO_x, I-TiO₂@VO_x) was observed.

Taken together, VO_x-based nanorods/nanotubes are first evaluated for H₂-SCR. Hereof, I-TiO₂@VO_x-Pd nanotubes show the most promising performance with superior activity (up to 70% NO conversion) and selectivity (up to 80% N₂ selectivity) as well as a good thermal stability (>500 °C). Based on the first evaluation of these VO_x-based catalysts, further optimization of, e.g., VO_x load, Pd load, size of Pd nanoparticles, can result in an even further improved activity and selectivity.

Experimental Section

General. Vanadium(V) oxide (98.7%, ABCR), titanium (98.7%, ABCR), NaOH (\geq 97.0%, VWR), KOH (\geq 97.0%, VWR), H₂O₂ (medical pure, 30%, Sigma-Aldrich), Zn(OAc)₂·2 H₂O (\geq 99%, Sigma-Aldrich), VO-(SO₄)·H₂O (99.9%, Alfa Aesar), Pd(OAc)₂ (47.5% Pd, Acros Organics), dodecylamine (98%, Sigma-Aldrich), NH₃ solution (25%, Seulberger), HNO₃ (technical grade, 65%, AppliChem), acetone (technical, Seulberger), hexane (technical grade, Seulberger), methanol (technical grade, Seulberger) were used as purchased.

 VO_x -Pd (2 wt-%) nanotubes. The synthesis was conducted according to a procedure reported by Spahr *et al.*^[13] Accordingly, 1.37 g of V_2O_5 and 1.39 g of dodecylamine were dispersed in 5 mL of EtOH and stirred for 1 h. Subsequently, 15 mL of H₂O were added and the yellow mixture stirred for another 6 h. Thereafter, the mixture was placed into a teflon-lined autoclave and heated to 180 °C for 7 days. After natural cooling, the black suspension was washed thrice with ethanol and hexane, respectively. The as-prepared dark green solid was dried at room temperature.

To coat the VO_x nanotubes with Pd nanoparticles, palladium acetate was dissolved in 15 mL of acetone. The yellow solution was then added to the aforementioned VO_x nanotubes by drop-casting. The resulting green powder was dried in vacuum and directly purged with H_2 :N₂ (10:90).

ZnO nanorods. The synthesis of the ZnO nanorods was conducted following a recipe by Tripathi *et al.*^[17] Thus, 14.75 g of Zn(OAc)₂·2 H₂O were dissolved in 62.5 mL of methanol and heated for 30 min to 65 °C. To this suspension, 7.4 g of KOH in 32.5 mL of methanol were added and heated and concentrated to half of the original volume. Afterwards, the colorless suspension was transferred into a stainless steel autoclave with a teflon inlay and heated to 120 °C for 6 hours. After centrifugation and washing – twice with ethanol and twice with deionized water – the colorless precipitate was dried at room temperature.

 $ZnO@VO_x$ -Pd (2 wt-%) nanorods. To deposit a thin layer of VO_x, 0.4 g of the ZnO nanorods were dispersed in 150 mL of deionized water and ultrasonicated for 5 min. To this suspension, a slight blue solution of 0.1 g of VOSO_4·H₂O in 100 mL of deionized water was added with a syringe pump at a rate of 1 mL/min. Finally, the grey suspension was centrifuged, washed thrice with acetone, and dried at room temperature.

Finally, the ZnO@VO_x nanorods were coated with Pd nanoparticles. To this concern, palladium acetate was dissolved in 15 mL of acetone. The yellow solution was then added to the aforementioned ZnO@VO_x nanorods by drop-casting. Finally, the resulting grey powder was dried in vacuum and directly purged with H₂:N₂ (10:90).

Layered-titania nanotubes. L-TiO₂ nanotubes were prepared according to a procedure of Kasuga *et al.*^[25] 170 mg of Ti powder were dispersed in 52.5 mL of 10 M NaOH with 37.5 mL of 30% H₂O₂ and heated in a teflon-lined autoclave to 120 °C for 24 h. After natural cooling, the colorless suspension was washed thrice with deionized water and resuspended in 50 mL of 0.175 M HNO₃. The suspension was mixed on an orbital shaker for 12 h. The acidic treatment with HNO₃ was repeated once. After washing thrice with deionized water, the sample was dried at 70 °C.

*L-TiO*₂@*VO*_x-*Pd* (2 wt-%) nanotubes. For deposition of VO_x, 0.5 g of the l-TiO₂ nanotubes were dispersed in 250 mL of deionized water and ultrasonicated for 5 min. To this suspension, a light blue solution of 0.175 g of VO(SO₄)·H₂O in 125 mL of deionized water was added with a syringe pump at a rate of 1 mL/min. After the addition, the yellow suspension was treated with 15 mL of 2.5% NH₃ solution to adjust pH 6. After centrifugation, washing with acetone and deionized water, and drying at room temperature a yellow powder was obtained.

The I-TiO₂@VO_x nanotubes were coated with Pd nanoparticles as discussed above. Thus, palladium acetate was dissolved in 15 mL of acetone. This yellow solution was added to the I-TiO₂@VO_x nanotubes by drop-casting. The resulting yellow powder was dried in vacuum and directly purged with H_2 :N₂ (10:90).

Field emission scanning electron microscopy (FESEM, Zeiss Supra 40VP) was used to determine the morphology of the as-prepared nanorods and nanotubes and their modification in the STEM mode. Samples were prepared by casting a drop of an aqueous suspension onto a 300 mesh copper grid with carbon support film.

Transmission electron microscopy (TEM equipped with energy dispersive X-ray spectrometer, EDXS) was conducted to investigate the size, the morphology and the spatial distribution of the Pd

nanoparticles on the metal oxide nanorods and nanotubes at 200 kV. To this concern, a FEI Tecnai Osiris microscope (FEI, USA) was used. Samples were prepared by casting one drop of aqueous suspension onto a 300 mesh copper grid with carbon support film.

X-ray powder diffraction (XRD). Crystallinity and chemical composition of the modified and non-modified nanorods and nanotubes were examined by XRD (Stoe STADI-MP diffractometer, equipped with Ge-monochromator and Cu- $K_{\alpha J}$ radiation, 40 kV, 40 mA). About 10 mg of the respective sample was deposited onto acetate foil and fixed with scotch tape.

Volumetric nitrogen sorption measurements (BEL BELSORP-max) were carried out at 77 K with nitrogen as analyte. According to the BET formalism (BET: Brunauer-Emmett-Teller), the specific surface area was deduced. Prior to the analysis, the samples were dried at 120 °C in vacuum.

Thermogravimetric analysis (TGA) was used to study the thermal stability of the catalysts with a STA409C device (Netzsch, Germany). Measurements were conducted in O_2/N_2 (20:80) atmosphere to ensure a complete combustion of the organic content. The dried catalyst materials (15–20 mg, corundum crucibles) were heated from 30 °C to 1000 °C with a heating rate of 1 K/min.

Selective catalytic reduction of NO_x with H_2 (H_2 -SCR) was performed in a powder catalyst testing bench by exposing a fixed bed to a continuous gas flow during continuous heating from 100°C to $300\,^\circ\text{C}$ with $3\,\text{K/min}$ and subsequent cooling. The fixed bed consisted of 150 mg of the nanorod/nanotube powder sample mixed with 850 mg of SiO $_2$ (grain size 125–250 μ m) and was mounted between two quartz wool plugs in a quartz glass tubular flow reactor that was placed in a furnace. Two thermocouples (type N; TC Mess- und Regeltechnik GmbH) up- and downstream the catalyst bed ensured precise temperature control and mass flow controllers (MFCs; Bronkhorst Deutschland Nord GmbH) allowed dosing a well-defined gas mixture of 0.1 % NO, 0.5 % H_{2} and 10 % O_2 in N_2 at a gas hourly space velocity (GHSV) of 80,000 $h^{-1}\!.$ A Fourier-transform infrared spectrometer (FT-IR, MG2030; MKS Instruments, USA) provided precise end-of-pipe gas composition data with an interval of one second. The entire setup was controlled by an in-house developed LabView software, which simultaneously monitored all relevant data (set points and real values for gas composition and temperature).

Acknowledgements

The authors acknowledge the Deutsche Forschungsgemeinschaft (DFG) for funding within the Collaborative Research Center 1441 "Tracking the Active Site in Heterogeneous Catalysis for Emission Control (TrackAct)" (Project-ID 426888090). Furthermore, they are grateful to Jakob Hauns (IPC, KIT) for performing XPS measurements and to Michael Borchers (ITCP, KIT) for his support during the catalytic activity tests. Finally, L.W. acknowledges the Studienstiftung des deutschen Volkes for scholarship. Open Access funding enabled and organized by Projekt DEAL.

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Keywords: H_2 -SCR \cdot nanorods/-tubes \cdot titania \cdot vanadium oxide \cdot zinc oxide

- a) E. Tronconi, I. Nova, C. Ciardelli, D. Chatterjee, M. Weibel, J. Catal.
 2007, 245, 1–10; b) J. Due-Hansen, S. B. Rasmussen, E. Mikolajska, M. A. Bañares, P. Avila, R. Fehrmann, Appl. Catal. B 2011, 107, 340–346; c) V. V. Kaichev, Y. A. Chesalov, A. A. Saraev, A. M. Tsapina, J. Phys. Chem. C
 2019, 123, 19668–19680; d) P. Nagaraju, Y. Vijayakumar, M. V. R. Reddy, U. P. Deshpande, RSC Adv. 2019, 9, 16515–16524; e) T. Yan, Q. Liu, S. Wang, G. Xu, M. Wu, J. Chen, J. Li, ACS Catal. 2020, 10, 2747–2753.
- [2] C. W. Zou, Y. F. Rao, A. Alyamani, W. Chu, M. J. Chen, D. A. Patterson, E. A. C. Emanuelsson, W. Gao, *Langmuir* **2010**, *26*, 11615–11620.
- [3] Y.-M. Chai, X.-Y. Zhang, J.-H. Lin, J.-F. Qin, Z.-Z. Liu, J.-Y. Xie, B.-Y. Guo, Z. Yang, B. Dong, Int. J. Hydrogen Energy 2019, 44, 10156–10162.
- [4] a) G. Busca, L. Lietti, G. Ramis, F. Berti, *Appl. Catal. B* 1998, *18*, 1–36; b) J.-K. Lai, I.E. Wachs, ACS Catal. 2018, 8, 6537–6551.
- [5] a) G. Qi, R. Yang, F. Rinaldi, *J. Catal.* 2006, 237, 381–392; b) M. Borchers,
 K. Keller, P. Lott, O. Deutschmann, *Ind. Eng. Chem. Res.* 2021, 60, 6613–6626; c) P. Lott, U. Wagner, T. Koch, O. Deutschmann, *Chem. Ing. Tech.* 2022, 94, 217–229.
- [6] N. Macleod, R. M. Lambert, Catal. Lett. 2003, 90, 111–115.
- [7] a) A. Russell, W. S. Epling, Catal. Rev. 2011, 53, 337–423; b) P. Lott, O. Deutschmann, Emiss. Control Sci. Technol. 2021, 7, 1–6.
- [8] L. Wang, C. Yin, R. T. Yang, Appl. Catal. A 2016, 514, 35-42.
- [9] a) Z. Hu, R. T. Yang, Ind. Eng. Chem. Res. 2019, 58, 10140–10153; b) M. Borchers, P. Lott, O. Deutschmann, Top. Catal. 2022, DOI: 10.1007/s11244-022-01723-1; c) E. Esser, S. Kureti, L. Heckemüller, A. Todt, P. Eilts, T. Morawietz, A. Friedrich, W. Waiblinger, S. Hosseiny, F. Bunar, SAE Int. J. Adv. & Curr. Prac. in Mobility 2022, 4, 1828–1845.
- [10] a) S. P. Vattikuti, P. A. K. Reddy, P. C. NagaJyothi, J. Shim, C. Byon, J. Alloys Compd. 2018, 740, 574–586; b) R. Camposeco, S. Castillo, M. Hinojosa-Reyes, V. Rodriguez-Gonzalez, N. Nava, I. Mejía-Centeno, Chem. Select 2019, 4, 1023–1030.
- [11] K.-F. Zhang, D.-J. Guo, X. Liu, J. Li, H.-L. Li, Z.-X. Su, J. Power Sources 2006, 162, 1077–1081.
- [12] a) I. Song, H. Lee, D. H. Kim, ACS Appl. Mater. Interfaces 2018, 10, 42249–42257; b) I. Song, S. Youn, H. Lee, S. G. Lee, S. J. Cho, D. H. Kim, Appl. Catal. B 2017, 210, 421–431; c) H. Wang, P. Wang, X. Chen, Z. Wu, J. Hazard. Mater. 2017, 324, 507–515.
- [13] M. E. Spahr, P. Bitterli, R. Nesper, M. Müller, F. Krumeich, H. U. Nissen, Angew. Chem. Int. Ed. 1998, 37, 1263–1265; Angew. Chem. 1998, 110, 1339–1342.
- [14] a) F. Krumeich, H.-J. Muhr, M. Niederberger, F. Bieri, B. Schnyder, R. Nesper, J. Am. Chem. Soc. 1999, 121, 8324–8331; b) I. Derkaoui, M. Khenfouch, I. Boukhoubza, M. Achehboune, R. Hatel, B. M. Mothudi, I. Zorkani, A. Jorio, M. Maaza, Appl. Phys. A 2021, 127, 934.
- [15] a) H.-J. Muhr, F. Krumeich, U. P. Schönholzer, F. Bieri, M. Niederberger, L. J. Gauckler, R. Nesper, *Adv. Mater.* 2000, *12*, 231–234; b) M. Niederberger, H.-J. Muhr, F. Krumeich, F. Bieri, D. Günther, R. Nesper, *Chem. Mater.* 2000, *12*, 1995–2000.
- [16] A. F. Holleman, N. Wiberg, Anorganische Chemie, de Gruyter, 103rd ed, Berlin 2016.
- [17] S. Tripathi, R. Bose, A. Roy, S. Nair, N. Ravishankar, ACS Appl. Mater. Interfaces 2015, 7, 26430–26436.
- [18] a) H. Chang, M.-H. Tsai, *Rev. Adv. Mater. Sci.* 2008, *18*, 734–743; b) K.-M. Kim, T.-H. Kim, H.-M. Kim, H.-J. Kim, G.-H. Gwak, S.-M. Paek, J.-M. Oh, *Toxicol. Environ. Health Sci.* 2012, *4*, 121–131; c) R. Marsalek, *APCBEE Proced.* 2014, *9*, 13–17; d) N. Senthilkumar, E. Vivek, M. Shankar, M. Meena, M. Vimalan, I. V. Potheher, *J. Mater. Sci.* 2018, *29*, 2927–2938.
- [19] L. Warmuth, G. Nails, M. Casapu, S. Wang, S. Behrens, J.-D. Grunwaldt, C. Feldmann, *Catalysts* 2021, 11, 949.
- [20] a) A.-L. Papa, J. Boudon, V. Bellat, A. Loiseau, H. Bisht, F. Sallem, R. Chassagnon, V. Bérard, N. Millot, *Dalton Trans.* 2015, 44, 739–746; b) A.-L. Papa, L. Maurizi, D. Vandroux, P. Walker, N. Millot, *J. Phys. Chem. C* 2011, *115*, 19012–19017.

ChemCatChem 2023, e202201354 (9 of 10)

8673899,

- [21] B. Cornils, Hüttig temperature. In: B. Cornils, W. A. Herrmann, J.-H. Xu, H. Zanthoff (Eds): Catalysis from A to Z: A Concise Encyclopedia, Wiley-VCH, Weinheim 2019.
 - [22] M. Konsolakis, M. Vrontaki, G. Avgouropoulos, T. Ioannides, I.V. Yentekakis, Appl. Catal. B 2006, 68, 59–67.
 - [23] J. M. Lorenzi, S. Matera, K. Reuter, ACS Catal. 2016, 6, 5191–5197.
 - [24] a) A. Ueda, T. Nakao, M. Azuma, T. Kobayashi, *Catal. Today* 1998, *45*, 135–138; b) M. Saito, M. Itoh, J. Iwamoto, K. Machida, *Chem. Lett.* 2008, *37*, 1210–1211; c) X. Li, X. Zhang, Y. Xu, Y. Liu, X. Wang, *Chin. J. Catal.* 2015, *36*, 197–203.
- [25] a) T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, *Langmuir* **1998**, *14*, 3160–3163; b) T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, *Adv. Mater.* **1999**, *11*, 1307–1311.

Manuscript received: November 3, 2022 Revised manuscript received: December 19, 2022 Accepted manuscript online: December 20, 2022 Version of record online:

18673899, 0, Downloaded from https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.202201354 by Karlsruher Inst F. Technologie, Wiley Online Library on [03/02/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

RESEARCH ARTICLE

Nanostructured Catalysts for Selective Reduction of NO: Vanadium oxide (VO_x) nanotubes, VO_x-coated ZnO nanorods, and VO_x-coated, layered-titania nanotubes are decorated with Pd nanoparticles and

evaluated for selective catalytic reduction with hydrogen (H₂-SCR) for the first time. The materials exhibit a promising catalytic performance, making them attractive for H₂-SCR applications.

Dr. L. Warmuth, Dr. P. Lott, Prof. O. Deutschmann*, Prof. C. Feldmann*

MO_x@VO_x-Pd-type Nanorods and Nanotubes as Catalysts for Selective Reduction of NO